The nutritional value of children's menus in chain restaurants in the UK and Ireland

Michelle Young BSc ${ }^{1}$, Tara Coppinger PhD RNutr ${ }^{2}$ and Sue Reeves PhD, RNutr, FAfN ${ }^{1}$
${ }^{1}$ Department of Life Sciences, University of Roehampton, London SW15 4JD
${ }^{2}$ Department of Sport Leisure and Childhood Studies, Cork Institute of Technology, Cork, Ireland T12 P928

Acknowledgements

The authors would like to thank the Nutrition Society for the Summer Studentship that made this research possible.

Abstract

Objective: Obesity in the UK and the Republic of Ireland is rising, as is the frequency of eating out in restaurants. The aim of this study was to investigate the nutritional quality of children's menus in restaurants.

Design: Cross sectional review of menus aimed at children from 20 popular chain restaurants in the UK and Ireland.

Main Outcome Measures: Total energy, fat, saturated fat and salt were collected from every food item on the menu in each restaurant. All potential meal combinations were created. A total of 39266 meals were analysed.

Analysis: Meals were compared to UK nutritional guidelines. Meals from fast food and fullservice restaurants and, main meals and meal deals were compared.

Results: The average meal for younger children (aged 2-5 years) contained 609 ± 117 kcal and for older children (6-12 years) 653 ± 136 kcal compared to guidelines of 364 kcal and 550 kcal , respectively. A total 68% of younger children's and 55% of older children's meals contained more total fat than recommended and more than four times the amount of saturated fat. Fast food restaurant meals contained less energy, fat and salt than full-service restaurants and meal deals were less likely to meet dietary guidelines than main meals alone.

Conclusion and Implications: Eating in chain restaurants, and in particular meal deals do not contribute positively to the diet of children in the UK and Ireland.

Introduction

The rise of overweight and obesity in the UK and Ireland is well reported. ${ }^{1}$ Data from the UK National Child Measurement Programme show that a quarter of children entering primary school at 5 years old are overweight or obese, rising to one third by the end of primary school at age eleven years. ${ }^{2}$ In the Republic of Ireland it is currently estimated that 60% of adults and 25% of children are overweight or obese. ${ }^{3}$

In 2017, Public Health England (PHE) reported that 27.1\% of adults and 20\% of children eat food away from home at least once a week. ${ }^{4}$ In Ireland it has been reported that 24% of total energy from food and drink is now consumed outside the home. ${ }^{5}$ In a study of 27 countries between 1998 and 2005 the UK and Ireland were both categorised in a group where spending on food had fallen but spending in restaurants had increased. ${ }^{6}$ Furthermore, in the UK, there has been a 34% increase in fast food outlets over the past decade. ${ }^{7}$, whilst in some locations this is up to $45 \%{ }^{8}$, with a greater density of fast food outlets in deprived areas. ${ }^{9}$ However, a new study in the UK has shown that meals served in full service restaurants tend to be higher in energy than fast food meals and only a minority meet public health recommendations. ${ }^{10}$ An investigation into how the culture of eating out has changed in the UK between 1998 and 2015 concluded that eating in restaurants has become a regular, even spontaneous occurrence rather than something undertaken occasionally for a special event. ${ }^{11}$ The increase in eating out means the nutritional content of the food served in restaurants is more relevant, as it now makes a significant contribution to diet.

Data from the European Investigation into Cancer and Nutrition (EPIC) study ${ }^{12}$ concluded that there was an association between eating out of the home and increased energy intake, with eating out of home being related to increased energy contribution from fat, higher salt intakes
and lower micronutrients intakes. ${ }^{13}$ In a systematic review, 7 out of 8 prospective cohort studies highlighted a positive relationship between eating out of the home and increased body weight. However, just half of the cross-sectional studies made the same conclusion. ${ }^{14}$ Data from the UK National Diet and Nutrition survey ${ }^{15}$ showed that adults who ate out most frequently had increased daily calorie intake. However, this finding was not replicated in children; instead children, particularly from lower socio-economic backgrounds, who consumed take-away meals at home had a higher daily energy intake. ${ }^{15}$

Food consumed outside the home is typically of higher energy density and could include the types of food that are not associated with recommendations for a healthy diet. ${ }^{16,17}$ Researchers have reported that restaurant meals for children, adolescents and also adults were typically too energy dense, contained too much fat ${ }^{18,19}$ and too much sodium. ${ }^{20,21}$ Adolescents have also been reported to consume more sugar sweetened beverages (SSB) when eating in a restaurant compared to the home. In an American study where fast food restaurants were scored on the Healthy Eating Index, children's meals scored higher than adult meals, however the overall quality of food was poor compared to dietary recommendations. ${ }^{22}$ Likewise, in a study that created all possible meal combinations at 10 fast food restaurants in Houston, Texas (USA) it was found only 3% conformed to the National School Lunch Programme standards. ${ }^{23}$ An in-depth review of children's meals at US fast food and full-service restaurants concluded meals did not comply with recommendations for total and saturated fat and salt. ${ }^{24}$ Furthermore, it has been reported that there has been little progress in improving the nutritional content of children's meals in the USA, in both fast food and full-service restaurants. ${ }^{25}$ In a UK study of 22 chain restaurants it was found that few restaurants provided nutrition and portion size information and that fast food restaurants were significantly cheaper, provided fewer portions of fruit and vegetables but had smaller
portion sizes than table-service restaurants. ${ }^{26}$ To date there have no studies of a similar nature in the Republic of Ireland.

Behaviour may also change when eating out of home; a small study ${ }^{27}$ showed that parents tend to make or let their children make less healthy food choices when eating in a restaurant. This highlights the environmental influence and the need for the food sector to support healthier meal choices for parents and children. An element of the obesogenic environment are the marketing practices that are used to increase consumption, for example meal bundling and the promotion of meal deals. By presenting food in a certain way, restauranteurs can help override decisions an individual might logically make when taking nutritional content into account. ${ }^{28}$

The aim of this study is to compare children's meals in chain restaurants in the UK and the Republic of Ireland to the UK dietary recommendations. Meals from fast food and full-service restaurants were compared and a comparison of meal deals (where different items were bundled for a set price), compared to single course main meals were also considered. The hypothesis is that eating at restaurants does not contribute positively to the diet of children in the UK and Ireland.

Methodology

This study set out to analyse children's meals using online data provided by restaurants. The Mintel Eating out Review for the UK ${ }^{29}$ and Euromonitor for Ireland ${ }^{30}$ provided a list of the leading chain restaurants in both countries. Given some restaurants were found in both countries data from the UK and the Republic of Ireland were combined.

The study was approved by and in accordance with the ethical procedures of the University of Roehampton. No participants were directly involved in this study.

The study criteria required that restaurants needed to have a specific children's menu and to have nutritional data available online. In the UK 39 restaurants were identified; of those 30 had a specific children's menu, of which 18 had online data available. The 11 restaurants where nutritional data was not available online were emailed to request if the data could be provided; 2 restaurants responded that data was not currently available and 9 did not respond. There were 35 Irish restaurants that were reviewed, 21 had a specific children's menu and of these, 8 had data online. The restaurants that had did not have online data were emailed, 3 responded but could not provide nutritional data. Of the 8 restaurants that had both a children's menu and online data, 6 of these were also on the UK list. In total data was collated from 20 restaurants (12 from the UK, 2 from the Republic of Ireland and 6 found in both countries). Data were collected in June and July 2017.

Each restaurant provided the information in different formats and included various nutrient profiles in their online data. However, all restaurants provided data for energy, total fat, total saturated fat, and salt (sugar was presented inconsistently in a number of different ways, which limited comparisons between restaurants and the recommendations for carbohydrate and sugar intakes). These categories were used as the basis for the analysis and the data were recorded in Microsoft Excel (Version 2016) for each item on the children's menu.

A total of 18 restaurants offered a children's meal deal option (where different items were bundled for a set price). In some restaurants the meal deal included a starter, main course, dessert and drink. In others, it was a main course and a dessert or a main course and a drink. Where side orders or drinks were available as choices, these were also included in the meal
combinations that were created. For those restaurants that did not offer a meal deal, the meal combinations were built from the items on the children's menu.

All but one of the 20 restaurants provided complete nutritional information on their website for the children's meals provided at their restaurants. One restaurant did not include the portion size for younger children for their side orders. However, nutritional data per 100g was provided, so a portion size as recommended in the School Food Plan ${ }^{31}$ was used and additional data was obtained from Diet Plan 7 (Forestfield Software, Sussex UK); a dietary analysis package that includes both UK and Irish food composition databases.

Nutritional standards were based on UK government recommendations: the Scientific Advisory Committee for Nutrition (SACN) standards for energy requirements, ${ }^{32}$ salt ${ }^{33}$ and the Department of Health recommendations for total and saturated fat. ${ }^{34}$ The standards include recommendations for younger (aged 2-5 years) and older (aged 6-12 years) children. Public Health England's (PHE) guidelines for healthy and sustainable catering were assumed and so for a single meal, 30% of daily energy requirements was referred to. ${ }^{35}$

Comparisons were made between fast food and full service restaurants and single course meals and meal deals; a fast food restaurant was defined as a restaurant where food was ordered and received at the counter and a full service restaurant involved waiter service.

The data was analysed using the pivot table functionality in Microsoft Excel (version 2016) and all the possible meal combinations were created for each restaurant. In total, there were 39266 meal combinations created. Summary statistics are presented as weighted means across restaurants to take into consideration the variation in the number of meal combinations each restaurant contributed to the overall analysis unless otherwise stated, in accordance with the methods adopted by Sliwa et al. ${ }^{24}$ Statistical analysis was conducted
using SPSS (version 23) and at restaurant level, the mean and standard deviation was calculated for each nutrient, and compared to the nutritional standards. The effect size was calculated using the equation $r=\frac{Z}{\sqrt{N}} \cdot{ }^{32}$ Where normality tests showed that the data were not normally distributed, medians are presented with the inter-quartile range and Mann Whitney U tests were used to test for differences.

Results

Of the children's menus from the 20 restaurants that were analysed, 6 restaurants offered 1 course (a main meal); 9 offered 2 courses (a main meal and a dessert) and 5 offered 3 courses (starter, main meal and dessert). A dessert course was offered on the menus more frequently than a starter, with 75% of restaurants offering a dessert compared to 25% offering a starter. Younger and older children were generally offered the same number of courses, although in 20% of the restaurants, the menu was annotated to suggest older children could choose an additional side order. Over three quarters (78\%) of restaurants offered breaded chicken, 67\% offered fish fingers and 61\% had a burger. In addition, 14 of these 20 restaurants offered chips (fries) as a side option. In total, 12 restaurants offered a drink as part of a meal deal with one restaurant offering a choice between a drink and dessert. Five restaurants had at least one SSB on their menu, with 11 offering fruit juice and 10 including milk or water as a drinks option. Fruit was on offer in place of fries in 50% of the fast food restaurants included. In total there were 6 fast food and 14 full service restaurants included in this study.

The nutritional data for each restaurant with meals aimed at young children is shown in Table 1. For a younger child, the average meal contained $609 \pm 117 \mathrm{kcal}, 22.9 \pm 6.8 \mathrm{~g}$ of fat, $8.5 \pm$
3.4 g of saturated fat and $1.8 \pm 0.6 \mathrm{~g}$ of salt. This was greater than the calorie and salt recommendations (364 kcal and 0.8 g respectively), and the fat recommendation (16.6 g) and more than 4 times the amount of saturated fat $(1.8 \mathrm{~g})$ recommended for one meal. A comparison of the number of meals that met recommendations is shown in Table 2. A total of 87% of meals exceeded recommendations for energy and saturated fat and in 12 restaurants, all meals offered contained more than the recommended amount of salt.

There were 23,256 meals analysed for older children. 20% of restaurants had extra options for older children; typically additional main courses and more side orders. The nutritional data is presented in Table 3. For older children, the average meal for all restaurants contained 653 $\pm 136 \mathrm{kcal}, 25.0 \pm 8.0 \mathrm{~g}$ total fat, $10.0 \pm 4.0 \mathrm{~g}$ saturated fat and $2.0 \mathrm{~g} \pm 1 \mathrm{~g}$ of salt. In total, 66% of meals were above the 550 kcal recommended amount ${ }^{28}$ and 87% of meals exceeded the saturated fat guidelines ${ }^{34}$ (Table 4). The average meal for an older child contained almost 4 times the recommend amount of saturated fat of $2.4 \mathrm{~g} .{ }^{34}$ In half of the restaurants analysed, the average meal contained over 2 g of salt compared to the recommended amount of $1.5 \mathrm{~g} .{ }^{33}$

This study also investigated meal deals, which typically included more than one course. The analysis was replicated with a main course and any side order options that came with it and highlighted the extent to which bundling i.e. meal deals, increased the energy content of meals. For younger children the mean calorie difference between all meal deals and all main courses was $271(\pm 133)$ kcal and was significant ($\mathrm{t}=142, \mathrm{p}=0.000$; bootstrapped $\mathrm{BCa} 95 \% \mathrm{Cl}$ 267 to 274). For older children the mean calorie difference was also significant, the mean difference for all meals was $260(\pm 154)$ kcal, ($t=151, p=0.000$; bootstrapped BCa 95% CL 257 to 264).

When analysing only the main course, 60% of meals met or were under the recommended energy amount for younger children, compared to just 13% of meal deals. For older children 58% of main meals met standards for energy compared to 34% of meal deals. Fast food restaurants did not generally include a dessert course as part of the meal deal but three included a SSB in their offering (the other two restaurants had just 12 meal combinations in total). Comparing the main course and the meal deal at fast food restaurants, an independent t test, ($\mathrm{t}=8.1$) showed a significant difference of 82 kcal between a main course and a meal deal (bootstrapped $\mathrm{BCa} 95 \% \mathrm{Cl} 60$ to $100 \mathrm{kcal}, \mathrm{p}=0.001$). This suggests that in three of the fast food restaurants, a drink on average added 82 kcal to a meal deal. For younger children, 82 kcal is over 20% of their recommended calorie intake for a single meal and adds to the energy content but not the overall nutrient quality of the meal.

In total, 6 fast food restaurants and 14 full-service restaurants that offered meals for both younger and older children combined were compared. For energy the fast food median was 417 (345-559) kcal compared to $684(593-871)$ kcal for the full-service restaurants (U=9.0, $\mathrm{z}=-3.001, \mathrm{p}=0.001$). Total fat for the fast food restaurants was 15.9 (10.6-18.9) g compared to $25.9(22.6-39.0 .9) \mathrm{g}$ for full service restaurants $(\mathrm{U}=17, \mathrm{z}=-2.467 \mathrm{p}=0.014)$. Saturated fat was $4.8(4.0-8.4) \mathrm{g}$ for fast food restaurants compared to $11.3(8.1-12.7) \mathrm{g}$ for full service restaurants $(U=17.0, z=-2.467, p=0.014)$. The salt content for fast food restaurants was 1.3 (1.2-1.6) g compared to $2.3(1.5-2.6) \mathrm{g}$ for full-service restaurants ($\mathrm{U}=19.5, \mathrm{z}=-2.311$, $\mathrm{p}=0.021$).

Discussion

This study found that meals in UK and Ireland chain restaurants were, in general, too energy dense, contained too much fat (particularly saturated fat) and had too much salt for both older and younger children. These findings are in line with other studies of this nature. ${ }^{19,21,24,25}$

Despite a choice of over 16,000 meals, it is still potentially difficult for parents of younger children to select a meal that provides the recommended number of calories for their age group, as 87% meals contained more than 354 kcal, which is the recommended amount. For older children, the picture was slightly better, with 66% of meals over the guidelines for energy. This contrasts with one study on USA full-service and fast food restaurants, where 63% of full-service and 72% of fast food restaurants complied with national nutritional recommendations. ${ }^{24}$ In a study looking at choice in fast food chains in Australia, it was highlighted that the range of choice of items drove the calorie content of meals. ${ }^{37}$ For example, by choosing water rather than a SSB, the calorie content of a meal could be significantly reduced. From the data collated in this study, a SSB added between 71 and 142 kcal and a milkshake could add up to 357 kcal. There has been pressure on fast food restaurants to remove SSB's from their menus in the USA ${ }^{38}$ and this is now reflected in the UK and Ireland with the introduction of the Soft Drink Levy in the UK, ${ }^{39}$ (colloquially known as the sugar tax) and the Sugar Sweetened Drinks Tax in Ireland. ${ }^{40}$ The sugar levy was first announced in March 2016. From this date onwards, reformulation and changes to menus commenced in preparation for the deadline of April 2018.

In the current study, only 5 restaurants offered a SSB beverage. Dessert, on the other hand, is more commonly offered as part of a children's meal deal, with 14 of the 20 restaurants offering dessert in their meal deal. As with the SSB, a dessert can significantly add to the
calorie content of a meal; for example a single scoop of ice-cream can add 120 kcal, while an ice-cream sundae up to 636 kcal. Given parents are likely to be more lenient with food choices in restaurants, ${ }^{27}$ if a SSB and/or a dessert is included in a meal deal as a default option, it is more likely to be ordered and consumed. ${ }^{41}$

This study also found the total fat content, and in particular saturated fat content, of meals was higher than recommended. The restaurants did not always provide information on how specific foods were cooked but this is worth considering since deep frying can increase fat content by up to $50 \% .{ }^{42}$

The salt content of food provided for both younger and older children was also higher than recommended. A study of salt intake of children in South London using the 24-hour urinary sodium excretion method found that two thirds of 5-6-year olds and three quarters of 8-9 and 13-17-year olds had higher salt intakes than recommended. ${ }^{43}$ High salt intake can raise blood pressure in children ${ }^{44}$ and research has shown that high blood pressure during childhood is predictive of hypertension in adults. ${ }^{45}$ This study concludes that restaurants still have some work to do to achieve PHE's republished salt reduction targets of 1.8 g of salt in children's main meals consumed outside of the home. ${ }^{46}$

The study found that fast food restaurants had lower energy, total fat, saturated fat and salt content in their meals compared to full service restaurants. However fast food restaurants typically offer fewer courses and side orders, which likely reduces the total energy content of the entire meal. Similarly to an American study, ${ }^{24}$ this research also found that shorter menus and healthier meals were correlated. Fast food restaurants offered on average 56 meal choices, compared to 298 meal choices at full-service restaurants. Yet, fast food restaurant meals were still above the guidelines for energy, saturated fat and salt for younger children
and above guidelines for saturated fat for older children. This is similar to findings on fast food restaurants in previous studies. ${ }^{22,47}$ Although fruit was an option in place of fries at 50% of the fast food restaurants in this study, which could reduce both the calorie and fat content of meals, previous research has found that these choices aren't popular. In 2011, McDonalds reported that although 80% of customers knew that they served apples slices instead of fries, only 11% of consumers in the U.S.A. made the apple choice. ${ }^{48}$

Menu bundling i.e. meal deals in restaurants, increased an adult's energy consumption ${ }^{49}$ and consumers who selected a meal bundle consumed more energy than those who choose individual items, especially when calorie knowledge is low. ${ }^{50}$ This study also confirmed the extent to which bundling can increase the energy content of meals. As a marketing tool, a meal bundle that creates a default option, offers the consumer advantages; it saves time, money and effort. ${ }^{48}$ It has been estimated that individuals make in the region of 200 food related decisions in a single day and these decisions may be influenced by a few key factors. ${ }^{50}$ In a qualitative study, mothers' commonly perceived a meal deal to be easier, quicker and less expensive; however, there was concern about items such as SSB's, and it was important to be able to select alternatives. ${ }^{48}$ The presence of a meal deal also influences consumption norms i.e. creates the perception that the bundle items should all be consumed together. ${ }^{50}$ In this study, meal deals were available at 18 of the 20 restaurants. It has been reported that as children's meals are not major revenue generators, changing the menu is unlikely unless there is regulatory or parent pressure. ${ }^{52}$ In August 2018, the Californian state legislature passed a bill requiring milk or water be offered as the default option in a child's meal (Senate Bill 1192). ${ }^{53}$ It will be interesting to ascertain whether or not this law has had an impact on the diet quality of children in California.

The prevalence of meal bundling could be used as an opportunity to promote healthier eating in restaurants. In a study examining the power of the default option, it found that parents overwhelmingly stuck to the default option and children ate the same amount of food regardless of the option given..41 In 2008, Walt Disney made healthy sides and drinks the default option in meals in restaurants at their theme parks and reported that consumers stuck with these healthier defaults. ${ }^{54}$ In another study from the USA, it was reported that the number of bundled meals that included fries as a side order halved when fries were not the automatic default, but could be substituted at the same price. ${ }^{55}$ Given that it has been highlighted that only one third of parents knew the appropriate calorie range for a meal for a 5-12-year-old at a restaurant, and confidence in their assessment was low, meal bundling may well prove to be an effective tool in contributing to parents or children choosing the healthier option by default. ${ }^{48}$

This study collated all the potential meal combinations available at chain restaurants from the UK and Ireland, and in doing so, created a very comprehensive picture of the meal choices available to children and their parents. However it is noted we needed to exclude from the study restaurants who could not provide nutritional data. Furthermore, it should be remembered this research presents the options available in restaurants and not consumption data. This study focused on nutritional and meal options available online and therefore expected that all restaurants in the chain serve the same menu and employ the same cooking procedures. There may, however, have been variations in cooking methods between restaurants in the same chain. Restaurants may also change a menu depending on food availability and regional preferences. Furthermore, a study by WRAP (Waste and Resources

Action Programme) suggested that almost one third of diners left food on their plate and the biggest reason for leaving food was that the portion size was too big. ${ }^{56}$ As consumption and wastage was not accounted for in this study, it is possible that the nutritional data on the menu overestimates what would actually be consumed.

The density and locations of fast food outlets in the UK and Ireland remains a concern and some councils have now introduced planning restrictions on the opening of new fast food outlets within 400 m of schools ${ }^{57,58}$ Furthermore, this year, a ban on fast food advertising has been put into operation on the whole of the London transport network, which if successful, could be replicated in other parts of the UK and Ireland. ${ }^{59}$ Such policies emphasise the role of fast food outlets and restaurants in the food environment and their impact on public health.

Our study aimed to investigate what is offered to children on menus in chain restaurants, rather than what is consumed; nor did this study obtain data on which meal combinations were more popular and, therefore, consumed more frequently. We are also aware that not all children will choose and eat from the children's menu; some will prefer to choose from the main restaurant menu. Despite this, it is very much part of UK and Irish restaurant culture that on arrival, families are offered the children's menu alongside the main menu. However, one American study ${ }^{60}$ found that the majority of children did, in fact, order from the children's menu. It would also be interesting to see if children's menus have changed since the sugar levy deadline and thus, this warrants further study. Whilst this study was based on nutritional information that was provided by the restaurants online, this does not take into account variations in serving size or other factors such as presentation and taste that affect the amount consumed. Yet, by using online data, we were able to include a greater number of
restaurants, since it would have been unfeasible to physically visit all restaurants in both the UK and Ireland.

Implications for Research and Practice

This study confirms that meals presented on children's menus in restaurants are typically higher than recommended for energy, total and saturated fat and salt. As children continue to eat out more frequently, it is concerning that healthy options are not readily available. Comparing meal deals and the single main course highlighted the extent to which additional courses and drinks contribute to the energy and fat content of a meal. In particular, by choosing the meal deal option, which appears quick, convenient and looks economically attractive, parents are perhaps unwittingly ordering meals with more energy, fat and salt than recommended. Further research is needed to identify the barriers that result in restaurants failing to offer healthy options and how best to improve the food environment.

References

1. Non-Communicable Disease Risk Factor Collaboration. Worldwide trends in body mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet, 2017; 390:2627-2642.
2. Public Health England. National Child Measurement Programme - England 2016-17; 2017. http://digital.nhs.uk/catalogue/PUB30113. Accessed March 10, 2018.
3. Perry IJ, Millar SR, Balanda KP, et al. What are the estimated costs of childhood overweight and obesity on the island of Ireland?; 2017. https://www.safefood.eu/Publications/Research-reports/What-are-the-estimated-costs-of-childhood-overweig.aspx. Accessed July 1, 2018.
4. Public Health England. Health matters: obesity and the food environment; 2017. https://www.gov.uk/government/publications/health-matters-obesity-and-the-food-environment/health-matters-obesity-and-the-food-environment--2\#improving-everyones-access-to-healthier-food-choices. Accessed March 5, 2018.
5. Irish Universities Nutrition Alliance (IUNA). National Adult Nutrition Survey 2011 Summary Report; 2015. http://www.iuna.net. Accessed July 1, 2018.
6. Lopez Martin-Lagos MD. Consumption and modernization in the European Union. Eur Soc Rev. 2011; 27:124-137.
7. Office for National Statistics. UK business: activity, size and location; 2018. https://www.ons.gov.uk/businessindustryandtrade/business/activitysizeandlocation /datasets/ukbusinessactivitysizeandlocation. Accessed February 28, 2019.
8. Maguire ER, Burgoine T, Monsivais P. Area deprivation and the food environment over time: A repeated cross-sectional study on takeaway outlet density and supermarket presence in Norfolk, UK 1990-2008. Health \& Place. 2015;33:142-147.
9. Public Health England. Fast food outlets: density by local authority in England; 2018. https://www.gov.uk/government/publications/fast-food-outlets-density-by-local-authority-in-england Accessed February 28, 2019.
10. Robinson E, Jones A, Whitelock V, Mead BR, Haynes A. (Over)eating out at major UK restaurant chains: observational study of energy content of main meals. BMJ 2018; 363:k4982
11. Paddock J, Warde A, Whillans J. The changing meaning of eating out in three English cities 1995-2015. Appetite. 2017; 119:5-13.
12. Orfanos P, Naska A, Trichopoulos D, et al. Eating out of home and its correlates in 10 European countries. The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Pub Health Nutr. 2007;10:1515-1525.
13. Lachat C, Nago E, Verstraeten R, Roberfroid D, Van Camp J, Kolsteren, P. Eating out of home and its association with dietary intake: a systematic review of the evidence. $O b$ Rev. 2011;DOI: 10.1111/j.1467-789X.2011.00953.
14. Bezerra IN, Curioni C, Sichieri R. Association between eating out of home and body weight. Nutr Rev. 2012;70: 65-79.
15. Goffe L, Rushton S, White M, Adamson A, Adams J. Relationship between mean daily energy intake and frequency of consumption of out-of-home meals in the UK National Diet and Nutrition Survey. Int J Behav Nutr Phys Act. 2017;14: DOI 10.1186/s12966-017-0589-5.
16. Ziauddeen N, Almiron-Roig E, Penney TL, Nicholson S, Kirk SFL, Page P. Eating at food outlets and "On the Go" is associated with less healthy food choices in adults: Crosssectional data from the UK National Diet and Nutrition Survey rolling programme (2008-2014). Nutrients. 2017;DOI:10.3390/nu9121315.
17. Edwards Z. Making a better choice for kids: what restaurants have to offer. J Nutr Educ Behav. 2010;42:81.
18. Powell LM, Nguyen BT. Fast-food and full-service restaurant consumption among children and adolescents. JAMA Pediatrics; 2013;167:14-20.
19. Nguyen BT, Powell LM. The impact of restaurant consumption among US adults: effects on energy and nutrient intakes. Pub Health Nutr. 2014;17:2445-2452.
20. Auchincloss AH, Leonberg BL, Glanz K, Bellitz S, Ricchezza A, Jervis A. Nutritional value of meals at full-service restaurant chains. J Nutr Educ Behav. 2014;46:75-81.
21. Deierlein A, Peat K, Claudio L. Comparison of the nutrient content of children's menu items at US restaurants. Nutr J. 2015;14:80.
22. Kirkpatrick SI, Reedy J, Kahle LL, Harris JL, Ohri-Vachaspati P, Krebs-Smith SM. (2013) Fast-food menu offerings vary in dietary quality but are consistently poor. Pub Health Nutr. 2013;17:924-931.
23. O'Donnell S, Hoerr SL, Mendoza JA, Tsuei Goh E. Nutrient quality of fast food kids' meals. Am J Clin Nutr. 2008;88:1388-1395.
24. Sliwa S, Anzman-Frasca S, Lynskey V, Washburn K, Economos C. Assessing the availability of healthier children's meals at leading quick-service and full-service restaurants. J Nutr Educ Behav. 2016;48: 242-249.
25. Moran AJ, Block J, Goshev SG, Bleich SN, Roberto CA. Trends in nutrient content of children's menu items in U.S. chain restaurants. Am J Prev Med. 2017;52:284-291.
26. Reeves S, Wake Y, Zick A. Nutrition Labeling and portion size Information on children's menus in fast-food and table-service chain restaurants in London, UK. J Nutr Educ Behav. 2011;43:543-547.
27. Kasparian MS, Mann G, Serrano EL, Farris AR. Parenting practices toward food and children's behaviour: Eating away from home versus at home. Appetite. 2017;114:194-199.
28. Cohen DA, Lesser L. Obesity Prevent at the Point of Purchase. Obes Rev. 2016;17:389396.
29. Mintel. Eating Out UK-July; 2016. http://academic.mintel.com/display/781680/. Accessed June 15, 2017.
30. Euromonitor. Full service restaurants in Ireland; 2017. https://www.euromonitor.com/full-service-restaurants-in-ireland/report. Accessed July 1, 2017.
31. School Food Plan. School Food Standards; 2014. http://www.schoolfoodplan.com/wp-content/uploads/2015/01/School-Food-Standards-Guidance-FINAL-V3.pdf. Accessed April 2017, 2018.
32. Scientific Advisory Committee on Nutrition. Dietary Reference Values for Energy; 2011. https://www.gov.uk/government/publications/sacn-dietary-reference-values-forenergy. Accessed March 15, 2018.
33. Scientific Advisory Committee on Nutrition. Salt and Health Report; 2003. https://www.gov.uk/government/publications/sacn-salt-and-health-report Accessed March 15, 2018.
34. Department of Health. COMA Dietary Reference Values for Food Energy and Nutrients for the United Kingdom no. 41; 1991. London: HMSO.
35. Public Health England. Healthier and More Sustainable Catering: Nutrition principles; 2017. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/59 5126/Healthier_and_more_suistainable_nutrition_principles.pdf. Accessed March 15, 2018.
36. Field A. Discovering Statistics Using IBM SPSS Statistics. (4 ${ }^{\text {th }}$ ed.); 2013. London: Sage.
37. Brindal E, Mohr P, Wilson C, Wittert G. Obesity and the effects of choice at a fast food restaurant. Obes Res Clin Prac. 2008;2:111-117.
38. Hobin E, White C, Ye L, Chiu M. Nutritional quality of food items on fast-food 'kids' menus': comparisons across countries and companies. Pub Health Nutr. 2013;14: 2263-2269.
39. Her Majesty's Treasury. Soft Drinks Industry Levy comes into Effect; 2018. https://www.gov.uk/government/news/soft-drinks-industry-levy-comes-into-effect. Accessed December 10, 2018.
40. Irish Tax and Customs. Sugar Sweetened Drinks Tax; 2018. https://www.revenue.ie/en/companies-and-charities/excise-and-licences/sugar-sweetened-drinks-tax/index.aspx. Accessed December, 12, 2018.
41. Loeb KL, Radnitz C, Keller K, Schwartz MB, Marcus S, Pierson RN, Shannon M, DeLaurentis D.The application of defaults to optimise parents' health-based choices for children. Appetite. 2017;113:368-375.
42. Kurek M, Sċetar M, Galić K. Edible coatings minimize fat uptake in deep fat fried products: A review. Food Hydrocolloids. 2017;71:225-235.
43. Marrero NM, He FJ, Whincup P, MacGregor GA. Salt intake of children and adolescents in South London consumption levels and dietary sources. Hypertension. 2014;63:1026-1032.
44. Lava SA, Bianchetti MG, Simonetti. Salt intake in children and its consequences on blood pressure. Ped Nephr. 2015;30:1389-1396.
45. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation. 2008;117:3171-3180.
46. Public Health England. Salt Reduction Targets for 2017; 2017. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60 4338/Salt_reduction_targets_for_2017.pdf Accessed March 3, 2018.
47. Lynskey MV, Anzman-Frasca S, Harelick L, Korn A, Sharma S, Simm S, Economos CD. Low parental awareness about energy (calorie) recommendations for children's restaurant meals: findings from a national survey. Public Health Nutrition. 2017;20: 1921-1927.
48. Henry HKM, Borzekowski DLG. Well, that's what came with it. A qualitative study of U.S. mothers' perceptions of healthier default options for children's meals at fast-food restaurants. Appetite. 2015;87:108-115.
49. Sharpe KM, Staelin R. Consumption effects of bundling: consumer perceptions, firm actions and public policy implications. J Pub Policy Market. 2010;29:170-188.
50. Harris J, Thomas VL. The influence of bundling and caloric knowledge on calories ordered and purchase intent. J Consumer Aff. 2017;51:113-132.
51. Wansink B, Sobal J. Mindless eating the 200 daily food decisions we overlook. Environ Behav. 2007;39:106-123.
52. Anzman-Frasca S, Folta SC, Glenn ME, Jones-Mueller A, Lynskey VM, Patel, AA, Tse LL, Lopez NV. Healthier children's meals in restaurants: An exploratory study to inform approaches that are acceptable across stakeholders. J Nutr Educ Behav. 2017;49:285295.
53. California Legislative Information. SB-1192 Children's meals; 2018. https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB119 2. Accessed December 12, 2018.
54. Walt Disney. 2008 Corporate Responsibility Report; 2008. https://updoc.tips/download/free-pdf-ebook-disney-cr-report-2008. Accessed April 5, 2018.
55. Anzman-Frasa S, Mueller MP, Silwa S, Dolan PR, Harelick L, Roberts SB, Washburn K, Economos CD. Changes in children's meal orders following healthy menu modifications at a regional US restaurant chain. Ped Obes. 2015;23:1055-1062.
56. WRAP. (Understanding out of home consumer food waste; 2013. http://www.wrap.org.uk/sites/files/wrap/OOH\ Report.pdf. Accessed April 5, 2018.
57. Greater London Authority. Mayor cracks down on opening of new hot-food takeaways around schools; 2017. https://www.london.gov.uk/press-releases/mayoral/mayor-cracks-down-on-new-takeaways-near-schools\#. Accessed February 28, 2019.
58. The journal.ie Wicklow has banned fast-food chains being built within 400 m of schools; 2016. https://www.thejournal.ie/no-fry-zones-wicklow-3068787-Nov2016/. Accessed February 28, 2019.
59. Greater London Authority. The London Food Strategy; 2018 https://www.london.gov.uk/what-we-do/business-and-economy/food/london-food-strategy-0. Accessed February 28, 2019.
60. Anzman-Frasca, S, Folta SC, Glenn ME, Jones-Mueller A, Luynskey VM, Patel AA, Tse LL, Lopez NV. Healthier Children's meals in restaurants: an exploratory study to inform approaches that are acceptable across stake holders. J Nutr Educ \& Behav. 2017;49:285-295.

Table 1. Nutritional data for restaurants chains with a menu for young children.

Restaurant	Meal Combinations $\mathbf{(n)}$	Calories $\mathbf{(k c a l)} \pm$ SD	Total Fat $\mathbf{(g)} \pm$ SD	Saturated Fat $\mathbf{(g)} \pm$ SD	Salt $\mathbf{(g)} \pm$ SD
1	6	304 ± 27	2.1 ± 0.5	0.8 ± 0.1	0.7 ± 0.3
2	210	428 ± 131	14.7 ± 6.1	3.9 ± 2.4	1.3 ± 0.5
3	3	325 ± 62	9.2 ± 0.7	4.3 ± 3.7	1.3 ± 0.4

4	504	684 ± 164	24.3 ± 7.4	10.3 ± 4.8	2.0 ± 0.4
5	80	482 ± 119	17.1 ± 5.4	5.3 ± 1.9	2.0 ± 0.7
6	660	684 ± 98	22.8 ± 4.8	11.7 ± 3.5	2.7 ± 0.8
7	980	566 ± 143	20.5 ± 9.4	6.3 ± 4.0	2.3 ± 0.5
8	8064	691 ± 162	25.9 ± 8.9	11.2 ± 4.4	1.5 ± 0.6
9	28	472 ± 100	19.4 ± 7.9	11.4 ± 6.3	1.0 ± 0.4
10	6	463 ± 27	16.5 ± 6.8	6.2 ± 3.4	1.5 ± 0.5
11	231	876 ± 171	36.7 ± 11.0	13.8 ± 4.4	2.4 ± 1.1
12	231	878 ± 156	33.7 ± 9.1	12.4 ± 4.3	2.8 ± 1.0
13	282	587 ± 99	23.2 ± 8.3	8.1 ± 3.3	2.3 ± 0.7
14	330	646 ± 115	22.6 ± 8.1	8.1 ± 4.0	2.3 ± 0.9
15	16	590 ± 81	15.0 ± 4.0	2.5 ± 0.8	1.0 ± 0.7
16	4032	854 ± 224	39.0 ± 16.9	13.3 ± 4.7	2.3 ± 1.2
17	256	908 ± 216	41.6 ± 12.1	12.2 ± 5.8	2.8 ± 0.9
18	56	702 ± 168	25.9 ± 11.8	8.5 ± 5.0	1.6 ± 0.6
19	32	641 ± 57	27.8 ± 4.0	9.8 ± 1.0	1.7 ± 0.5
20	3	405 ± 25	19.2 ± 2.3	9.4 ± 1.0	1.2 ± 0.4
Overall	801	609 ± 117	22.9 ± 6.8	8.5 ± 3.4	1.8 ± 0.6

Table 2. Comparison of nutritional data compared to the recommendations* for younger children.

	Meal Combinations (n)	Energy \% of Meals> Standard	Total Fat \% of Meals> Standard	Saturated Fat \% of Meals> Standard	Salt \% of Meals> Standard
1	6	0\%	0\%	0\%	67\%
2	210	64\%	34\%	74\%	83\%
3	3	33\%	0\%	67\%	100\%
4	504	99\%	73\%	98\%	100\%
5	80	80\%	51\%	100\%	100\%
6	660	100\%	83\%	100\%	96\%
7	980	93\%	63\%	86\%	100\%
8	8064	98\%	84\%	99\%	90\%
9	28	82\%	64\%	89\%	57\%
10	6	100\%	33\%	100\%	100\%
11	231	100\%	98\%	100\%	100\%
12	231	100\%	97\%	100\%	100\%
13	282	100\%	83\%	100\%	100\%
14	330	100\%	79\%	100\%	100\%
15	16	100\%	38\%	75\%	50\%
16	4032	99\%	94\%	100\%	94\%
17	256	100\%	100\%	100\%	100\%
18	56	100\%	79\%	93\%	93\%
19	32	100\%	100\%	100\%	100\%
20	3	100\%	100\%	100\%	100\%
Overall	801	87\%	68\%	89\%	91\%

*The Scientific Advisory Committee for Nutrition (SACN) standards for energy requirements (SACN, 2011), salt (SACN, 2003) and the Department of Health recommendations for total and saturated fat (Department of Health, 1991).

Table 3. Nutritional data for restaurants chains with a menu for older children.

Restaurant	Meal Combinations (n)	$\begin{gathered} \text { Energy } \\ \text { (kcal) } \pm \text { SD } \end{gathered}$	Total Fat $(\mathrm{g}) \pm \mathrm{SD}$	Saturated Fat $(\mathrm{g}) \pm \mathrm{SD}$	Salt (g) \pm SD
1	6	304 ± 27	2.1 ± 0.5	0.8 ± 0.1	0.7 ± 0.3
2	210	428 ± 131	14.7 ± 6.1	3.9 ± 2.4	1.3 ± 0.5
3	3	325 ± 62	9.2 ± 0.7	4.3 ± 3.7	1.3 ± 0.4
4	7560	887 ± 193	34.8 ± 9.2	12.8 ± 5.4	2.9 ± 0.6
5	80	482 ± 119	17.1 ± 5.4	5.3 ± 1.9	2.0 ± 0.7
6	660	684 ± 98	22.8 ± 4.8	11.7 ± 3.5	2.7 ± 0.8
7	980	566 ± 143	20.5 ± 9.4	6.3 ± 4.0	2.3 ± 0.5
8	8064	691 ± 162	25.9 ± 8.9	11.2 ± 4.4	1.5 ± 0.6
9	92	621 ± 166	24.2 ± 9.0	13.5 ± 6.8	1.5 ± 0.7
10	360	602 ± 125	18.8 ± 5.4	8.0 ± 3.2	1.9 ± 1.1
11	231	876 ± 171	36.7 ± 11.0	13.8 ± 4.4	2.4 ± 1.1
12	231	878 ± 156	33.7 ± 9.1	12.4 ± 4.3	2.8 ± 1.0
13	54	978 ± 276	51.1 ± 18.8	23.3 ± 10.3	2.8 ± 1.2
14	330	646 ± 115	22.6 ± 8.1	8.1 ± 4.0	2.3 ± 0.9
15	16	590 ± 81	15.0 ± 4.0	2.5 ± 0.8	1.0 ± 0.7
16	4032	854 ± 224	39.0 ± 16.9	13.3 ± 4.7	2.3 ± 1.2
17	256	908 ± 216	41.6 ± 12.1	12.2 ± 5.8	2.8 ± 0.9
18	56	702 ± 168	25.9 ± 11.8	8.5 ± 5.0	1.6 ± 0.6
19	32	641 ± 57	27.8 ± 4.0	9.8 ± 1.2	1.7 ± 0.5
20	3	405 ± 25	19.2 ± 2.3	9.4 ± 1.0	1.2 ± 0.4
Overall	1163	653 ± 136	25.0 ± 8.0	10.0 ± 4.0	2.0 ± 1.0

Table 4. Comparison of nutritional data compared to the recommendations* for older 525 children.

	Meal Combinations (n)	Energy \% of Meals> Standard	Total Fat \% of Meals> Standard	Saturated Fat \% of Meals> Standard	Salt \% of Meals> Standard
1	6	0%	0%	0%	0%
2	210	17%	16%	61%	33%
3	3	0%	0%	67%	33%
4	7560	96%	93%	99%	100%
5	80	34%	41%	100%	80%
6	660	88%	56%	100%	71%
7	980	52%	43%	80%	89%
8	8064	79%	69%	97%	44%
9	92	65%	62%	97%	54%
10	360	60%	28%	100%	67%
11	231	97%	91%	100%	73%
12	231	97%	89%	99%	91%
13	54	96%	96%	100%	91%
14	330	78%	48%	97%	73%
15	16	69%	13%	69%	13%
16	4032	88%	87%	100%	71%
17	256	94%	98%	100%	94%

18	56	80%	63%	93%	64%
19	32	97%	100%	100%	53%
20	3	0%	33%	100%	33%
Overall	1163	66%	55%	87%	63%

526 * The Scientific Advisory Committee for Nutrition (SACN) standards for energy requirements (SACN, 2011), salt (SACN, 2003) and the Department of Health recommendations for total and saturated fat (Department of Health, 1991).
information

Restaurant	Type
All Bar One	Full Service
Apache Pizza	Fast Food
Beefeater	Full Service
Brewers Fayre	Full Service
Burger King	Fast Food
Crown Carveries	Full Service
Ember Inns \& Ember Pub \& Dining	Full Service
Gourmet Burger Kitchen	Full Service
Harvester	Full Service
KFC	Fast Food
McDonalds	Fast Food
Nando's UK \& Ireland	Full Service
Pizza Express	Full Service
Pizza Hut	Full Service
Sizzling Pub Co	Full Service
Subway	Fast Food
SuperMacs	Fast Food
Toby Carvery	Full Service
Wagamama	Full Service
Zizzi	Full Service

