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ABSTRACT
Background. The Windover mortuary pond dates to the Early Archaic period
(6,800–5,200 years ago) and constitutes one of the earliest archaeological sites with
intact and well-preserved human remains in North America. Unlike many prehistoric
egalitarian hunter-gatherers, the Windover people may not have practiced a sex-based
division of labor; rather, they may have shared the load. We explore how mobility and
subsistence, as reconstructed from archaeological data, influenced hand and foot bone
morphology at Windover.
Methods. We took length and width measurements on four carpal bones, four tarsal
bones, and load-bearing tarsal areas (calcaneus load arm, trochlea of the talus). We
analyzed lateralization using side differences in raw length and width measurements.
For other hypothesis testing,we used log transformed length-width ratios tomitigate the
confounding effects of sexual dimorphism and trait size variation; we tested between-
sex differences in weight-bearing (rear foot) and shock-absorbing (mid foot) tarsal
bones and between-sex differences in carpal bones.
Results. We identified no significant between-sex differences in rear and midfoot
areas, suggesting similar biomechanical stresses. We identified no significant between-
sex differences in carpal bones but the test was under-powered due to small sample
sizes. Finally, despite widespread behavioral evidence on contemporary populations
for human hand and foot lateralization, we found no evidence of either handedness or
footedness.
Discussion. The lack evidence for footedness was expected due its minimal impact
on walking gait but the lack of evidence for handedness was surprising given that
ethnographic studies have shown strong handedness in hunter-gatherers during tool
and goods manufacture. The reconstructed activity patterns suggested both sexes
engaged in heavy load carrying and a shared division of labor. Our results support pre-
vious findings—both sexes had stronger weight-bearing bones. Male shock-absorbing
bones exhibited a trend towards greater relative width (suggesting greater comparative
biomechanical stress) than females whichmay reflect the typical pattern ofmale hunter-
gatherers engaging in walking greater distances at higher speeds than females. While
there were no significant between-sex differences in carpal bones (supporting a shared
work loadmodel), females exhibited greater variation in index values, whichmay reflect
a greater variety of and specialization in tasks compared to males. Because carpals and
tarsals are so well-preserved at archaeological sites, we had surmised they might be
useful proxies for activity in the absence of well-preserved long bones. Tarsals provide
a stronger signal of past activity and may be useful in the absence of, or in addition to,

How to cite this article Hoover and Berbesque (2018), Early Holocene morphological variation in hunter-gatherer hands and feet. PeerJ
6:e5564; DOI 10.7717/peerj.5564

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Roehampton University Research Repository

https://core.ac.uk/display/334800573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:kchoover@alaska.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5564
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.5564


preferred bones. Carpals, however, may not be useful as the effect size of biomechanical
stress (in this study at least) is low andwould require larger samples thanmay be possible
at archaeological sites.

Subjects Anthropology
Keywords Carpal, Tarsal, Lateralization, Windover, Sex-based division of labor, Hunter-gatherer
morphology, Early Archaic

INTRODUCTION
A sex-based division of labor is seen across most human societies for the majority of
evolutionary history and contributes to size-based morphological variation between the
sexes (Frayer, 1980; Frayer & Wolpoff, 1985). The wealth of ethnographic data on extant
hunter-gatherers provides insights into the sexual division of foraging labor. Applying
what we know about extant hunter-gatherer behavior to the bioarchaeological record,
we can link musculoskeletal markers to habitual activities. Physical markers of activity
include geometric variation in bone structure and function due to biomechanical loading
(Ruff, Holt & Trinkaus, 2006), diaphyseal structure (Bridges, 1989; Bridges, 1995; Ruff,
1987b; Ruff, 1987c; Schaffler et al., 1985), degenerative joint disease (DJD), osteoarthritis,
musculoskeletal markers (MSM) (Eshed et al., 2004), and dental wear patterns relative to
tool manufacture (Berbesque et al., 2012; Estalrrich & Rosas, 2015). Our specific focus is on
the relationship between biomechanics and bone functional adaptation in carpal and tarsal
bones. Bone functional adaptation is driven by two general principles: first, organisms
are able to structurally adapt to new living conditions; second, bone cells have capacity to
respond to local mechanical stresses (Ruff, Holt & Trinkaus, 2006). We draw on the various
markers of physical activity to inform our biomechanical approach and previous studies
on other skeletal elements in the population of interest but limit our investigation to bone
functional adaptation assessed by length-width ratios, which provide an index that can be
used to compare relative bone strength (Garn, 1972; Rauch, 2005). Width is an indicator
of relative bone strength (Garn, 1972; Rauch, 2005) because resistance to bending force
is linked to bone diameter; bones functionally adapt to biomechanical stress by forming
new bone on periosteal surfaces, which results in wider bones (Macdonald, Hoy & McKay,
2013). To the best of our knowledge, this paper is the first to examine the utility of carpal
and tarsal metrics as evidence for bone functional adaptation to activity.

Aims
The focus of this paper is to explore whether or not logistical mobility and domestic
economies (subsistence and tool manufacture) are archaeologically visible in the feet
(tarsals) and hands (carpals) and, if so, whether or not they reflect a sex-based division
of labor. Specifically, we are interested in bone functional adaptation in response to
biomechanical stress and use logged length-width ratios to assess relative bone strength
(Garn, 1972;Macdonald, Hoy & McKay, 2013;Rauch, 2005).We also examine lateralization
using raw measures for left and right sides. Much attention has been paid to sexual
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dimorphism in carpal and tarsal bones in forensic contexts and with applications to sex
identification bioarchaeology; these studies have had varied success with most pointing to
the calcaneus and sometimes talus as the most diagnostic bones (Bostanci, 1962; Bunning,
1964; Gualdi-Russo, 2007;Harris & Case, 2012;Hoover, 1997; Introna Jr et al., 1997; Kidd &
Oxnard, 2002;Mastrangelo, De Luca & Sanchez-Mejorada, 2011a;Mastrangelo et al., 2011b;
Riepert et al., 1996; Steele, 1970; Steele, 1976; Steele & McKern, 1969)—for a review see
(Davies, Hackman & Black, 2014). Here, we take a different approach by exploring whether
activity is embodied in the often overlooked region of the hands and feet.

Carpals and tarsals have not been examined extensively in bioarchaeological contexts
but are potentially very interesting bones. The hands and feet are heavily implicated in the
daily activities of hunter-gatherers (e.g., mobility, use of weapons, tool-making, domestic
economies) and that activity might be embodied in carpal and tarsal bones. Further, carpal
and tarsal bones are less likely to be influenced by the noise created from conflicting signals
of genetics and lifestyle that obfuscates differentiation of ultimate and proximate causes of
variation that plagues the long bones (Pearson Osbjorn, 2000; Ruff & Larsen, 2014). Further,
these dense and small bones tend to be among the better-preserved bones in archaeological
contexts (Henderson, 1987; Mann, 1981) and, if daily activities are visible in these bones,
we potentially capture data that might otherwise be lost in less well-preserved skeletons. At
the very least, if they prove useful in identifying bone functional adaptation, they provide
additional data for past activity reconstruction.

We examined carpal and tarsal bones from the Florida Early Archaic Windover Site. The
Early Archaic is characterized bymajor climate change in North America and, along with it,
a change in domestic economies. Warmer climate was driving big game north and broad-
spectrum foraging was emerging as the primary subsistence economy, de-emphasizing the
dietary contribution of males and increasing the contributions of females. The site consists
entirely of the mortuary pond where mobile hunter-gatherers buried their dead (usually
with grave goods, such as atlatls and stone tools). Due to the semi-tropical environment
of Florida, seasonally occupied hunter-gatherer camps are not well-preserved and most of
what we know of this period comes from mortuary ponds, rather than occupation sites. As
one of the best-preserved and largest collections, Windover remains provide tremendous
insights into this period. We generated research questions based on ethnographic and
archaeological data from other hunter-gatherer populations and modified them based
on specific patterns identified at the Windover Site in other studies on other skeletal
elements. As such, the next section takes each area of interest (e.g., mobility) and starts
with general patterns in hunter-gatherer populations then narrows down to what we know
about Windover. Our specific research questions are placed at the end of Bioarchaeological
Context after presenting the material that aided in their generation.

BIOARCHAEOLOGICAL CONTEXT
Mobility activity
General hunter-gatherer patterns
Hunter-gatherer mobility can be described as residential (moving camp to a new location
as in seasonal occupation of resource rich areas) and logistical (individuals and/or smaller
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groups temporarily split from the main group for shorter foraging trips or longer hunting
trips) (Binford, 1980; Kelly, 1983)—this is particularly true for mobile hunter-gatherers
that specialize in terrestrial resources (Marlowe, 2005; Panter-Brick, 2002; Sahlins, 1968).
There is some evidence for sex-based variation in hunter-gatherer mobility; modern Hadza
hunter-gatherer males engage in greater daily walking distances at faster speeds than
females (Berbesque et al., 2016; Raichlen et al., 2017).

Distal limbs have been implicated to a greater degree than upper limbs in reflecting
habitual activity due to the biomechanical forces arising from locomotive substrate
(i.e., terrains on which activities are conducted), distances travelled in a day, and relative
speed of locomotion (Berbesque et al., 2016; Bridges, 1991; Bridges, 1995; Carlson, Grine
& Pearson, 2007; Eshed et al., 2004; Lieverse et al., 2007; Malina & Little, 2008; Pearson
Osbjorn, 2000; Pontzer et al., 2014; Raichlen et al., 2017; Ruff, 1987a; Ruff, 2000; Shaw &
Stock, 2009; Stock, 2006; Venkataraman et al., 2013; Weiss, 2012). Of interest to this study
is how biomechanical stress from mobility and footedness might affect the tarsals—
biomechanical stresses will cause the bone to functionally adapt to the stress through
widening, as discussed previously (Garn, 1972; Rauch, 2005).

The ground reaction force generated by the bare (or minimally shod) foot contacting the
ground is transmitted through the subtalar skeleton, with peak forces at heel-strike through
the calcaneus and at heel-off through the metatarsophalangeal articulations (Trinkaus &
Shang, 2008). Thus, during normal locomotion, the typical bipedal heel strike transmits
body mass from the tibia to the rear foot (talus and calcaneus) to the ground (Nordin &
Frankel, 2012) while the shock of impact is absorbed by the midfoot (navicular, cuboid,
and cuneiform bones) (Nordin & Frankel, 2012). The calcaneus is most affected by the rear
heel strike and calcaneal tuber length (a proxy for Achilles tendon moment arm length) is
correlated with running economy (long calcaneal tuber = greater energy cost) (Raichlen,
Armstrong & Lieberman, 2011) Most data from extant hunter-gatherers (Hatala et al.,
2013; Pontzer et al., 2014) and barefoot populations suggest a rear heel strike (Fredericks
et al., 2015) is preferred among experienced runners. Dorsal spurs on the calcaneus are
linked to increased activity while plantar spurs are linked to standing, inactivity, and excess
weight (Weiss, 2012). The navicular is a keystone bone in the arches of the foot that is
impinged during foot strike by the talus and other cuneiforms. Structurally linking the
rear- and mid-foot, it bears the transmission force of weight during the push-off phase
of locomotion and experiences highly localized stress in middle one-third of the bone,
which makes it prone to fracture in highly athletic individuals (Coris & Lombardo, 2003;De
Clercq, Bevernage & Leemrijse, 2008; Khan et al., 1994; Shakked, Walters & O’Malley, 2017).
Anatomically, the intermediate cuneiform articulates with the navicular proximally and
second metatarsal distally. The second metatarsal-intermediate cuneiform joint is a highly
stable keystone joint with limited mobility. Injury to the joint occurs via direct force from
load applied to the base of the foot or indirect forces from a longitudinal force applied to a
plantarflexed foot (Liu et al., 1997; Rodgers, 1988:1826), which is particularly pronounced
in barefoot populations (Franklin et al., 2015; Fredericks et al., 2015; Hollander et al., 2017;
Hollander et al., 2016; Pontzer et al., 2014).
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While footedness in humans develops in late childhood (11–12 years old) with a
right skew (Gabbard, 1996; Gentry & Gabbard, 1995), its influence on walking gait is not
significant and is unlikely to affect the musculoskeletal system in the absence of other
evidence of lateralization (Zverev, 2006). Thus, regions of the foot may be differentially
shaped by daily logistical mobility that emphasizes either slow walking and stationary
weight-bearing activity (such as might occur when foraging in a patch) or rapid locomotion
such as brisk walking or running that requires greater shock absorption. And, if subsistence-
based activities are assigned based on sex (Frayer, 1980; Ruff, 1987b), there may be sex-
differences in how these regions of the feet vary. Ultimately, biomechanical stress will cause
bone functional adaptation and increased width (Garn, 1972; Rauch, 2005).

Windover patterns
TheWindover bog, used seasonally for burials, was strategically located between the Indian
River coastal lagoon system and the St. John’s River—an area rich in marine, fresh water,
and terrestrial resources—which indicates that the population did not have to travel long
distances between seasons (Adovasio, Soffer & Page, 2009) and did not fission into smaller
groups between visits to the pond (Wentz, 2006). Seasonal mobility is indicated by analysis
of preserved stomach contents which were from plants and fruits maturing during July and
October. In addition, growth ring data recovered frommortuary stakes indicated the wood
was harvested in late summer/early fall (Doran & Dickel, 1988a). Ultimately, the residential
mobility of the Windover population was limited to a constrained geographic area around
the bog with most evidence pointing to emergence of sedentism (Wentz, 2006).

Domestic economies and activity reconstruction
General hunter-gatherer patterns
Domestic economies include subsistence activities and tool manufacture (which
supports subsistence activities). Subsistence covaries with biological factors (e.g., habitat,
reproduction, health) and cultural factors (e.g., social organization, sedentism, mobility).
A comprehensive analysis of 229 hunter-gatherer diets, eco-environmental data, and
plant-to-animal dietary ratios found that most populations consume similar amounts of
carbohydrates (30–35% of the diet) except in more extreme environments (i.e., increases
in desert and tropical grasslands and decreases in higher latitudes) (Hiatt, 1978). Indeed,
there is a strong clinal pattern of variation in male and female caloric contributions to
diet. Subsistence contributions by sex are inversely correlated with effective temperature, a
combined measure of the intensity and annual distribution of solar radiation (Bailey, 1960;
Binford, 1980). Higher latitudes and colder climates relymore onmale caloric contributions
from big game hunting while temperate and tropical regions rely more heavily on female
caloric contributions across the spectrum (e.g., small game, fishing, and plants) (Hiatt,
1978). In general, males tend to increase foraging activities in more stable productive
habitats (Marlowe, 2007) and females tend to decrease labor in subsistence activities when
males are hunting big game (focusing instead on activities like weaving and cordage)
(Waguespack, 2005).

Evidence for activity patterns is referred to as the ‘holy grail’ of bioarchaeology (Jurmain
et al., 2012) due to the lack of written records in prehistory and the high amount of
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inferential work involved to reconstruct them. In modern populations, however, tarsal
bones are heavily implicated in repeated and sustained physical activity (e.g., running,
walking long distances on a daily basis) (Murray et al., 2006). Sustained daily physical
activity is consistent with the lifestyle described in ethnographies of contemporary
hunter-gatherer populations (Pontzer et al., 2015; Pontzer et al., 2014; Raichlen, Armstrong
& Lieberman, 2011; Raichlen et al., 2017). Likewise, carpal bones are responsive to physical
stressors. Arthritis, among other bony changes, has been documented in modern
populations and tied to repetitive tasks (e.g., painting, pipetting) (El-Helaly, Balkhy &
Vallenius, 2017; Heilskov-Hansen et al., 2016). To date, there are no studies documenting
bony or arthritic changes in the wrist due to foraging behaviors, but generally plant
acquisition is thought to be repetitive and likely to employ some of the postures implicated
in bony changes in the wrist (e.g., picking) (Vignais, Weresch & Keir, 2016).

Ethnographic data also indicate that other (non-foraging) domestic economies such as
tool making, child care and carrying, butchering, food preparation, production of textiles,
and carrying firewood and water create physical strain (Bentley, 1985; Cowlishaw, 1981;
Hurtado et al., 1985; Sahlins, 1968). Increased reliance on tools is linked to evolutionarily
more gracile bodies (Trinkaus, 1983) but tool manufacturing and use are detectable on
the body through increased upper limb robusticity (Carlson, Grine & Pearson, 2007) and
lateralization, or side preference (Stock et al., 2013). Unimanual activities (e.g., spear use)
leave a distinct mark of directional asymmetry in the upper limbs compared to bimanual
activities such as grinding or rowing (Weiss, 2009). Indeed, extant hunter-gatherers exhibit
strong hand preference specifically when making and using tools (Cavanagh et al., 2016;
Robira et al., 2018) which suggests a mosaic progression to the extreme lateralization we
see in modern populations (Stock et al., 2013). And, there is evidence in the archaeological
record of sidedness varying between the sexes (Bridges, 1991;Bridges, 1994).While domestic
economies vary across groups, they tend to be sex-based and more frequently involve
lateralized repetitive stress compared to subsistence and mobility (Weiss, 2009). Thus,
bioarchaeological evidence of subsistence activities and tool manufacture may be found
in repetitive stress to the musculoskeletal system and result in lateralized MSM, DJD, and
osteoarthritis of the limbs involved. Carrying loads may place additional weight-bearing
biomechanical stress on the foot and the domestic economies may serve to differentiate the
wrists. These biomechanical stresses should differentiate bones more heavily implicated in
specific activities and further differentiate between those more heavily engaged in those
activities from those minimally (or not all) engaged in those activities.

Windover patterns
Subsistence economies
Paleodietary analysis from carbon and nitrogen bone-collagen values and archaeobotanical
information suggest exploitation of riparian (river-based) resources rather than the more
common Florida Archaic use of marine mammals or terrestrial fauna such as deer or rabbit
(Tuross et al., 1994). Males and females did not have significantly different isotope values
for major dietary components (Wentz, 2006; Wentz et al., 2006). Based on ethnographic
data, the resource rich environment fostered by a milder wetter climate suggests greater
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reliance on female caloric contributions to diet (Hiatt, 1978) and this is supported by grave
goods—both males and females were found with materials for hunting small mammals,
reptiles, and fish (Hamlin, 2001). There is evidence of some specialization by sex because
only male graves contained atlatl components (typical of hunter-gatherers and male spear
use (Kelly, 1983), spears, lithic projectiles, and hollow point awls (for making fishing
nets) and only females and subadult graves contained direct evidence for food processing
(e.g., butchered bone, mortar and pestle, containers) (Adovasio et al., 2001; Hamlin, 2001).

Tool economies
Analysis of tools found amongst the grave goods suggests tool material choice (not type)
was sex-based; females preferred shell and carapace, while males preferred antler bone
(Adovasio, Soffer & Page, 2009; Hamlin, 2001). Few tool types were exclusive to one sex
which suggests few activities were specific to one sex (Hamlin, 2001). Females also tended
to have more decorative items (Hamlin, 2001) and were found exclusively with materials
for plant-based medicine (Adovasio, Soffer & Page, 2009;Hamlin, 2001; Tuross et al., 1994).
Interestingly, stone tools only play a cameo in the story of tools at Windover (Adovasio,
Soffer & Page, 2009) while female goods (textiles, baskets, containers, medicines) have a
starring role across the history of the pond. The absence of internment with stone tools
suggests a cultural emphasis on the labor of women and products from both men and
women in the domestic economy rather than an emphasis on male big-game hunting
(Adovasio, Soffer & Page, 2009). This may be an outcome of climate change (Doran &
Dickel, 1988b; Milanich, 1994) rapidly altering domestic roles from the Paleoindian to the
Early Archaic periods.

Activity reconstruction
DJD at Windover has been analyzed in two separate studies (Smith, 2008; Wentz, 2010),
each using different but standard published methods. Smith used Waldron’s method
(Smith, 2008) based on bone eburnation (or polishing) (Waldron, 1991;Waldron & Rogers,
1991) and other arthritic changes at the joint (e.g., lipping, porosity). Wentz (2010) used
the Western Hemisphere Health Index methods, a relative ordinal ranked scoring system
in eight skeletal joints (Steckel & Rose, 2002). Both studies found high rates of DJD in
males and females consistent with prehistoric hunter-gatherer lifestyles, but there were no
statistically significant between-sex differences in DJD (Smith, 2008; Wentz, 2010). There
were some sex-based trends that are relevant to the current study. First, DJD frequency
in the cervical spine is particularly high in females and may be explained by food or palm
leaf (for textile fibers) processing activities (Wentz, 2010) or carrying heavy loads (Smith,
2008) both of which are supported by grave good evidence (Adovasio et al., 2001; Adovasio,
Soffer & Page, 2009; Hamlin, 2001). Males exhibit greater DJD in the lumbar region which
suggests they were carrying heavy loads (perhaps game or goods during seasonal camp
relocation) or stressed from repetitive motions related to hide processing (Wentz, 2010).
Thus, both males and females may have been carrying heavy loads and both were engaging
in similar or shared tasks (Smith, 2008: 45). Second, elbows were commonly affected
which might be interpreted as male atlatl throwing but females exhibited more DJD in
wrists, elbows and shoulders than males (Wentz, 2010) which suggests a shared activity
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(Smith, 2008). Wrists exhibited little evidence of DJD (3/97 left and right wrists affected)
but females had more hand trauma (Wentz, 2010) and males had a higher frequency of
severe DJD in both hands (18% of the sample) (Smith, 2008). Again, similar or shared
tasks are indicated. Third, there were some overall sex-based patterns in DJD with males
exhibiting more knee and hip damage on the left and females exhibiting more severe
change on the right (Smith, 2008), which might suggest footedness and increased mobility
in males with more shock to the feet. Both sexes (37% of individuals) exhibited significant
bilateral degeneration of talar-calcaneal articular facets (Smith, 2008), which might reflect
high mobility and weight-bearing activities (Weiss, 2012), possibly running (Franklin et al.,
2015; Fredericks et al., 2015;Hollander et al., 2017;Raichlen, Armstrong & Lieberman, 2011).

An examination of muscle insertion sites (Hagaman, 2009) found low levels of habitual
stress (indicative of stressful repetitive activity) but muscle insertion sites were fairly
robust indicating generally high activity patterns. As with the DJD results, there is much
overlap between the sexes in scores further supporting the notion that most activities were
shared. The lack of asymmetry in MSM, particularly in males due to the use of the atlatl,
suggests a lack of repetition in this activity or other activities which exert symmetrical
force on the upper limbs and obscure the lateralization of spear-throwing—possibly
kayaking (Hagaman, 2009). But, the wrist is a complex system in which small changes in
the anatomy of one bone be offset by changes in other aspects of the anatomy (Maki, 2013:
238). Analysis of fractures suggests interpersonal violence (affecting male crania and, less
frequently, the post cranial skeleton) but the majority of trauma came from accidents with
females slightly more affected than males (Smith, 2003). Ribs (often on the right side) were
the most fractured in both sexes with ulnar fractures in second place. The vertebra exhibit
evidence of compression fractures (more frequent in females and equal to ulna fractures in
incidence) consistent with falls when landing in an upright position or carrying heavy loads
(Smith, 2003). Overall, fracture patterns suggest accidents related to logistical mobility
in the uneven intercoastal terrain and heavy underbrush along with heavy load carrying
(Smith, 2003).

MATERIALS
The Windover archaeological site (8BR46) is a National Historic Landmark dating to the
Early Archaic Period (7500–5000 BCE) with calibrated radio-carbon dates from 9,000 to
7,929 BP. The site consists of a mortuary pond where seasonal mobile hunter-gatherers
buried their dead. The Windover bog site (5,400 m2) is one of a number of Florida Archaic
Period ‘wet cemeteries’ or mortuary pond archaeological sites with underwater burials
in peat; others include Little Salt Spring (8SO18) (Clausen et al., 1979), Republic Grove
(8HR4) (Wharton, Ballo & Hope, 1981), and Bay West (8CR200) (Beriault et al., 1981).
Little is known about this time period because skeletal remains in these sites are most often
from a very small number of individuals, are often very fragmentary, and some sites were
not excavated systematically (such as Little Salt Springs) (Wentz & Gifford, 2007). Further,
the semi-tropical conditions of Florida are less than ideal preservation conditions, especially
for temporary occupation sites that might consist of minimal non-organic materials.
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In general, the North American Archaic Period (8000 to 1000 BC) is characterized by
hunting-gathering subsistence economies with dietary staples including nuts, seeds, and
shellfish (Milanich, 1994). The Florida Archaic Period follows the same pattern (e.g., broad
spectrum hunting, fishing, and plant gathering and use of freshwater resources) with
increased exploitation of coastal shellfish and marine resources. The comparatively wetter
climate (Halligan et al., 2016) created an abundance of resources and subsistence strategies
were no longer dominated by big game. The broad spectrum foraging strategy that emerged
is reflected in more complex tool kits (Doran & Dickel, 1988b; Milanich, 1994). See Brown
(1994), Klingle (2006) andMilanich (1994) for overviews of Florida prehistory.

TheWindover site was used as amortuary pond for 5–6 short periods of activity, peaking
at 7,450 BP (Doran & Dickel, 1988a;Doran & Dickel, 1988b). Burials furthest from the pond
edge at time of excavation dated to the earliest period of mortuary pond use and those
closest, more recent. Roughly 100 burials were undisturbed with fully articulated bones;
ages ranged from infancy to over sixty-five, with 52% classified as subadults (Purdy, 1991).
Most individuals were buried within 24 to 48 h after death (Doran & Dickel, 1988a) in a
flexed position, on the left side with heads oriented to the west, and pinned by sharpened
stakes approximately 1m below the surface of the peat (Hauswirth, Dickel & Lawlor, 1994).
The nearly neutral pH of the pond (6.1–6.9) created ideal conditions for preservation
of both skeletal and soft tissues; allowing researchers to sequence DNA from preserved
brain matter (Hauswirth, Dickel & Lawlor, 1994), reconstruct diet from preserved stomach
contents (Tuross et al., 1994), and study textile industries (Adovasio et al., 2001). The
population exhibited predominantly good health and included individuals of extremely
advanced age (50+) for hunter-gatherer groups which reflects local resource abundance
(Klingle, 2006) and medical practices (Adovasio, Soffer & Page, 2009; Hamlin, 2001; Smith,
2003; Tuross et al., 1994; Wentz, 2006). Common to hunter-gatherer populations, adults
of both sexes exhibited a high incidence of osteoarthritis (Smith, 2008), frequent enamel
defects (Berbesque & Doran, 2008; Berbesque & Hoover, 2018), and skeletal trauma (Smith,
2003). Overall, female health was worse than male health (Wentz, 2006;Wentz et al., 2006).

Research questions
Mobility
1. Previous research indicates that male hunter-gatherers walk more and at greater speeds

than females. Windover data suggest a shared labor load, reduced emphasis on big
game hunting, and evidence for heavy load carrying in both sexes. Which model is
reflected in bone functional adaptation? We might expect the shared load model at
Windover to result in no significant between-sex differences in rear foot tarsal variables
that reflect the ground force reaction during locomotion and midfoot tarsal variables
that absorb shock during locomotion.

2. The asymmetrical DJD in lower limbs and fracture patterns reviewed previously suggest
there may be tarsal asymmetry. Is this evidenced by directional asymmetry in tarsal
bones?
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Subsistence
1. Previous research finds greater hand trauma and domestic economy production in

females but greater DJD in males. Are there between-sex differences in carpal bones?
2. Based on findings of asymmetry in contemporary populations (hunter-gatherer

and industrialized) engaged in repetitive manual tasks, we might expect prehistoric
hunter-gatherers regularly engaged in repetitive manual tasks (food processing, tool
production) to exhibit a similar pattern. Is there directional asymmetry in the carpal
bones studied?

METHODS
Raw data collection and variables
Carpal and tarsal bones with standard anatomical reference points intact were included
only from adults who had well-defined features used in sex assessment (given the focus
on sex-based morphological variation). Sex assessment was carried out by Doran &
Dickel (1988a) using nonmetric pelvic and cranial traits and metric analysis of femoral
and humeral head dimensions following standard osteological methods (Buikstra &
Ubelaker, 1994). The final sample was 44 (27 males, 17 females) but sample size varies by
measurement. All measurements were taken on right and left sides, when available for
inclusion in the directional asymmetry analysis. Length and width of whole bones were
measured in millimeters for four carpals (capitate, hamate, lunate and scaphoid) and four
tarsals (calcaneus, intermediate cuneiform, navicular, talus). Length and width of talar
(trochlea) and calcaneal (load arm) articular surfaces were also measured. See Table 1 for
measurement details using standard anatomical landmarks.

Size difference data and directional asymmetry analysis
Directional asymmetry is assessed by comparing side differences (here, selected right and
left hand and foot bones). Confounding factors for directional asymmetry analysis are
sexual dimorphism and trait size variation, discussed in-depth in asymmetry methodology
papers that were applied to this analysis (Palmer, 1994; Palmer & Strobeck, 1986; Palmer &
Strobeck, 2003). Preliminary raw data inspection via scatterplots and outlier statistical tests
(e.g., Grubb’s statistic) were performed to eliminate confounding effects of outliers (data
recording, trait size, anomalous individuals) (Palmer & Strobeck, 2003). Univariate analysis
generated input for a mixed model ANOVA (sides × individuals) which was performed
in the Fluctuating Asymmetry Calculations Worksheet (V.11) (Palmer, 1994; Palmer &
Strobeck, 1986; Palmer & Strobeck, 2003).

Bone functional adaptation, index data and analysis
As discussed previously, bone functional adaptation in response to biomechanical forces can
be assessed by bone width as a proxy for relative bone strength (Garn, 1972; Rauch, 2005).
But, sexual dimorphism (Fairbairn, 1997; Jungers, 1984; Smith & Cheverud, 2002) and trait
size variation (Huxley & Tessier, 1936; Lewontin, 1966) confound analysis conducted on raw
width measurements. For example, a comparison between the width of the intermediate
cuneiform and the width of the talus simply demonstrates that the talus is a wider bone

Hoover and Berbesque (2018), PeerJ, DOI 10.7717/peerj.5564 10/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.5564


Table 1 Description of measurements on carpal and tarsal bones.

Variable Orientation Description

Scaphoid length proximal scaphoid tubercle-lateral most point
Scaphoid width palmar bisection of scaphoid ridge
Capitate length medial palmer proximal-distal end
Capitate width lateral thinnest point
Lunate length proximal proximal-distal end
Lunate width proximal medial-lateral sides
Hamate length lateral proximal end-distal ridge (between metacarpal facets)
Hamate width lateral most medial to most lateral side of the facet
Calcaneus lengtha lateral most posterior point of tuberosity to most anterior-superior point of cuboidal

facetb

Calcaneus widtha superior minimum horizontal width through body taken anterior to the tuberosity and
posterior to talar posterior facetb

Calcaneus load arm lengtha superior most posterior point of talar posterior articular surface to most anterior-superior
point of cuboidal facetb

Calcaneus load arm widtha superior most lateral point of posterior articular surface to most medial point of
sustentaculum talib

Talus lengtha superior flexor hallucis longis muscle sulcus at posterior aspect of talus to most anterior
point on articular surface for navicularb

Talus widtha superior most lateral point of articular surface for lateral malleolus to opposite point of
tibial articular surfaceb

Trochlea of the talus lengtha superior anterior-posterior planeb

Trochlea of the talus widtha superior perpendicular to projected line for maximum length of the trochleab

Navicular lengthc distal medial tuberosity to lateral cuneiform facet
Navicular widthc inferior between intermediate and medial cuneiform facets
Int. cuneiform lengthc superior proximal and distal midpoint
Int. cuneiform widthc superior thickest middle portion

Notes.
aWeight-bearing.
bSteele and Bramblett, 1988.
cShock-absorbing.

because it is a larger bone. Likewise, a comparison between male and female talus widths
simply demonstrates that males tend to be larger than females. An approach using raw
measurements does not further our understanding of meaningful trait differences beyond
absolute size.

A common resolution to the effect from sexual dimorphism is to take a ratio of two
variables, such as length and width (Fairbairn, 1997; Huxley & Tessier, 1936; Jungers, 1984;
Jungers, Falsetti & Wall, 1995; Lewontin, 1966; Mobb &Wood, 1977; Smith & Cheverud,
2002). We take length and width because width is an indicator of relative bone strength
(Garn, 1972; Rauch, 2005)—and length and width are commonly taken, easily replicated
measurements. As previously mentioned, resistance to bending force is related to bone
diameter because apposition of new bone on periosteal surfaces (a functional adaptation
to biomechanical stress) widens the bone (Macdonald, Hoy & McKay, 2013). Thus, the
ratio of length to width provides a useful index of relative bone strength and is a marker
of biomechanical forces acting on bone functional adaptation from activity. An index of
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one describes a bone that has equal length and width (1:1). A ratio of greater than one
describes a bone that is longer than it is wide and a ratio of less than one describes a bone
that is wider than it is long. When comparing bones that have indices that lie exclusively
either above or below the set point of one, the relative bone strength can be inferred by
smaller numbers. For example, if all the bones are wider than they are long (a ratio value
below 1), those with the smallest values are relatively wider than those with larger values
(but, see below for interpreting logged values).

The issue of trait size variation is common in asymmetry studies (Palmer, 1994; Palmer &
Strobeck, 1986;Palmer & Strobeck, 2003) and often resolved by scaling data to the natural log
after taking the absolute value of the length to width index (Mobb &Wood, 1977; Palmer
& Strobeck, 2003). The natural log creates a symmetric and homoscedastic dataset that
retains the original linear scale of standard deviation to the mean (the spread or variation
of the data) (Sokal & Rohlf, 1995). We applied this final transformation to our data and
that resulted in a total of 10 index variables (capitate, hamate, lunate, scaphoid, calcaneus,
calcaneus load arm, intermediate cuneiform, navicular, talus, talus trochlea tibia) to test
bone functional adaptation analysis. We transformed left and right sides separately because
each represents an individual measure of biomechanical stress. Equation (1) represents the
full transformation of raw length and width variables to the final index that accounts for
the confounding issues of sexual dimorphism and trait size. The index is derived from the
natural log (logn) of the absolute value of length-to-width ratio (L:W ) for each trait (x)

logn|x(L :W )|. (1)

An example of how this indexmitigates the confounding effects of sex-based and trait-based
size differences in bone metrics is seen in (Fig. 1 and Figs. S1–S9). The left panel of Fig. 1 is
a scatterplot of rawmeasurements for the navicular. The right panel of Fig. 1 is a scatterplot
of the index values. The distribution of raw data on the left reflects the absolute differences
in body size (males larger than females) while the right panel reflects real differences once
absolute size differences are eliminated by application of Eq. (1). Our index values describe
bones that are absolutely longer than they are wide excepting the calcaneus load arm which
is wider (than it is long) and the lunate which is equal in length and width (14.43:14.90 or
.99). See Table 2 for an average of ratio values using raw length and width measurements
(L:W) and an average of index values using Eq. (1). Table 2 demonstrates that the linear
scale of the original data is retained and can be interpreted in a similar manner as before
with the exception that values greater than zero are longer than they are wide (i.e., relatively
long) and values less than zero are wider than they are long (i.e., relatively wide). To return
to the earlier example, if all the bones are wider than they are long (a logged ratio value
below 0), those with the smallest values (larger negative values) are relatively wider than
those with larger values (closer to zero).

Tests for between-group differences using index variables characterized differences in
relative width as an indication of biomechanical stress acting on the area of interest. The
General Linear Model (GLM) was used to test for between-sex differences in tarsal and
carpal variables. All results were evaluated relative to confidence intervals, power, and
estimated effect size.
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Figure 1 Boxplot of navicular raw length and width measurements by sex (A); Boxplot of navicular in-
dex values by sex (B). (A) Each data point for the navicular represents an individual length (shaded box-
plot) or width value (unshaded boxplot); males and females are displayed separately. (B) Each data point
for the navicular represents an individual logged ratio index value; males and females are displayed sepa-
rately.

Full-size DOI: 10.7717/peerj.5564/fig-1

Table 2 Mean per variable for Ratio (L:W) and Index (logged L:W) variables.

Ratio value Index value

Calcaneus Load Arm 0.78 −0.25
Lunate 0.99 −0.03
Talar-Trochlea 1.02 0.02
Intermediate Cuneiform 1.08 0.08
Talus 1.23 0.21
Hamate 1.32 0.27
Capitate 1.85 0.61
Navicular 2.25 0.81
Scaphoid 2.47 0.90
Calcaneus 3.12 1.13

RESULTS
Outlier data identified by Grubb’s statistic were examined relative to other measurements
for the individual and were removed if inconsistent and not a result of data entry error (see
notes tab in the raw data file). Five outliers were found to be due to data entry error and
were corrected (see notes tab in the raw data file). All variables were normally distributed
(Table S1). Descriptive data for all variables by sex are found in Table S2.

Are there between-sex differences in tarsal weight-bearing index values and tarsal shock-
absorbing index values? As discussed in the introduction, body weight is born by the rear
foot (talus and calcaneus) during heel strike (Nordin & Frankel, 2012; Trinkaus & Shang,
2008) and impact shock is absorbed by the midfoot (navicular, cuboid, and cuneiform
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Table 3 Univariate results fromGLM for tarsal variables.

95% CI

Test F df Sig ηp Power Sex Mean SE n Lower Upper

Weight-Bearing Calcaneus Load Arm 0.20 1 0.66 0.00 0.07 Male −0.25 0.01 28 −0.28 −0.224
Female −0.24 0.02 18 −0.28 −0.207

Calcaneus 5.70 1 0.02 0.12 0.65 Male 1.15 0.01 28 1.13 1.177
Female 1.11 0.02 14 1.08 1.139

Talus 0.03 1 0.88 0.00 0.05 Male 0.21 0.01 28 0.19 0.236
Female 0.21 0.01 14 0.18 0.239

Trochlea 0.00 1 0.96 0.00 0.05 Male 0.01 0.01 28 −0.01 0.033
Female 0.01 0.01 14 −0.02 0.04

Shock-Absorbing Intermediate Cuneiform 3.77 1 0.06 0.07 0.48 Male 0.07 0.01 34 0.05 0.086
Female 0.10 0.01 20 0.07 0.126

Navicular 1.12 1 0.30 0.02 0.18 Male 0.80 0.01 34 0.78 0.822
Female 0.82 0.01 20 0.79 0.847

bones) (Nordin & Frankel, 2012). We used a multivariate GLM to assess sex differences and
test the hypothesis that Windover had a shared labor load that deviates from what might
be expected in typical hunter-gatherers with a sex-based division of labor. Results of the
multivariate GLM using index values (the index corrects for sex dimorphism and trait size
variation) confirmed expectations: there were no significant between-sex differences in
weight-bearing (Pillai’s Trace F = 1.522, df = 4, p= 0.205, ηp= 0.132; observed power =
0.437) or shock-absorbing tarsals (Pillai’s Trace F = 2.599, df = 2, p= 0.084, ηp= 0.093;
observed power = 0.495). Both tests are underpowered with small effect sizes. The p-value
for weight-bearing bones is high, which suggests minimal chance of Type II error. The
p-value for shock-absorbing bones, however, is low which might indicate Type II error
from the small sample size. Between-subjects tests for each index variable (Table 3, Figs. 2
and 3, Figs. S1–S5) indicate that the calcaneus exhibits a sex-based trend, but the p-value
(0.021) is not significant after multiple-hypothesis test correction (α= 0.0125).

Is there directional asymmetry that might indicate lateralization of the foot evidenced
in tarsals as suggested by asymmetrical DJD in lower limbs and fracture patterns? The
mixed-model results did not indicate significant between-side differences in raw tarsal
measurement variables (length and width for four bones and length and width for two
articular facets), which suggests there is no directional asymmetry or ‘footedness’ present
(Table S3).

Is there a between-sex difference in carpal bones based on previous research showing
greater hand trauma and domestic economy production in females? Or, is the previous
research showing greaterDJD inmale hands an equalizing effect on the skeletal embodiment
of different activity patterns? The p-values for the results of a multivariate GLM on carpal
index variables for between-sex differences were not significant (Pillai’s Trace F = 2.811,
p= 0.059, ηp= 0.0398; observed power= 0.639). The p-value exceeds the set α level (0.05)
by a very narrowmargin (0.09) and the test was underpowered (64%), both of which suggest
possible Type II error due to insufficient sample size (the female sample was much smaller
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Figure 2 Boxplot of weight-bearing tarsal variables (talus, calcaneus) by sex. Each data point represents
an individual index value (y-axis) for each of the four weight-bearing index variables on the x-axis. Male
boxplots are shaded; female boxplots are not shaded.

Full-size DOI: 10.7717/peerj.5564/fig-2

Table 4 Univariate results fromGLM for carpal variables.

95% CI

Levene Sig F df Sig ηp Power Mean SE n Lower Upper

Capitate 3.22 0.09 2.85 1 0.11 0.13 0.36 M 0.60 0.02 28 0.56 0.63
F 0.65 0.02 21 0.60 0.70

Hamate 2.15 0.16 1.11 1 0.31 0.05 0.17 M 0.28 0.02 21 0.24 0.32
F 0.25 0.02 14 0.20 0.30

Lunate 4.32 0.05 2.71 1 0.12 0.12 0.35 M −0.08 0.03 27 −0.15 −0.01
F 0.01 0.04 20 −0.08 0.10

Scaphoid 0.22 0.64 1.10 1 0.31 0.05 0.17 M 0.85 0.03 22 0.79 0.92
F 0.91 0.04 19 0.82 1.00

than the male sample)—an unfortunate problem common to many bioarchaeological
studies. Between-subjects tests for each index variable (Table 4, Figs. S6–S9) indicate no
significant between-sex differences for any variable.

Is there directional asymmetry that might indicate lateralization of the hand evidenced
in carpal bones as suggested by handedness in complex tasks for making tools and textiles?
The mixedmodel results did not indicate significant between side differences for raw carpal
measurement variables (length and width for four carpal bones), which suggests there is
no directional asymmetry or ‘handedness’ present (Table S3).
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Figure 3 Boxplot of shock-absorbing tarsal variables (navicular, intermediate cuneiform) by sex. Each
data point represents an individual index value (y-axis) for two shock-bearing index variables on the x-
axis. Male boxplots are shaded; female boxplots are not shaded.

Full-size DOI: 10.7717/peerj.5564/fig-3

DISCUSSION
Archaeological data reconstructing the environment surrounding the mortuary pond
suggest that the larger region was rich with riparian and terrestrial resources due to climate
warming at the start of the Early Archaic. As megafauna distributions increased in latitude,
Windover subsistence strategies progressively relied less on big-game hunting and more
on broad spectrum foraging (Doran & Dickel, 1988a; Halligan et al., 2016). Grave good
analysis and activity reconstructions suggest heavy overlap between the sexes in domestic
economies rather than a strict sex-based division of labor (Hagaman, 2009; Hamlin, 2001;
Smith, 2008; Smith, 2003; Wentz, 2006).

Tarsal variation
Based on previous analysis, we speculated whether the biomechanical stress of load carrying
might influence bone functional adaptation in the tarsals. Typical hunter-gatherer males
have faster walking speeds and tend to walk greater distances than females (Pontzer et al.,
2014). If males weremore specialized in hunting activities that required them to walk longer
distances at faster speeds than females, we might expect relatively wider (i.e., stronger)
weight-bearing bones in males (lower index values for talus and calcaneus variables)—this
expectation is predicated on body weight being born by the rear foot (talus and calcaneus)
(Nordin & Frankel, 2012; Trinkaus & Shang, 2008). We also might expect males to have
greater impact shock from locomotion, which is absorbed by the midfoot (navicular,
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cuboid, and cuneiform bones) (Nordin & Frankel, 2012). The archaeological interpretation
of the division of labor at Windover, while limited to grave goods, suggests a shared model
of labor. If males are less specialized and share domestic economy tasks with females, we
would expect no differences in the sexes and this is what we found. That said, both tests are
underpowered and there may well be significant differences in the shock-absorbing bones
that were not identified due to small sample sizes per variable. Still, the effect is very low
(in this study), which suggests that any differences that might exist are not likely to have
biological significance.

The calcaneus index values are the only ones that exhibit a clear sex-based trend (even
if not significant after correction for multiple hypothesis testing). Recall that the bipedal
heel strike during locomotion transmits body mass from the tibia to the rear foot (talus
and calcaneus) to the ground (Nordin & Frankel, 2012). Extant Hadza hunter-gatherers
tend to favor a midfoot strike (Pontzer et al., 2014) while the Daasanach pastoralists favor a
rearfoot strike (Hatala et al., 2013), the latter of which significantly impacts the calcaneus
more so than other bones and which increases dorsal spurs on the calcaneus (Weiss, 2012).
Calcaneal dorsal spurs are correlated with running economy (long calcaneal tuber= greater
energy cost) (Raichlen, Armstrong & Lieberman, 2011)—this has been noted in endurance
runners in Kenya who appear to favor a forefoot strike (Lieberman et al., 2015). Because the
Windover population was experiencing a comparatively wetter climate than in previous
archaeological periods (Halligan et al., 2016), big game was harder to find. We know that
the population had an abundance of local resources and emphasized broad spectrum
foraging over big-game hunting (Doran & Dickel, 1988b; Milanich, 1994). Male burials,
however, sometimes are associated with atlatls which suggests some big game hunting and
might explain why males have relatively longer calcaneus bones than females (higher index
values, closer to zero, are interpreted as relatively longer and lower index values, larger
negative numbers, are interpreted as relatively wider). While some research argues that
barefootedness causes wider feet (Lieberman, 2013), the situation is more complex. Clinical
evidence of the effect on the foot due to barefoot walking and running during growth
and development suggests that while the forefoot does widen (Franklin et al., 2015), the
overall length is increased at the expense of width even when controlling for potentially
confounding effects of demographic and developmental variation in activity and body
weight (Hollander et al., 2017). A large cohort (n= 520) of children aged 6–18 in South
Africa (habitually barefoot, even in school) and Germany showed that the wider foot cedes
to a longer foot in the South African barefoot cohort. Variation in published findings may
be related to factors such as the confounding factors influencing adult foot morphology
and, in the one other study conducted on habitually barefoot children (D’AoÛt et al.,
2009), factors such as BMI and ligament tensility (Hollander et al., 2017). The story of foot
morphology and barefootedness is not yet complete.

Foot lateralization
Despite evidence suggesting footedness would not be visible in the archaeological record
(Zverev, 2006), bioarchaeological evidence suggested theremight be—namely, lateralization
in the lower limbs might have resulted in lateralization of tarsal bones with the dominant
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foot having larger mid foot widths (due to biomechanical pressure to strengthen the bone
during impact) or rear foot widths (due to biomechanical pressure to strengthen the bone
during weight-bearing). Specifically, males had greater DJD on both knees and the left
talus and calcaneus (Smith, 2008:47). These lateral patterns did not translate to differences
in the tarsals bones in this population. As previously discussed, footedness in humans
develops in late childhood (11–12 years old) with a right skew (Gabbard, 1996; Gentry &
Gabbard, 1995) but its influence on walking gait is not significant and not likely to affect
the musculoskeletal system in the absence of other evidence of lateralization (Zverev, 2006).
A future study might confirm this by examining bone functional adaptation in response
to foot preference in populations with known physical activity patterns that evidence clear
lateralization. Further, the hallux has been identified as a potentially significant bone that
might be examined in bioarchaeological contexts due to its involvement in the extreme
plantarflexion associated with barefoot locomotion (Franklin et al., 2015).

Carpal variation
We postulated we would find between-sex differences in carpal bones due to increased
hand trauma (Wentz, 2010) and cervical vertebra DJD in females (possibly linked to
food and textile processing activities) (Adovasio et al., 2001; Adovasio, Soffer & Page, 2009;
Wentz, 2010) compared to males who had a higher frequency of severe DJD in both hands
(18% of the sample) (Smith, 2008). The multivariate test conducted on the index variables
for the four carpal bones did not result in a significant finding of difference between
males and females but, as noted in Results, the test was underpowered and the p-value
was only slightly higher than the significance threshold. Thus, a Type II error may have
occurred. The female carpal sample is smaller than the male carpal sample and there is no
way to predict what the differences might actually be. The between-subjects tests did not
indicate any individual variable was significantly different between the sexes but these were
underpowered due to small sample size, particularly for females and the hamate index.
Given that the female sample is much smaller than the male sample, we cannot comfortably
make any conclusions relative to the research question. We can, however, suggest that there
is very small (if any) effect size from activity marking on the bones due to biomechanical
stress (in this study). And we note that a lack of difference circumstantially supports prior
analysis suggesting heavy overlap between the sexes in labor as evidenced by male graves
containing tools for domestic labor (Hagaman, 2009; Hamlin, 2001; Smith, 2008; Smith,
2003;Wentz, 2006).

There were some interesting trends worth noting even if they are not part of statistical
hypothesis testing. First, female carpals (excepting the scaphoid) exhibit a greater range of
index values than males (Table 4, Table S2). Females engage in broader non-diet activity
(e.g., weaving, cordage) when male contributions to diet are larger (Waguespack, 2005).
Given that the Early Archaic is characterized by rapid change from big game hunting to
broad spectrum foraging (Doran & Dickel, 1988a; Halligan et al., 2016; Milanich, 1994)
and given that Windover females are engaging in both subsistence and non-subsistence
domestic activities (Hagaman, 2009; Hamlin, 2001; Wentz, 2010), perhaps our data reflect
this transition and greater variety in female workload. First, female specific activities include
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health care as evidenced by grave goods for medicine preparation (Hamlin, 2001; Wentz
& Gifford, 2007) and the Windover population experienced a variety of ailments (e.g.,
post-fracture bone alignment, surviving childhood stressors) (Wentz, 2006; Wentz, 2010;
Wentz et al., 2006). Second, the sex-based preference for tool materials suggests a gendered
ideology surrounding tasks (Hamlin, 2001). Finally, a between-sex health comparison
found females had poorer health, which might be attributable to greater life stress from a
heavier workload (Wentz et al., 2006). Thus, while we cannot conclude there are differences
in biomechanical stress on carpal bones, we can suggest there may be evidence of females
engaging in a wider variety of tasks. Ultimately and partly as a result of the very small effect
size, the carpals do not appear to be useful (at least in this study) in identifying between-sex
differences in biomechanical stressors from activity. But, perhaps the results reflect the
‘shared-load’ model put forward for Windover division of labor.

Hand lateralization
Our final area of inquiry was whether there was any evidence for lateralization in the carpal
bones; this was based on previous research that suggested that hunter-gatherers exhibit
strong handedness when engaged in complex tasks (Cavanagh et al., 2016; Robira et al.,
2018; Stock et al., 2013). The complex tool kit at Windover would have provided an avenue
for handedness to be archaeologically visible, but neither male nor female carpal bones
exhibited significant directional asymmetry that would suggest lateralization. We might
have expected some lateralization in males if the carpals were implicated in spear-throwing
and males were engaged in heavy hunting activities but the Windover archaeological
record does not suggest this was the case. Further, the bioarchaeological record shows that
DJD and MSM patterns were shared between the sexes which suggests that males were
not likely regularly engaged in hunting or the markers of habitual spear-throwing were
offset by changes in other aspects of wrist anatomy (Maki, 2013: 238). A previous study
on a population with clear handedness identified only two bones exhibiting directional
asymmetry, the lunate and trapezium (Reina et al., 2017) which suggests handedness is not
likely to be archaeologically visible.

CONCLUSION
This paper explores the biomechanical stresses acting on bone functional morphology
in carpal and tarsal bones as a novel method of identifying the embodiment of logistical
mobility and domestic economies (subsistence and tool manufacture). We identified key
characteristics of hunter-gatherer mobility and domestic economies that might leave their
mark on the bone. And, we used the wealth of data published on the Windover population
from other bioarchaeological and archaeological studies to guide our expectations of what
we might find in the carpals and tarsals.

We were particularly interested in the archaeological visibility of lateralization. Previous
studies on the subject of lateralization in humans (past and modern) are not entirely
on agreement on what expectations might be. Modern populations exhibit footedness
(Gabbard, 1996; Gentry & Gabbard, 1995) and handedness (Stock et al., 2013) but extant
hunter-gatherers only exhibit handedness during activities involving complex tasks

Hoover and Berbesque (2018), PeerJ, DOI 10.7717/peerj.5564 19/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.5564


(Cavanagh et al., 2016; Hurtado et al., 1985; Robira et al., 2018) and footedness has not
been studied. Even though hunter-gatherers have been studied in terms of gait and
locomotion (Fredericks et al., 2015;Hatala et al., 2013; Pontzer et al., 2014 #5479; Lieberman
et al., 2010; Niemitz, 2010; Pontzer et al., 2014), studies on modern populations indicate
that the influence of walking gait on footedness is not significant (Zverev, 2006). We
used raw measurements of length and width in carpal and tarsal bones to identify any
directional asymmetry in the sample (as a proxy for lateralization). There was no evidence
of directional asymmetry in the sample and our findings seem in line with the general
understanding that hunter-gatherers do not exhibit hand preference enough for handedness
to be archaeological visible. Further, hunter-gatherers, even if they exhibit foot preference
(as suggested by lateralization of musculoskeletal markers), foot preference has little impact
on the bones.

We were also interested in whether there were sex-based differences in weight-bearing
regions of rear foot (talus and calcaneus) and shock-absorbing regions of the mid foot
(intermediate cuneiform and navicular). We used an index variable for four tarsal bones
and two tarsal articular surfaces to examine sex-based differences in mobility. While
most hunter-gatherer populations might be expected to vary between the sexes based on
different mobility patterns, Windover hunter-gatherers were not expected to because the
archaeological evidence for labor suggests a shared load.We found no sex-based differences
in either area of the foot whichmay support the shared loadmodel given thatmale bones are
not showing a significant bone functional adaptation to greater locomotory biomechanical
stress (walking longer distances at greater speeds). But, the tests were underpowered due to
small sample sizes and female samples were smaller than male samples. Still, the effect size
was so small that any significant differences would not likely have biological significance.
Male calcaneus index values are higher (closer to zero on the logged scale) which suggests
they are relatively longer than female index values. The result is not statistically significant
after correcting for multiple hypothesis testing but it might signify some remaining male
hunting activity, or at the very least, some minimal between-sex differences in mobility
(Franklin et al., 2015; Fredericks et al., 2015; Hollander et al., 2017).

Finally, we asked if carpal metrics supported the shared load model (Hamlin, 2001) or
the partially shared load model with greater burden on the part of females (Wentz, 2006;
Wentz, 2010). We used an index variable for four carpal bones to examine differences in
activity (shared workload or sex-based division of labor) (Cavanagh et al., 2016; Robira
et al., 2018). Again, the tests were underpowered due to small sample sizes and female
samples were smaller than male samples. The female range of index values is greater than
the male and we suggest that perhaps females were engaging in a wider variety of tasks than
males; there is some bioarchaeological evidence to support this postulation in the model
for partially shared (male and female) tasks and heavier female workloads (Wentz, 2006;
Wentz, 2010). Ultimately, we note that (in our sample at least), the effect size of activity
pattern in differentiating the sexes is too small to be captured without a sufficiently large
sample size. If this is generally true (i.e., the same pattern is found in other collections),
carpals are not a useful proxy for sex-based activity reconstruction in the absence of other
traditional indicators.
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While we cannot infer too deeply from the site because it is a mortuary pond and only
reflects internment ritual, we can argue that our findings muddy the water in terms of
the shared load model. Males and females are engaged in similar mobility patterns that
emphasize weight-bearing rather than shock-absorbing activity. But, there is some evidence
for sex-based differences in mobility—males are potentially still ranging further afield than
females in pursuit of increasingly rare big game or simply have different locomotive patterns
than females. While there are no sex-based differences in carpal bones, greater variation in
female index values suggest that females may have been more specialized to specific tasks,
or some engaged in female specific activities (as suggested by previous assessments of the
high value placed on female labor at Windover) (Adovasio, Soffer & Page, 2009). But, if our
findings are typical of how bone is marked by activity, the effect size of sex-based difference
is too small to be of great use in interpreting activity patterns at archaeological sites. Finally,
we can conclude that lateralization in the wrist and foot is not archaeologically visible in
this population.
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