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Abstract 10 

 The obesity epidemic in humans is juxtaposed by observations of passerine birds 11 

exhibiting fine-scale body mass regulation. The ecology literature is replete with research 12 

into why these animals regulate body weight, citing trade-offs between competing 13 

pressures such as emaciation and predation. Yet studies on the underlying mechanisms of 14 

mass regulation in these animals are scarce. Maintaining or decreasing weight is obviously 15 

achieved by limiting food intake. However, there are numerous reasons why an animal may 16 

not control ingestion precisely. This review investigates the plausibility of possible 17 

behavioural and physiological mechanisms to adaptively maintain or decrease body mass in 18 

birds and other animals. Candidate behavioural mechanisms include exercising, and 19 

fidgeting, while physiological mechanisms could include reducing digestive efficiency or 20 

mitochondrial efficiency. 21 
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Teaser: Passerine birds exhibit fine-scale weight regulation. Why they do this has been 22 

widely studied, but little is known about how. Evidence for a plethora of possible 23 

behavioural and physiological mechanisms is reviewed.  24 



Many people who have unfettered access to food become progressively fatter [1]. Passerine 25 

birds, in contrast, do not. My analysis of recently published data show that birds living in 26 

close proximity to feeders, providing them with an almost limitless food supply, nonetheless 27 

maintain very consistent body weights (Figure 1A). Yet while body weight control is 28 

documented for a number of wild species [e.g. 2], there has been relatively little research 29 

into how they achieve this feat. The aphorism that weight can only be lost when your 30 

energy intake is lower than your energy expenditure may be sage advice for the dieter [c.f. 31 

3] but belies the plethora of mechanisms that could manipulate the body’s energy stores 32 

and thus play a role for those species, and those individuals, that stay slim in a food-rich 33 

environment. In this essay, I consider these mechanisms and the possibility that they are 34 

involved in the impressive weight consistency, and even regulated weight reduction, 35 

exhibited by certain birds and other species. 36 

Birds and other animals staying slim 37 

The life of a bird can be cut short by starvation [4], with an unpredictable cold snap both 38 

reducing food availability and increasing energy expenditure [5, 6]. Succumbing to disease 39 

can be equally insidious by restricting foraging [7]. Yet even when food is available ad 40 

libitum, passerine birds do not store copious amounts of adipose tissue to guard against 41 

such misfortunes – they do not get fat (Figure 1 A and B). Rather, they control their body 42 

weight carefully, trading off fat stores between the countering demands of enduring the 43 

winter (or surviving disease) and escaping predation. They put on a limited amount of extra 44 

fat when predicting food scarcity and remove that fat when predation pressure mounts [8-45 

13]. This trade-off occurs because extra adipose tissue probably decreases a bird’s capacity 46 

to accelerate when fleeing a predator [14-16]. For example, Zimmer et al. [10] argue that 47 



the loss of mass exhibited by tufted ducks Aythya fuligula and teal Anas crecca in response 48 

to predatory pressures afforded them a more favourable wing loading and increased their 49 

flight power by 7-10%, probably enhancing their flight performance (cf. [17]). 50 

How did the ducks accomplish this reduction of their body weight to a lower homeostatic 51 

set point? Zimmer et al. [10] interpret the mass lost as entirely due to a voluntary reduction 52 

in foraging. However, greenfinches Cardeulis chloris appear to employ a physiological, 53 

rather than behavioural, mechanism to achieve the same ends. Lilliendahl [18] observed 54 

that greenfinches stopped foraging and sat motionless for 20 minutes when a mock hawk 55 

was flown overhead. During these periods the greenfinches lost body mass, as would be 56 

expected, but at a much higher rate than during the night or even at the end of the day 57 

once foraging ceased. This suggests that they lost mass adaptively. The two conceivable 58 

mechanisms to accomplish this are an increase in metabolic rate or an emptying of the 59 

digestive tract. 60 

In general, an animal striving to maintain, or reduce, its body mass in the face of high food 61 

availability has, at least in theory, a number of behavioural and physiological levers it could 62 

pull. Most obviously, it could reduce foraging time [19] and consequently ingest no more 63 

calories than it would do during times when food availability is lower. This behavioural 64 

strategy could also serve to reduce exposure time to predators [20-22]. Specifically, foraging 65 

time could be reduced either by decreasing the period during which foraging attempts are 66 

made [23] or spending less time at feeding sites [24], or by ingesting less food per visit to 67 

the feeding site [25]. Sometimes, however, it may be the case that animals are unable to 68 

resist the lure of easily available, attractive food [26] due to a deep-seated drive to eat 69 

whenever possible as an adaptation to an unpredictable environment [27]. They may opt to 70 



binge-feed during windows of opportunity when predators are absent [22], or when the 71 

commuting distance back to their territory is long [28], or if they are young, unconfident 72 

foragers [28]. Alternatively, an animal may be obliged to keep feeding beyond an energy 73 

optimum if its diet is nutrient poor [29; in particular, their Figure 7d]. Moreover, given the 74 

plethora of influences on foraging behaviour, it is unclear that feelings of satiation moderate 75 

feeding behaviour sufficiently accurately to absolutely maintain target body weight. For 76 

these reasons, it is likely that other behavioural mechanisms, and quite possibly 77 

physiological mechanisms, form part of the capacity of some animals to control against 78 

weight gain. 79 

While the ecology literature is abound with studies observing weight control by animals in 80 

order to trade off against competing threats, studies on the mechanisms that animals 81 

employ to achieve this are scarce. The remainder of this essay explores this knowledge gap, 82 

by investigating the plausibility of possible behavioural and physiological mechanisms to 83 

correct for over-feeding (Figure 2). 84 

Adjusting activity and posture 85 

People seeking to control their weight are advised to increase their exercise levels [30, 31]. 86 

Animals may also enact this strategy. In endotherms, activity that is sustainable for minutes 87 

to hours can increase metabolic rate up to around 10-fold [32], and bursts of exercise 88 

incorporating intermittent rest periods can support power outputs considerably higher [33, 89 

34]. Possibly apart from shivering [35, 36], activity affords the most rapid way to reduce 90 

weight through the reduction of tissue mass. There is little evidence that animals go for the 91 

equivalent of a jog. Rather, if indeed animals undertake exercise to control their weight they 92 

perhaps incorporate this in involuntary tasks, for example by spending more time 93 



interacting with conspecifics, or moving to a new location at an energetically sub-optimal 94 

speed or via more energetically demanding routes [37-39]. Perhaps for this reason, as yet 95 

there is little direct evidence of animals undertaking activity for the purposes of ‘keeping in 96 

good physical shape’ [40], though there is indirect evidence building [41-43]. Nonetheless, 97 

animals including mice, rats and frogs were recorded running on a wheel in the wild when 98 

one was made available [44]; an unnatural context but one that demonstrates the capacity 99 

of animals to undertake activity of their own volition and of a type not directly for the 100 

purpose of foraging, socialising or reproducing. 101 

Subtler adjustments to activity, but enacted over extended periods, can also serve to 102 

substantially increase overall energy expenditure. Protracted fidgeting is one example, 103 

though its effects on weight control have only been investigated in humans [45]. Chronic 104 

differences in body posture is another; standing rather than sitting is energetically more 105 

expensive in a range of morphologically diverse animals including people [46, 47], broiler 106 

chickens Gallus gallus domesticus [48], canaries Serinus canaria [49] and barnacle geese 107 

Branta leucopsis [50]. Sometimes, the same activity can incur different energy costs without 108 

apparently differing itself. For example, in volant animals, increased body mass increases 109 

wing loading and thus the power costs to fly [51, 52]. In theory, then, for volant species, 110 

greater weight from feeding may result in heightened flight energy costs serving as a 111 

negative feedback mechanism to weight gain. 112 

 113 

 114 

 115 



 116 

Text box: Singing away supper 117 

Could singing, an activity undertaken by many animals, serve as a form of weight-control 118 

exercise? The energy costs to sing have only rarely been measured in humans [53], and are 119 

low. Nonetheless, in species for which singing is a key element of their ecology, this activity 120 

might be employed to increase levels of daily energy expenditure. Direct measurements of 121 

singing energy costs in birds have been obtained for canaries and pied flycatchers Ficedula 122 

hypoleuca, which experience an increase in metabolic rate equivalent to that required to 123 

stand, representing a 2.5-fold increase in metabolic rate during sleep [49, 54]. Thus if birds 124 

commit to chorus for a considerable portion of the day it could substantially increase their 125 

daily energy expenditure and reduce their body weight. 126 

 127 

Adjusting the background costs of existing 128 

The idling costs of the body – the on-going metabolic process necessary to maintain 129 

functional integrity in the long term – are encompassed in the body’s background metabolic 130 

rate. Background metabolic rate can represent a substantial, even the majority, proportion 131 

of an animal’s daily energy costs, both in humans [55] and in other animals [56], so changes 132 

in background metabolic rate could have a distinct influence on weight control. Indeed, 133 

background metabolic rate is known to vary in response to body condition. Some animals 134 

reduce their background levels of oxygen consumption in response to food restriction, 135 

either in the laboratory [57, 58] or in a natural context [59, 60], presumably to elongate the 136 



period of time before they would reach emaciation. This has also been observed, albeit 137 

subtly, in humans [61, 62]. 138 

 139 

Background metabolic rate can also increase, during periods of food glut. In rats, 140 

background metabolic rate increases in response to overeating [63]. Animals provided a diet 141 

of various highly palatable foods consumed 80% more energy yet gained only 27% more 142 

mass than control animals, exhibiting around a 30% increase in background metabolic rate 143 

[64]. In rodents, it is clear that a key mechanism to upregulate background metabolic rate is 144 

brown adipose tissue, which contains uncoupling proteins that can generate heat without 145 

the animal being active - non-shivering thermogenesis [64, 65]. Mice employ this 146 

mechanism to compensate for overeating, known as adaptive diet-induced thermogenesis; 147 

the magnitude of their thermogenesis increases overtime on an obesogenic diet [66]. In 148 

humans it is less clear to what extent background metabolic rate can increase in response to 149 

overeating [45, 67, 68], however synthetic uncoupling agents were used to treat obesity in 150 

the 1930s (until over-zealous prescriptions of this elixir caused severe side effects) [69]. For 151 

several decades we have known that humans also have brown adipose tissue [70-72]. The 152 

mass of brown adipose tissue in the human body is typically hundreds of grams [70] and its 153 

oxidative metabolism can increase at least 10-fold in response to cold exposure resulting in 154 

a doubling of whole-body energy expenditure [73], with an even greater increase following 155 

acclimation to chronic cold exposure [74]. Direct evidence for a role of brown adipose tissue 156 

in the regulation of energy stores in the human body has yet to be forthcoming, however 157 

there is indirect evidence for this mechanism in the form of inverse relationships between 158 

brown adipose tissue and body mass index. Participants with a higher body mass index are 159 

less likely to have brown adipose tissue detected by PET and CT scan [75], and only people 160 



who do not exhibit cold-activated brown adipose tissue develop greater visceral fat with age 161 

[76].  162 

 163 

Shivering thermogenesis is another major mechanism by which background metabolic rate 164 

can be increased [36]. It is a powerful generator of body heat; humans, for example, 165 

experience a several-fold increase in metabolic rate during a bout of shivering [35]. While 166 

shivering is presumed to have the singular aim of defending the body from hypothermia, at 167 

least in theory animals could seek out temperatures below, or even above, their thermal 168 

neutral zone [77] to precipitate increases in background metabolic rate due to shivering [36, 169 

78] or evaporative heat loss [79], respectively. 170 

 171 

Birds do not have brown adipose tissue but nonetheless have the ability to increase heat 172 

generation in a similar fashion to mammals [80]. Juvenile king penguins, for example, exhibit 173 

expression of the avian homologue of mammalian uncoupling protein once they have 174 

become adapted to cold seawater [81]. During the breeding period, king penguins fast for 175 

up to several weeks while guarding their egg or chick, and to reduce the rate that their 176 

endogenous energy stores are depleted they decrease their background metabolic rate by a 177 

third [60], in part by reducing the abundance of avian uncoupling protein [80]. Levels of 178 

non-shivering thermogenesis and metabolic rate return after the penguins have fed for 179 

three consecutive days [60] - an example of background metabolic rate increasing in birds in 180 

response to food ingestion. Presumably, the reason for this increase in metabolic rate by the 181 

penguins is not to counteract excessive food consumption, however it represents some of 182 

the only evidence to date of background metabolic rate increasing in response to feeding in 183 

an animal outside of the laboratory. As far as I am aware, no study to date has yet 184 



investigated whether any species in the wild adjusts its background metabolic rate to 185 

control body weight, despite the plethora of studies documenting many endotherms varying 186 

their body temperature considerably [82], sometimes up to sublethal temperatures [79, 83]. 187 

 188 

Certain uncoupling proteins in brown adipose tissue function by reducing the amount of 189 

usable energy (adenosine triphosphate; ATP) generated per volume of oxygen consumed in 190 

the mitochondria, with the rest dissipated as heat [84]. This is termed the P-O (phosphate to 191 

oxygen) ratio. Thus the lower the ratio, the less efficiently an animal converts its metabolic 192 

substrates into energy; it uses up more endogenous stores for a given amount of energy 193 

expended on background metabolic processes such as protein synthesis, or front-line 194 

processes associated with active behaviours. Why might some animals exhibit a reduction in 195 

their metabolic efficiency during periods of energy acquisition? This reduced efficiency 196 

comes with benefits. At lower mitochondrial membrane potentials associated with lower P-197 

O ratios, cell respiration also creates fewer harmful reactive oxygen species (ROS) [85, 86] - 198 

molecules which cause cellular and DNA damage. I propose that species which, in contrast 199 

to king penguins, do not undergo dramatic fluctuations in body mass nor aspire to large 200 

endogenous fat stores may nonetheless gorge when privy to a food glut, accepting a short-201 

term increase in weight in order to reduce production of ROS. The high availability of energy 202 

enables them to reduce their rates of ROS production by decreasing their P-O ratio, which 203 

will increase their rate of substrate utilisation to maintain their levels of available ATP, their 204 

body weight consequently reverting over time to its previous set point. 205 

 206 

While uncoupling proteins are perhaps the most studied mechanism for controlling 207 

metabolic efficiency, other mechanisms exist [see 84 and references therein]. For example, 208 



specifically mitochondrial efficiency also depends on the fatty acid composition of the 209 

mitochondrial membranes because this composition affects both the fluidity of the 210 

membranes and the uncoupling activity of the mitochondrial carriers. Moreover, slippage of 211 

the proton pumps may influence mitochondrial efficiency. Finally, cellular-level efficiency 212 

can be decreased by stimulating futile cycles that generate ATP without any concomitant 213 

generation of work. To give an example, sarcolipin is a regulator of the calcium ion-ATPase 214 

pump that can uncouple calcium ion transport from ATP hydrolysis, thereby stimulating 215 

muscle thermogenesis and, in turn, increasing background metabolic rate [87]. 216 

 217 

Adjusting assimilation efficiency 218 

Bomb calorimetry calculates the energy density of a food by measuring the heat released as 219 

a result of incineration [88]. When used to determine the calorie content of meals it returns 220 

overestimates [89] because the gut intestinal tract digests food rather than burning it, and 221 

thus does not extract all of the available energy. Digestive (assimilation) efficiency is the 222 

percentage of energy present in ingested food taken up by the body as that food transitions 223 

through the gut. In other words, it is the proportion of ingested food that is digested. In 224 

humans, digestive efficiency of protein has been measured at around 86%, and up to nearly 225 

100% for available carbohydrates [90]; for energy in meals as a whole typical digestive 226 

efficiency is around 90% [91]. Yet surprisingly little research has investigated the variability 227 

of digestive efficiency with quantity of food intake. Olefsky [92] found no change in the total 228 

amount of fat in the stools of people when overfed by 2000 kcal a day for several weeks, 229 

suggesting that there was no malabsorption by the gut resulting from high volumes of food 230 

ingestion. Similarly, Levine et al. [45] found no change in stool fat content when people 231 



overate by 1000 kcal each day for 8 weeks. Unfortunately, because these studies measured 232 

fat proportions in the stool rather than its entire energy content, and did not account for 233 

stool volume, they do not provide strong insights into whether the volume of food ingested 234 

changed digestive efficiency. 235 

In animals, although the research is almost as thin, several investigations relating digestive 236 

efficiency to food volume suggest that efficiency can decrease in response to greater energy 237 

intake. Lizards exhibit slight decreases in digestive efficiency when given an ad lib diet [93], 238 

while both perch Perca fluviatilis and midge larvae exhibit a negative correlation between 239 

food intake and digestive efficiency [94, 95]. In some animals at least, this raises the 240 

possibility that they reduce relative energy assimilation when food intake is higher. A simple 241 

way for the body to purposefully reduce digestive efficiency would be to simply move 242 

ingested food rapidly through the gut to limit absorption [96]. Importantly then, while 243 

energy intake is usually measured as food ingested, ingested calories are only available to 244 

the body once they have been absorbed through the gut intestinal tract. 245 

I offer the conjecture that in some contexts it might be optimal for an animal to gorge on 246 

food when available to guarantee possession of it, and then assess how much of the 247 

contents should be assimilated. In a situation where an animal is regulating its body mass 248 

after gorging, the animal might respond by accelerating gut transit time such that the 249 

energy it assimilates is considerably less than the energy it ingested. 250 

Conclusions 251 

In an environment of abundant nutrition, an animal aspiring to control its weight, for 252 

example by keeping it constant, would most obviously achieve this by limiting its food 253 



intake. Yet there are numerous reasons why an animal may not choose, or be able, to limit 254 

ingestion to exactly match its energy expenditure, and thus over time its weight will 255 

increase. In these situations, either energy expenditure must be increased to match food 256 

intake or the efficiency with which food is converted to energy must be decreased. Some 257 

human individuals increase exercise rates in an attempt to stave off weight gain, but we do 258 

not know whether our bodies can also instigate any purely physiological mechanisms that 259 

either increase energy expenditure or decrease digestive efficiency. And we know even less 260 

about the strategies that animals employ in these regards. 261 

This review has synthesised various sources of indirect evidence (Figure 2) to suggest that 262 

the process of energy balance could involve a greater array of mechanisms than simply 263 

matching energy-in, through the amount of food consumed, to energy-out dictated by 264 

involuntary activity. It seems quite possible that an animal can balance its energetics, or 265 

indeed force a negative energy balance, through ‘exercising’, fidgeting or shivering to 266 

increase daily metabolic rate, or by decreasing the efficiency with which it extracts energy 267 

from ingested food either at the level of the gut or the cell. 268 

269 



  270 

Outstanding questions box 271 

We presently know little about the possible mechanisms that animals use to control their 272 

energy throughput and thus regulate body mass.  Clever experimental designs for the field 273 

will be required to uncover the full gamut of strategies that different species employ to 274 

control body weight, and how the level of impact of those strategies is moderated between 275 

individuals with different nutritional and physiological makeups. It is now possible to 276 

measure frequently the locations and body masses of small animals such as passerines in 277 

free-living conditions, and track those data within individuals [19, 97, 98]. Furthermore, 278 

animal-instrumented devices to measure subtle behaviours such as body posture are 279 

becoming progressively more miniaturised [99], as are devices for measuring heart rate as a 280 

proxy for energy expenditure [100]. We do not yet have the technology, however, to 281 

capture the stools of free-ranging animals consistently, or to measure UCP activity non-282 

invasively. 283 

However, there is one fairly simple experiment, not yet undertaken, which requires 284 

relatively little technology and could well prove insightful. Sitting ducks ensure they get 285 

airborne quickly when hawks and foxes come preying, by maintaining a lean take-off weight 286 

[10]. In contrast, humans no longer fear predators, which might explain why they do not 287 

regulate their body mass so keenly [101]. Another, and strong, possibility is that people 288 

often ingest calorie-dense meals, which overrides their weight-control systems [1], with 289 

particularly sugar-dense meals possibly reducing cellular metabolic rate [102], exacerbating 290 

weight gain. Are the weight-control systems of flighty, predator-fearing species immune to 291 

exceptionally palatable, high-density foods, or will such animals nonetheless succumb to the 292 

‘Western disease’ as our own species has done? 293 
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 302 

Figure 1. (A) The body masses of great tits Parus major were automatically measured when 303 

they foraged ad libitum at feeders placed in their natural habitat. Differences in their body 304 

mass between the first measurement obtained and the final measurement (spanning up to 305 

40 days) were negligible - the line of best fit (full line) is very close to the line of unity. 306 



Analysis undertaken on data published in [19] and made available in a Dryad data package 307 

[103]. (B) Similar body mass consistency is displayed by passerines in a laboratory context. 308 

Zebra finches Taeniopygia guttata living in cages with ad libitum access to food for 57 days 309 

exhibited no systematic change in body mass. Again, the line of best fit is very close to the 310 

line of unity. Data reported in [104]. 311 

312 



 313 

 314 

Figure 2. Possible mechanisms in humans and other animals to regulate energy throughput 315 

in order to maintain or even decrease body mass when food availability is high. Most 316 

obviously, foraging time could be reduced (open arrow) to reduce energy intake. Beyond 317 

this, increases in metabolism would serve to increase energy expenditure (black arrows), 318 

while the efficiency with which food is converted to energy could be reduced both in terms 319 

of digestion efficiency and the efficiency with which metabolic substrates are converted into 320 

energy (grey arrow). 321 

  322 
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