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 IMMEDIATE 

INTERVENTION (n=8) 

LONGITUDINAL  INTERVENTION  (n = 1) 

 Mean (SD) Mean (SD) Difference 

(%) 

Effect size 

(Hedge’s g) 

 Pre- Post- Pre- One year   

TRAIL ANKLE       

ADD Dorsi-/Plantar-flexion  13.1 (4.8)  13.9 (4.6)  13.9 (0.8)    11.6 (0.6)  -17  3.26 ^ 

 Inversion/Eversion    2.0 (1.7)    2.7 (2.4)    1.0 (0.3)      3.1 (0.1) 210 

 

 9.39 ^ 

 Rotation   -8.5 (6.2) -10.6 (8.9)   -5.9 (1.6)  -21.8 (0.5)  269 13.42 ^ 

ToBS Dorsi-/Plantar-flexion    5.1 (4.0) *    7.0 (3.9) *    4.3 (1.5)     3.3 (0.7) -23 

 

 0.86 

 Inversion/Eversion   -4.7 (1.7) *   -3.3 (1.9) *   -5.4 (0.3)     -0.3 (0.3)  -94 17.00 ^ 

 Rotation  16.2 (7.3) *  11.4 (8.6) *  27.3 (1.2)      0.6 (2.2)  -98 

 

15.07 ^ 

BI Dorsi-/Plantar-flexion  11.8 (8.0)  14.2 (4.8)  14.4 (0.8)    12.5 (1.3)  -13  1.76 ^ 

 Inversion/Eversion    7.3 (2.3)    7.3 (3.6)    4.7 (0.2)     6.0 (1.1) 28  1.65 ^ 

 Rotation -27.5 (5.7) -25.4 (7.9) -24.8 (0.8)   -36.4 (4.6)  47  3.52 ^ 

LEAD ANKLE       

ADD Dorsi-/Plantar-flexion    9.5 (2.1)  10.1 (1.9)    8.1 (0.7)     9.4 (0.8) 16  1.73 ^ 

Table 1



 Inversion/Eversion    3.1 (1.8)    3.3 (2.0)    0.8 (0.2)      1.4 (0.2)  75  3.00 ^ 

 

 Rotation -13.7 (7.0) -14.6 (8.5)  -4.0 (1.2)     -7.2 (1.3)  80  2.56 ^ 

ToBS Dorsi-/Plantar-flexion  19.9 (6.7)  21.1 (5.7)    9.9 (1.7)    20.1 (0.2)  103  8.43 ^ 

 Inversion/Eversion    8.0 (2.3)    8.1 (3.4)    6.9 (0.4)     6.8 (0.4) -1  0.25 

 Rotation -32.6 (8.0) -31.6 (9.2) -33.5 (1.2)  -35.1 (1.4) 5  1.23 

BI Dorsi-/Plantar-flexion    7.6 (5.8)     7.7 (5.4)    7.3 (0.9)     5.2 (1.8) -29  1.48 ^ 

 Inversion/Eversion   -0.2 (2.2) *     0.9 (2.2) *  -0.7 (0.2)      1.3 (0.7)  -286  3.88 ^ 

 Rotation  -0.6 (8.9) *   -5.2 (8.4) *    4.2 (0.9)     -6.6 (3.9) -257  3.82 ^ 

TRAIL KNEE      
  

ADD Varus/Valgus   -0.3 (5.1)   -1.4 (5.2)   -0.8 (0.4)     -3.4 (0.4)  325  6.50 ^ 

ToBS Varus/Valgus   -5.4 (4.4) *   -6.9 (4.2) *  -4.6 (0.6)   -11.7 (1.0)  154  8.61 ^ 

BI Varus/Valgus   -1.6 (6.5)   -0.5 (4.2)  -0.3 (0.5)     -5.4 (0.7)  1700  8.38 ^ 

LEAD KNEE      
  

ToBS Varus/Valgus  15.3 (8.4) *  13.2 (8.3) *  18.2 (1.2)      6.5 (1.1)  -64 10.16 ^ 

BI Varus/Valgus    3.9 (4.8) *    2.0 (4.6) *     9.2 (1.0)     -5.6 (1.8)  -161 10.16 ^ 

TRAIL HIP      
  



ADD Rotation   -2.6 (9.1)   -2.4 (9.4)    3.4 (0.4)     -0.8 (0.6)  -124  8.24 ^ 

ToBS Rotation    5.0 (9.1)    3.8 (9.3)  15.7 (0.3)      3.7 (0.6)  -76 25.29 ^ 

LEAD HIP      
  

ToBS Rotation -5.6 (12.0) -6.2 (11.6)    2.4 (0.6)   -15.3 (0.8)  -738 25.04 ^ 

BI Rotation 4.4 (12.8) 6.0 (13.3)  16.9 (1.2)     -5.3 (1.2)  -131 18.50 ^ 
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Abstract 

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards 

the medial aspect of the foot relating to stability mechanisms associated with the golf swing. The 

hypothesis that by altering the position of the foot pressure, the lower body stabilisation would 

improve which in turn would enhance weight distribution and underpinning lower body joint 

kinematics. Eight PGA golf coaches performed five golf swings, recorded using a nine-camera 

motion analysis system synchronised with two force platforms. Following verbal intervention 

they performed a further five swings.  One participant returned following a one-year intervention 

programme and performed five additional golf swings to provide a longitudinal case study 

analysis. There were no changes in golf performance evidenced by the velocity and angle of the 

club at ball impact. although the one-year intervention significantly changed the percentage of 

weight experienced at each foot in the final 9% of downswing, which provided an even weight 

distribution at ball impact. This is a highly relevant finding as it indicates that the foot centre of 

pressure was central to the base of support and in-line with the centre of mass, indicating 

significantly increased stability when the centre of mass is near maximal acceleration.  

Keywords: golf biomechanics; foot pressure distribution; injury; longitudinal intervention 
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Introduction 

The golf swing is a whole body multi-joint movement utilised by the golfer to propel a golf ball 

in a pre-determined direction (Maddalozzo, 1987). There is an integral relationship through the 

entire movement, from the golfers’ address (ADD) to top of the back swing (ToBS) and 

returning the club to ball impact (BI) as illustrated in Figure 1. The swing’s momentum transfers 

through the kinetic chain from the feet, pelvis, trunk, arms and club, finally connecting with the 

golf ball, resulting in ball projection (McHardy & Pollard, 2005). To generate a repeatable 

efficient physical movement that tolerates alternating situations during competitive play a golfer 

requires a co-ordination of specific body components to activate in the correct sequence 

(Abernethy, Neal, Moran, & Parker, 1990; Neal et al., 2008). The efficiency of the golfer is 

dependent on maintaining a stable centre of mass (CoM). Consequently, the golfer aims to limit 

the medio-lateral, anterior-posterior and vertical movement of the CoM, whilst generating their 

maximal change in momentum during the swing to propel the ball over horizontal distances of 

approximately 230m (Hume, Keogh & Reid, 2005).   

 

****Figure 1 near here**** 

 

Previous research has implicated that controlled movement of the CoM, ranges of angular 

motion (RoM) at the hip, knee and ankle joints, lower body internal rotation moments and 

efficient weight-shift patterns (i.e. movement of the centre of pressure within the base of 

support), all have a role in determining the golfers skill level (Gatt, Pavol, Parker, & Grabiner, 

1998; Hume, Keogh, & Reid, 2005; Lephart, Smoliga, Myers, Sell, & Tsai, 2007).    Farrally et 

al. (2003) suggested that swing consistency is compromised when there is excessive movement 
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of CoM during the backward and downward swing. Highly skilled players display a similar 

kinematic sequence and have sufficient stability to control the movement of the CoM by holding 

a correctly aligned spine angle whilst minimising the displacement of the pelvis (Tinmark, 

Hellström, Halvorsen, & Thorstensson, 2010). Mayer et al. (2008) reported that increased ball 

velocity can be achieved by increased torso-pelvic separation whilst maintain a pelvic stability. 

Faster BI velocities have been associated with a stable pelvic rotation at the end of the 

backswing, increased trunk rotation velocity during downswing, and high acceleration of the 

trunk segment through to impact (Chu, Sell, & Lephart, 2010; Hume et al., 2005). 

An understanding of the distribution of forces between each foot during the swing as 

fundamental for achieving optimal biomechanics that contribute to peak performance without 

incurring injury (Barrentine, Fleisig, Johnson, & Woolley, 1994). Furthermore, correct distal to 

proximal sequence and coordination of lower body segments provides efficient energy transfer 

and power at BI whilst minimising the potential for injury (Hellström, 2009). The summation of 

forces principle defined as ‘the increase of velocity at the most distal segment’ (Hume et al., 

2005), combined with correct and timely weight-shift transfer is integral to the swing. Lack of 

correct and consistent weight-shift prevents significant transfer of forces to the club-head, 

ultimately inhibiting the ‘squaring’ or optimal angle of the club-head to the ball at impact. 

Highly skilled golfers employ a fast, common weight shift compared to the erratic patterns of 

novice golfers (Barrentine et al., 1994). The desired maximal changes in momentum and the 

weight shift that occurs during the backswing to the downswing renders the body vulnerable to a 

myriad of injuries. 

Both pronation and supination of the foot have been shown to be essential for momentum 

and neutral, optimal balance when standing. When sufficient pressure is on the medial portion of 
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the calcaneus (medial tuberosity) and the distal head of the first metatarsal of the foot, the mid 

tarsal joint unlocks resulting in a flexible and adjustable dorsal foot surface which is key to 

maintaining balance (Astrom & Anlidson, 1995). When this does not occur, the foot may not 

adequately adapt, increasing the requirement on surrounding musculoskeletal structures to 

maintain postural stability, and subsequently causing compensation in other areas resulting in 

unnecessary, excessive movement of the lower body (Winter, 1995). Translating this key 

principal of balance and stability to the golf swing, Richards, Farrell, Kent, & Kraft, 1985 found 

a more efficient and rapid weight-shift on the lead foot after adjustments to the centre of pressure 

to various points on the foot leading to an increase to the base of support during downswing and 

hence stability. Cote, Brunet, Gansneder, & Shultz (2005) demonstrated that when the foot is 

slightly inverted, partial medial contact is lost with the ground, and it is not possible to 

subsequently control the weight-shift pattern effectively. Therefore, it is anticipated that when 

this foundation of foot pressure distribution is applied correctly, there will be a greater control of 

CoM motion due to the enhanced stability and this was the rationale for conducting the study. 

Using this premise an intervention to adjust medial pressure on each foot during the golf swing 

was developed with the aim of quantifying the effects of this intervention on lower body 

biomechanics. Initially the immediate effects of the pressure intervention were examined on a 

group of experienced golfers. Group analysis on the golf swing, which is inherently varied 

(Hume et al., 2005; McNitt-Gray, Munaretto, Zaferiou, Requejo, & Flashner, 2013), provides a 

trend from the biomechanical data sets examined (Ball & Best, 2012) whereas a case study 

approach bridges the science-practice gap providing application to individual golfers  (Halperin, 

2018). Hence, the long term outcomes of the intervention for one single case study golfer was 

conducted. 
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The intervention aimed to increase pressure medially to the forefoot and heel of the trail 

foot during the backswing and equally on the lead foot during the downswing. Therefore, both 

the immediate and longitudinal intervention examined the differences in ground reaction forces 

(GRF) and lower body angles and hypothesised that the intervention would induce the following 

changes:  

1. An even weight distribution in the latter part of the downswing, evidenced by the 

distribution of the GRF (%GRF), increasing the body’s stability with the CoP being 

central to the base of support at BI.  

2. Alter the position of the subtalar joints and the ankle angles in all three planes.  

3. Decreased trail (knee) valgus angles during both the backswing and downswing, and 

decreased lead (knee) valgus during the downswing which will affect knee angles in the 

frontal plane.  

4. Minimise internal hip rotation in the trail side during the backswing and the lead side 

during the downswing to infer greater stabilisation of the knee (Powers, 2010).  

 

Methods 

Eight male participants (mean (±SD)): height 1.81 m (±0.05); mass 89.13 kg (±6.66)); age 45 

years (±6) were recruited to the study with one of the golfers returning to the study one year 

later. All participants were professional golf association (PGA) qualified coaches with a zero 

handicap. The University’s Ethics Board granted approval and written informed consent was 

obtained from each participant. Each of the participants used the same dedicated 5-iron club 

throughout the duration of the study. The club’s sole purpose was to reduce variability in this 

research and it was not used in any other capacity. They wore their own golf shoes standing on 
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two uncovered force plates located side by side; the researcher adjusted the tee-off position to 

suit their stance.  Participants performed multiple practice swings for self-determined 

familiarisation within the laboratory environment. After familiarisation, each participant then 

performed between five and ten swings with maximum velocity at BI. The number of swings 

were self-determined by the golfers where they ensured that they had performed at least five 

‘good swings’. The participants aimed the ball into a net 6m from the tee-off position.  The 

participants then received a verbal intervention and were instructed to increase foot pressure on 

to the medial portion of the ball and heel of the foot, increasing eversion in both backswing and 

downswing. Specifically, just prior to the initiation of the backswing they were asked to apply 

pressure vertically onto the medial part of the trail foot (putting the foot into slight pronation), 

then prior to initiation of the downswing the instruction was to apply pressure vertically on to the 

medial portion of the lead foot. The verbal information was the same for each participant and all 

adjusted their technique in accordance with the feedback. The feedback aimed to mimic a real-

life coaching session and therefore each participant was provided with a visual demonstration of 

the technique coupled with verbal instruction in a language they would understand.  Following 

this, the participants performed a further five to ten golf swings at a maximum velocity at BI. 

The case study golfer received 30 coaching sessions over a one-year programme, typically two 

or three times per month. The case study intervention sessions comprised of the visual 

demonstration of the technique coupled with verbal instruction on the changes on foot pressure, 

which were delivered by the lead researcher, whom is a golf specialist. Returning to the 

laboratory after one year the golfer performed five to ten swings at a maximal velocity at BI. The 

laboratory setup was identical one year later for the case study and the participant wore the same 

shoes. Five golf swings were analysed for each condition (pre and post immediate intervention, 
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pre and post long term intervention) which were selected by the golfer’s self-determined 

assessment of a ‘good shot’. 

All golf swings were recorded with a nine camera (sample rate: 100 Hz) infra-red Vicon 

MXF20 motion analysis system (Vicon Motion Systems Ltd, UK) synchronised with two 0.6 x 

0.4m Kistler (sample rate: 1000 Hz) 9281CA force plates (Kistler Instruments Ltd, UK). Sixteen 

retro-reflective markers were placed on precise anatomical landmarks of the lower body 

according to the protocol (Davis, Ounpuu, Tyburski, & Gage, 1991). There were an additional 

three markers placed on the golf club (top of the shaft just below handgrip, mid-shaft and club 

head) and reflective tape was wrapped around the golf ball to identify the time of BI. The 

cameras were up-graded to a 12 camera system when the golfer returned after one year.  

Data was processed using Nexus version 2 (Vicon Motion Systems Ltd, UK). A 4th order 

Butterworth filter, with a cut-off frequency of 6Hz was applied to the coordinate trajectories and 

a cut-off frequency of 30 Hz was applied to the force data. Three-dimension kinematic and 

kinetic measures were calculated for lower body with the Vicon Plug-in-Gait model which uses 

the Euler angle theorem and standard inverse dynamics. The time-point prior to movement of the 

golf club-head defined ADD. The time-point of ToBS was the transition between club head anti-

clockwise to a clockwise motion. The time-point of BI was the frame nearest to club-ball contact 

determined visually; the club and ball were both visible to the camera system. Backswing and 

downswing phases are illustrated in Figure 1. The velocity and angle of the club head at BI were 

determined. The % differences in lower body angles following the intervention were reported. 

The trail and lead angles in all three planes for the ankle, frontal plane for the knee and 

transverse plane for the hip were examined. The resultant GRF was determined and reported as a 

% of the golfers’ body weight for the trail and lead sides. Matlab version 2013a (Mathworks Inc., 
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Massachusetts, USA) was used to time normalise the angular and GRF waveform data to 100% 

for the two phases of the golf swing for each trial. From the pre- and post-intervention sessions 

(immediate and longitudinal), means and standard deviation (SD) were calculated, from the five 

swings where their BI velocity was maximal. For the immediate intervention analysis group 

means (SD) were determined for each measure.  

The Shapiro-Wilk statistical test for normal distribution revealed that all measures were 

normally distributed for each time point across both phases. Cohen’s d was calculated and 

corrected for a small population size using hedges g and reported the effect size (ES) in the for 

the difference in club head velocity and angle at BI. 

All waveform data were analysed using the statistical parametric mapping (SPM) 

technique with paired sample t-test. SPM was designed especially for continuous field analysis 

(Penny, Friston, Ashburner, Kiebel, & Nichols, 2011) and constructs images that lie in the 

original, biomechanically meaningful sampling space (Pataky, 2010). Open-source one-

dimensional package for Matlab (spm1d version M.0.3.1 (2015.08.28)) was used in the analysis 

and the scalar test statistic SPM{t} was computed at each point in the time series as described 

previously (Robinson, Donnelly, Tsao, & Vanrenterghem, 2013).  

 

Results 

Following the immediate intervention the mean (SD) club head velocity at BI for the group 

changed from 31.02 m·s-1 (1.27) to 30.63 m·s-1 (1.84), (difference = -1.26 % (ES = 0.23) with an 

angle change from 7.47o (1.69) to 6.62o (3.22) (difference = -7.65%, ES = 0.22). Following the 

longitudinal intervention the mean (SD) club head velocity at BI changed from 31.22 m·s-1 

(0.51) to 31.39 m·s-1 (0.44), (difference = 0.54 %, ES = 0.32) with an angle change from 7.95o 
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(1.36) to 1.69o (8.86) (difference -14.09%, ES = 0.53).  

It was hypothesised that the intervention would induce an even weight distribution in the 

latter part of the downswing, evidenced by the %GRF distribution.  

****Figure 2 near here**** 

 

Figure 2 illustrates the SPM analysis, which revealed no significant differences in any 

waveform data except for the lead side following the longitudinal intervention for the case study 

golfer (α = 0.05, t* = 6.047, p = 0.015) where significant differences occurred from 91% of the 

downswing up to BI (equating to 0.26s before impact). 

****Figures 3-5 near here**** 

 

Figures 3 to 5 examine the backswing and downswing kinematic waveforms and 

significantly different portions in the curves are indicated by the shaded areas from the SPM 

analysis. Notably, significant changes in the angles examined during the backswing and 

downswing phases following the longitudinal intervention whereas limited significant changes in 

such measures following the immediate intervention.  

 

Discussion 

The biomechanical consequences following a verbal instruction to alter foot pressure during the 

golf swing was examined for a group of golfers with a zero handicap. To explore the individual 

long term mechanical effects the intervention was implement over a one year training 

programme for a single golfer. The altered foot pressure aimed to alter the body weight 
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distribtion and specific lower body joint angles that are deemed to underpin injury without an 

effect on club head velocity and angle at BI. 

Small changes in club head velocity at BI were reported for all golfers. However 

following a one year intervention programme for a single golfer the angle of the club at BI 

showed a change to a slightly flatter position (by 1o) which would effect the range and trajectory 

path of the ball, although there was a slight increase in velocity (ES = 0.53). The underpinning 

biomechanics as a response to the altered foot pressure were examined particularly the effects of 

the longitudinal intervention, in detail. 

Initially hypothesised that an even weight distribution in the latter part of the downswing 

evidenced by the distribution of the GRF (%GRF) would occur. Figure 2 illustrates that for the 

case study golfer there were changes in the weight distribution which were significant (α = 0.05, 

t* = 6.047, p = 0.015) for the lead leg in the latter part of the downswing. At BI the weight 

distribution between the lead and trial sides were approximately 50% compared previously to a 

60-40% divide, respectively. Such changes were not detected following the immediate 

intervention. This was a highly relevant finding since the centre of pressure was central to the 

base of support and hence in-line with the CoM at BI increasing stability at a crucial time during 

the golf swing. Improvements in stability can minimise variability of multiple golf swings during 

a game. Traditionally the recommendation was that 75 to 80% of the body weight should be on 

the lead leg (Stover & Mallon, 1992) at and after BI with a consequence of a reduction in 

stability and increased variability. However, a review on knee injury literature revealed that an 

intervention that incorporates pelvic stability aids knee rehabilitation and injury prevention 

(Powers, 2010). Also, it was reported that low variation improves the accuracy and reliability in 
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the task outcomes i.e. the club head velocity and shot accuracy of the golfer’s performance 

(Knight, 2004).  

At ADD, the trail and lead ankle angles changed in all three planes for the case study 

golfer while the initial study participants’ experienced limited changes. In addition, alterations in 

the angular data sets also occurred during the backswing. Most notably as the club moved to 

ToBS the trail ankle was in a tri-planar neutral position evidenced by zero rotation and eversion 

angles along with limited dorsi-flexion. Such a position improves foot-ground interface stability 

during the transition from backswing to downswing, which is presently a desired position to 

maximise the change in angular momentum (clockwise to anti-clockwise). Stable foot-ground 

stability initiates correct movement at the shoulders and transferred further along the kinetic 

chain (Marshall & McNair, 2013). During the downswing up to BI, the significant increase in 

trail ankle external rotation could be considered problematic. Previously, limiting ankle 

movement in the transverse plane has been reported in order to prevent injury but during 

walking, rotations of up to 15o have produced a stable foot position whilst the lower leg rotates. 

The external rotation on the downswing was severe (36o) and a negative outcome. The aim to 

maintain a foot flat position, with a neutral centre of pressure, could have caused such injury 

inducing angular motion. 

A significant increase in lead ankle dorsi-flexion towards the later stages of the 

backswing and the initial stages of the downswing enabled a reduction in lead knee varus 

positioning the knee closer to neutral by approximately 12o compared to prior the intervention 

(Basnett et al., 2013). Therefore the lead ankle coupled with the trail improved the stability of the 

golfer at the crucial temporal part of the golf swing. The outcomes of the changes in the ankle 

joint kinematics partially supported our expected findings. 
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The knee joint was examined for varus/valgus angles following the theorised changes of 

improved knee alignment in the frontal plane. A negative consequence of the intervention was 

the increased valgus for the trail knee from 40% of the backswing through to BI for the case 

study golfer and during the final 20% of the backswing for the group (immediate intervention) 

golfers. For the lead knee during the downswing there was a significant reduction in the varus 

angle with the knee moving into minimal valgus at BI. The intervention, to some extent, in the 

frontal plane at BI for the lead knee has improved the desired alignment. The slight valgus 

position at BI does increase the adductor moments but the modern swing aims for near knee 

alignment at BI for the transmission of the torque and forces passing through the centre of the 

knee joint (Marshall & McNair, 2013). 

The internal rotation of the trail hip during the backswing significantly reduced (~60%) 

thereby supporting our theorised changes. The improved neutral position of the trail hip was a 

direct result of the increased valgus at the knee enabling the shoulders to provide the greatest 

contribution to the torque on the downswing (Gluck, Bendo, & Spivak, 2008). Previously the 

lead hip was internally rotated during the downswing and the intervention caused a significant 

change in hip rotation where the joint was externally rotated at the ToBS by 15.3o. During the 

downswing the lead hip reduced the extent of external rotation however such an angular motion 

decreases the expected stability in this joint. Therefore, the predicted outcomes of reduction in 

internal hip rotation was partially accepted. 

 Conclusions drawn from this project could be criticised through limitations that present 

from a relatively small sample size of eight participants in the immediate intervention. The case 

study where one participant underwent specific training over a longer period was incorporated 

into the study to overcome this. However, research sample of indiscernible margins that separate 



 14 

highly skilled golfers, can also be a more effective representation and valid rationale using a 

small sample size, helping to increase statistical power. The authors acknowledge the limitation 

in equipment as the sampling frequency of the cameras was lower than ideal; furthermore, the 

ball tracking was not plausible within the field of view and the available technology.   

Conclusion 

Immediate intervention of a change in centre of pressure during the gold swing provided insight 

on the potential long term changes that can occur in GRF distribution and ankle, knee and hip 

joint angles that are associated with injury. The longitudinal one-year intervention programme 

caused a slight increased club head velocity (ES = 0.32) and a flatter angle of the club at BI (ES 

= 0.53). However, there was a significantly improved weight distribution particularly in the last 

10% of the downswing up to BI, which enhanced lower body stability and supports our 

hypothesis. Simultaneously the neutral position of the trail ankle joint in the transverse and 

frontal planes also enhanced stability at BI, although the hypothesised changes in all ankle angles 

during the swing were not observed. Lead knee varus reduction at the top of the backswing and 

the first 20% of the downswing improved the alignment of the ankle, knee and hip which agrees 

with the hypothesised reduction in lead knee valgus. The hypothsised changes in hip rotation 

were partially accepted. The application of medial foot pressure caused a significant reduction in 

hip rotation for the trail leg at address and the final 50% of the backswing which would enhance 

the torque generated by the trunk on the downswing as the body segment moves from internal 

rotation to external rotation up to BI. The range of rotation at the lead hip was not excessive 

which has been reported to be important in the avoidance of labral pathology. Finally, this 

intervention demonstrated adjustments of foot pressure maybe more effective than the traditional 

pelvic adjustments in improving a golfer’s lower body stability.  
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Figure 1: A golfer’s position and discrete time points as used in this study: address, top of the 

backswing and ball impact. The movement was divided into two phases: backswing (from 

address to the top of the backswing) and downswing (from top of the backswing to ball impact). 

Right handed golfers have the left side as lead and the right side as trail.  

Figure 2: Mean (SD) resultant %GRF on both lead and trail during the backswing (I and III) and 

downswing (II and IV) for the group (n=8) immediate intervention (I and II) and the longitudinal 

case study (n=1) intervention (II and IV).  pre                post                 the intervention where 

solid is the lead and dashed is the trail sides. Statistical parametric maps (SPM) for the GRF data 

where the shaded areas show when the significant differences occur (p < 0.05). All curves were 

time normalised.  

Figure 3: Mean (SD) ankle joint angles for the trail leg in the sagittal (I; dorsi/plantarflexion), 

frontal (II; inversion/eversion) and transverse (III; internal/external rotation) planes. pre             

post               for the group and case study golfer. Positive values are dorsiflexion, 

inversion/adduction and internal rotation. IV, V and VI are the corresponding statistical 

parametric maps (SPM) for the ankle angle data where the shaded areas show when the 

significant differences occur (p < 0.05). All curves were time normalised.  

Figure 4: Mean (SD) ankle joint angles for the lead leg in the sagittal (I; dorsi/plantarflexion), 

frontal (II; inversion/eversion) and transverse (III; internal/external rotation) planes. pre              

post                for the group and case study golfer. Positive values are dorsiflexion, 

inversion/adduction and internal rotation. IV, V and VI are the corresponding statistical 

parametric maps (SPM) for the ankle angle data where the shaded areas show when the 

significant differences occur (p < 0.05). All curves were time normalised.  
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Figure 5: Mean (SD) knee frontal (varus / valgus) and hip transverse (internal / external rotation 

angles): (I) trail knee backswing; (II) trail knee downswing, (III) lead knee downswing, (IV) trial 

hip backswing and (V) lead hip downswing. pre              post              for the group and case 

study golfer. Positive values are varus/adduction (I, II and III) and internal rotation (IV and V). 

VI, VII, VIII, IX and X are the corresponding statistical parametric maps (SPM) for the ankle 

angle data where the shaded areas show when the significant differences occur (p < 0.05). All 

curves were time normalised. 
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The effect of alterations in foot centre of pressure on lower body kinematics during the 5-

iron golf swing. 

 

Abstract 

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards 

the medial aspect of the foot relating to stability mechanisms associated with the golf swing. The 

hypothesis that by altering the position of the foot pressure, the lower body stabilisation would 

improve which in turn would enhance weight distribution and underpinning lower body joint 

kinematics. Eight PGA golf coaches performed five golf swings, recorded using a nine-camera 

motion analysis system synchronised with two force platforms. Following verbal intervention 

they performed a further five swings.  One participant returned following a one-year intervention 

programme and performed five additional golf swings to provide a longitudinal case study 

analysis. There were no changes in golf performance evidenced by the velocity and angle of the 

club at ball impact. although the one-year intervention significantly changed the percentage of 

weight experienced at each foot in the final 9% of downswing, which provided an even weight 

distribution at ball impact. This is a highly relevant finding as it indicates that the foot centre of 

pressure was central to the base of support and in-line with the centre of mass, indicating 

significantly increased stability when the centre of mass is near maximal acceleration.  

Keywords: golf biomechanics; foot pressure distribution; injury; longitudinal intervention 
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 3 

Introduction 

The golf swing is a whole body multi-joint movement utilised by the golfer to propel a golf ball 

in a pre-determined direction (Maddalozzo, 1987). There is an integral relationship through the 

entire movement, from the golfers’ address (ADD) to top of the back swing (ToBS) and 

returning the club to ball impact (BI) as illustrated in Figure 1. The swing’s momentum transfers 

through the kinetic chain from the feet, pelvis, trunk, arms and club, finally connecting with the 

golf ball, resulting in ball projection (McHardy & Pollard, 2005). To generate a repeatable 

efficient physical movement that tolerates alternating situations during competitive play a golfer 

requires a co-ordination of specific body components to activate in the correct sequence 

(Abernethy, Neal, Moran, & Parker, 1990; Neal et al., 2008). The efficiency of the golfer is 

dependent on maintaining a stable centre of mass (CoM). Consequently, the golfer aims to limit 

the medio-lateral, anterior-posterior and vertical movement of the CoM, whilst generating their 

maximal change in momentum during the swing to propel the ball over horizontal distances of 

approximately 230m (Hume, Keogh & Reid, 2005).   

 

****Figure 1 near here**** 

 

Previous research has implicated that controlled movement of the CoM, ranges of angular 

motion (RoM) at the hip, knee and ankle joints, lower body internal rotation moments and 

efficient weight-shift patterns (i.e. movement of the centre of pressure within the base of 

support), all have a role in determining the golfers skill level (Gatt, Pavol, Parker, & Grabiner, 

1998; Hume, Keogh, & Reid, 2005; Lephart, Smoliga, Myers, Sell, & Tsai, 2007).    Farrally et 

al. (2003) suggested that swing consistency is compromised when there is excessive movement 
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 4 

of CoM during the backward and downward swing. Highly skilled players display a similar 

kinematic sequence and have sufficient stability to control the movement of the CoM by holding 

a correctly aligned spine angle whilst minimising the displacement of the pelvis (Tinmark, 

Hellström, Halvorsen, & Thorstensson, 2010). Mayer et al. (2008) reported that increased ball 

velocity can be achieved by increased torso-pelvic separation whilst maintain a pelvic stability. 

Faster BI velocities have been associated with a stable pelvic rotation at the end of the 

backswing, increased trunk rotation velocity during downswing, and high acceleration of the 

trunk segment through to impact (Chu, Sell, & Lephart, 2010; Hume et al., 2005). 

An understanding of the distribution of forces between each foot during the swing as 

fundamental for achieving optimal biomechanics that contribute to peak performance without 

incurring injury (Barrentine, Fleisig, Johnson, & Woolley, 1994). Furthermore, correct distal to 

proximal sequence and coordination of lower body segments provides efficient energy transfer 

and power at BI whilst minimising the potential for injury (Hellström, 2009). The summation of 

forces principle defined as ‘the increase of velocity at the most distal segment’ (Hume et al., 

2005), combined with correct and timely weight-shift transfer is integral to the swing. Lack of 

correct and consistent weight-shift prevents significant transfer of forces to the club-head, 

ultimately inhibiting the ‘squaring’ or optimal angle of the club-head to the ball at impact. 

Highly skilled golfers employ a fast, common weight shift compared to the erratic patterns of 

novice golfers (Barrentine et al., 1994). The desired maximal changes in momentum and the 

weight shift that occurs during the backswing to the downswing renders the body vulnerable to a 

myriad of injuries. 

Both pronation and supination of the foot have been shown to be essential for momentum 

and neutral, optimal balance when standing. When sufficient pressure is on the medial portion of 
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 5 

the calcaneus (medial tuberosity) and the distal head of the first metatarsal of the foot, the mid 

tarsal joint unlocks resulting in a flexible and adjustable dorsal foot surface which is key to 

maintaining balance (Astrom & Anlidson, 1995). When this does not occur, the foot may not 

adequately adapt, increasing the requirement on surrounding musculoskeletal structures to 

maintain postural stability, and subsequently causing compensation in other areas resulting in 

unnecessary, excessive movement of the lower body (Winter, 1995). Translating this key 

principal of balance and stability to the golf swing, Richards, Farrell, Kent, & Kraft, 1985 found 

a more efficient and rapid weight-shift on the lead foot after adjustments to the centre of pressure 

to various points on the foot leading to an increase to the base of support during downswing and 

hence stability. Cote, Brunet, Gansneder, & Shultz (2005) demonstrated that when the foot is 

slightly inverted, partial medial contact is lost with the ground, and it is not possible to 

subsequently control the weight-shift pattern effectively. Therefore, it is anticipated that when 

this foundation of foot pressure distribution is applied correctly, there will be a greater control of 

CoM motion due to the enhanced stability and this was the rationale for conducting the study. 

Using this premise an intervention to adjust medial pressure on each foot during the golf swing 

was developed with the aim of quantifying the effects of this intervention on lower body 

biomechanics. Initially the immediate effects of the pressure intervention were examined on a 

group of experienced golfers. Group analysis on the golf swing, which is inherently varied 

(Hume et al., 2005; McNitt-Gray, Munaretto, Zaferiou, Requejo, & Flashner, 2013), provides a 

trend from the biomechanical data sets examined (Ball & Best, 2012) whereas a case study 

approach bridges the science-practice gap providing application to individual golfers  (Halperin, 

2018). Hence, the long term outcomes of the intervention for one single case study golfer was 

conducted. 
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 6 

The intervention aimed to increase pressure medially to the forefoot and heel of the trail 

foot during the backswing and equally on the lead foot during the downswing. Therefore, both 

the immediate and longitudinal intervention examined the differences in ground reaction forces 

(GRF) and lower body angles and hypothesised that the intervention would induce the following 

changes:  

1. An even weight distribution in the latter part of the downswing, evidenced by the 

distribution of the GRF (%GRF), increasing the body’s stability with the CoP being 

central to the base of support at BI.  

2. Alter the position of the subtalar joints and the ankle angles in all three planes.  

3. Decreased trail (knee) valgus angles during both the backswing and downswing, and 

decreased lead (knee) valgus during the downswing which will affect knee angles in the 

frontal plane.  

4. Minimise internal hip rotation in the trail side during the backswing and the lead side 

during the downswing to infer greater stabilisation of the knee (Powers, 2010).  

 

Methods 

Eight male participants (mean (±SD)): height 1.81 m (±0.05); mass 89.13 kg (±6.66)); age 45 

years (±6) were recruited to the study with one of the golfers returning to the study one year 

later. All participants were professional golf association (PGA) qualified coaches with a zero 

handicap. The University’s Ethics Board granted approval and written informed consent was 

obtained from each participant. Each of the participants used the same dedicated 5-iron club 

throughout the duration of the study. The club’s sole purpose was to reduce variability in this 

research and it was not used in any other capacity. They wore their own golf shoes standing on 
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 7 

two uncovered force plates located side by side; the researcher adjusted the tee-off position to 

suit their stance.  Participants performed multiple practice swings for self-determined 

familiarisation within the laboratory environment. After familiarisation, each participant then 

performed between five and ten swings with maximum velocity at BI. The number of swings 

were self-determined by the golfers where they ensured that they had performed at least five 

‘good swings’. The participants aimed the ball into a net 6m from the tee-off position.  The 

participants then received a verbal intervention and were instructed to increase foot pressure on 

to the medial portion of the ball and heel of the foot, increasing eversion in both backswing and 

downswing. Specifically, just prior to the initiation of the backswing they were asked to apply 

pressure vertically onto the medial part of the trail foot (putting the foot into slight pronation), 

then prior to initiation of the downswing the instruction was to apply pressure vertically on to the 

medial portion of the lead foot. The verbal information was the same for each participant and all 

adjusted their technique in accordance with the feedback. The feedback aimed to mimic a real-

life coaching session and therefore each participant was provided with a visual demonstration of 

the technique coupled with verbal instruction in a language they would understand.  Following 

this, the participants performed a further five to ten golf swings at a maximum velocity at BI. 

The case study golfer received 30 coaching sessions over a one-year programme, typically two 

or three times per month. The case study intervention sessions comprised of the visual 

demonstration of the technique coupled with verbal instruction on the changes on foot pressure, 

which were delivered by the lead researcher, whom is a golf specialist. Returning to the 

laboratory after one year the golfer performed five to ten swings at a maximal velocity at BI. The 

laboratory setup was identical one year later for the case study and the participant wore the same 

shoes. Five golf swings were analysed for each condition (pre and post immediate intervention, 
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 8 

pre and post long term intervention) which were selected by the golfer’s self-determined 

assessment of a ‘good shot’. 

All golf swings were recorded with a nine camera (sample rate: 100 Hz) infra-red Vicon 

MXF20 motion analysis system (Vicon Motion Systems Ltd, UK) synchronised with two 0.6 x 

0.4m Kistler (sample rate: 1000 Hz) 9281CA force plates (Kistler Instruments Ltd, UK). Sixteen 

retro-reflective markers were placed on precise anatomical landmarks of the lower body 

according to the protocol (Davis, Ounpuu, Tyburski, & Gage, 1991). There were an additional 

three markers placed on the golf club (top of the shaft just below handgrip, mid-shaft and club 

head) and reflective tape was wrapped around the golf ball to identify the time of BI. The 

cameras were up-graded to a 12 camera system when the golfer returned after one year.  

Data was processed using Nexus version 2 (Vicon Motion Systems Ltd, UK). A 4th order 

Butterworth filter, with a cut-off frequency of 6Hz was applied to the coordinate trajectories and 

a cut-off frequency of 30 Hz was applied to the force data. Three-dimension kinematic and 

kinetic measures were calculated for lower body with the Vicon Plug-in-Gait model which uses 

the Euler angle theorem and standard inverse dynamics. The time-point prior to movement of the 

golf club-head defined ADD. The time-point of ToBS was the transition between club head anti-

clockwise to a clockwise motion. The time-point of BI was the frame nearest to club-ball contact 

determined visually; the club and ball were both visible to the camera system. Backswing and 

downswing phases are illustrated in Figure 1. The velocity and angle of the club head at BI were 

determined. The % differences in lower body angles following the intervention were reported. 

The trail and lead angles in all three planes for the ankle, frontal plane for the knee and 

transverse plane for the hip were examined. The resultant GRF was determined and reported as a 

% of the golfers’ body weight for the trail and lead sides. Matlab version 2013a (Mathworks Inc., 
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Massachusetts, USA) was used to time normalise the angular and GRF waveform data to 100% 

for the two phases of the golf swing for each trial. From the pre- and post-intervention sessions 

(immediate and longitudinal), means and standard deviation (SD) were calculated, from the five 

swings where their BI velocity was maximal. For the immediate intervention analysis group 

means (SD) were determined for each measure.  

The Shapiro-Wilk statistical test for normal distribution revealed that all measures were 

normally distributed for each time point across both phases. Cohen’s d was calculated and 

corrected for a small population size using hedges g and reported the effect size (ES) in the for 

the difference in club head velocity and angle at BI. 

All waveform data were analysed using the statistical parametric mapping (SPM) 

technique with paired sample t-test. SPM was designed especially for continuous field analysis 

(Penny, Friston, Ashburner, Kiebel, & Nichols, 2011) and constructs images that lie in the 

original, biomechanically meaningful sampling space (Pataky, 2010). Open-source one-

dimensional package for Matlab (spm1d version M.0.3.1 (2015.08.28)) was used in the analysis 

and the scalar test statistic SPM{t} was computed at each point in the time series as described 

previously (Robinson, Donnelly, Tsao, & Vanrenterghem, 2013).  

 

Results 

Following the immediate intervention the mean (SD) club head velocity at BI for the group 

changed from 31.02 m·s-1 (1.27) to 30.63 m·s-1 (1.84), (difference = -1.26 % (ES = 0.23) with an 

angle change from 7.47o (1.69) to 6.62o (3.22) (difference = -7.65%, ES = 0.22). Following the 

longitudinal intervention the mean (SD) club head velocity at BI changed from 31.22 m·s-1 

(0.51) to 31.39 m·s-1 (0.44), (difference = 0.54 %, ES = 0.32) with an angle change from 7.95o 
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 10 

(1.36) to 1.69o (8.86) (difference -14.09%, ES = 0.53).  

It was hypothesised that the intervention would induce an even weight distribution in the 

latter part of the downswing, evidenced by the %GRF distribution.  

****Figure 2 near here**** 

 

Figure 2 illustrates the SPM analysis, which revealed no significant differences in any 

waveform data except for the lead side following the longitudinal intervention for the case study 

golfer (α = 0.05, t* = 6.047, p = 0.015) where significant differences occurred from 91% of the 

downswing up to BI (equating to 0.26s before impact). 

****Figures 3-5 near here**** 

 

Figures 3 to 5 examine the backswing and downswing kinematic waveforms and 

significantly different portions in the curves are indicated by the shaded areas from the SPM 

analysis. Notably, significant changes in the angles examined during the backswing and 

downswing phases following the longitudinal intervention whereas limited significant changes in 

such measures following the immediate intervention.  

 

Discussion 

The biomechanical consequences following a verbal instruction to alter foot pressure during the 

golf swing was examined for a group of golfers with a zero handicap. To explore the individual 

long term mechanical effects the intervention was implement over a one year training 

programme for a single golfer. The altered foot pressure aimed to alter the body weight 
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distribtion and specific lower body joint angles that are deemed to underpin injury without an 

effect on club head velocity and angle at BI. 

Small changes in club head velocity at BI were reported for all golfers. However 

following a one year intervention programme for a single golfer the angle of the club at BI 

showed a change to a slightly flatter position (by 1o) which would effect the range and trajectory 

path of the ball, although there was a slight increase in velocity (ES = 0.53). The underpinning 

biomechanics as a response to the altered foot pressure were examined particularly the effects of 

the longitudinal intervention, in detail. 

Initially hypothesised that an even weight distribution in the latter part of the downswing 

evidenced by the distribution of the GRF (%GRF) would occur. Figure 2 illustrates that for the 

case study golfer there were changes in the weight distribution which were significant (α = 0.05, 

t* = 6.047, p = 0.015) for the lead leg in the latter part of the downswing. At BI the weight 

distribution between the lead and trial sides were approximately 50% compared previously to a 

60-40% divide, respectively. Such changes were not detected following the immediate 

intervention. This was a highly relevant finding since the centre of pressure was central to the 

base of support and hence in-line with the CoM at BI increasing stability at a crucial time during 

the golf swing. Improvements in stability can minimise variability of multiple golf swings during 

a game. Traditionally the recommendation was that 75 to 80% of the body weight should be on 

the lead leg (Stover & Mallon, 1992) at and after BI with a consequence of a reduction in 

stability and increased variability. However, a review on knee injury literature revealed that an 

intervention that incorporates pelvic stability aids knee rehabilitation and injury prevention 

(Powers, 2010). Also, it was reported that low variation improves the accuracy and reliability in 
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the task outcomes i.e. the club head velocity and shot accuracy of the golfer’s performance 

(Knight, 2004).  

At ADD, the trail and lead ankle angles changed in all three planes for the case study 

golfer while the initial study participants’ experienced limited changes. In addition, alterations in 

the angular data sets also occurred during the backswing. Most notably as the club moved to 

ToBS the trail ankle was in a tri-planar neutral position evidenced by zero rotation and eversion 

angles along with limited dorsi-flexion. Such a position improves foot-ground interface stability 

during the transition from backswing to downswing, which is presently a desired position to 

maximise the change in angular momentum (clockwise to anti-clockwise). Stable foot-ground 

stability initiates correct movement at the shoulders and transferred further along the kinetic 

chain (Marshall & McNair, 2013). During the downswing up to BI, the significant increase in 

trail ankle external rotation could be considered problematic. Previously, limiting ankle 

movement in the transverse plane has been reported in order to prevent injury but during 

walking, rotations of up to 15o have produced a stable foot position whilst the lower leg rotates. 

The external rotation on the downswing was severe (36o) and a negative outcome. The aim to 

maintain a foot flat position, with a neutral centre of pressure, could have caused such injury 

inducing angular motion. 

A significant increase in lead ankle dorsi-flexion towards the later stages of the 

backswing and the initial stages of the downswing enabled a reduction in lead knee varus 

positioning the knee closer to neutral by approximately 12o compared to prior the intervention 

(Basnett et al., 2013). Therefore the lead ankle coupled with the trail improved the stability of the 

golfer at the crucial temporal part of the golf swing. The outcomes of the changes in the ankle 

joint kinematics partially supported our expected findings. 
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The knee joint was examined for varus/valgus angles following the theorised changes of 

improved knee alignment in the frontal plane. A negative consequence of the intervention was 

the increased valgus for the trail knee from 40% of the backswing through to BI for the case 

study golfer and during the final 20% of the backswing for the group (immediate intervention) 

golfers. For the lead knee during the downswing there was a significant reduction in the varus 

angle with the knee moving into minimal valgus at BI. The intervention, to some extent, in the 

frontal plane at BI for the lead knee has improved the desired alignment. The slight valgus 

position at BI does increase the adductor moments but the modern swing aims for near knee 

alignment at BI for the transmission of the torque and forces passing through the centre of the 

knee joint (Marshall & McNair, 2013). 

The internal rotation of the trail hip during the backswing significantly reduced (~60%) 

thereby supporting our theorised changes. The improved neutral position of the trail hip was a 

direct result of the increased valgus at the knee enabling the shoulders to provide the greatest 

contribution to the torque on the downswing (Gluck, Bendo, & Spivak, 2008). Previously the 

lead hip was internally rotated during the downswing and the intervention caused a significant 

change in hip rotation where the joint was externally rotated at the ToBS by 15.3o. During the 

downswing the lead hip reduced the extent of external rotation however such an angular motion 

decreases the expected stability in this joint. Therefore, the predicted outcomes of reduction in 

internal hip rotation was partially accepted. 

 Conclusions drawn from this project could be criticised through limitations that present 

from a relatively small sample size of eight participants in the immediate intervention. The case 

study where one participant underwent specific training over a longer period was incorporated 

into the study to overcome this. However, research sample of indiscernible margins that separate 
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highly skilled golfers, can also be a more effective representation and valid rationale using a 

small sample size, helping to increase statistical power. The authors acknowledge the limitation 

in equipment as the sampling frequency of the cameras was lower than ideal; furthermore, the 

ball tracking was not plausible within the field of view and the available technology.   

Conclusion 

Immediate intervention of a change in centre of pressure during the gold swing provided insight 

on the potential long term changes that can occur in GRF distribution and ankle, knee and hip 

joint angles that are associated with injury. The longitudinal one-year intervention programme 

caused a slight increased club head velocity (ES = 0.32) and a flatter angle of the club at BI (ES 

= 0.53). However, there was a significantly improved weight distribution particularly in the last 

10% of the downswing up to BI, which enhanced lower body stability and supports our 

hypothesis. Simultaneously the neutral position of the trail ankle joint in the transverse and 

frontal planes also enhanced stability at BI, although the hypothesised changes in all ankle angles 

during the swing were not observed. Lead knee varus reduction at the top of the backswing and 

the first 20% of the downswing improved the alignment of the ankle, knee and hip which agrees 

with the hypothesised reduction in lead knee valgus. The hypothsised changes in hip rotation 

were partially accepted. The application of medial foot pressure caused a significant reduction in 

hip rotation for the trail leg at address and the final 50% of the backswing which would enhance 

the torque generated by the trunk on the downswing as the body segment moves from internal 

rotation to external rotation up to BI. The range of rotation at the lead hip was not excessive 

which has been reported to be important in the avoidance of labral pathology. Finally, this 

intervention demonstrated adjustments of foot pressure maybe more effective than the traditional 

pelvic adjustments in improving a golfer’s lower body stability.  
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Figure 1: A golfer’s position and discrete time points as used in this study: address, top of the 

backswing and ball impact. The movement was divided into two phases: backswing (from 

address to the top of the backswing) and downswing (from top of the backswing to ball impact). 

Right handed golfers have the left side as lead and the right side as trail.  

Figure 2: Mean (SD) resultant %GRF on both lead and trail during the backswing (I and III) and 

downswing (II and IV) for the group (n=8) immediate intervention (I and II) and the longitudinal 

case study (n=1) intervention (II and IV).  pre                post                 the intervention where 

solid is the lead and dashed is the trail sides. Statistical parametric maps (SPM) for the GRF data 

where the shaded areas show when the significant differences occur (p < 0.05). All curves were 

time normalised.  

Figure 3: Mean (SD) ankle joint angles for the trail leg in the sagittal (I; dorsi/plantarflexion), 

frontal (II; inversion/eversion) and transverse (III; internal/external rotation) planes. pre             

post               for the group and case study golfer. Positive values are dorsiflexion, 

inversion/adduction and internal rotation. IV, V and VI are the corresponding statistical 

parametric maps (SPM) for the ankle angle data where the shaded areas show when the 

significant differences occur (p < 0.05). All curves were time normalised.  

Figure 4: Mean (SD) ankle joint angles for the lead leg in the sagittal (I; dorsi/plantarflexion), 

frontal (II; inversion/eversion) and transverse (III; internal/external rotation) planes. pre              

post                for the group and case study golfer. Positive values are dorsiflexion, 

inversion/adduction and internal rotation. IV, V and VI are the corresponding statistical 

parametric maps (SPM) for the ankle angle data where the shaded areas show when the 

significant differences occur (p < 0.05). All curves were time normalised.  
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Figure 5: Mean (SD) knee frontal (varus / valgus) and hip transverse (internal / external rotation 

angles): (I) trail knee backswing; (II) trail knee downswing, (III) lead knee downswing, (IV) trial 

hip backswing and (V) lead hip downswing. pre              post              for the group and case 

study golfer. Positive values are varus/adduction (I, II and III) and internal rotation (IV and V). 

VI, VII, VIII, IX and X are the corresponding statistical parametric maps (SPM) for the ankle 

angle data where the shaded areas show when the significant differences occur (p < 0.05). All 

curves were time normalised. 
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