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Abstract 17 

The P value has long been the figurehead of statistical analysis in biology, but its position is under 18 

threat. P is now widely recognised as providing quite limited information about our data, and as 19 

being easily misinterpreted. Many biologists are aware of P’s frailties, but less clear about how they 20 

might change the way they analyse their data in response. This article highlights and summarises 21 

four broad statistical approaches that augment or replace the P value, and that are relatively 22 

straightforward to apply. First, you can augment your P value with information about how confident 23 

you are in it, how likely it is that you will get a similar P value in a replicate study, or the probability 24 

that a statistically significant finding is in fact a false positive. Second, you can enhance the 25 

information provided by frequentist statistics with a focus on effect sizes and a quantified 26 

confidence that those effect sizes are accurate. Third, you can augment or substitute P values with 27 

the Bayes factor to inform on the relative levels of evidence for the null and the alternative 28 

hypotheses; this approach is particularly appropriate for studies where you wish to keep collecting 29 

data until clear evidence for or against your hypothesis has accrued. Finally, specifically where you 30 

are using multiple variables to predict an outcome through model building, Akaike information 31 

criteria can take the place of the P value, providing quantified information on what model is best. I 32 

hope this quick-and-easy guide to some simple yet powerful statistical options will support biologists 33 

in adopting new approaches where they feel that the P value alone is not doing their data justice.  34 
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Main text 37 

The reified position of the P value in statistical analyses was unchallenged for decades despite 38 

criticism from statisticians and other scientists [e.g. 1, 2-4]. In recent years, however, this unrest has 39 

intensified, with a plethora of new papers either driving home previous arguments against P or 40 

raising additional critiques [e.g. 5, 6-11]. Catalysed by the part that the P value has played in 41 

science’s reproducibility crisis, this criticism has brought us to the brink of an uprising against P’s 42 

reign. 43 

Consequently, an analysis power vacuum is forming, with a range of alternative approaches vying to 44 

fill the space. Commentaries that criticise the P value often suggest alternate paradigms of statistical 45 

analysis, and now a number of options have taken seed in the field of biology. New statistical 46 

methods typically involve concepts that are counter-intuitive to our P-based training; they represent 47 

radically different ways of interrogating data that involve disparate approaches to generating 48 

evidence, different software packages, and a host of new assumptions to understand and justify. The 49 

steep learning curves for new methods could stifle the progress made in biology in moving away 50 

from P-centred statistical analyses. 51 

To provide clarity and confidence for biologists seeking to expand and diversify their analytical 52 

approaches beyond a focus on P, this article summarises some tractable alternatives to P value 53 

centricity. But first, here is a brief overview about the limits of the P value and why, on its own, it is 54 

rarely sufficient to interpret our hard-earned data. Along with many other august statisticians, Jacob 55 

Cohen and John Tukey have written cogently about their concerns with the fundamental concept of 56 

null hypothesis significance testing. Because the P value is predicated on the null hypothesis being 57 

true, it does not give us any information about the alternative hypothesis – the hypothesis we are 58 

usually most interested in. Compounding this problem, if our P value is high and so does not reject 59 

the null hypothesis this cannot be interpreted as the null being true; rather, we are left with an 60 

‘open verdict’ [2]. Moreover, with a big enough sample size inevitably the null hypothesis will be 61 

rejected; perversely, a statistical result is as informative about our sample as it is about our 62 

hypothesis [12, 13]. 63 

Recently, further concerns have been documented about P, linking the P value to problems with 64 

experimental replication [5]. Cumming [7] and Halsey et al. [6] demonstrated that P is ‘fickle’ in that 65 

it can vary greatly between replicates even when statistical power is high, and argued that this 66 

makes interpretation of the P value untenable unless P is extremely small. Colquhoun [8, 14] has 67 

argued that significant P values at just below 0.05 are extremely weak evidence against the null 68 

hypothesis because there is a 1 in 3 chance that the significant result is a false positive (aka type 1 69 

error). Interpreting P dichotomously as ‘significant’ or ‘not significant’ is particularly egregious for 70 

many reasons, but most pertinent here is that this approach encourages failed experiment 71 

replication. Studies are often designed to have 80% statistical power, meaning that there is an 80% 72 

chance that an effect in the data will be detected. As Wasserstein & Lazar [9] explain, the probability 73 

of two identical studies statistically powered to 80% both returning P ≤ 0.05 is at best 80% * 80% = 74 

64%, while the probability of one of these studies returning P ≤ 0.05 and the other not is 2 * 80% * 75 

20% = 32%. Together, these papers and calculations demonstrate that the P value is typically highly 76 

imprecise about the amount of evidence against the null hypothesis, and thus P should be 77 

considered as providing only loose, first pass evidence about the phenomenon being studied [6, 15, 78 

16]. 79 

With the broadening realisation among biologists that P values provide only tentative evidence 80 

about our data – and, indeed, that exactly what this evidence tells us is easy to misinterpret – it is 81 



3 
 

important that we equip ourselves with a broad understanding of what statistical options are 82 

available that can clarify, or even supplant, P. While it will be hard to extricate ourselves from our 83 

indoctrinated approach to interpreting every statistical analysis through the prism of significance or 84 

non-significance, we can be motivated by the knowledge that there really are other ways, and 85 

indeed more intuitive ways, to investigate our data. Below, I provide a quick-and-easy guide to some 86 

simple yet powerful statistical options currently available to biologists conducting standard study 87 

designs. Each distinct statistical approach interrogates the data through a different lens, i.e. by 88 

asking a fundamentally different scientific question; this is reflected in the subsection headings that 89 

follow. We shall start with the option least disruptive to the P value paradigm – augmenting P with 90 

information about its variability. 91 

P value: How much evidence is there against the null hypothesis? 92 

P provides unintuitive information about your data. However, it can perhaps best be interpreted as 93 

characterising the evidence in the data against the null hypothesis [10, 17]. And despite its 94 

limitations, the P value has attractive qualities. It is a single number from which an objective 95 

interpretation about data can be made. Moreover, that interpretation is context independent; P 96 

values can be compared across different types of studies and statistical tests [18]. Huber [19] argues 97 

that focussing on the P value is a suitable first step for screening of multiple hypotheses, as occurs in 98 

‘high throughput biology’ such as gene expression analysis and genome-wide association studies. 99 

However, P is let down by the considerable variability it exhibits between study samples; variability 100 

disguised by the reporting of P as a single value to several decimal places. Arguably, then, if you 101 

want to continue calculating P as part of your analyses of individual tests, you ought to provide some 102 

additional information about this variability, to inform the reader about the uncertainty of this 103 

statistic. One way to achieve this is to provide a value that is somewhat akin to the confidence 104 

interval around an effect size, that characterises the uncertainty of your study P value and is termed 105 

the P value prediction interval [7]. Another option is to calculate the prediction interval that 106 

characterises the uncertainty of the P value of a future replicate study. Lazzeroni et al. (2016) 107 

provide a simple online calculator for both (https://www.nature.com/articles/nmeth.3741#s1). 108 

Based on this calculator, if the P value from your experiment is, for example, 0.01, it will have a 95% 109 

prediction interval of 5.7-6 to 0.54. Clearly, this would provide us with little confidence that P is 110 

replicable under this experimental scenario. A P value of 0.0001 has a 95% prediction interval of 0 to 111 

0.05. In this second scenario, the 95% prediction interval of a future replicate study is 0 to 0.26. 112 

Vsevolozhskaya et al. [20] argue that the prediction interval around P calculated by this method 113 

returns underestimates of both the lower and upper bounds. Nonetheless, the width of the 114 

prediction interval, however calculated, will be surprisingly large to those of us accustomed to 115 

seeing the P value as a naked single value reported to great precision. 116 

If you have calculated the planned power of your study, and are prepared to quantify the level of 117 

belief you had before conducting the experiment that the null hypothesis is true, you can augment P 118 

with the estimated likelihood that if you get a significant P value it is falsely rejecting the null 119 

hypothesis. This is termed the estimated false positive (discovery) risk, and can be easily estimated 120 

from a simple Bayesian framework (see later) [21, 22]: 121 

Estimated false positive risk = P.π0/(P.π 0 + (1-β)(1 – π 0)), 122 

where P = the P value of your study, π 0 = the probability that the null hypothesis is true based on 123 

prior evidence, (1-β) = study power. 124 
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For example, if you have powered your study to 80% and before you conduct your study you think 125 

there is a 30% possibility your perturbation will have an effect (thus π0 = 0.7), and then having 126 

conducted the study your analysis returns P = 0.05, the estimated false positive risk is 13%. That is, 127 

many replicates of this experiment would indicate a statistically significant effect of the perturbation 128 

and be wrong in doing so about 13% of the time. Bear in mind, however, that given the 129 

aforementioned fickleness of P, this estimate of false positive risk could be equally capricious. This 130 

concern can be circumvented for high throughput studies, replacing P in the equation above for α 131 

(the significance threshold of the statistical test), and estimating π0 from observed P values [21, 22].  132 

For those not conducting high throughput studies and who do not like the idea of quantifying their a 133 

priori expectations about the veracity of their experimental perturbation, the calculations can be 134 

flipped such that your P value is accompanied by a calculation of the prior expectation that would be 135 

needed to produce a specified risk (e.g. 5%) of a significant P value being a false positive [8; and he 136 

provides an easy-to-use web calculator for this purpose: http://fpr-calc.ucl.ac.uk/]. If, for example, 137 

your P value is 0.03 for a study powered to about 70%, to limit the risk of a false positive to 5% your 138 

prior expectation that the perturbation will have an effect would need to be 77% [based on the ‘P-139 

equals’ case; 8]. 140 

Effect size and confidence interval: How much and how accurate? 141 

A statistically significant result tells us relatively little about the phenomenon we are studying - only 142 

that the null hypothesis of no ‘effect’ in our data [which we already knew wasn’t true to some level 143 

of precision; 13] has been rejected [23]. Instead of the P value scientific question ‘is there or isn’t 144 

there an effect?’, considerably more information is garnered by asking ‘how strong is the effect in 145 

our sample?’ coupled with the question ‘how accurate is that value as an estimate of how strong the 146 

population effect is?’. 147 

The most straightforward way to analyse your data in order to answer these two questions is to 148 

calculate the effect size in the sample along with the 95% confidence intervals around that estimate 149 

[6, 7, 24-27]. Fortunately, the effect size is often easy to calculate or extract from statistical outputs, 150 

since it is typically the mean difference between two groups or the strength of the correlation 151 

between two variables. And while the definition of a confidence interval is complex, Cumming and 152 

Calin-Jageman [28] compellingly argue that it is reasonable to interpret a confidence interval as an 153 

indication of the accuracy of the effect size estimate; it is the likely error estimation. 154 

The calculations of confidence intervals and P values share the same mathematical framework [29, 155 

30], but this does not detract from the fact that focussing interpretation of data on effect sizes and 156 

their confidence intervals is a fundamentally different approach to that of focussing interpretation 157 

on whether or not to reject the null hypothesis [11]. These two procedures ask very different 158 

questions about the data and elicit distinct answers [31]. For example, a study on the effects of two 159 

different ambient temperatures on paramecium size returning an effect size of 20 µm and a P value 160 

of 0.1, if centred on P value interpretation would conclude ‘no effect’ of temperature, despite the 161 

best supported effect size being 20, not 0. An interpretation based on effect size and confidence 162 

intervals could, for example, state: ‘Our results suggest that paramecium kept at the lower 163 

temperature will be on average 20 µm larger in size, however a difference in size ranging between -4 164 

and 50 µm is also reasonably likely’. As Amrhein et al. (2019) point out, the latter approach 165 

acknowledges the uncertainty in the estimated effect size while also ensuring that you do not make 166 

a false claim either of no effect if P > 0.05, or an overly confident claim. And if all the values within 167 

the confidence interval are biologically unimportant, then a statement that your results indicate no 168 
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important effect can also be made. (This is an example of where focussing on effect size and 169 

uncertainty also allows clear yes/no interpretations if desired; see also [32]). 170 

The approach of focussing on effect size estimation is usually accompanied by an emphasis on 171 

visualisation of the data to support their evaluation, the graphics showing the raw data and side 172 

panels helping to illustrate the estimated effect size (e.g. Supplementary Figure 1). Such plots, while 173 

intuitive, are not typically available in statistical packages and not easy to code in programming 174 

languages. However, Ho and colleagues [33] have recently developed ‘Data Analysis with Bootstrap-175 

coupled ESTimation’ (DABEST), available in versions for Matlab, Python and R, and also as a webpage 176 

estimationstatistics.com. All versions have user-friendly, rote instructions to produce graphs that 177 

allow full exploration of your data. 178 

Scientific research seeks to home in on ‘answers’, and estimated effect sizes and their confidence 179 

intervals are central to this goal. In biology at least, homing in on an answer almost inevitably 180 

requires multiple studies, which then need to be analysed together, through meta-analysis. Effect 181 

sizes and confidence intervals are the vital information for this process [e.g. 34], providing another 182 

good argument for their thorough reporting in papers. Typically, the confidence intervals around an 183 

effect size calculated from a meta-analysis are much smaller than those of the individual studies 184 

[35], thus giving a much clearer picture about the true, population-level effect size (Figure 1). 185 

However, meta-analyses can be deeply compromised by the ‘file drawer phenomenon’, where non-186 

significant results are not published [36], either because researchers do not submit them, or journals 187 

will not accept them [37]. Fortunately, attitudes of science funders, publishers and researchers are 188 

starting to change about the value and importance of reporting non-significant results; this 189 

momentum needs to continue. 190 

Bayes factor: What is the evidence for one hypothesis compared to another? 191 

In contrast to the P value providing only information about the likelihood that the null hypothesis is 192 

true, the Bayes factor directly addresses both the null and the alternative hypotheses. The Bayes 193 

factor quantifies the relative evidence in the data you have collected about whether those data are 194 

better predicted by the null hypothesis or the alternative hypothesis (an effect of stated magnitude). 195 

For example, a Bayes factor of 5 indicates that the strength of evidence is five times greater for the 196 

alternative hypothesis than the null hypothesis; a Bayes factor of 1/5 indicates the reverse. 197 

The Bayes factor is a simple and intuitive way of undertaking the Bayesian version of null hypothesis 198 

significance testing. Only recently have Bayes factors been made tractable for the practicing 199 

biologist, and these are now easily calculable for a range of standard study designs. The Bayes 200 

factors for many designs can be run on web-based calculators (e.g. 201 

http://pcl.missouri.edu/bayesfactor) and are also available as a new package for R called 202 

BayesFactor() [38]. 203 

A controversy of the Bayesian approach is the need for you to specify your strength of belief in the 204 

effect being studied before the experiment takes place (the prior distribution of the alternative 205 

hypothesis) [39]. Thus, your somewhat subjective choice of ‘prior’ influences the outcome of the 206 

analysis. Schonbrodt et al. (2017) argue that this criticism of Bayesian statistics is often exaggerated 207 

because the influence of the prior is limited when a reasonable prior distribution is used. You can 208 

assess the influence of the prior with a simple sensitivity analysis whereby the analysis is run using a 209 

bounded range of realistic prior probabilities [40]. There is also a default prior that you can use in 210 

the common situation that you have little pre-study evidence for the expected effect size. 211 

http://pcl.missouri.edu/bayesfactor
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Nonetheless, undertaking Bayesian analyses is more involved than null hypothesis significance 212 

testing, and specifying the prior undoubtedly adds some degree of subjectivity. Fortunately, there is 213 

a single, simple formula that you can apply to convert a P value to a form of the Bayes factor without 214 

any other information. This simplified Bayes factor, termed the upper bound, states the most likely it 215 

is that the alternative hypothesis (of an effect) is true rather than the null hypothesis over any 216 

reasonable prior distribution [comment by Benjamin and Berger annexed to 9, 41]: 217 

Bayes factor upper bound ≤ –1/(e.P.ln(P))  218 

For example, if your data generate a P value of 0.07 (sometimes termed a ‘trend’), the Bayes factor 219 

upper bound is 1.98 and you can conclude that the alternative hypothesis is at most twice as likely as 220 

the null hypothesis. A P value of 0.01 indicates the alternative hypothesis is at most 8 times as likely 221 

as the null. Benjamin and Berger argue that this approach is an easily-interpretable alternative to P, 222 

which should satisfy both practitioners of Bayesian statistics and practitioners of null hypothesis 223 

significance testing [comment by Benjamin and Berger annexed to 9]. 224 

Schönbrodt et al. [42] make the case that the Bayes factor can be used to inform when a study has 225 

secured a sufficient sample size and can be halted. Effective stopping rules in research can be 226 

invaluable for controlling time and financial costs while increasing study replicability, and are 227 

ethically important for certain animal studies or intrusive human studies; the use of subjects should 228 

be minimised while ensuring the experiments are robust and reproducible 229 

[https://www.nc3rs.org.uk/the-3rs; 43]. Arguably, stopping rules should be used a lot more than 230 

they presently are, and can be a far more effective method for targeting a suitable  sample size than 231 

power analysis. A big mistake often made, however, is to implement the P value in the stopping rule; 232 

the study is stopped when the data thus far collected return a statistically significant P value. The 233 

underlying assumption isthat increasing the sample size further would probably decrease P further. 234 

A simple model demonstrates this thinking to be spurious and thus that it drives very bad practice 235 

(Figure 2). For those of us basing our study on the P value, it is far preferable to continue a study 236 

until a pre-determined sample size is reached that has been decided by a priori power analysis [44]. 237 

However, this approach is greatly influenced by the associated a priori effect size estimate we have 238 

provided and there can be a strong temptation to increase sample size beyond the pre-determined 239 

number; in their longing for a statistically significant result, the P values of 0.06 and 0.07 are a siren 240 

call luring researchers into recording more data points [45]. 241 

The Bayes factor is much more appropriate here. It provides evidence for the null, and with a large 242 

enough sample the Bayes Factor will converge on 0 (the null is true) or infinity (the alternative is 243 

true). If the Bayes Factor of your data reaches 10 or 1/10, this almost certainly represents the true 244 

situation and your study can stop. Alternatively, if your study must be stopped for logistical reasons 245 

then the final Bayes Factor can still be interpreted, for example a Bayes factor of 1/7 would indicate 246 

moderate evidence for the null hypothesis. Moreover, you are entitled to continue sampling if you 247 

feel the data are not conclusive enough; if the results are unclear, collect more data. All such 248 

decisions do not affect interpretation of the Bayes Factor [42]. A final big motivation for employing 249 

the Bayes factor over the P value in stopping procedures is that in the long run, the former uses a 250 

smaller sample while at the same time generating less interpretation errors. A general consensus has 251 

not yet been reached about the most suitable priors for each situation, and tractable Bayes factor 252 

procedures have thus far only been produced for some experimental designs, but do not let this put 253 

you off. Instead of the Bayes factor, the Bayes factor upper bound, as described above, can be used. 254 

Akaike Information Criterion: What is the best understanding of the phenomenon being studied? 255 
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If your study involves measuring an outcome variable and multiple potential explanatory variables, 256 

then you have many possible models you could build to explain the variance in your data. Stepwise 257 

procedures of model building often focus on P values, by holding onto only those explanatory 258 

variables associated with a low P. Aside from the general concerns about P, specific criticisms of P 259 

value-based model building include the inflated risk of type 1 errors [46, 47]. An alternative 260 

approach to model assessment is the Akaike information criterion (AIC), which can be easily 261 

calculated in statistical software packages, and in R using AIC() [48]. The AIC provides you with an 262 

estimate of how close your model is to representing full reality [49], or in other words its predictive 263 

accuracy [50]. Couched within the principle of simplicity and parsimony, a fundamental aspect of the 264 

AIC is that it trades off the goodness of fit of a model against that model’s complexity to ensure 265 

against over-fitting [51]. 266 

Let’s imagine you have generated three models, returning AICs of 443 (model 1), 445 (model 2) and 267 

448 (model 3). Your preferred model in terms of relative quality will be the one that returns the 268 

minimum AIC. But you should not necessarily discard the other models. With the AIC calculated for 269 

multiple models, you can easily compute the relative likelihood that each of those models is the best 270 

of all presented models given your data, i.e. the relative evidence for each of them. For example, the 271 

preferred model will always have a relative evidence of 1, and in the current example the second 272 

best model, model 2, has relative evidence 0.37, and model 3 has 0.08. Finally, you can then 273 

compute an evidence ratio between any pair of models; following the above example, the evidence 274 

for model 1 over model 2 is 1/0.37 = 4.6, i.e. the evidence for model 1 is 2.7-times as strong. In this 275 

scenario, although model 1 has the absolute lowest AIC, the evidence that model 1 rather than 276 

model 2 is the best from those generated is not strong, and with some explanatory variables present 277 

in only one of the models, the most suitable response could be to make your inferences based on 278 

both models [49]. The AIC approach encourages you to think hard about alternative models and thus 279 

hypotheses, in contrast to P value interpretation that encourages rejecting the null when P is small, 280 

and supporting the alternative hypothesis by default [52]. More broadly, the AIC paradigm involves 281 

dropping hypotheses judged implausible, refining remaining hypotheses and adding new hypotheses 282 

– a scientific strategy that Burnham et al. [49] argue promotes fast and deep learning about the 283 

phenomenon being studied. 284 

Although the AIC is mathematically related to the P value [they are different transformations of the 285 

likelihood ratio; 30], the former is far more flexible in the models it can compare. The AIC is a strong 286 

option for choosing between multiple models that you have generated to explain your data, i.e. to 287 

choose what model represents your best understanding of the phenomenon you have measured, 288 

particularly when the observed data are complex and poorly understood and you do not expect your 289 

models to have particularly strong predictive power [53]. A word of caution is important here, 290 

however - it is easy to misuse AIC and you should be careful to ensure the models analysed are linear 291 

and have normally distributed residuals. 292 

A key limitation of the AIC is that it provides a relative, not absolute, test of model quality. It is easy 293 

to fall into the trap of assuming that the best model is also a good model for your data; this may be 294 

the case, or instead the best model may have only half an eye on the variance in your data while all 295 

other models are blind to it. To quantify the absolute quality of your best model(s) requires 296 

calculation of the effect size, as discussed earlier (in the case of models, typically R2 is suitable). 297 

Conclusions 298 

Good science generates robust data ripe for interpretation. There are several broad approaches to 299 

the statistical analysis of data, each interrogating the collected variables through a distinct line of 300 
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questioning. Popper [54] argued that science is defined by the falsifying of its theories. Taking this 301 

approach to science, P values might be the rightful centrepiece of your statistical analysis since they 302 

provide evidence against the null hypothesis [10, 17]. Building on this paradigm, you can easily 303 

enhance interpretation of the P value by augmenting P with a prediction interval and/or an estimate 304 

of the false positive risk - information about P’s reliability. A counter argument, however, is that 305 

because the P value does not test the null hypothesis nor the alternative hypothesis you can never 306 

use it to actually falsify a theory [55]. Converting the P value into a Bayes factor attends to this 307 

concern, providing relative evidence for one hypothesis or the other. But many have argued that 308 

hypothesis testing by any approach is superseded by focussing on the effect in the data – specifically 309 

both its magnitude and accuracy – because your best estimate of the magnitude of the phenomenon 310 

you are studying is ultimately what you want to know. And if you conduct multi-variate analysis, 311 

particularly when the phenomenon under study is poorly understood, you can be well served by the 312 

AIC, which encourages consideration of multiple hypotheses and their gradual refinement. 313 

 314 

It is important to impress that these manifold approaches are not all mutually exclusive, for example 315 

many would argue that effect size estimates are an essential component of most analyses. Indeed, 316 

Goodman et al. [56] go so far as to recommend the use of a hybrid for decision making that requires 317 

a low P value coupled with an effect size above an a priori determined minimum to be 318 

relevant/important in order to reject the null hypothesis. P values can also be presented alongside 319 

Bayes factors for each statistical test conducted (‘a B for every P’). Continuing to present P values as 320 

part of your statistical output while diluting their interpretive power by including other statistical 321 

approaches is possibly the best way to nudge reviewers and editors towards accepting, even 322 

encouraging, the application of alternate inferential paradigms and without jeopardising your 323 

submission [and see Box 2 in 43]. Whatever your chosen statistical approach, it is important that this 324 

has been determined before data collection. Arming oneself with more statistical options could risk 325 

the temptation of trying different approaches until an exciting result is achieved; this must be 326 

resisted. 327 

 328 

Regardless of the statistical paradigm you employ to investigate patterns in your data, many have 329 

recommended that the outputs from statistical tests should always be considered as secondary 330 

interrogations. Primarily, the argument goes, you should prioritise interpretation of graphical plots 331 

of your data, at least where this is possible, and treat statistical analyses as supporting or 332 

confirmatory information to what can be visualised [26, 57-59]. A plot that does not appear to 333 

support the findings of your statistical analysis should not be automatically explained away as a 334 

demonstration that your analysis has uncovered patterns deeper than can be visualised. 335 

 336 
Finally, while I hope that this review might help readers feel a little more aware of, and confident 337 

about, some of the additional and alternative statistical options to the P value, it is worth reminding 338 

ourselves of Sir Ronald Fisher’s pertinent words: ‘To call in a statistician after the experiment is done 339 

may be no more than asking him to perform a post-mortem examination: he may able to say what 340 

the experiment died of.’ Without a good data set, none of the statistical tools mentioned here will 341 

be effective. Moreover, even a good data set represents just a single study, and it must not be 342 

forgotten that a single study provides limited information. Ultimately, replication is key to refining, 343 

and having confidence in, our understanding of the biological world. 344 
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 359 

Figure 1. Standard and cumulative meta-analyses of studies investigating antibiotic prophylaxis for 360 

colon infection compared to the control of no treatment. In the left panel, the effect size and 95% 361 

confidence interval are shown for each study, which are displayed chronologically. Risk ratios (effect 362 

size) less than 1 favour a prophylactic; greater than 1 favours no treatment. n represents study 363 

sample size. The pooled result from all studies is shown at the bottom. Note that the studies where 364 

the confidence interval intersects 1 (coloured blue) would be interpreted as statistically non-365 

significant (no efficacy of the prophylaxis); otherwise (black) as statistically significant (the 366 

prophylaxis is worth administering). Interpretation of all these studies based on the P value alone 367 

would not provide any clarification about the value of an antibiotic prophylaxis with treatment of 368 

colon infection, with around half the studies reporting statistical significance. The right panel 369 

represents a cumulative meta-analysis of the same studies (n represents cumulative sample size). 370 

This shows that some degree of efficacy of antibiotic prophylaxis for treatment in colon infection 371 

could have been identified as early as 1972, and well before the final study, the efficacy effect size 372 

was fairly clear. Figure (adapted) and some caption text taken from Ioannidis and Lau [60]. 373 

  374 
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 375 

Figure 2. A demonstration of variability in the P value as data from a study are collected and 376 

analysed after each new addition to the sample. This can result in a study being stopped under the 377 

mistaken belief that as soon as a significant P value is obtained this reflects a real effect. 378 

A computer simulates samples drawn at random from two identical, randomly distributed 379 

populations (standard deviation = 10), thus the null hypothesis is true. A Student’s t test is 380 

conducted after five samples are drawn from the two populations. Subsequently, each time one 381 

further sample is taken for each population the t test is re-run. The evolution of the P value as 382 

sample size increases is presented in the three panels (black line), the upper panel showing the first 383 

50 samples, the middle the first 1000, and the lower panel showing up to 10 000 samples being 384 

drawn. The P value varies considerably; another demonstration of its ‘fickleness’ [6]. In each panel, 385 

the red line represents the effect size (mean difference between the samples). Although the P value 386 

should typically be high under these circumstances, reflecting a lack of evidence against the null, 387 

when the sample size is small it can easily decrease temporarily to below 0.05 (denoted by the 388 

dashed line) suggesting the populations from which the samples are drawn are different. If the 389 

sampling is stopped when this happens, P will be unrepresentative of reality and return a false 390 



12 
 

positive. (Note that in this simulation, P does not tend towards 0 as the sample size becomes very 391 

large because as sample size increases the effect size tends towards 0 and thus statistical power 392 

does not systematically increase [observed power is inversely related to P; 61]).  393 
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