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Dear Dr Easton,
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addressed each of the reviewers’ comments below and amended the manuscript accordingly. 
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that these amendments are satisfactory and we look forward to hearing from you shortly.

Yours sincerely,

Paul Allen
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of cortical network interaction, and corresponding neurotransmitter interaction and 
imbalances, as a mechanistic model for the understanding of mental disorders. This has been 
clarified in an amendment on page 5.

By conducting this selective review we aim to advance a hypothesis of cortical network 
interaction, and corresponding neurotransmitter interaction and imbalances due to childhood 
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reporting multimodal 1H-MRS-fMRI studies in psychiatric and psychiatric risk populations 
(note: a systematic review of multimodal 1H-MRS-fMRI in non-psychiatric population is 
provided by Duncan, et al. 2014). Thus we have added Table 1 to the manuscript which lists a 
number of multimodal 1H-MRS-fMRI studies in psychiatric populations. We refer to this new 
table in an amendment on Page 19



A systematic review of 1H-MRS-fMRI multimodal imaging studies reporting effects of 
glutamate and GABA on network activation is provided by Duncan and colleagues (Duncan, 
et al. 2014). 1H-MRS-fMRI multimodal imaging studies in psychiatric and psychiatric risk 
populations are listed in Table 1.

Reviewer 2:
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Taking into account a key importance of MRI/MRS in investigation of human brain, and 
accelerating rate of methodological development and, I believe it is absolutely necessary to 
extend/update the review with analysis of very recent publications."

Response: We have updated the review with 10 new references. These new references report 
on MR/MRS and brain metabolites, fMRI or network interactions studies from 2018 and 
2019. Newly added references are highlighted in the references section of the manuscript and 
example of where new citations have been added to the main text is below (page 20). From 
the very recent general review on MR/MRS by Dwyer et al. (ePub Dec 2018), these 
references are the most recent studies available, as we can see from the literature. This is a 
new and emerging field of research where many already published studies are not to be 
expected. 

These findings provide further support for E/I neurotransmitter imbalance in MDD and 
schizophrenia, supported by more recent studies which all report aberrant metabolite levels 
in schizophrenia and psychosis (Dwyer, et al. 2018; Jelen, et al. 2018; Psomiades, et al. 
2018; Reid, et al. 2019; Kim, et al. 2018; Singh, et al. 2018). However, currently there is no 
evidence for differences in GABA levels between healthy controls and patients with bipolar or 
anxiety disorders (Schur, et al. 2016).

Minor:
1. Abstract: Currently abstract rather focused on general importance of MRI for study of 

psychotic disorders, and on perspectives, which further methodological improvement 
(MRS) provides. I would suggest to include at the end of the abstract a few sentences 
which would summarize the authors’ opinion regarding current knowledge in the 
field, which is, to my belief, a main goal of each review.

Response: We agree with the reviewer that the abstract could be improved in this way and 
have amended the manuscript on Page 3.

"Whilst there is currently a paucity of studies relating early traumatic experiences to altered 
E/I balance and network function, the research discussed here lead towards a plausible 
mechanistic hypothesis, linking early traumatic experiences to cognitive dysfunction and 
symptoms mediated by E/I neurotransmitter imbalances." 

The formal style of the text is especially important for such type of scientific work as a review. 
Thus, few imperfectness in the text must be improved: 

a. Please take care that all abbreviations are described when used 1st time in the text: For 



example, page 18 – BOLD; page 20 – glx; page 22 – SCZ.

b. Please take care that titles of all compounds are written in the same style: For example, 
“ketamine” on page 19 is written with small “k”, however on page 20 with capital “K”.

c. Please make sure that all citations of original articles are made in the same style. For 
example, on page 33 articles of Hugdahl, Raichle et. all, and Hugdahl & Sommer are cited 
without providing the publication year.

Response: We thank the reviewer for drawing attention to these typographical errors. We 
have specifically corrected the errors listed above and others that were noticed after thorough 
proofreading. 



Highlights:

• Interaction between Extrinsic and Default Mode Networks are perturbed 
in psychiatric conditions 

• Perturbed network interactions underlie cognitive deficits and 
psychiatric symptoms 

• Perturbed network interactions related to excitatory/inhibitory 
neurotransmitter imbalances 

• Childhood trauma can affect excitatory/inhibitory neurotransmitter 
imbalances 



ABSTRACT

Over the last three decades there has been an accumulation of Magnetic Resonance 

Imaging (MRI) studies reporting that aberrant functional networks may underlie 

cognitive deficits and other symptoms across a range of psychiatric diagnoses.  The 

use of pharmacological MRI and 1H-Magnetic Resonance Spectroscopy (1H-MRS) 

has allowed researchers to investigate how changes in network dynamics are related 

to perturbed excitatory and inhibitory neurotransmission in individuals with 

psychiatric conditions. More recently, changes in functional network dynamics and 

excitatory/inhibitory (E/I) neurotransmission have been linked to early childhood 

trauma, a major antecedents for psychiatric illness in adulthood. Here we review 

studies investigating whether perturbed network dynamics seen across psychiatric 

conditions are related to changes in E/I neurotransmission, and whether such changes 

could be linked to childhood trauma. Whilst there is currently a paucity of studies 

relating early traumatic experiences to altered E/I balance and network function, the 

research discussed here lead towards a plausible mechanistic hypothesis, linking early 

traumatic experiences to cognitive dysfunction and symptoms mediated by E/I 

neurotransmitter imbalances. 
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ABSTRACT

Over the last three decades there has been an accumulation of Magnetic Resonance 

Imaging (MRI) studies reporting that aberrant functional networks may underlie 

cognitive deficits and other symptoms across a range of psychiatric diagnoses.  The 

use of pharmacological MRI and 1H-Magnetic Resonance Spectroscopy (1H-MRS) 

has allowed researchers to investigate how changes in network dynamics are related 

to perturbed excitatory and inhibitory neurotransmission in individuals with 

psychiatric conditions. More recently, changes in functional network dynamics and 

excitatory/inhibitory (E/I) neurotransmission have been linked to early childhood 

trauma, a major antecedents for psychiatric illness in adulthood. Here we review 

studies investigating whether perturbed network dynamics seen across psychiatric 

conditions are related to changes in E/I neurotransmission, and whether such changes 

could be linked to childhood trauma. Whilst there is currently a paucity of studies 

relating early traumatic experiences to altered E/I balance and network function, the 

research discussed here lead towards a plausible mechanistic hypothesis, linking early 

traumatic experiences to cognitive dysfunction and symptoms mediated by E/I 

neurotransmitter imbalances. 

Keywords: Psychiatric disorders, Schizophrenia, Anxiety, Trauma, fMRI, Cortical 

Networks, Connectivity, Excitatory transmitters, Inhibitory transmitters
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1. Introduction

Mental health disorders make up thirty-five per cent of non-communicable diseases 

and overall account for 12.3% of the total global burden of disease and this figure is 

expected to rise to 15% by the year 2020 (World Health Forum 2011). In England 

(the home country of the lead author) approximately one in six adults is already 

affected by a psychiatric illness (Weich, et al. 2016). Given these statistics, there is 

clearly a pressing need for scientists and clinicians to improve understanding of 

mental illness, the underlying neurobiological mechanisms and how these are affected 

by environmental factors such early trauma. Critically, one of the most important 

research findings of the last decade is that psychiatric diagnoses should not be viewed 

as entirely separate entities, but rather as different points on a spectrum. This is 

because many risk factors, including childhood trauma and prolonged stress are 

shared across common psychiatric illnesses (Paus, et al. 2008). Similarly, symptom 

complexes, such as cognitive dysfunction and emotional dysregulation are also seen 

across several disorders. There is also a large overlap in risk genes for major 

psychiatric disorders (Psychiatric genome-wide association study 2015). 

Functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), 

has been used for several decades and has helped to shed light on the workings of the 

most complex organ known to humankind: the human brain. Moreover, functional 

neuroimaging, in combination with cognitive and pharmacological science, has been 

an important vehicle for the development of mechanistic models of psychiatric illness 

(Cuthbert and Insel 2013; Badcock and Hugdahl 2014). As we have learnt more about 

the functioning of the human brain, neuroscientists have developed a systems 

approach by grouping human brain regions into functional networks (Power, et al. 
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2011).  There is increasing evidence that dysfunction within and between these 

functional networks is associated with psychopathology, particularly cognitive 

impairments that are seen across a range of psychiatric diagnoses (i.e. schizophrenia, 

anxiety and affective disorders; (Anticevic, et al. 2012; Skudlarski, et al. 2010; 

Sylvester, et al. 2012). Here, we will first discuss evidence that network dysfunction 

and imbalance are seen across a range of psychiatric diagnoses and in particular, may 

be related to cognitive impairments that are common in psychiatric conditions. This 

selective review will then consider if functional network imbalance is a consequence 

of altered excitatory and inhibitory (E/I) neurotransmission (governed by glutamate 

and gamma-aminobutyric acid (GABA)), and how E/I imbalances (Jardri, et al. 2016) 

could result from early life trauma, a factors known to strongly predict adult 

psychiatric illness (Paus, et al. 2008). By conducting this selective review we aim to 

advance a hypothesis of cortical network interaction, and corresponding 

neurotransmitter interaction and imbalances due to childhood trauma as a mechanistic 

model for cognitive dysfunction across psychiatric disorders. 

2. Networks in the brain

Functional networks are collections of brain regions in which activity tends to 

increase or decrease together, both at rest and during cognitive tasks (Sylvester, et al. 

2012). Activity in each of these different functional networks is believed to 

implement unique aspects of human cognition. These networks are typically defined 

by functional connectivity (i.e. activation correlations) at rest and/or during 

cognitively demanding tasks (Sylvester, et al. 2012; Fox, et al. 2005). Moreover, 

activity in some functional networks is believed to be anti-correlated, meaning that as 

activity in one network increases in response to a particular behavioural demand, 

activity in another network may be down-regulated (Fox, et al. 2005). Functional 
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networks in humans include, but are not limited to, the cingulo-opercular network, 

fronto-parietal network or dorsal attentional network, ventral attentional network, 

default mode network, sensorimotor, visual and auditory networks (Sylvester, et al. 

2012;  Li, et al. 2018; Mills, et al. 2018; Mitra and Raichle 2018). In this review we 

will focus largely on activity and interactions between two functional networks. A 

task-dependent network that supports cognitively demanding tasks, often referred to 

as the fronto-parietal network, executive or extrinsic mode network (Hugdahl, et al. 

2015). The second network is the Default Mode Network, which is usually up-

regulated during periods of task absence (Fox, et al. 2005).

2.1 The Extrinsic Mode Network (EMN)

The EMN is conceptually similar to the multiple demand system (Duncan and Owen 

2000), the fronto-parietal network (Dosenbach, et al. 2007), task-related/control 

network (Corbetta, et al. 2008). Similar to these networks, the EMN includes bilateral 

anterior portions of the dorsolateral prefrontal cortex (DLPFC) and the bilateral 

inferior parietal lobule. The EMN is usually implicated in top-down attentional 

control during cognitively demanding tasks and is similar in spatial anatomy to the 

dorsal attention and cognitive control networks (Corbetta, et al. 2008; Hugdahl, et al. 

2015).  Importantly, EMN activation is seen during different cognitive functions and 

tasks used across a range of studies e.g. spatial working memory, verbal working 

memory, response inhibition, Stroop colour–words task, arithmetic task and oddball 

detection tasks. All of these tasks activate a similar network of regions with a fronto-

parietal cortical distribution. Hugdahl et al. (2015) performed a conjunction analysis 

across functional MRI data related to these tasks and revealed a common network 

including the bilateral prefrontal cortex, the left inferior parietal lobe, angular gyrus, 
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middle occipital gyrus, anterior cingulate gyrus and  supplementary motor area, 

caudate nucleus, and the right inferior temporal gyrus, thalamus, precuneus and 

hippocampus. This network was labelled the Extrinsic Mode Network (EMN). 

Despite the commonality of this spatial network across tasks, the only obvious 

commonality across the cognitive tasks used was that they all required allocation of 

extrinsic intellectual capacity. Hugdahl, et al. (2015) suggest the EMN as an umbrella 

term for networks that share a common activation pattern, and which are up-regulated 

during task processing independently of the specific cognitive task structure. The 

EMN is hypothesized as a dynamic network that may show individual differences in 

core EMN regions between individuals to the same tasks, depending on the amount of 

previous experiences with the task.  The EMN is therefore a marker of the brain’s 

extrinsic activity and is not simply responding to increased task difficulty, as this 

would be task-specific, while the EMN is task non-specific. 

Figure 1. The figure shows probability maps for significant activation and 

deactivation across studies reported in Hugdahl et al. 2015 i.e. Extrinsic Mode 

Network (EMN) in red/orange and Default Mode Network (DMN) in blue. 
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2.2 The Default Mode Network (DMN)

Resting-state fMRI studies have allowed researchers to characterize the large-scale 

organization of neural networks via the analysis of temporally correlated BOLD-

signal (Biswal, et al. 1995). In the absence of any external stimuli or instruction, the 

brain has been shown to have a unique activation pattern (Raichle 2015; Shulman, et 

al. 1997; Raichle et al. 2001). This resting activation has been termed the Default 

Mode Network (DMN) and includes parts of the subgenual anterior cingulate cortex, 

posterior cingulate cortex, the precuneus, lateral parietal cortex, medial prefrontal 

cortex, inferior temporal gyrus, parahippocampal gyrus, and the frontal pole/superior 

frontal cortex (Shulman, et al. 1997) (see figure 1).  External stimuli or instructions 

will usually drive task-specific deactivations in the DMN, which is anti-correlated 

with the task related networks (Raichle 2010; 2015). Thus the term “default mode” 

denotes the brain’s default, or baseline state. It is presumed that during the resting 

state subjects experience an on-going state of conscious awareness largely filled with 

stimulus-independent thoughts (Qin and Northoff 2011) or mind wandering (Fox, et 

al. 2015). The DMN is hypothesized to perform functions such as self-referential 

activities (Northoff and Bermpohl 2004), self-inspection, and emotion regulation  

(Qin and Northoff 2011), the role of which diminishes during traditional cognitive 

tasks (Fox, et al. 2005). Furthermore, these functions are believed to be in opposition 

to externally orientated goal-directed cognition (Anticevic, et al. 2012). There is also 

emerging evidence that the DMN is associated with interoception and emotional 

awareness (Smith, et al. 2017; Wiebking, et al. 2011) although viscero-sensory 

representation may be more associated with anterior insula and cingulate activity. 
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2.3 Network interactions  

A considerable body of evidence has accumulated over recent years on the function of 

the DMN.  This set of functions seems to be anti-correlated with oriented goal 

directed thought supported by the EMN. Here, we focus on DMN suppression and 

interaction with EMN (since EMN is considered up-regulated to such extrinsic goal-

directed cognitive activity) and its functional role in health and disease. Collectively, 

research has shown that lower DMN activity is associated with better cognitive 

performance across a range of tasks (similar to those tasks described above; see 

(Anticevic, et al. 2012; Daselaar, et al. 2004), although some functional heterogeneity 

is likely (Leech, et al. 2011). This finding highlights the functional relevance of DMN 

suppression for goal-directed cognition, possibly by reducing ‘distracting’ goal-

irrelevant functions supported by the DMN (e.g. mind-wandering or self-referential 

processing), and illustrates the functional significance of DMN suppression. This 

activation/deactivation dichotomy which is routinely observed in response to attention 

demanding tasks is also represented intrinsically in the resting human brain, 

demonstrable in the absence of any overt task or behaviour i.e. spontaneous 

fluctuations within a network and anti-correlations between networks (Fox, et al. 

2005). Anticorrelations in these two opposing networks provide a context in which to 

understand brain function and suggest that both task-driven neuronal responses and 

behaviour are reflections of dynamic processes and organization in the brain 

(Sylvester, et al. 2012; Hugdahl, et al. 2015). Such states of network interaction are 

likely to be important for emotion and cognitive regulation (Anticevic, et al. 2012). 

Furthermore, group differences in the capacity to suppress the DMN may also be 

meaningful. For example, older adults exhibit deficits in filtering external distraction 

(Gazzaley, et al. 2008; Gazzaley and D'Esposito 2007) and less ability to suppress the 
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DMN during cognitive tasks (Buckner, et al. 2008). The ability to suppress DMN 

activation may be related to cognitive control ability (Leech, et al. 2011) and there is 

evidence that personality dimensions such as trait anxiety and worry may influence 

DMN connectivity (Forster, et al. 2015). Moreover, altered EMN/DMN interactions 

are also observed in psychiatric conditions. 

3. Psychopathology and network dynamics 

Several decades of brain imaging studies in psychiatric populations have produced an 

enormous body of work that reports a myriad of functional and anatomical brain 

alterations associated with a range of psychiatric disorders. Whilst neuroimaging 

studies in psychiatric populations have attempted to establish diagnosis- specific brain 

alterations e.g. hypofrontality in schizophrenia (Weinberger, et al. 1986) a recent 

meta-analysis of over 500 functional brain imaging studies across several diagnoses 

found that whole brain studies were not able to identify specific functional effects of 

diagnosis (Sprooten, et al. 2017) a finding that supports the new dogma that 

psychiatric diagnoses are not entirely separate entities. Indeed, given that varying 

degrees of cognitive impairment and emotional dysregulation are common across 

psychiatric disorders, it is likely that common pathophysiological elements exist. 

Dysfunction in limbic, hippocampal and prefrontal circuits may be a common and 

overlapping substrate of psychiatric pathophysiology (Godsil, et al. 2013). 

Accordingly, volumetric alterations in these circuits have been reported across a range 

of psychiatric diagnoses in patients with high levels of childhood trauma (Paquola, et 

al. 2016), suggesting that anatomical changes in these regions are at least partly 

related to a common antecedent to psychiatric diagnoses, rather than to the diagnoses 

themselves. Functionally, brain network connections and hubs have been shown to be 
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abnormal across many brain disorders (Crossley, et al. 2013) implicating network 

dysfunction as a common feature associated with psychopathology. Collectively, 

there appears to be mounting evidence that several psychiatric conditions have 

overlapping neural phenotypes, suggestive of common deficits at a systems level; 

these common pathophysiological features may manifest in brain network dysfunction 

and altered network interactions.  It is well established that altered neural activation in 

DMN is associated with psychiatric conditions, and that reduced DMN suppression 

may represent a mechanism whereby cognitive deficits and symptoms are induced or 

exacerbated in psychiatric illnesses (Anticevic, et al. 2012; 2013). However, less is 

understood about how dysfunctional network interactions are related to underlying 

excitatory/inhibitory neurotransmitter function, which is also known to be altered 

across a range of psychiatric illnesses (Marin 2012). Here we will review evidence of 

network dysfunction across common psychiatric disorders i.e. schizophrenia, anxiety 

and Major Depressive Disorder.

3.1 Schizophrenia 

Schizophrenia is a severe and debilitating mental illness characterized by psychotic 

symptoms (hallucinations and delusions), negative symptoms and wide-ranging 

cognitive deficits (Green 1998). In particular, impaired executive functioning (i.e. 

inhibition, updating and set-shifting) is most widely observed in patients with 

schizophrenia and is consistently associated with impaired function of the prefrontal 

cortex e.g. (Weinberger, et al. 1986). Minzenberg and colleagues (Minzenberg, et al. 

2009) examined if a ‘cognitive control network’ (analogous to the EMN) exhibited 

alerted activity across functional neuroimaging studies of executive cognition in 

schizophrenia (i.e. working memory, attention and interference tasks). Healthy 
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controls and schizophrenia patients activated a similar network including the DLPFC, 

ventrolateral prefrontal cortex, anterior cingulate cortex, and thalamus. However, 

patients showed reduced activation in this cognitive control network and significantly, 

increased activation was observed in midline cortical areas; regions within the DMN. 

These findings are consistent with the view that executive function deficits in 

schizophrenia may be associated with aberrant DMN activation (lack of suppression 

during demanding tasks) in schizophrenia e.g. (Nygard, et al. 2012; Razavi, et al. 

2013) and with altered network dynamics between cognitive control and default mode 

networks. Hugdahl and colleagues (Hugdahl, et al. 2009a; Hugdahl, et al. 2009b) 

suggest that the cognitive impairment and hypo-activation seen in schizophrenia 

patients when exposed to challenging cognitive tasks could be caused by failure of 

interactive regulation between the DMN and EMN networks, rather than a deficit with 

regard to a specific brain region. In other words, in order for any goal-directed 

activity to be up-regulated, default mode activity has to be correspondingly 

suppressed or down-regulated, and that schizophrenia patients show increased 

sustained activation in the posterior parts of the DMN during tasks (Kindler, et al. 

2015).

Altered network dynamics have also been associated with specific psychotic 

symptoms. Northoff and Qin (2011) propose that hallucinations in schizophrenia may 

be caused by aberrant resting state activity in the DMN and in the auditory cortex, 

possibly explaining the often self-reflective nature of auditory hallucinations. 

Neuroimaging studies have reported altered DMN activity and connectivity in 

schizophrenia patients with hallucinations. A study by Jardri and colleagues (Jardri, et 

al. 2013) used fMRI to ‘capture’ neural activity during hallucinations in adolescents 
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with a brief psychotic disorder.  Whilst, primary-sensory-cortex activity was shown to 

be associated with increased vividness of the hallucinatory experiences, 

disengagement of the DMN was concomitant with hallucinations. Leroy and 

colleagues (Leroy, et al. 2017) have recently replicated this finding and also report 

spatial and temporal instabilities of the DMN correlated with the severity of 

hallucinations. These results suggest that hallucinatory experiences emerge from a 

spontaneous DMN withdrawal. Furthermore, Lefebvre and colleagues (Lefebvre, et al. 

2016) report that ignition and extinction of the hallucinatory experiences are 

associated with different interactions within resting-state networks: notably that 

ignition is associated with fluctuations of the hippocampal complex that may trigger 

the DMN withdrawal, and that the end of the experience is associated with a ‘take-

over’ of the EMN regions (over the DMN). Such findings may be compatible with the 

view that a failure of inhibition and attentional focus, mediated via top-down control, 

contribute to the hallucinatory experience (Waters, et al. 2012) i.e. hallucinations 

accompany hyper activation in sensory region that is not inhibited, due to impaired 

prefrontal function. Although speculative, it is possible that increased activity in 

prefrontal region during cessation of hallucinations is a consequence of restored 

EMN/DMN balance. However, it should be noted that Lefort-Besnard and colleagues 

(Lefort-Besnard, et al. 2018) report in a large cohort of patients with schizophrenia 

(using data-derived network atlases and multivariate pattern-learning algorithms) that 

the DMN was not the primary driver of brain dysfunction in schizophrenia. Instead, 

functional and structural aberrations were frequently located outside of the DMN. 

3.2 Anxiety, trait anxiety and affective disorders 

Anxiety disorders defined by excess worry, hyperarousal and debilitating fear are 

some of the most common psychiatric conditions in the world and have an estimated 
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lifetime prevalence of 14.3% (Kessler, et al. 2005). Furthermore, trait anxiety is part 

of the ‘normally distributed’ personality dimension of neuroticism and describes 

proneness to negative emotions, especially fears, worries and anxiety (Berggren and 

Derakshan 2013a, 2013b).  The effects of anxiety and trait anxiety on cognitive 

performance have long been recognised (Berggren and Derakshan 2013a, 2013b). 

Neurocognitive models have focused on how anxiety can affect cognitive control and 

how this effect is mediated by brain mechanisms (Braver 2012; Eysenck, et al. 2007; 

Forster, et al. 2015; Sylvester, et al. 2012). There is considerable evidence from 

neuroimaging studies that anxiety affects (usually increases) task-related activity in 

fronto-parietal and cingulo-opercular networks (Basten, et al. 2012; Basten, et al. 

2011; Sylvester, et al. 2012). Precisely how activity in these networks is effected by 

anxiety may depend on the demands of the task being undertaken however (Berggren 

and Derakshan 2013a, 2013b), i.e., tasks requiring executive control may lead to 

inefficient neural processing and/or the need for increased compensatory activation in 

people with high levels of anxiety (Eysenck, et al. 2007). Moreover, experimental 

work has shown that anxious individuals exhibit more mind wandering than low-

anxious individuals during cognitive tasks (Robison, et al. 2017). Recently, studies 

have begun to investigate how anxiety affects resting state activity in the DMN us 

fMRI. There is evidence that worry, a cognitive component of trait anxiety (Gros, et 

al. 2007), and mind wandering both involve the DMN (Fox, et al. 2015), and that 

anxiety and worry are associated with increased DMN activation (Servaas, et al. 

2014). Gentili and colleague (Gentili, et al. 2015) found DMN activity was correlated 

positively with social anxiety and Maresh and colleagues (Maresh, et al. 2014) found 

higher levels of social anxiety were positively associated with DMN activity during 

task performance. In addition to these correlational studies, Pletzer and colleagues 
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(Pletzer, et al. 2015) found less deactivation in DMN areas during task performance 

for those high in math anxiety. However, not all brain-imaging findings are directly 

compatible with the prediction of relatively increased DMN activity in people with 

high trait anxiety. Fales and colleagues (Fales, et al. 2008) found increased 

deactivation of DMN in high-anxious individuals during a working memory task. 

Whilst the exact relationship between DMN activity and anxiety/worry is unclear, it 

appears that anxiety is associated with altered activity in this network. Task-related 

deactivation of DMN may depend to some extent on the type of task and its reliance 

upon executive processes (Eysenck, et al. 2007). Whilst the studies oulined above 

provide evidence for altered EMN and DMN activation in anxious individuals, it is 

unclear how anxiety affects interactions between these networks. It has been shown, 

however, that anxious individuals can maintain effective task performance when goal-

directed attentional control is compromised, via increased compensatory activation in 

the dorsal anterior cingulate (Braver 2012; Braver, et al. 2009).

Cognitive impairment across a range of tasks is also reported in people with 

depression (see Bora, et al. 2013) and similar to studies in anxious cohorts, altered 

network connectivity has also been reported in depression. Brakowski, et al. (2017) 

reports that disrupted network connectivity has been found in the DMN, the central 

executive network region (analogous to the EMN), and the salience network in major 

depression disorder (MDD) cohorts. Both decreased and increased DMN activity and 

connectivity has been reported in MDD groups (Brakowski, et al. 2017, Zhang, et al. 

2016) and may be linked to negative rumination (Lemogne, et al. 2010). In particular, 

a failure to suppress DMN nodes has been linked to negative internal thought rather 

than cognitive impairment (Anticevic, et al. 2012). As such, rather than cognitive 
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impairment in MDD being related to a primary inability to engage executive 

resources, a hyperactive DMN in depression may have detrimental effects on 

cognitive performance (Rose, et al. 2006) even if the primary abnormality is not with 

cognitive control networks or the EMN. Pharmacological and psychological 

treatments for MDD alter functional connectivity throughout multiple brain regions 

notably the DMN and EMN regions (Brakowski, et al. 2017). 

3.3 Intermediate summary

The research discussed above suggests that functional activation and connectivity in 

the DMN is altered in schizophrenia, anxiety and depression and that altered DMN 

interactions with EMN regions may impair cognition. However, differences in the 

precise nature of DMN/EMN interactions in schizophrenia, anxiety and MDD may 

explain the range and severity of cognitive impairments and emergence of other 

symptoms seen across these different psychiatric diagnoses. For example, in people 

with anxiety, altered DMN/EMN interactions may result in inefficient cognitive 

control than can be ‘masked’ to some extent by compensatory processes. This is 

because worry and mind wandering are associated with increased DMN activity and 

connectivity that may compete for limited neural resources (Eysenck and Calvo 1992) 

in EMN during cognitive tasks (Barker, et al. 2018). This may consequently affect 

cognitive function, depending on the level of executive function required by the task. 

Consistent with this view, Bishop (Bishop 2009) reports that DLPFC activation is 

negatively associated with trait anxiety scores at low cognitive loads. However, when 

greater executive control is required people with high levels of trait anxiety can 

engage compensatory or reactive control networks i.e. anterior cingulate activity 

(Moser, et al. 2013) that allows effective behavioural performance to be maintained, 
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albeit inefficiently (Eysenck, et al. 2007). In patients with schizophrenia, however, it 

is possible that compensatory mechanisms are more difficult to deploy and 

consequently cognitive impairments are generally more severe than those seen in 

people with anxiety.  For example, in patients with schizophrenia, there is a large 

literature reporting reduced engagement of the anterior cingulate cortex, a region 

involved in error monitoring (Carter, et al. 2001; Palaniyappan and Liddle 2012) that 

may be important for reactive cognitive control (Braver 2012).  Hence, reduced 

engagement of EMN regions (particularly the DLPFC and inferior parietal cortex), 

commonly reported in schizophrenia cohorts, may result in demonstrable cognitive 

impairment due to a reduced capacity to engage ‘effective’ compensatory 

mechanisms. In patients with depression, cognitive impairment may be due to DMN 

over-activity to heightened rumination (Lemogne, et al. 2010), even in the absence of 

a primary cognitive deficit (possibly akin to heightened worry in anxious people). 

Whilst, the effects of DMN over-activity on EMN engagement and cognitive function 

in people with depression may be similar to those in anxious cohorts, it is less clear 

what, if any, compensatory neural mechanisms can be deployed by depressed patients 

to maintain effective behavioural performance. Thus, whilst impaired DMN 

suppression may be observed across different psychiatric diagnoses, the net effects on 

cognition would depend on the precise nature of the DMN’s interaction with other 

brain networks, particularly EMN regions. One study has explicitly examined 

transdiagnostic changes in resting state (DMN and EMN regions) functional 

connectivity in patients with schizophrenia and depression. Schilbach and colleagues 

(Schilbach, et al. 2015) report common dysconnectivity patterns as indexed by a 

significant reduction of functional connectivity between precuneus (a DMN region) 

and bilateral superior parietal lobe (an EMN region) in schizophrenia and depression. 
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However, diagnosis-specific connectivity reductions of the operculum in 

schizophrenia are seen relative to depression.  Given the operculum's role in 

somatosensory integration, diagnosis-specific connectivity reductions may indicate a 

pathophysiological mechanism for basic self-disturbances that are characteristic of 

schizophrenia, but not depression (Schilbach, et al. 2015). 

4. Network interactions and excitatory/inhibitory neurotransmitter balance

As outlined earlier, there exists an anti-correlated relationship in networks involved in 

extrinsic cognitive control, and internally focused processes (Fox, et al. 2005; Raichle 

2015), a relationship that is perturbed in psychiatric conditions (Anticevic,  et al. 

2012; Jardri, et al. 2013; Sylvestor, et al. 2012; Brakowski, et al. 2017). Dynamic 

relationships between these networks are likely mediated at a synaptic level by 

excitatory/inhibitor neurotransmission (Hugdahl and Sommer 2018). An important 

question therefore is ‘how underlying neurotransmitter mechanisms modulate regions 

within major brain networks such as the DMN and EMN’? The brain’s main 

excitatory and inhibitory neurotransmitters, glutamate and gamma-Aminobutyric acid 

(GABA) respectively, are important for maintaining a precise excitatory-to-inhibitory 

(E/I) balance within the brain (Deneve and Machens 2016),  which is particularly 

important for the maintenance of stable network dynamics (Carcea and Froemke 

2013). Changes in neuronal activation at network levels, must have a corresponding 

change at the receptor and neurotransmitter level that causes the neurons to alter their 

firing rate (see Hugdahl and Sommer 2018 for discussion). Computationally it has 

been showed that disruption of E/I balance in favour of excitation causes aberrant 

inferences in hierarchical networks (Jardri and Deneve 2013); for example the 
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amplification of feed-forward messages correlates with hallucinations and delusions 

severity in schizophrenia patients (Jardri, et al. 2018). 

It has been proposed that the reciprocal relationship between networks such as the 

EMN and DMN is mediated via ‘net inhibitory long-range projections’ and that local 

disinhibition renders DMN hyperactive and less sensitive to long-range suppression 

(Anticevic, et al. 2015; Hayden, et al. 2009) potentially disrupting EMN/DMN 

interactions. The increasing use of 1H-MRS together with Blood Oxygen Level 

Dependent (BOLD)-fMRI measures allows for quantification of levels of brain 

glutamate and GABA, and how they relate to activity in cortical and subcortical 

networks. A seminal study using 1H-MRS and functional MRI by Falkenberg and 

colleagues (Falkenberg, et al. 2012) report that resting glutamate levels in the dorsal 

ACC (a key hub in cognitive control networks) predicts the strength of the functional 

activity during a cognitive control task. This relationship was observed in the 

retrosplenial cortex, the orbitofrontal cortex, the inferior parietal lobe, all regions 

within the DMN. A systematic review of 1H-MRS-fMRI multimodal imaging studies 

reporting effects of glutamate and GABA on network activation is provided by 

Duncan and colleagues (Duncan, et al. 2014). 1H-MRS-fMRI multimodal imaging 

studies in psychiatric and psychiatric risk populations are listed in Table 1. 

Glutamate transmission can also be experimentally mediated by the N-methyl-d-

aspartate (NMDA) receptor antagonist ketamine. Anticevic and colleagues (Anticevic, 

et al. 2015) showed that administration of ketamine disrupted the reciprocal 

relationship between anticorrelated networks (i.e. DMN and task positive networks). 

The degree of this disruption predicted working memory task performance and 

transiently evoked symptoms characteristic of schizophrenia. Furthermore, prefrontal 
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cortex hyper-connectivity in healthy volunteers who were administered ketamine 

resembles prefrontal cortex connectivity patterns seen in individuals at high risk for 

schizophrenia and patients in the early phase of the illness (Anticevic, et al. 2013; 

2015). These findings highlight the role that glutamate and NMDA receptors play in 

modulating intrinsic and extrinsic networks and subsequent cognitive control. 

Regarding inhibitory neurotransmission, a recent meta-analysis of 1H-MRS studies 

investigating GABA levels across psychiatric conditions (Schur, et al. 2016) report 

reduced GABA levels in symptomatic depressed patients and in patients with 

schizophrenia relative to healthy controls. These findings provide further support for 

E/I neurotransmitter imbalance in MDD and schizophrenia, supported by more recent 

studies which all report aberrant metabolite levels in schizophrenia and psychosis 

(Dwyer, et al. 2018; Jelen, et al. 2018; Psomiades, et al. 2018; Reid, et al. 2019; Kim, 

et al. 2018; Singh, et al. 2018). However, currently there is no evidence for 

differences in GABA levels between healthy controls and patients with bipolar or 

anxiety disorders (Schur, et al. 2016).

1H-MRS studies in patients with schizophrenia and individuals at clinical high risk 

(CHR) for psychosis have also shown that glutamate concentrations are associated 

with aberrant activation in cognitive control networks. Falkenberg, et al. (2014) report 

that in patients with schizophrenia, there is a positive association between ACC 

glutamate levels and activation in the bilateral inferior parietal lobe during a cognitive 

control task, opposite to that seen in healthy controls. Using ACC Glx (a combined 

measure of glutamate and glutamine), Cadena, et al. (2018) report similar findings of 

an altered relationship between glutamatergic metabolites and BOLD in cognitive 

control regions in schizophrenia patients that change after six-weeks of medication. 



21

Fusar-Poli and colleagues (Fusar-Poli, et al. 2011) report that during a verbal fluency 

task (requiring executive control), CHR subjects showed greater activation than 

healthy volunteers in the bilateral middle frontal gyrus. Thalamic glutamate 

concentrations were lower in the CHR than in healthy volunteers and were negatively 

associated with activation in prefrontal and left orbitofrontal cortex regions. These 

findings suggest that psychosis risk is associated with a perturbed relationship 

between subcortical glutamate concentrations and task related activity in EMN/DMN 

regions. Furthermore, Allen and colleagues (Allen, et al. 2015) report that reduced 

thalamic glutamate concentrations are associated with poor functional outcome in a 

CHR group; a relationship mediated by perturbed activation in medial prefrontal 

regions during an executive task. In the hippocampus (part of the DMN) glutamate 

concentrations have also been shown to predict local activation during a word 

memory task, an association that appears to be absent in a CHR cohort (Valli, et al. 

2011).

TABLE 1 HERE

Taken together, these findings suggest that glutamate is crucial for functioning in 

networks important for cognitive control. However, in both of these CHR studies 

neither cortical glutamate nor GABA concentration were assessed, so hypotheses 

relating to altered E/I balance in regions associated with EMN/DMN could not be 

directly tested.  Whilst, increased cortical glutamate and Glx levels have been 

reported in a small CHR cohort (Liemburg, et al. 2016), the complex dynamics 

between EMN/DMN and how these may be perturbed in CHR cohorts due to E/I 

neurotransmitter imbalances is yet to be fully examined. In addition to cognitive 

impairment in CHR cohorts, aberrant beliefs or percepts, coincidence detections and 
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feeling of strangeness are common experiences in the prodromal phase of psychosis 

(Nelson, et al. 2009). Interestingly, the perturbation of NMDA receptor function using 

antagonists such as ketamine can results in these experiences and has been proposed 

to result from disruptions in the E/I balance in cortical microcircuitry (Deneve and 

Machens 2016).

Altered glutamate levels and E/I imbalance may also underlie the experience of 

hallucinations in people with schizophrenia. The BOLD response derived from fMRI 

experiments can be viewed as an indirect marker of neuronal metabolic turnover, 

which in turn would be related to glutamate transmission (Hugdahl, et al. 2015; Jardri, 

et al. 2016). A well-established observation during the experience of hallucinations is 

spontaneous activation in sensory cortices e.g. the speech sensitive auditory cortex 

during auditory verbal hallucinations (Allen, et al. 2008; Allen, et al. 2012; Jardri, et 

al. 2011). It has been proposed that spontaneous elevations in glutamate transmission 

could initiate hallucinatory episodes, which in turn could explain the spontaneous 

activation increase during hallucinations (Kompus, et al. 2011). Consistent with the 

notion of an E/I imbalance as a precipitating mechanism for hallucinations (Jardri, et 

al. 2016), metabolic changes in speech-related areas have been widely reported in 

functional brain imaging studies of schizophrenia patients with hallucinations (Ford, 

et al. 2012; Homan, et al. 2013). To test this hypothesis, Hugdahl and colleagues 

(Hugdahl, et al. 2015)  used MR spectroscopy to measure cortical Glx levels, and 

found increased Glx levels in fronto-temporal regions in patients with auditory 

hallucinations relative to patients without AVH. Furthermore, Glx levels are also 

elevated in patients with a history of lifetime hallucinations as compared to patients 

without (Curcic-Blake, et al. 2017a).
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It is also reported that hallucinations are associated with impaired connectivity of 

large-scale networks at both functional (Alderson-Day, et al. 2015) and structural 

levels (Geoffroy, et al. 2014). Functional connectivity between Wernicke’s area and 

Broca’s areas, for example, is disrupted during inner-speech processing in 

schizophrenia patients who hear voices (Curcic-Blake, et al. 2017a). Studies 

conducted in schizophrenia patients suggest that network dysconnectivity may in part 

be due to impaired control of synaptic plasticity (Friston and Frith 1995) notably of 

NMDA receptor dysfunction (Stephan, et al. 2009) and cortical disinhibition due to 

increased glutamate function (Stephan, et al. 2006).  Meta-analysis of 1H-MRS in 

schizophrenia patients however, suggested that illness phases are associated with 

different glutamate profiles, both increased and deceased, and suggests a more 

complex picture (Marsman, et al. 2013; Merritt, et al. 2016).

Hallucinations may also be related to reduced inhibition due to impaired prefrontal 

control or hierarchical control (Waters, et al. 2012). Since long-range connections in 

the brain are overwhelmingly excitatory (Jardri and Deneve 2013), inhibitory 

messages may be ‘perturbed’, and excitatory signalling, if not controlled by the 

presence of equivalently strong inhibitory signalling, might become dysfunctional. 

There are very few studies however that have examined GABAergic concentrations in 

schizophrenia (Egerton, et al. 2017) and none that have specifically focused on 

patients with hallucinations. Regarding other disorders, there is currently a paucity of 

multimodal neuroimaging studies examining how network interactions are mediated 

by E/I neurotransmission in people with anxiety and affective disorders. However, a 

small number of multimodal imaging studies in psychiatric and psychiatric risk 

groups report alerted associations between cortical glutamate and GABA 

concentrations and activity and connectivity in EMN and DMN regions in MDD 
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patients (Horn, et al. 2010; Deligiannidis, et al. 2018; Zhang, et al. 2016), childhood 

trauma (Duncan, et al. 2015) and depression risk cohorts (Wiebking, et al. 2014).

1H-MRS studies have shown that anterior cingulate glutamate levels can predict 

anxiety severity (Modi, et al. 2014) and there are a number of studies reporting that 

MDD is associated with state dependent down-regulation of glutamate concentrations 

in the anterior cingulate cortex (see  Luykx, et al. 2012; Lener, et al. 2017). However, 

studies of GABA in MDD patients have largely produced discepent findings  

although the most replicated finding is an overall reduction in GABA in the occipital 

lobe (Price, et al. 2009; Sanacora, et al. 2004). One multimodal (fMRI and 1H-MRS) 

has shown, that relative to people with low trait anxiety, people with high trait anxiety 

have an altered relationship between prefrontal cortex activity and glutamate levels 

during a cognitive control task (Morgenroth, et al. 2018). Interactions with DMN 

regions were not examined, however. 

5. Effects of Trauma and Stress on E/I balance and network dynamics 

Trauma, particularly early trauma, is a well-established risk factor for psychiatric 

disorders (Paus, et al. 2008). Exposure to environmental risk factors for psychiatric 

illness, such as trauma, may be especially influential during developmentally sensitive 

periods such as childhood and adolescence when brain maturation is on-going (van 

Os, et al. 2010). However, the mechanism through which trauma in childhood affects 

brain development, and increases risk for psychiatric illness in adulthood remains 

only partly understood. It has been proposed that early trauma can lead to ‘stress 

sensitization’ (Gomes and Grace 2017) and recent work has shown alterations in 

methylation of genomic areas responsible for the stress response (Houtepen, et al. 
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2016; Adams, et al. 2016). However, the exact mechanisms via which these change 

affect brain function and structure remains to be studied. One approach that can be 

used to address this issue is to examine the relationship between neuroimaging 

findings in adults with psychiatric diagnoses, and a measure of the extent to which 

they experienced trauma in childhood. Studies using this approach report altered 

structure (Paquola, et al. 2016) and function (Teicher, et al. 2016) in a range of 

regions including the prefrontal cortex, crucial for cognitive function, and also part of 

the EMN.  Neurocognitive data are consistent with these functional findings, with a 

range of cognitive deficits observed in childhood trauma cohorts (DePrince, et al. 

2009; Pechtel and Pizzagalli 2011).

Neurofunctionally, psychiatric patients with a history of childhood abuse, display 

reduced activation in left inferior and dorsolateral prefrontal cortex relative to the 

healthy and psychiatric controls during tasks requiring executive control (Lim, et al. 

2016). Severe childhood abuse is also associated with abnormally increased activation 

in prefrontal regions during an interference task (Lim, et al. 2015), similar to that seen 

in anxious cohorts (Sylvester, et al. 2012). At a network level, there is evidence that 

childhood abuse is associated with decreased functional connectivity in fronto-parietal 

attention networks although this may be partly determined by genotype (Hart, et al. 

2017). Taken together, these functional imaging findings suggest that during 

cognitive tasks, activation and connectivity in EMN regions is affected by childhood 

trauma, however, how these functional changes in EMN regions are related to 

changes in DMN activity is unclear. 

Emerging evidence suggests that early trauma and maltreatment can also affect the 

development of sensory systems and functional networks responsible for emotional 
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regulation (Teicher, et al. 2016). Sensory systems are particularly susceptible to 

experience-dependent plastic response (Takesian and Hensch 2013). Voxel based 

morphometry analysis of MRI scans of young adults show that episodes of parental 

verbal abuse during childhood were associated with differences in grey matter density 

in the primary auditory cortex within the superior temporal gyrus (Tomoda, et al. 

2011). Intriguingly, given the strong association between childhood trauma and verbal 

hallucinations in adulthood (Read, et al. 2005), differences were also seen in language 

processing pathways that connect speech motor and sensory regions (Choi, et al. 

2009); a network implicated in the experience of auditory hallucinations (Allen, et al. 

2008; Allen, et al. 2012). Childhood abuse has also been reported to be associated 

with altered grey matter volume in visual processing areas (Tomoda, et al. 2011).

With regards to EMN/DMN interactions, childhood trauma may affect the 

development of functional network architecture. Teicher and colleagues (Teicher, et 

al. 2016) report that in maltreated individuals, centrality (a measure of a given neural 

regions network integration derived from graph theory) was reduced in the left ACC, 

temporal pole and middle frontal gyrus and was increased in the anterior insula and 

precuneus, regions within EMN/DMN. Increased centrality in the precuneus in 

maltreated individuals is particularly interesting as this region is a key hub in the 

DMN and may be a critical for self-referential thinking/processes (Northoff and 

Bermpohl 2004) possibly linked to rumination and worry. Teicher and colleagues 

speculate that increased precuneus centrality in maltreated individuals may be 

analogous to the enhanced functional connectivity within precuneus based posterior 

DMN in patients with depression (Li, et al. 2013), who often have histories of 

maltreatment. Indeed, there is a growing body of research linking childhood trauma to 

decreased DMN connectivity and increased DMN activity during cognitive tasks 
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(Philip, et al. 2013; Sripada, et al. 2014), similar to the activation and connectivity 

patterns observed in people with psychiatric conditions. 

However, the mechanisms through which childhood trauma and maltreatment affect 

anatomy, function and connectivity within DMN, EMN and in regions involved in 

sensory processing are largely unknown. Work in experimental animals has revealed 

that stress sensitization and increased stress responsivity, due to adverse adolescent 

environments, can disrupt prefrontal activity (Gomes and Grace 2017; Gomes, et al. 

2016). In particular, the medial prefrontal cortex, a key region of the DMN, is a 

region known to be involved in regulating stress responses (Rosenkranz and Grace 

2002). Medial PFC dysfunction can increases the vulnerability to stress in terms of 

changes in the dopamine system (Gomes, et al. 2016), potentially increasing risk for 

psychosis and affective disorders. Heightened stress responsivity in rodents is also 

reported to lead to parvalbumin loss in GABAergic interneurons (Gomes, et al. 2016), 

which in turn may affect E/I neurotransmitter balance. There are few studies in 

humans that examine the relationship between early trauma and cortical glutamate 

and/or GABA concentrations. Duncan and colleagues (Duncan, et al. 2015) report 

that in non-psychiatric adults that have experienced childhood trauma, increased 

glutamate concentrations in the medial PFC mediate BOLD response to adverse 

stimuli in a network including the insula and motor cortex. Although not specifically 

in a childhood trauma cohort, a recent study in patients with post-traumatic stress 

disorder (Harnett, et al. 2017) reports that within dorsal ACC there was a positive 

linear relationship between Glx concentrations (combined Glutamate and Glutamine 

concentrations) and current stress disorder symptoms. Further, Glx concentrations 

showed a positive linear relationship with future stress disorder symptoms (i.e., 

assessed 3 months post-trauma). Experimentally induced stress, using 
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cholecystokinin-tetrapeptide (CCK-4), significantly increased glutamine 

concentrations in the ACC suggesting that disturbances in inhibitory-excitatory 

equilibrium may be related to stress and panic (Zwanzger, et al. 2013). Recently it has 

been shown that intrusive memories, images and hallucinations (all symptoms of 

psychiatric disorders) can be controlled by GABAergic inhibition. Schmitz and 

colleagues (Schmitz, et al. 2017) report that GABAergic inhibition of hippocampal 

retrieval activity forms a key link in a fronto-hippocampal inhibitory control pathway 

underlying thought suppression. Finally, and although only an indirect measure of 

excitatory neurotransmitter function, hippocampal and prefrontal cortex resting 

cerebral blood flow changes in people at CHR for psychosis, have been shown to be 

related to levels of childhood trauma (Allen, et al. 2017). 

These findings suggest that altered prefrontal glutamate, glutamine concentrations and 

GABA concentrations may play a role in psychiatric (or psychiatric like) symptoms 

following a traumatic experience. In particular, the relationship between early 

traumatic experiences and vulnerability to psychiatric conditions such as 

schizophrenia may be mediated via E/I neurotransmitter imbalance, disinhibition and 

impaired EMN/DMN interactions. However, much more work is needed to establish 

these relationships in humans.

6. Summary, conclusions and future research

We have discussed the functional importance of EMN/DMN dynamics and how 

altered or inefficient interactions between these networks may underlie impaired 

cognition and symptoms (i.e. hallucinations) across psychiatric conditions. Currently, 

there is substantial evidence of altered engagement of EMN and DMN in the 
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psychiatric conditions i.e. schizophrenia, anxiety and depression.  However, there are 

fewer studies that have explicitly examined the dynamics of EMN/DMN activation 

and/or connectivity in psychiatric populations, and how altered network interaction 

may affect cognition. Moreover, although altered EMN/DMN interactions are likely 

to be central to cognitive changes in psychiatric conditions, the precise nature of the 

network alterations appears to be different in different disorders.  More research is 

also needed to establish the neuropharmacology of EMN/DMN dynamics. Whilst 

there is clearly a relationship between EMN/DMN activity and excitatory signalling, 

the exact nature of this relationship is poorly understood. Further, how changes in 

excitatory and inhibitory signalling and glutamatergic and GABAergic concentrations 

impact on the E/I neurotransmitter balance and EMN/DMN interactions needs to be 

researched in greater depth.  The increased use of MR spectroscopy together with 

BOLD-fMRI recordings will allow for a better understanding of how brain 

metabolites and transmitters are related to network activation. Finally, there is a 

burgeoning literature relating early traumatic experiences, a major antecedent of adult 

psychiatric disorders, to altered function in EMN/DMN regions and sensory regions 

known to be important for cognition and sensory processing. Taken together, the 

research and findings discussed here lead towards a plausible mechanistic hypothesis, 

linking early traumatic experiences to cognitive dysfunction and symptoms mediated 

by E/I neurotransmitter imbalances. 

6.1 Limitations and Future work 

A potential limitation with the approach suggested here is that fMRI-BOLD and MRS 

metabolites typically are acquired separately, with minutes between the signal uptakes. 

This creates a problem when interpreting changes in E/I neurotransmitter balance and 
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relation to DMN/EMN network interactions. Recent progress in MR spectroscopy 

methods may be able to overcome these technical obstacles, where it will be possible 

not only to acquire glutamate and GABA approximately simultaneously, but also 

simultaneous BOLD-fMRI and MRS acquisitions. A second limitation is that we do 

not discuss here recent and promising findings of a relationship between inflammation 

and the immune system and psychosis (Khandaker, et al. 2015).  Immune response 

changes, due to stressful life events, may have implications for an understanding of 

network dynamics and underlying transmitter balance. In particular, there is now 

broad acceptance that psychosis related volumetric and functional changes in 

hippocampus, a key DMN region, are related to an inflammatory response from an 

aberrant immune system (Kim, et al. 2016).  We see this line of research, bringing 

together all of these modalities, as potentially important in future work. If a link 

between network dynamics and transmitter balance can be established, this can have 

implications for development of new intervention strategies, with more targeted 

treatments, aimed at restoring functional dynamics and neurotransmitter balance.
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Reference MRS-fMRI Diagnosis Sample Findings
Falkenberg et al. 
(2014)

MRS: ACC Glu  
fMRI: auditory 
cognitive control 
task 

Schizophrenia 
(SCZ)

17 SCZ 
17 HC

SCZ: (+) between ACC 
Glu and BOLD in L/R 
IPL
HC: (-) between ACC 
Glu in L/R IPL

Cadena et al. 
2018

MRS: ACC Glx/Cr 
fMRI: Stroop Task 

SCZ 22 SCZ 
(scanned 
twice)
20 HC

SCZ (baseline): 
(-) between Glx/Cr and 
BOLD in ACC, ins, prec, 
PCC
HC (baseline): (+) 
between Glx/Cr and 
ACC, Ins, prec, PCC.

Fusar-Poli et al. 
(2011)

MRS: Thalamic Glu 
fMRI: Verbal Fluency 
task (fMRI)

Psychosis 
Clinical High 
Risk (CHR)

24 CHR
17 HC

CHR: (-) between 
Thalamic Glu and 
BOLD in the R 
dorsolateral PFC/L 
OFC and (+) R 
hippocampus and L/R 
temporal cortex.
HC: (-) between 
thalamic Glu in R/L 
PFC, R hippocampus 
and STG 

Valli et al. 
(2011)

MRS: Hippocampal 
Glu 
fMRI: Word  
Memory Task 

Psychosis CHR 22 CHR
14 HC

CHR: No correlation 
between hippocampal 
Glu and BOLD.
HC: (+) between 
hippocampal Glu and 
MTL BOLD

Allen et al. 
(2015)

MRS: Thalamic Glu 
fMRI: Verbal Fluency 
Task 

Psychosis CHR 33 CHR
27 HC

CHR (poor function): 
(-) between thalamic 
Glu and PFC/striatal 
BOLD 
CHR (good function) & 
HC: 
No correlation 
between thalamic Glu 
BOLD

Horn et al. 
(2010)

MRS: pgACC and left 
anterior Ins Glx 
fMRI: resting state 
functional 
connectivity 

Major 
Depressive 
Disorder 
(MDD)

22 MDD
22 HC

MDD: (+) between Glx 
and resting-state 
functional connectivity 
(pgACC – anterior Ins). 
HC: No correlation 
between Glx and 
resting-state 
functional connectivity 
in PgACC and anterior 
Ins ROI

Wiebking et al. 
(2014)

MRS: L Ins GABA 
fMRI: introceptive- 

Depressed 
Affect (Beck 

24 HC (+) between L Ins 
GABA and BOLD 



exteroceptive 
awareness task 

Hopelessness 
Scale)

during interoceptive 
stimuli. GABA and 
interoceptive signal 
changes in the insula 
predicted the degree 
of depressed affect 

Zhang et al. 
(2016)

MRS: Medial PFC glu 
and GABA fMRI: 
amplitude of low 
frequency 
fluctuations (ALFF) 
in resting state data 
(fMRI)

MDD 11 MDD 
(female)
11 HC 
(female)

MDD: (+) between 
medial PFC Glu and 
resting state ALFF 
(BOLD)  
HC: no correlation 
between medial PFC 
Glu and ALFF 

Deligiannidis et 
al. (2018)

MRS: pgACC and 
occipital GABA/Cr 
fMRI: resting state 
functional 
connectivity (RSFC)

Post-partum 
depression 
(PPD)

45PPD
30HC

PPD: (+) between 
PgACC GABA/Cr and 
dorsomedial PFC-
insula RSFC and 
occipital cortex 
GABA/Cr and 
dorsomedial PFC-
amygdalae/parietal 
RSPC 
HC: As above

Duncan et al. 
(2015)

MRS: medial PFC Glu 
fMRI: resting state 
and adverse stimuli 

Childhood 
Trauma (CHT)

12 HC (+) between mPFC Glu 
and motor cortex/left 
insula BOLD during 
aversive stimuli 
associated with CHT 
scores 

Morgenroth et 
al. (2019)

MRS: R medial PFC 
Glu
fMRI: Stroop Task 

Trait Anxiety 
(TA)

20 Low 
TA
19 High 
TA

Low TA: (+) between 
mPFC Glu and left 
dorsolateral PFC BOLD 
during incongruent 
trials 
High TA: no 
correlation between 
mPFC Glu and BOLD in 
dorsolateral PFC

Table 1: Multimodal imaging studies in in psychiatric/ risk populations 

Abbreviations: MRS = 1H-Magnetic Resonance Spectroscopy. fMRI = Functional Magnetic 
Resonance Imaging, (+) = positive correlation, (-) = negative correlation, Glu = glutamate,  
Glx = glutamate/glutamine, Cr = creatine, L = left, R = Right, ACC = anterior cingulate, PFC = 
prefrontal cortex, IPL = interior parietal lobe, Ins = insula, prec = precuneus, PCC = posterior 
cingulate cortex, OFC = orbitofrontal cortex,  STG = superior temporal gyrus, MTL = medial 
temporal lobe, pgACC = pregenual anterior cingulate cortex, 


