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Abstract

Motion analysis systems are widely employed to identify movement deficiencies—e.g. pat-

terns that potentially increase the risk of injury or inhibit performance. However, findings

across studies are often conflicting in respect to what a movement deficiency is or the mag-

nitude of association to a specific injury. This study tests the information content within

movement data using a data driven framework that was taught to classify movement data

into the classes: NORM, ACLOP and ACLNO OP, without the input of expert knowledge. The

NORM class was presented by 62 subjects (124 NORM limbs), while 156 subjects with ACL

reconstruction represented the ACLOP and ACLNO OP class (156 limbs each class). Move-

ment data from jumping, hopping and change of direction exercises were examined, using a

variety of machine learning techniques. A stratified shuffle split cross-validation was used to

obtain a measure of expected accuracy for each step within the analysis. Classification

accuracies (from best performing classifiers) ranged from 52 to 81%, using up to 5 features.

The exercise with the highest classification accuracy was the double leg drop jump (DLDJ;

81%), the highest classification accuracy when considering only the NORM class was

observed in the single leg hop (81%), while the DLDJ demonstrated the highest classifica-

tion accuracy when considering only for the ACLOP and ACLNO OP class (84%). These clas-

sification accuracies demonstrate that biomechanical data contains valuable information

and that it is possible to differentiate normal from rehabilitating movement patterns. Further,

findings highlight that a few features contain most of the information, that it is important to

seek to understand what a classification model has learned, that symmetry measures are

important, that exercises capture different qualities and that not all subjects within a norma-

tive cohort utilise ‘true’ normative movement patterns (only 27 to 71%).

Introduction

Motion analysis systems are widely employed within both universities and clinical facilities, to

explore the association between movement patterns and athletic performance or risk of injury,
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which is of great interest to coaches, physiotherapists and other medical professionals. How-

ever, while there are many studies that have examined movements using kinematic and kinetic

measurements seeking to identify features (e.g. maximum knee flexion) that might be related

to injury, there are no well established evidence-based guidelines that state what movement

deficiencies are, what normative ranges of variability are or what a “normal” movement looks

like. Additionally, there is little agreement as to which, if any, exercises or movement can

expose patterns that could lead to injury or what properties an exercise should hold (single or

double leg, movement in one, two or three planes, ecological validity and so on). For example,

both Hewett et al., [1] and Krosshaug et al., [2] examined features extracted from a double leg

drop jump (DLDJ) to assess their ability to predict the risk of sustaining an anterior cruciate

ligament (ACL) injury. Both studies performed a prospective analysis on a large population

([1] = 205; [2] = 782) of female athletes participating in field sports. While Hewett et al., [1]

concluded that specific features (describing knee motion and knee loading) were very sensitive

in predicting ACL injury, Krosshaug et al., [2] reported poor prediction abilities. The conflict

in findings between movement analysis studies, provoked Bahr [3] to state in a recent review:

“To date, there is no screening test available to predict sports injuries with adequate test prop-

erties and no intervention study providing evidence in support for screening for injury risk”.

A possible source of conflicting conclusions is the way features are extracted. When

describing a movement, studies often extract features based on prior knowledge (previous

research and / or personal and clinical experience) or post hoc analysis to reduce dimensional-

ity within the highly multivariate datasets, across joints and time. These features are then used

to compare the magnitude or timing between groups [3] assuming that the extracted features

capture the underlying function of a signal. While discrete points can be helpful in under-

standing movements, the selection of discrete points has the potential to: discard important

information [4, 5], to compare features that present unrelated neuromuscular capacities [6]

and to encourage fishing for significance—e.g. non-trivially biased non-directed hypothesis

testing [7]. Due to the apparent limitations in discrete point selection, other analyses have

been introduced in recent years—statistical parametric mapping [7], (functional) principal

component analysis [8–10], analysis of characterising phases [6], point by point manner test-

ing [11] and other techniques [3, 10, 12–14] to improve the analysis of movement patterns.

Another possible source for conflicting conclusions is the way extracted features are com-

pared across groups. Comparisons are often made using statistical significance, and conclu-

sions are developed by inferring properties about a population by testing hypotheses and

deriving estimates by probability values (p-values). While, p values are useful they are fre-

quently criticised [15–20] due to the possibility of committing type 1 and 2 errors, that any dif-

ference can be statistically significant—with large enough sample size [18]—that p values do

not provide statistical precision and that conclusions do not account for multiple movement

strategies (subgroups) within a dataset. As such, injury related features can be masked during

an analysis. Differences in movement strategies within a dataset may be caused by differences

in anthropometric measures as well as training, sporting and injury history and there is grow-

ing evidence for different movement strategies across individuals [21–31].

When examining a human movement, the method of data analysis chosen needs to contend

with a complex and multivariate system and any analysis using an inference test may not help

to progress the understanding of movement as it does not account for differences in move-

ment strategy or the interrelationship of segments. More suitable methods for movement anal-

ysis might be a data driven machine learning techniques that do not require expert knowledge,

which have gained popularity in biomechanics and other fields as they have demonstrated an

enhanced ability to understand complex and multivariate systems—see Barton et al., [14],

Halilaj et al., [32], Rajpurkar et al., [33] or Figueiredo et al. [34]. While studies do not
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frequently use machine learning techniques in sport-biomechanics, machine learning tech-

niques have been used in gait studies to classify movement data into pathological and able-

bodied [35], to detect / judge severity of diseases [36] or to predict surgical / therapy outcomes

[37, 38]. For the interested reader Figueiredo et al. [34] reviewed experiments that used

machine learning in gait-biomechanics, while Halilaj et al. [32] reviewed the usage of machine

learning technique in human movement biomechanics stating best practices and common pit-

falls. One of the few studies within sports-biomechanics that used a data-driven supervised

learning approach to classify the skill level of athletes (novice and elite) using biomechanical

data is Ross et al., [10] and reported an accuracy of 70 to 80%. However, machine learning

techniques have not been applied to differentiate movement patterns between non-injured

and rehabilitating athletes (e.g. after ACL reconstruction). As such it is not known a) what the

most appropriate machine learning technique for such a classification task is, b) what classifi-

cation accuracies one could expect or c) if movement patterns differ on a group level (e.g. non-

injured vs. rehabilitating) or limb level (normal limb vs. operated limb and limb contralateral

to operated limb) as movement pattern difference might by driven by anatomical/morphologi-

cal differences, which could affect both legs or just one limb in rehabilitating cohorts.

The aim of this study was to develop and test a data driven framework (feature generation

based on no expert or prior knowledge) to classify movement patterns of normal and rehabili-

tating athletes using only biomechanical data.

Materials and methods

Subjects

This study used a cohort of males recovering from ACL reconstruction as the rehabilitating

cohort (ACL reconstruction should have altered kinematics and neuromuscular properties

within the operated knee [39]) and a cohort of healthy males as control / normal group. The

ACL group (n = 156) was recruited from the caseload of two orthopaedic surgeons who spe-

cialise in knee surgery between January 2014 and December 2016. Inclusion criteria were: bio-

mechanical assessment approximately 9 months after ACL reconstruction, intention of

returning to full participation in multi-directional sport after surgery, bone patellar tendon

bone graft or hamstring graft from the ipsilateral side, gender (male) and an age between 18

and 35. Exclusion criteria were: multiple or previous ACL reconstructions and any meniscal

repairs. The control group (n = 62) contained males that participated in multi-directional

sport (i.e. Gaelic Football, Soccer, Hurling, Rugby Union) that were free of injury in the 3

months prior to testing, had no previous knee surgery and were between 18 and 35 years of

age. The study received ethical approval from Sports Surgery Clinic Hospital Ethics committee

(25AFM010) and was registered on clinicaltrials.gov (NCT02771548). The examined data

were fully anonymised and all subjects provided informed written consent to have their data

used for research.

The ACL group had an average age of 24.8 ± 4.8 years was 180 ± 8 cm tall and had a body

mass of 84 ± 15.2 kg. The control group had an average age of 24.8 ± 4.2 years was 183 ± 6 cm

tall and had a body mass of 82 ± 8.9 kg.

Data capture and pre-processing

The testing took place in the motion analysis laboratory using an eight-camera motion analysis

system (200Hz; Bonita-B10, Vicon, UK), synchronised with two force platforms (1000Hz

BP400600, AMTI, USA). Before data collection, all subjects undertook a standardised warm-

up and wore their own athletic footwear with 24 reflective markers secured to the shoe or to

the skin using tape, at bony landmarks according to the Plug-in-Gait marker set. Three trials
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of each limb for the following seven exercises were captured: double leg (DL) countermove-

ment jump (CMJ; [40]), single leg (SL) CMJ [40], DL drop jump (DJ; [40]), SLDJ [40], Hurdle

Hop (HuHo; [40]), SL Hop (SLHop; [40]), planned change of direction (CoDP [41]) and

unplanned change of direction (CoDU [41]). Marker and force data were low-pass filtered

using a fourth-order Butterworth filter [42]—before computing kinematic and kinetic mea-

sures using Nexus (1.8.5; Vicon, UK). Data pre-processing (gap filling and waveform screen-

ing) was performed on examined biomechanical measures using a custom developed

MATLAB program (R2015a, MathWorks Inc., USA). All kinetic variables were normalised to

body mass. The start and end point of an exercise was defined using the force trace or a combi-

nation of center of mass (CoM) power and force trace [40, 41] and all measures were landmark

registered using a dynamic time warping process [43] to align the end of the eccentric phase

across the all curves [40, 41]. Only the maximum trial of the captured (based in maximal jump

height and shortest contact time) was chosen for data analysis.

The framework

The steps taken during data analysis can be described as follows: feature engineering, selec-

tion of a supervised learning technique, feature selection and final validation of minimal fea-

ture model. The performance of any generated classification model described in this study is

the average classification accuracy of a 100 split stratified shuffle split cross-validation. A

shuffle spilt cross-validation was used in preference to a k-fold cross validation because,

although information leaking can occur between the splits, it allows the re-use of subjects

that have been assigned previously to the trainings group and hence a number of splits and

greater sample size during the training / fitting of the prediction model. The description of

the generation of the framework is based on a single exercise and was done for every exercise

separately.

During the performed splits, false and correct classifications were recorded to allow the

generation of a confusion matrix for every model generated on a group (e.g. ACL and

NORM), limb (class: ACLOP, ACLNO OP and NORM) and subject level. This information is

essential when examining the prediction model, in respect to errors (confusion or misclassifi-

cations) made and can also help in understanding the examined data—e.g. do features differ

on a group or limb level (misclassifications of class but not group level), do some subjects

behave differently than others within a class (misclassification of specific subjects) or if one

model made misclassifications another did not (could to models complemented each other).

In addition to recording false and correct classifications, during every split a “guess prediction”

was made with each trial having a 1 in 3 chance of belonging to the class: ACLOP, ACLNO OP or

NORM. The best guess, the highest guess classification accuracy observed within splits, was

then used as a threshold to judge the meaningfulness of the generated models. A classification

model was defined meaningful if the lowest observed accuracy during the splits was greater

than the best guess.

This study evaluated the created models on a number of levels: the number of features

selected for inclusion (3 levels: all features, 20 features, minimal feature), the machine learning

technique (7 widely used techniques were applied) and movement type (8 movement fre-

quently used to assess the rehabilitation status of athletes with ACL and to predict future

injury). Except of the minimal feature model, the evaluation was performed by assessing the

average classification accuracy. Evaluation of the minimal feature model was based on average

classification accuracy, classification errors and sensitivity. Other classification performance

measures e.g. area under the curve, precision, recall, f1-score or specificity would very likely

have resulted in different models and performance rankings.

Objective scoring of movement deficiencies in ACL patients
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Feature engineering. Traditional analyses, which use discrete measures, are dependent

on the selection of features. To enable a data-driven feature engineering that does not require

expert knowledge, this study reduced dimensionality of commonly examined motion capture

time-series by examining variability within the time-series across examined in 100 random

shuffle splits using analysis of characterising phases [6]. This information was then used to

reduce a time-series to just a few features that describe the variability of the signal across all

participants. This process was performed on each examined time series separately. The follow-

ing 82 time series were examined separately: ground reaction force (GRF; x, y, z), GRF impulse

(x, y, z), center of mass (CoM) velocity (xy, xyz, z), CoM power (x, y, z), CoM in pelvis, hip,

knee and ankle (x, y, z) as well as joint angles of the ankle, knee, hip, pelvis, thorax and thorax

on pelvis in sagittal, frontal and transversal planes, joint angular velocities of the ankle, knee,

hip, pelvis, thorax and thorax on pelvis in sagittal, frontal and transversal plane, joint powers,

moments, work and impulse of ankle, knee, hip and pelvis in sagittal, frontal and transversal

plane, time and the rotation foot angle to pelvis.

Before performing the stratified shuffle splits, a matrix (memory matrix) was defined for

every examined signal consisting of 101 rows (corresponding to length of the time-series) and

100 columns (corresponding to the number of splits) storing “0” values. The first step within

every split was the random selection of 50 subjects from the ACL and NORM cohort to create

a dataset of 200 trials—containing 50 ACLOP limbs, ACLNO OP limbs and 2x50 NORM limbs

(Fig 1—step 1). Analysis of characterising phases (described in [6]) was then used to identify

phases of variation within the created dataset. For every time point that was within a detected

phase of variation, the default “0” value was changed to “1” for the corresponding row and col-

umn in the memory matrix. For example, if the described process identified the time points

from 5 to 15 within a time series to be a phase of variation in the 7th split, then the value of row

5 to 15 in column 7 in the memory matrix was changed to “1” (Fig 1—step 2).

After completing the 100 splits, the sum of the values in the memory matrix was computed

along the split axis generating a 101x1 vector that stored the accumulated appearance as a

phase of variation for each frame. A value of “0” indicates that this time point was never within

Fig 1. Illustration of the work-flow during the features engineering.

https://doi.org/10.1371/journal.pone.0206024.g001
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a phase of variation, while the value 84 indicates that a time point was 84 times within a phase

of variation (Fig 1—step 4). Every collection of time points that occurred in 75% of the splits

and spanned at least 5% of the movement cycle was considered robust phase of variation and

used for the feature engineering. The investigators used a 75% threshold, instead of 95% [44],

to maintain more information—i.e. allowing more phases to be classified as robust phases of

variation. Features describing a phase were calculated as the average value of a phase and

stored into a feature matrix that contained i rows / features (i is the number of detected phases

of variation) and n = 436 columns / observations (156 operated limbs [class: ACLOP], 156 limb

contralateral to the operated limb [class: ACLNO OP] and 124 control limbs [class: NORM]).

For every double leg exercise, symmetry was also calculated as limb – contralateral limb—e.g.

left – right for left leg trials or right – left for right leg trials.

During the feature engineering the data examined for each exercise generated between 97

and 186 features for each of the 436 observations (Table 1). The detailed description of results

of this step is given in S1 Appendix—Detected Phases. These features were used within the fol-

lowing steps as input features during the fitting (training) and validation (testing) of every gen-

erated model.

Selection of supervised learning technique. The second step in the model generation

was the identification of the most appropriate machine learning technique. This process was

done because the selection of the best learning technique can be challenging as there are multi-

ple techniques and each technique has different abilities to learn relationships between the to

be predicted classes and input features [45, 46]. This study examined only the ability of tech-

niques included within the statistical toolbox of Matlab (R2015a, MathWorks Inc., USA): a

decision tree (fitctree), an ensemble of decision trees (n trees = 50; TreeBagger), a discriminant

analysis model (fitcdiscr), a naive Bayesian classifier (fitcnb), a k-nearest neighbour model

(k = 5; fitcknn), a multi class model for support vector machines (fitcecoc), a linear regression

model (mnrfit; in stepwise forward) and a neural network (patternnet). No grid search was

performed at any time and is it very likely that accuracies in better-tuned models will outper-

form the presented findings. The random assignment of observations into training and testing

dataset, during a split, was performed on athlete level to prevent data leakage from training

into testing data—e.g. if a subject was selected to belong to the training dataset both the right

and left limb were used within the training. Each learning technique was tested separately

using raw values and normalised values (z-scores) of the feature matrix.

During a split, the feature matrix built during the feature engineering step was split into

training, testing and hold out dataset (Fig 2—step 1). The sample size of the datasets was cho-

sen based on the NORM sample size (training� 70%, testing� 25% and hold out� 5%).

Hence, the training dataset contained around 88 trials from each class (� 56% of ACLOP and

ACLNO OP) resulting in a training matrix containing i features and� 264 trials. The testing

dataset contained around 30 trials from each class (� 20% of ACLOP and ACLNO OP) resulting

in matrix containing i features and� 90, while the hold out dataset contained the remaining

trials. The training dataset was used to teach each machine learning technique to predict the

three classes using the previously extracted features. After the training had been completed,

class membership of the testing dataset was predicted and compared to the actual class to

assess the performance of each learning technique (Fig 2—step 3). When using normalised

Table 1. Number of extracted features that were used as input features during fitting (training) and validation (testing) of the supervised learning techniques.

SLCMJ DLCMJ SLDJ DLDJ HuHo SLHop CoDP CoPU

i features 140 176 97 186 119 157 132 97

n trials 436 436 436 436 436 436 436 436

https://doi.org/10.1371/journal.pone.0206024.t001
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scores, the testing dataset was normalised using the mean and standard deviation of the train-

ing data. The purpose of the hold out dataset was increase the “interchange” of trials within

splits, increasing the variation across datasets within the splits and facilitated balanced class

distributions within the datasets.

After the stratified shuffle split cross-validation was completed, the learning technique with

the highest mean accuracy across the splits was judged most appropriate and used for subse-

quent analysis (Fig 2—step 5).

Findings during this step demonstrated small differences between classifications accuracies

from raw and z-scores (1%). Based on the normalised scores (z-scores), this process identified

that the neural network performed best on the DLDJ features (80%), the logistic regression

performed best on the SLCMJ (57%), DLCMJ (72%), HuHo (69%) and SLHop (72%) features,

while the discriminant analysis performed best on the SLDJ (60%), CoDP (68%) and CoDU

(65%) features. The results of this step are described in Table 2 and are visualised in detail in

S2 Appendix—Best Learning Technique.

Feature selection. The third step was the identification of the features that are most

important in the classification. This process used only the best performing machine-learning

technique and sought to reduce the effect of over-fitted models by identifying the minimal

Fig 2. Illustration of the workflow to identify the most suitable learning technique.

https://doi.org/10.1371/journal.pone.0206024.g002

Table 2. Description of the performance of the supervised learning techniques using all extracted features within an exercise.

SLCMJ DLCMJ SLDJ DLDJ HuHo SLHop CoDP CoPU

Regression 57 72 59 77 69 72 67 61

Discriminant 51 59 60 60 68 68 68 65

KnearestNeighbor 42 41 41 42 53 41 41 40

NaiveBayes 54 71 58 76 60 65 59 55

DecisionTree 44 57 46 65 49 59 48 43

RandomForest 55 70 58 80 62 71 60 54

SupportVectorMachine 44 46 45 49 59 54 50 49

NeuralNetwork 53 71 58 80 65 68 64 57

Correlation2Mean 36 41 37 42 52 49 40 40

Distance2Mean 39 43 50 38 44 34 39 40

https://doi.org/10.1371/journal.pone.0206024.t002
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number of features required to capture most of the information within an exercise. To identify

the most important features, a wrapper method (evaluate performance of subsets of features in

a forward selection matter) in combination with a stratified shuffle split cross-validation with

100 splits was used (Fig 3). Again, no grid search was performed.

Before starting the selection of important features, an empty matrix (model base) was

defined. After the creating of this model base matrix a stratified shuffle split cross-validation

with 100 splits was started assessing the classification accuracy of every feature within the fea-

ture matrix on its own. In every split the data were divided into training, testing and hold out

datasets (Fig 3—step 1). The training dataset was used to teach the previously selected

machine-learning technique to predict the three classes (ACLOP, ACLNO OP and NORM).

After the training phase had been completed, comparing the predicted class of the testing data-

set to the actual class assessed the performance of the generated model. After the 100 splits, the

feature with the highest mean accuracy was identified, added to the model base matrix and

removed from the feature matrix (generated during the feature engineering). All features that

correlated with the identified feature (greater than 0.70) were also removed from the feature

matrix, to increase interpretability. The value of.70 was a subjective choice as this magnitude is

often considered as strong. Subsequently, a second stratified shuffle split cross-validation with

100 splits was started assessing the classification accuracy of the model base matrix in combi-

nation with every remaining feature within the feature matrix. The feature that performed best

was added to the model base matrix. The just added and any collinear feature where then

removed from the feature matrix (Fig 3—step 5). This process was repeated until the model

base matrix grew to 20 features (this number was chosen to keep computing time to a reason-

able duration; Fig 3—step 6).

The last step during the feature selection was determining how many features should be

within a model that presents a good trade-off between efficiency and effectiveness (minimal

feature model—e.g. the model with the smallest number of features that accounts for a large

part of the contained information). To do this the Elbow method was used—described in

Fig 3. Illustration of the workflow to identify key features toward classification.

https://doi.org/10.1371/journal.pone.0206024.g003
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Hastie and Tibshirani [45] or Vapnik and Vapnik [46], with the “elbow” being defined as the

point n where the differentiation of accuracy f improved less than 10% of its range (Eq 1).

f ðnþ 1Þ � f ðnÞ < ½maxðf Þ � minðf Þ� � :10; ð1Þ

The detailed description of results of this step is given in S3 Appendix—Best Features.

Final validation of minimal feature model. The number of parameters and models that

were tested in this study is large and information could have leaked during the shuffle spilt

cross-validation (e.g. possibly over fitting the presented models). To examine if a model was

over fitted a 10 fold cross-validation was used to re-evaluate the minimal feature models. Dur-

ing the cross-validation the minimal feature model was trained using 156 subjects (n = 52 per

class;�90% of Norm and�33% of ACLOP and ACLNO OP) and validated using 18 subjects

(n = 6 per class;�9% of Norm and�4% of ACLOP and ACLNO OP) as testing data. Ten folds

were chosen to balance the number of subjects in testing and training with an acceptable accu-

racy resolution (1 in 18 = 5.56%). The mean accuracy of the 10 fold were then compared to the

mean accuracy of the previous used shuffle spilt cross-validation.

Matlab (R2015a, MathWorks Inc., USA) was used for data processing and analysis.

Results

Findings reported are based on normalised scores (z-scores), for two reasons: the difference

between classifications accuracies for the raw and z-scores was small at less than 1% at most

and z-scores remove any possible magnitude effect during the selection of features within the

optimal model. The highest guess observed during the performed splits was 42%.

Model performance evaluation

Generated models were generally judged successful in classifying the classes (ACLOP, ACLNO

OP and NORM). All 3 models generated within an exercise (all features, 20 features, minimal

features) were judged meaningful except for the minimal feature for the SLCMJ and CoDU

movements. The classification accuracies increased on average 6.1% when reducing the num-

ber of features from every extracted feature to 20 features (Table 3). The classification accura-

cies of the minimal feature models were comparable to the full models (average difference

-4.4%; Table 3). When comparing the full model to the minimal feature model: the perfor-

mance of the DLCMJ, DLDJ, SLHop and HuHo stagnated or improved slightly (0 to 4%),

while a slight decrease in performance (-4 to -5%) was observed in the SLCMJ, SLDJ and

CoDP. The CoDU minimal feature model decreased its performance by 14% compared to the

full model and 15% to the 20 feature model.

Table 3. Description of performance observed during the model generation process (using all features, 20 most important features and optimal features.

Exercise Accuracy best classifier

(using all features)

Difference norm

vs. raw

Accuracy using only 20

selected features

No. features

optimal

Accuracy optimal

features

10 fold cross-

validation mean ± std

Lowest Accuracy

cross-validation

SLCMJ 57% 0% 67% 2 53% 53 ± 10% 40%

DLCMJ 73% 0% 82% 4 73% 62 ± 13% 57%

SLDJ 66% 0% 68% 2 56% 56 ± 11% 45%

DLDJ 82% 0% 87% 3 81% 77 ± 08% 67%

SLHop 75% 1% 79% 5 75% 77 ± 10% 61%

HuHo 67% 1% 74% 5 69% 74 ± 10% 57%

CoDP 66% 1% 77% 5 58% 55 ± 14% 53%

CoDU 66% 0% 67% 2 52% 63 ± 10% 39%

https://doi.org/10.1371/journal.pone.0206024.t003
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Minimal feature models: Accuracies, errors and sensitivity

The minimal feature models used between 2 and 5 features (Table 4) and the classification

accuracies observed were (in decreasing order): DLDJ (81%), SLHop (74%), DLCMJ (70%),

HuHo (69%), CoDP (63%), SLDJ (57%), SLCMJ (53%) and CoDU (52%). The detailed

description of results of this step is given in S4 Appendix—Minimal Feature Models.

Results for the 10-fold cross-validation of the minimal feature model demonstrated differ-

ences in mean accuracy to the shuffle-split cross-validation (Table 4; in decreasing order):

DLCMJ (-11%), CoDU (+11%), SLHop (5%), DLDJ (-4%), CoDP (-3%), HuHo (+3%), SLDJ

(0%) and SLCMJ (0%).

Classification errors originated from misclassifications of the class ACLOP and ACLNO OP

in the optimal SLHop and HuHo model (Table 5). In these models the percentage of misclassi-

fication within the ACL group was higher (� 2 times) than misclassification of either ACL

class with NORM, while the SLCMJ model tended to misclassify both ACL classes with

NORM class. The DLCMJ and DLDJ results displayed increased misclassifications between

NORM and either ACL class compared to between the ACL classes (� 1.8 and 4 times;

Table 5). The SLDJ displayed increased misclassifications (� 2 times) between the ACLNO OP

and NORM class compared to ACLOP with ACLNO OP or NORM (Table 5). In the CoDP and

CoDU models, misclassifications were equally distributed between the classes (Table 5).

Table 4. Description of minimal feature models: Used machine learning techniques, identified features and corresponding accuracies.

Exercise Technique Feature Accuracy (%)

SLCMJ neural network model ankle rotation moment(83-87%) 46

CoM in pelvis (sagittal plane)(79 to 85%) 53

DLCMJ logistic regression knee flexion angle symmetry (46 to 51%) 56

resultant CoM velocity (87 to 95%) 61

knee rotation angle symmetry (27 to 33%) 70

ankle abduction angle symmetry (1 to 13%) 73

SLDJ discriminant analysis resultant CoM velocity (94-100%) 51

vertical CoM velocity (1 to 7%) 56

DLDJ neural network vertical ground reaction force symmetry (80 to 86%) 69

resultant CoM velocity (80 to 84%) 75

knee flexion angular velocity (74 to 81%) 81

SLHop logistic regression model ankle flexion angular velocity (7 to 11%) 58

CoM in knee(transversal plane) (89 to 100%) 65

vertical CoM velocity (1 to 7%) 68

vertical ground reaction force (14 to 19%) 72

pelvic rotation angles (42 to 50%) 75

HuHo logistic regression model knee flexion work (67 to 71%) 48

vertical ground reaction force (76 to 80%) 56

knee abduction moment (38 to 42%) 63

vertical CoM velocity (66 to 76%) 67

knee flexion angular velocity (84 to 89%) 69

CoDP discriminant analysis knee flexion angular velocity (96 to 100%) 48

knee flexion angle (57 to 61%) 57

knee abduction moment (52 to 56%) 63

CoDU discriminant analysis vertical CoM velocity (86 to 91%) 48

hip flexion moment (91 to 95%) 52

https://doi.org/10.1371/journal.pone.0206024.t004
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When assessing the performance of minimal feature models on a group level (ACL [ACLOP

and ACLNO OP] and NORM) the single leg exercises demonstrate large improvements (12 to

24%), while the double leg exercises did not (2 to 8%; Table 6).

The sensitivity for the classification of the NORM class was highest in the SLHop (81%),

while for the sensitivity for ACLOP and ACLNO OP trials was highest for the DLDJ (84 and

85%; see Table 6).

The percentage of the athletes within the NORM group that were never confused (’true’

NORMs) ranged from 27 to 71% depending on the exercise (Table 6). The percentage of the

athletes within the ACLNO OP and ACLOP group that were never confused ranged from 52 to

85% depending on the exercise (Table 6).

Discussion

This study examined the classification accuracy of a framework that combines a data-driven

feature extraction procedure that did not require expert knowledge and a supervised machine

learning technique to differentiate movement patterns from ACL operated class (ACLOP),

from a limb contralateral to an ACL operated limb (ACLNO OP) and a non-injured control

Table 5. Description of the confusion matrix for the minimal feature model of every examined exercise: Reporting true positive, true negative, false positive and

false negative as count (percentage across all classes).

SLCMJ ACLOP ACLNO OP NORM DLCMJ ACLOP ACLNO OP NORM

ACLOP 1928 (22%) 526 (6%) 514 (6%) ACLOP 2190 (24%) 339 (4%) 471 (5%)

ACLNO OP 825 (9%) 1562 (18%) 525 (6%) ACLNO OP 338 (4%) 2190 (24%) 472 (5%)

NORM 909 (10%) 901 (10%) 1092 (12%) NORM 512 (6%) 504 (6%) 1959 (22%)

SLDJ ACLOP ACLNO OP NORM DLDJ ACLOP ACLNO OP NORM

ACLOP 2012 (28%) 421 (5%) 542 (6%) ACLOP 2501 (28%) 108 (1%) 391 (4%)

ACLNO OP 604 (7%) 1463 (17%) 908 (10%) ACLNO OP 109 (1%) 2507 (28%) 384 (4%)

NORM 525 (6%) 902 (10%) 1460 (17%) NORM 355 (4%) 334 (4%) 2282 (25%)

SLHop ACLOP ACLNO OP NORM HuHo ACLOP ACLNO OP NORM

ACLOP 2088 (23%) 657 (7%) 255 (3%) ACLOP 2007 (22%) 658 (7%) 321 (4%)

ACLNO OP 587 (3%) 2129 (24%) 284 (3%) ACLNO OP 657 (7%) 1803 (20%) 523 (6%)

NORM 267 (3%) 291 (3%) 2370 (27%) NORM 175 (2%) 389 (4%) 2388 (27%)

CODP ACLOP ACLNO OP NORM CoPU ACLOP ACLNO OP NORM

ACLOP 1828 (21%) 566 (6%) 558 (6%) ACLOP 1705 (20%) 659 (8%) 554 (7%)

ACLNO OP 706 (8%) 1640 (19%) 552 (6%) ACLNO OP 795 (9%) 1326 (16%) 717 (8%)

NORM 364 (4%) 485 (6%) 2030 (23%) NORM 567 (7%) 784 (9%) 1410 (17%)

https://doi.org/10.1371/journal.pone.0206024.t005

Table 6. Description of class specific sensitivity, performance of binary classification (ACL and NORM) and percentage of the athletes within the NORM group that

were never confused.

Exercise % for Norm class % for ACLOP class % for ACLNO OP class % binary classifier (delta to multi class) % of sample representing true Norm

SLCMJ 51 53 52 67 (+15) 27

DLCMJ 68 72 72 78 (+8) 43

SLDJ 50 64 53 69 (+12) 39

DLDJ 75 84 85 83 (+2) 52

SLHop 81 71 69 88 (+24) 71

HuHo 74 71 63 83 (+12) 70

CoDP 65 63 61 77 (+14) 65

CoDU 53 56 48 70 (+17) 40

https://doi.org/10.1371/journal.pone.0206024.t006
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limbs (NORM) using only biomechanical data. Findings demonstrate that biomechanical data,

regardless of the exercise, contained sufficient information to outperform guessing and suggest

that it is possible to differentiate normal movement patterns from movement patterns after an

ACL reconstruction on a group and limb level.

Model evaluation

Classification accuracy. This study developed a minimal feature model in 3 steps that

generated three prediction models: one that utilised a large number of features, one model uti-

lised only 20 (most important) features and a minimal feature model. The minimal feature

model contained 2 to 5 features and classification accuracies were similar between the three

generated models. For the DLCMJ, DLDJ, HuHo and SLHop, using the minimal feature mod-

els reduced the information utilised by 94 to 98% (160 features vs.� 4 features) but achieved

performances similar (-2 to 2%) to models using all generated features. In contrast, the perfor-

mance of the minimal feature model decreased for the SLCMJ, SLDJ, CoDP and CoDU in

comparisons to the model using all generated features (-5 to -12%). The decrease in accuracy

in the minimal feature model SLCMJ, SLDJ, CoDP and CoDU indicates an increased com-

plexity in these exercises, compared to the DLCMJ, DLDJ, HuHo and SLHop, and suggests

that these models need more information (features) to perform as well as they could. However,

all exercises improved performances when reducing the number of features from 97 to 186 to

only 20, which is a reduction of used features of� 84% (138 features vs. 20 features), by� 7%.

This suggests that there was an effect of over-fitting to the training data in the models that

used all extracted features and highlights that the importance of some kind of feature selection

before model building using biomechanical analysis using comparable sample sizes. However,

this finding also highlights that a relatively small number of biomechanical features (between 2

and 20) captures a large amount of the information content from a biomechanical assessment.

Regarding the information contained within the examined movement data when assessing

classification accuracies in a multi-class classifier, classification models achieved accuracies of

(in decreasing order): DLDJ (81%), SLHop (75%), DLCMJ (73%), HuHo (69%), CoDP (58%),

SLDJ (56%), SLCMJ (53%) and CoDU (52%). Little research exists currently that used bio-

mechanical data to classify group / cohort membership. The closest research is that of Ross

et al., [10] who analysed the movements in elite and non-elite performers and found that a

data driven model could classify an individual into novice and elite with an classification accu-

racies between 71 to 80% across 13 exercises. While the classification accuracies of the SLCMJ,

SLDJ, CoDP and CoDU seem to be low in comparison to other exercises or the findings of

Ross et al., [10], it should be considered that their performance was assessed in an multi-class

classifier. The classification accuracy of the SLCMJ, SLDJ, CoDP and CoDU in a binary or

group classifier (ACL or NORM) was 67, 69, 77 and 70%, making them comparable to

reported classification accuracies observed by Ross et al., [10].

Classification errors. Classification errors in the tested multi-class classifiers could have

occurred due to a reduced / smaller difference in movement within the ACL classes compared

to the ACL and NORM classes—e.g. because of anatomical / morphological differences

between the groups (ACL and NORM). When assessing the performances on a group level

(ACL and NORM) performances improved significantly, compared to the limb class level, for

every single leg exercise (� 16%) but not for double leg exercises (� 5%), suggesting differ-

ences between the single and double leg exercises. These differences might be explained by

the additional symmetry information that was contained in the double exercises but not in the

single leg exercises. This assumption is supported by the fact that in the double leg exercises,

symmetry features were selected frequently (4 out of 7). The magnitude of symmetry or
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asymmetry seems to be a useful feature within the generated models, which supports findings

of Myer et al., [47] and others [48–50]. While symmetry features could have been included

within the single leg models, it requires the intervention of the investigators—e.g. symmetry

calculation as mean symmetry, symmetry between trial x and trial y and so on [51]. Symmetry

was not included in this study because it cannot be calculated without setting subjective rules

(e.g. expert knowledge), as every execution presents different external and internal conditions.

Nevertheless, findings suggest that symmetry measures are important and hence they should

have been considered.

Regarding errors that might have been caused by anatomical or morphological differences

between the groups, a large part of error in the SLHop and HuHo classification errors origi-

nated from confusing ACLOP and ACLNO OP (see Fig 4). In these models the percentage of

misclassification within the ACL group was higher (� 2 times) than confusing either ACL

class with NORM. This suggests that the movement of both limbs in the ACL group is affected

by an ACL reconstruction—as both limbs can be differentiated from the NORM pattern but

less from each other. As such, the ACLNO OP may not be ideal reference when judging the

rehabilitation status and readiness to return to play. Another reason could be that the differ-

ences between ACLOP and ACLNO OP are not well described in the examined features.

The SLDJ, DLDJ, SLCMJ, CoDP and CoDU models demonstrated different error or mis-

classification patterns. The SLDJ would have benefited most from a binary-classifier that classi-

fied for ACL reconstructed limb (ACLOP) and not ACL reconstructed limb (ACLNO OP and

NORM), as a large part of misclassifications were made by confusing ACLNO OP and NORM

(confusions within the ACL group were less common). This would suggest that the SLDJ is

able to detect differences between a limb with ACL reconstruction and limb without ACL

reconstruction—implying that the ACLNO OP limb could be used as reference when judging

the progress of rehabilitation. The interpretation of the selected features in the minimal feature

model, however, suggests that the execution of the exercise was modified for within the ACL

classes and between the groups. The vertical CoM velocity at impact was selected yet it should

Fig 4. Illustration of the results of the SLHop model: The model accuracy is displayed on the top right, while the confusion

matrix of a 2-feature model is displayed below (right button). The three graphs on the left display the confusion pattern (button)

and selection frequency of each trail within the ACLOP, ACLNO OP and NORM (top).

https://doi.org/10.1371/journal.pone.0206024.g004
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not hold any meaningful information, as it should be nearly the same (impact velocity should

theoretically be 1.981 m/sec.) across all trails because of the controlled drop height. Inspection

the model visually reveals: a) that the ACLNO OP and NORM class demonstrate similar CoM

resultant velocity at take off values, while values in ACLOP are reduced, and b) that the vertical

CoM velocity at impact values are different between ACLNO OP and NORM and spanned over

the range of classes for the ACLOP class (Fig 5). Based on a post hoc analysis, the ACLNO OP

and some of the ACLOP class have ‘changed’ the drop height by adapting a stepping down pat-

tern (Fig 5), which was not detected and resolved during the biomechanical assessment, in

spite of careful instruction and frequent lab quality assessments. This highlights is the impor-

tance of interrogating what the model has learned during a data driven process as other fea-

tures should be been normalised to the ‘changed’ the drop height and highlights possible

psychological differences between the group [52].

In the DLCMJ and DLDJ, errors originated from misclassifying NORM with either ACL

class or both ACL classes with NORM, with the DLDJ demonstrating a larger inequality in dis-

tribution (� 1.8 vs. 4 times). This might be explained by an increase of the physical demand of

the DLDJ that poses an additional challenge to symmetry and reactivity. While the minimal

feature SLCMJ model demonstrated classification errors that originated equally from confu-

sion between the classes, the 20 feature or all feature SLCMJ model displayed that confusion

between ACLNO OP and NORM were� 2 times higher compared to other classification errors.

This suggests that models that utilised more features possibly detected some patterns that

differ between ACL operated and not operated limbs (when being provided with information

from many features). Similar to the SLCMJ the minimal feature CoDP and CoDU models

demonstrated classification errors that originated equally from confusion between classes,

while the 20-feature model displayed an increased error from misclassification within the ACL

group (� 2 times). This would suggest that the ACLOP and ACLNO OP class share more similar-

ity with each other than to the NORM class.

Fig 5. Illustration of the 2 most important SLDJ model features (CoM resultant velocity at take off values and vertical CoM

velocity at impact) plotted against each other on the left and the CoM velocity at impact for the logic cases on the right. Fully

coloured bubbles represent trials with ‘true’ group pattern, while faded coloured bubbles represent trails that did not.

https://doi.org/10.1371/journal.pone.0206024.g005
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Classification sensitivities. Another source of error for the models is the misclassification

of specific athletes within a class that does not present the ‘true’ class movement patterns.

When examining the prediction errors on an athlete level, it was noted that some athletes are

always classified correctly; some are occasionally classified correct, while some are always mis-

classified. This was true for all classes and exercises. The detection of members within a group

that are not always classified correctly could help to understand group differences [30] as they

could be excluded from subsequent analysis (as done in Fig 5 to better understand the class

pattern the model has learned). The existence of such athletes or the proportion of such ath-

letes within a group may also explain why there are so many conflicting findings in inference

based studies. However, knowing that such athletes exist also enables the development of our

understanding of injuries as the probability of belonging to a desired class computed during a

classification could be used when judging movement analysis and injury risk. Consequently,

the probability of membership to a class (in this case the NORM class) could also allow the

objective judgment of a movement or the rehabilitation progress. The probability of member-

ship can give an objective measure of how close a trial is to a desired class and presents a clear

criterion if an athlete has returned to normal.

Practical implications

Return to play after ACL reconstruction as well as the prevention of subsequent re-injury is

not always guaranteed [53, 54] and this might be in part due to absence of clear criteria identi-

fying if an athlete has returned to pre-injury levels or completed rehabilitation. Current clinical

testing batteries often utilise biomechanics to assess a movement quality. However, there is lit-

tle consensus on the appropriateness of biomechanical analysis and / or specific exercise tests

and measures when differentiating between two specific groups. This study demonstrates that

biomechanical data holds enough information to differentiate between ACLOP, ACLNO OP and

NORM with classification accuracies above 70%, even if the ACL group was 9.4 ± 0.7 months

post-op and most had completed their rehabilitation.

Findings suggest that classification models from different exercises capture different pieces

of information and hence a variety of exercises should be used. A biomechanical assessment

should contain measures of symmetry and chosen exercises might be altered throughout the

rehabilitation process to increase complexity, while familiarising the athlete to the demands of

sports. The selection of a single exercise test cannot be recommended as all examined exercises

demonstrated that they contain valuable information and we did not adjust parameters within

the models that could lead to improvements in classification accuracy.

Findings highlight problems with the assumption that the majority of a control group dem-

onstrate healthy movement patterns, which could be a reason for conflicting findings in stud-

ies. Within the examined exercises only 27 to 71% of the limbs within NORM did present a

true NORM pattern.

Limitations

Examined data. Like most movement analysis studies, this study involved the recording

of multiple trials but examined only the best trial. Examining the best trial is likely to be more

valid than averaging multiple trials, which creates and examines an artificial movement where

local peaks are altered in magnitude and temporal appearance [55] and the intersegmental link

(coordination) between joints might be lost. However, the approach used selects a unique

instance (maximal performance) and could bias an analysis towards a non-realistic situation.

No athlete will perform a task over and over with a maximal effort and consequently the sub-

maximal efforts should not be discarded. An alternative approach is to utilise repeated random
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sampling, where the captured trials are selected at random and the analysis is run multiple

times [56–58]. This can overcome the ‘maximal effort bias’ and can also provide a measure of

expected differences or accuracy within future studies. Further, such an approach can also

overcome discrepancies between findings that are caused by the selection of a reference limb

when comparing an abnormal (injured) to a normal or uninjured group.

Examined features. The use of waveform analysis and total exclusion of discrete points

ignores the magnitudes and location of peak values that might be important. For example,

angular velocity and GRF time series can be multimodal (multiple local maxima’s) and maxi-

mal or minimal might not be located in the same phases and the information of these features

is hence lost. Such features and their temporal properties (position) might carry important

information that has been discarded in this study. Further, the manner in which the data

driven framework approached the engineering feature was based on no input of expert knowl-

edge (e.g. complexity [59], stiffness [60], variability [61]) or any advanced feature engineering

techniques (principal component scores, non negative matrix factorisation or interactions

between features). No additional engineering feature was used to keep the interpretable and

meaningful for rehabilitation, while additional more complex features are likely to increase the

reported classification accuracies.

Model building. This study tested machine learning techniques using only their default

values and did not perform a grid search (optimise adjustable parameters within a technique;

e.g. changing L1 and L2 regularisation in logistic regression or changing k in the k-nearest

neighbour technique), which would very likely have resulted in higher classification accura-

cies and might impact the selected features in the optimal model. Additionally, for the

DLCMJ and CoDU findings should be interpreted with care as findings from a 10-fold cross-

validation possibly indicate over-fitting for the DLCMJ model and an under-fitting for the

CoDU model.

Conclusion

This study tested a data-driven framework that required no expert or prior knowledge and

demonstrated that biomechanical data can predict with high accuracy (� 70%) if a movement

was performed by a limb following ACL reconstruction, the contralateral limb and a limb of a

healthy control group. Findings highlight that a few features can contain most of the informa-

tion content, that symmetry measures are important, that it is important to seek to understand

what a classification / prediction model has learned, that different exercises capture different

movement characteristics and that not all subjects within a normative cohort utilise a ‘true’

normative movement pattern.
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