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Abstract 24 

The purpose of this study was to investigate the benefit of landmark registration when applied 25 

to waveform data. We compared the ability of data reduced from time-normalised and 26 

landmark registered vertical ground reaction force (vGRF) waveforms captured during 27 

maximal countermovement jumps (CMJ) of 53 active male subjects to predict jump height. 28 

vGRF waveforms were landmark registered using different landmarks resulting in four 29 

registration conditions: (i) end of the eccentric phase, (ii) adding maximum centre of mass 30 

(CoM) power, (iii) adding minimum CoM power, (iv) adding minimum vGRF. In addition to 31 

the four registration conditions, the non-registered vGRF and concentric phase only were time-32 

normalised and used in subsequent analysis. Analysis of characterising phases was performed 33 

to reduce the vGRF data to features that captured the variability of each waveform. These 34 

features were extracted from each condition’s vGRF waveform, time-domain (time taken to 35 

complete the movement), and warping functions (generated from landmark registration). The 36 

identified features were used as predictor features to fit a step-wise multilinear regression to 37 

jump height. Features generated from the best performing registration condition were able to 38 

predict jump height to a similar extent as the concentric phase (86-87%), while all registration 39 

conditions could explain jump height to a greater extent than time-normalisation alone (65%). 40 

This suggests waveform variability was reduced as phases of the CMJ were aligned. However, 41 

findings suggest that over-registration can occur when applying landmark registration. Overall, 42 

landmark registration can improve prediction power to performance measures as waveform 43 

data can be reduced to more appropriate performance related features.   44 
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Introduction 45 

Biomechanical analysis of kinetic and kinematic waveforms has traditionally identified ‘key’ 46 

features that have been related to the performance of a movement or to injury mechanisms. 47 

This process is commonly referred to as discrete point analysis and reduces the dimensionality 48 

of a waveform to a number of selected features (commonly chosen prior to analysis) for 49 

magnitude and timing comparisons (van Emmerik et al., 2016). However, discrete point 50 

analysis has significant limitations as it can a) discard valuable information (Dona et al., 2009; 51 

Donoghue et al., 2008), b) compare features with unrelated neuromuscular capacities (Richter, 52 

Marshall et al., 2014), c) result in biased non-directed hypothesis testing (e.g., testing of every 53 

feature found in previous research; Pataky et al., 2013), and d) limit the ability to predict 54 

performance outcomes or injury mechanisms (Grabowski et al., 2010; Hewett et al., 2005). In 55 

response to these limitations, research has analysed continuous waveforms as features outside 56 

the current discrete points could provide more meaningful performance or injury related 57 

measures (Hamill et al., 2000; Schöllhorn et al., 2002).   58 

Currently, waveform analysis does not often account for the inherent timing/phase variability 59 

within and between subjects’ and this can limit direct magnitude comparisons of physiological 60 

events (Chau et al., 2005; Godwin et al., 2010). Without decreasing the phase variability, 61 

significant findings may not truly reflect the movement physiology (Sadeghi et al., 2000). The 62 

main approach to address this limitation is to linearly time-normalise data to match the duration 63 

of different trials by converting the time-domain (frames or seconds) to a percentage of time 64 

(0-100%; Page and Epifanio, 2007). However, it has been seen that time-normalisation does 65 

not fully discard all time/phase variability (Buzzi et al., 2003). Therefore, magnitude 66 

comparisons can consequently be performed across different phases of a movement. Figure 1A 67 

depicts time-normalised vertical ground reaction force (vGRF) curves for two subjects’ when 68 

performing the take-off phase of a countermovement jump (CMJ). The end of the eccentric 69 
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phase (denoted by a red dot) differs between subjects. Subsequent waveform analysis would 70 

result in magnitude comparisons during two distinctly different physiological phases of a CMJ. 71 

Results may therefore be wrongly interpreted as magnitude differences rather than as a result 72 

of comparing different physiological phases of the movement due to differences in timing. 73 

Additionally, time-normalisation changes the original timing of the movement, which may be 74 

an important aspect in assessing efficiency of a movement or the risk of injury. To examine the 75 

timing differences across participants, the time-domain (i.e., the time taken to complete a 76 

movement) can be extracted (Figure 1B). This would provide greater insight into waveform 77 

data as differences in the timing of an event or phase has been thought to be as important as 78 

magnitude differences (Levitin et al., 2007). 79 

A possible solution to account for timing/phase variability in waveforms is to landmark register 80 

the signal to meaningful events inherent within the movement. Landmark registration is a 81 

technique that ‘stretches’ or ‘shortens’ phases of a movement that occur between specified 82 

landmarks (i.e. landmarks, key frames) while maintaining each curve’s individual shape and 83 

amplitude (Crane et al., 2010; Levitin et al., 2007). Registering to specific landmarks (e.g., 84 

peak centre of mass power) might allow for a more valid waveform magnitude analysis by 85 

aligning the signal to distinct physiological events. In addition to more direct comparisons of 86 

magnitude, landmark registration also creates a time-warping function. This function 87 

represents the time manipulation required to align the specified landmarks and can be further 88 

examined to assess timing differences of physiological events within a movement (Levitin et 89 

al., 2007; Ramsay, 2006). No research has been conducted on the practical benefit of landmark 90 

registration on waveform data. Additionally, no research has suggested the number of 91 

landmarks necessary to allow for valid magnitude analysis without over-fitting the data.  92 

This study aims to examine the benefit of landmark registration when applied to waveform 93 

data. Reducing waveform data that has been landmark registration, as compared to time-94 
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normalised data, could provide more appropriate features that have a greater ability to predict 95 

performance measures or injury mechanisms. To assess this aim, a vertical CMJ will be used 96 

as it has a good performance indicator (jump height), is well-researched, and the vGRF can 97 

theoretically describe 100% of jump height by the impulse-momentum relationship. Landmark 98 

registering to align phases in a vGRF waveform during a CMJ is implemented in order to 99 

decrease the inherent timing/phase variability, thereby, increasing the ability of the vGRF 100 

waveform features to describe jump height. It is hypothesised that features extracted from the 101 

magnitude-domain, time-domain (time taken to complete the CMJ), and time-warping function 102 

in a landmark registered vGRF will increase the prediction power to jump height over features 103 

extracted from a time-normalised waveform. Additionally, it is hypothesised that increasing 104 

the number of landmarks will continue to increase prediction power. 105 

Methods 106 

This cohort study was captured as a normative data set in the Sports Surgery Clinic, Dublin as 107 

part of an anterior cruciate ligament study. The study received ethical approval from the 108 

University of Roehampton, London (LSC 15/122) and the Sports Surgery Clinic Hospital 109 

Ethics committee (25AFM010) and was registered on clinicaltrials.gov (NCT02771548). 110 

All subjects were male athletes, aged between 18 and 35 years, recreationally participating in 111 

multidirectional field sports (i.e. Gaelic Football, Soccer, Hurling, Rugby). The dataset consists 112 

of 53 subjects (mean ± SD; age = 24.8 ± 4.8 years, mass = 84 ± 15.2 kg, height = 180 ± 8.0 113 

cm) who were free from lower limb injury at the time of testing. Subjects wore their own 114 

athletic footwear during the testing protocol. 115 

Before data collection, subjects undertook a standardised warm-up including a 2-minute jog, 5 116 

bodyweight squats, and 2 submaximal and 3 maximal CMJs. Each subject then performed 3 117 

maximal trials with a 30-second rest between trials. The testing took place in the biomechanics 118 
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laboratory of the clinic using two AMTI force platforms (1000Hz; BP400600, AMTI, USA). 119 

Force data were collected for each leg on a separate platform and were subsequently summed 120 

for further analysis. Analysis of the data was completed in the following order: data processing, 121 

landmark registration of the data, data reduction to discrete features utilising the analysis of 122 

characterising phases (ACP), and statistical analysis between data conditions. 123 

Data Processing 124 

Maximal jump trials for each subject were analysed. A custom MATLAB code (The 125 

MathWorks, Natick, USA) was used to perform all data processing and analysis. Force data 126 

were low-pass filtered using a fourth-order Butterworth filter (15Hz cut-off frequency). CoM 127 

velocity was calculated by the integration of the body weight adjusted vGRF divided by the 128 

mass of the subject. CoM velocity at take-off was used to calculate jump height for each trial. 129 

CoM power was further calculated as the dot product of vGRF and CoM velocity. The vGRF 130 

and CoM power curves were normalised to body mass and time-normalised to 100% from start 131 

of the countermovement to take-off. Start of the countermovement was determined when vGRF 132 

fell below 97.5% of body weight, and take-off occurred when vGRF fell below 25N. The time-133 

domain, that is the time taken (seconds) to complete the take-off phase, was extracted and time-134 

normalised. Lastly, as the gold-standard in the literature, the vGRF concentric phase (CON) 135 

was also analysed as the impulse generated during this phase is a key determinant of jump 136 

height and provides most of the information necessary to describe jump height (Kirby et al., 137 

2011). CON was extracted and time-normalised from the end of the eccentric phase, 138 

determined as the first positive point in the CoM power curve, to take-off.  139 

Landmark registration 140 

Four different landmarks (Figure 2A) were determined from the time-normalised (TN) vGRF 141 

and CoM power curves: minimum GRF (1), minimum CoM power (2), end of the eccentric 142 
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phase (3), and maximum CoM power (4). These discrete points represent a change in phase or 143 

movement direction of the jump (Aragón-Vargas and Gross, 1997; Cormie et al., 2009; 144 

Dowling and Vamos, 1993; Morrissey et al., 1998; Petushek et al., 2010). These events were 145 

added one at a time resulting in four different registration conditions: warped3, warped4, 146 

warped5, and warped6 (Figure 2B). The first and last landmarks were the start of the CMJ and 147 

take-off, respectively, for every registration condition. 148 

To register each curve to the specified landmarks, a warping function was applied to the TN 149 

vGRF and time-domain curves. First, a time-warping function was created, based on each trial, 150 

that determined whether the phase between two successive landmarks should be ‘stretched’ or 151 

‘shortened’. The landmark registration approach applied in this study was based on adjusting 152 

the differentiation of time (dTime) using a piecewise velocity registration rather than a 153 

piecewise linear or spline registration. This study did not use a piecewise linear registration (as 154 

employed by Ramsay, 2006) because it generates sharp corners at landmarks (Figure 3; zoomed 155 

in red time signal). Additionally, a piecewise spline registration approach can result in 156 

“backward flowing” time (Figure 3; blue signal), which is not possible and hence should not 157 

be used. The reader should note that other spline methods have been developed to keep the 158 

time function strictly increasing (Page et al., 2006). However, the approach utilised in the 159 

current study registers the dTime which alters the integral of the dTime within set phases 160 

(Figure 3). This approach conformed to the following rules: 161 

 The value of the dTime was set to 1 at the requested landmarks. 162 

 A magnitude of the midpoint of each phase was then estimated using equation 1 and 163 

spline filled. 164 

est. mag. =  ∫ dTime(x)
n

i

 165 

with i (start) and n (end) representing the knots of a phase. The actual value of the 166 

integral was then computed and the magnitude of the midpoint was adjusted until the 167 

value of the integral was within .01% of the requested magnitude. 168 
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 If negative values were observed, these values were set to 0. While this case was not 169 

observed, if the desired integral magnitude could not be reached the start and endpoints 170 

of the phase were lowered in .01 steps for all knots (start and end points of phases) that 171 

do not represent the start and end of the dTime. This could accommodate a phase in 172 

which no change in time was required. 173 

 174 

The specified landmarks were determined as the average time point at which the landmark 175 

occurred across all trials. The warping function curve created for each trial was used in 176 

subsequent analysis as an added predictor feature.  177 

Data Analysis 178 

Analysis was completed on the TN vGRF and its time-domain, the CON vGRF and its time-179 

domain, and each of the four registration conditions vGRF curves and their corresponding time-180 

domain and warping function curves. To assess the effect of landmark registration, features 181 

were extracted and their ability to predict jump height was assessed. The idea of ACP was 182 

utilised to compute features based on phases of variation (similar to Richter, O’Connor et al., 183 

2014). First, key phases of variation were identified using varimax rotated principal 184 

components (PCs) that represented more than 1% of the total curve variation (Richter, 185 

McGuinness et al., 2014). Key phases were determined as the time period representing 90% of 186 

the peak magnitude of each PC. Each key phase was extracted from the vGRF, time-domain, 187 

and warping function curves for all condition (TN, CON, and each registration condition). Key 188 

phases are highlighted in figures 5 and 6. Finally, features were calculated as the mean of each 189 

key phase.  190 

Following ACP, Pearson’s correlations were performed for all conditions between the 191 

calculated features and jump height. A p-value level of 0.05 was chosen to indicate a significant 192 

relationship. Last, step-wise multiple linear regression analyses were performed to assess the 193 

relationship between jump height and the features extracted for the vGRF, time-domain, and, 194 
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where applicable, warping function for all conditions. The number of steps allowed in the 195 

regression was limited by the 10:1 rule resulting in no more than 5 features selected1 (Austin 196 

and Steyerberg, 2015; Peduzzi et al., 1996). To assess the prediction power of the regression 197 

model, the mean absolute error (MAE) for each condition was calculated between the predicted 198 

jump height from the regression model equation and the actual jump height achieved.  199 

Results 200 

Average jump height was 30.3 ± 5.0 cm ranging from 21.4 cm to 41.6 cm. Strong prediction 201 

powers to jump height were found in all conditions as indicated by high adjusted R2 values 202 

(Table 1). Each condition generated between 5-13 PC key phases in total from the vGRF, time-203 

domain, and, where applicable, warping function curves (Table 1). Of these, 5 PC key phases 204 

were found for all conditions as significant predictors of jump height in the regression model 205 

(Table 1†; Figures 5 and 6).  206 

MAE for each condition of the final regression model with all significant predictors added 207 

ranged from 1.37 to 2.04 cm (Table 1 & Figure 4). A stronger prediction power was associated 208 

with a lower MAE (Table 1). Warped3 registration (Adj. R2 = 0.86, p ≤ 0.001; MAE = 1.39 cm) 209 

and CON (Adj. R2 = 0.87, p ≤ 0.001; MAE = 1.37 cm) had the greatest prediction powers. The 210 

lowest prediction power and greatest MAE was TN (Adj. R2 = 0.65, p ≤ 0.001; MAE = 2.04 211 

cm). Warped4, warped5, and warped6 increased prediction power by 6-8% and reduced MAE 212 

by 0.1 - 0.21 cm relative to TN. 213 

Figure 5 presents the vGRF and time-domain for the TN and CON conditions with key phases 214 

of variation highlighted. Figure 6 presents similar information for each registration condition 215 

                                                           
1 When additional features were allowed (15:1 rule), only the TN condition was affected and increased the R2 
value to 0.81. All other conditions were unaffected suggesting landmark registration reduces timing/phase 
variability. Landmark registration reduces the need for many features to be selected as the important 
information is concentrated into a fewer number features. This limits the possibility of over-fitting the data. 
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with the addition of warping function curves. TN, CON and warped3 vGRF curves had two 216 

significantly correlated key phases between ~81-97% of the jump (r = 0.29-0.51, p < 0.05; 217 

Table 1), whereas warped4, warped5, and warped6 registrations had only one significantly 218 

correlated vGRF key phase between ~83-91% of the jump (r = 0.30-0.33, p < 0.05; Table 1). 219 

All conditions found vGRF key phases and the time-domain key phase from ~84-100% as 220 

significant predictor features that best described jump height (Table 1†). Each registration 221 

condition additionally found warping function key phases as significant predictor features. 222 

Discussion  223 

The purpose of this study was to examine the benefit of landmark registration by utilising the 224 

features identified from a vGRF waveform captured during a CMJ to predict jump height. The 225 

features generated from the landmark registered waveforms were more appropriate as they had 226 

a greater ability to predict a performance measure. The primary findings of the present study 227 

were: 1) landmark registration could increase the prediction power to a performance indicator 228 

over TN, 2) registration conditions found warping function key phases as important predictor 229 

features, and 3) over-registration of a waveform may occur if inappropriate landmarks are used. 230 

Findings highlighted the benefit of landmark registration in identifying more appropriate 231 

features contained in the waveform as the prediction power increased by (+22%) while the 232 

MAE decreased (-0.67 cm). The regression model MAE was inversely related to the prediction 233 

power of each condition indicating a good fit of the data to the regression model. All 234 

registration conditions could explain jump height to a greater extent (6-22%) than time-235 

normalisation (TN) alone (Table 1). Reducing the waveform variability allowed for the 236 

waveform data to be reduced to more appropriate performance related features, thereby, 237 

increasing the ability to predict jump height. Of the registration conditions, warped3 had the 238 

greatest prediction power (Adj. R2 = 0.86, p ≤ 0.001) by landmark registering to account for 239 
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the end of the eccentric/start of the concentric phase of the CMJ. These phases represent the 240 

stretch-shortening cycle, and warped3 registration aligned these phases to compare directly 241 

across all trials. This is similar to analysing only the concentric phase in the CON condition. 242 

The results of the current study, in line with previous research, demonstrate that the concentric 243 

phase had the greatest influence on jump height (Aragón-Vargas and Gross, 1997; Dowling 244 

and Vamos, 1993; McErlain-Naylor et al., 2014). All conditions, regardless of registration, 245 

found the most significant predictor of jump height was the significantly correlated GRF key 246 

phases (~83-97%), representing magnitude variation in the concentric phase (p<0.001, Adj. R2 247 

= 0.07 – 0.23). Richter, Marshall et al. (2014), utilising the ACP technique on CON only, also 248 

found this phase as the most significant predictor of jump height (Adj. R2 = 0.54).  In addition, 249 

CON prediction power was similar to warped3 (1% more) and 22% greater than the TN vGRF 250 

curve. This suggests that analysis on the specific phase associated with performance related 251 

measures can be just as powerful without registration. However, warped3 maintains the 252 

influence between the eccentric and concentric phases by representing the time-shift required 253 

to align the phases (warping function key phase from 53-72%, Table 1†). 254 

Additional registration to include the peak CoM power in the concentric phase (warped4, 255 

warped5, and warped6) decreased the prediction power of the model as compared to warped3 256 

by 10-12%. This suggests that over-registration can occur. By over-registering, the 257 

significantly correlated vGRF key phase during propulsion disappeared (95-96%) and was 258 

replaced by the corresponding peak CoM power warping function key phase (~87-93%) as a 259 

significant predictor feature. The warping function variation provided reduced prediction 260 

power to jump height denoting that over-registration can occur when neuromuscular 261 

requirements, such as rapid unloading, often described as decay-rate, are warped too much. 262 

Decay-rate during the propulsive phase has been found to have significant negative correlations 263 

with jump height from peak vGRF to take-off (r = -0.274) and from peak CoM power to take-264 
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off (r = -0.41; Dowling and Vamos, 1993). Decay-rate was also found to be a significant 265 

predictor of jump height (Adj. R2 = 0.17; Richter, Marshall et al., 2014). Consistent with the 266 

findings in this study, timing variation prior to take-off (~90-100%; Table 1†) was a significant 267 

predictor in all conditions. 268 

Registration of the eccentric phase was performed in the warped5 and warped6 conditions at 269 

minimum CoM power and minimum vGRF. Increased alignment of the eccentric phase was 270 

found to slightly overcome the over-registration of the concentric phase associated with 271 

warped4. This resulted in the slightly higher prediction power over warped4 (1-2%). For 272 

warped5, registration was performed at minimum CoM power, which has been seen to 273 

negatively correlate with jump height (r = -0.3; Dowling and Vamos, 1993). This resulted in 274 

only slightly better prediction power than warped4 (1%) and a 14% decrease compared to 275 

warped3. This was possibly due to the loss of vGRF key phase from ~95-96%. Warped6 had 276 

similar significant predictor features as warped5 (varying by 1-2% change in time), explaining 277 

only 2% more variation than warped4 and 13% less than warped3. This increased prediction 278 

power over warped5 suggests the additional time warping from the minimum vGRF landmark 279 

increased the alignment of each phase between landmarks. This change in alignment could be 280 

due to the landmark residing within the vGRF waveform itself, or the wide time range in which 281 

minimum vGRF occurred (12-54%) resulting in considerable time warping changes. Past 282 

research has suggested that a shorter eccentric phase is associated with increases in jump height 283 

(Komi, 2000; Laffaye and Wagner, 2013; Moran and Wallace, 2007), however this was not 284 

found in the current study as the eccentric phase time-domain and warping function key phases 285 

were not significant predictors of jump height in any condition. This possibly due to either 286 

variability still exists in the eccentric phase in the TN and warped3 conditions and/or the over-287 

registration occurring in the concentric phase as a result of warped4. 288 
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A secondary analysis was performed to assess the relationship between jump height and the 289 

eccentric phase using only eccentric landmarks: minimum vGRF, minimum CoM power, and 290 

end of the eccentric phase. The results demonstrate an increased prediction power of jump 291 

height to 88%, a 1-2% increase from warped3 and CON, and 23% greater than the TN curve 292 

(Figure 7). A MAE of 1.32 cm was found for the regression model, the lowest of all conditions. 293 

In addition, this registration condition also re-introduced the later vGRF key phase (95-97%) 294 

during propulsion as a significant predictor and had a greater correlation to jump height (r = 295 

0.40, p = 0.003) than all other conditions. The significant predictor features were all concentric 296 

key phases including magnitude, time and warping function variation. The significant predictor 297 

features selected were identical to warped3 (1-2% time variation in key phases). Therefore, it 298 

may not be necessary to register to more than three events for the take-off phase of a CMJ.  299 

Limitations/Further Work 300 

A possible limitation of dynamical time warping in comparison to linear registration is that the 301 

relative timing of events within a waveform may be compromised. To mitigate the loss of 302 

morphological information, time-domain and warping function features were utilised within 303 

the analysis. Secondly, appropriate event selection is essential to allow for consistent 304 

comparisons of physiologically meaningful phases across participants for multiple variables. 305 

For example, if assessing running gait, the anterior-posterior GRF could be used to align the 306 

propulsive and braking phases of stance. This landmark would then be applied to all variables 307 

of interest (e.g., joint angular motion). Lastly, we only explored the application and validation 308 

of landmark registration in jumping, a movement with a clear performance indicator (jump 309 

height); applications to other movements without performance indicators were not considered. 310 

Landmark registration can be applied to other movements and may provide information on risk 311 

of injury, movement efficiency, or stability, as key physiological time points are aligned and 312 

the phase shifts can be examined using the warping functions.  313 
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Conclusions 314 

The results from this study suggest that landmark registration may be able to improve 315 

prediction power of extracted features to performance related outcomes (jump height), but 316 

caution should be used when selecting the landmarks and the number of events chosen for 317 

registration. This was true for both a linear and dynamical approach. Three landmarks provide 318 

the greatest ability to align phases of waveform without the risk of over-registration. In 319 

addition, the landmarks chosen should represent distinct phases within the movement. Future 320 

work should assess the effect of landmark registration across a variety of movements to 321 

determine if similar conclusions can be drawn. 322 
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