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Significance Statement 

Most patients with depression do not respond to the first treatment they try and in many cases 

multiple attempts are necessary to relieve symptoms. The fact that depression affects about 

20% of the population at least once in their lifetime means that this problem applies to a 

substantial number of individuals. The delay in finding effective treatment, often extending to 

months or years, translates into unnecessary personal suffering and burden. This burden could 

be lessened if there were tests indicating those patients who are unlikely to respond to first 

line treatment and require higher intensity treatment from outset. This study, using functional 

imaging, has added to the growing body of evidence pointing at the pregenual anterior 

cingulate cortex as a reliable predictor of subsequent treatment response in depression. Such 

studies bring us closer to the application of biological markers to predict therapeutic response 

in clinical practice.  
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Abstract  

Background: Identification of biomarkers predicting therapeutic outcome to antidepressant 

treatment is one of the most important tasks in current research because it may transform the 

lengthy process of finding the right treatment for a given individual with depression. In the 

current study we explored the potential of pre-treatment pregenual anterior cingulate cortex 

(pgACC) activity as a putative biomarker of treatment response.  

Methods: Thirty-two medication-free patients with depression were treated for 6 weeks with 

a selective serotonin reuptake inhibitor, escitalopram. Before treatment began, patients 

underwent an fMRI scan testing response to brief, masked, presentations of facial expression 

depicting sadness and happiness.  

Results: After 6 weeks of treatment there were 20 SSRI responders and 12 non-responders. 

Increased pre-treatment pgACC activity to sad versus happy faces was observed in 

responders relative to non-responders. A leave one out analysis suggested that activity in the 

ACC was able to predict response status at the level of the individual participant..  

Conclusions: The study supports the notion of pgACC as a promising predictor of 

antidepressant response.    

 

 

 

Downloaded from https://academic.oup.com/ijnp/advance-article-abstract/doi/10.1093/ijnp/pyy069/5074739
by Roehampton Institute user
on 22 August 2018



Acc
ep

te
d 

M
an

us
cr

ipt

 

4 

 

 

 

 

Introduction 

The search for biomarkers that can predict clinical response to the pharmacotherapy of 

depression is a task of substantial practical importance.  Only 50% of patients respond to the 

first treatment they try, and remission rates are even lower (around 30%) (Rush et al. 2009). 

Many patients will take 2 or more different antidepressants before finding a drug that works 

for them (Warden et al. 2007). Identifying patients unlikely to respond to first line treatment 

may speed up the application of second line or adjunct treatments and improve overall time to 

remission.   

Studies employing neuroimaging have led to the identification of a number of candidates for 

treatment response prediction biomarkers (eg. McGarth et al. 2013, Dunlop et al. 2017). One 

of the best established is increased pre-treatment activity in the pregenual anterior cingulate 

cortex (pgACC) which has been linked to a positive therapeutic response to antidepressant 

treatments. In a review of 23 imaging studies, Pizzagalli (2011) concluded that increased 

activity in the rostral ACC (rACC; equivalent to pgACC) both in the resting state, and in 

response to simple cognitive tasks, was associated with positive outcome to a variety of 

treatment modalities including pharmacotherapy, transcranial magnetic stimulation and sleep 

deprivation. This was also shown in a meta-analysis by Fu et al. (2013). 

Of the studies reviewed by Pizzagalli (2011) and Fu (2013), five and fourteen, respectively, 

employed fMRI, the most widely available modality for imaging the ACC in depressed 

patients. Since these publications, a number of further fMRI studies have been conducted, 
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including a study by our group in which we reported that neural changes in response to an 

emotional processing task after one week of treatment with the selective serotonin re-uptake 

inhibitor (SSRI), escitalopram, predicted clinical outcome after six weeks of treatment in a 

group of 32 depressed patients (Godlewska et al. 2016). The present report concerns baseline 

(pre-treatment) neural responses of this patient group to a different emotional task that 

employed masked faces as ‘implicit’ (non-conscious) stimuli and their potential to act as 

predictors of subsequent response to escitalopram.  

Interestingly a similar implicit task was employed in a recent fMRI investigation, which also 

found a correlation between pre-treatment activity in pgACC during the emotional processing 

task and the subsequent response to eight weeks of treatment with the selective serotonin re-

uptake inhibitor (SSRI), sertraline, in ten unmedicated patients (Victor et al. 2013). This 

study was designed to assess whether the results can be replicated in a larger group, allowing 

for a categorical classification of patients into responders and non-responders. A similar task 

was used, based on the concept that structures involved in rapid, non-conscious stimulus 

processing may be particularly reactive to masked stimuli and sensitive to depression (Victor 

et al. 2010, 2013, 2017). 

The aim of the present study was to test this hypothesis that increased  pgACC to masked sad 

facial expressions at baseline would predict later treatment response  and provide an initial 

estimate of the degree to which this effect was able to predict treatment response at the level 

of the individual patient, using a leave-one-out validation process.     
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Participants  

Thirty nine patients with major depression consented to take part in the study. Thirty two 

(18F:14M) completed the fMRI scan and the six week period of escitalopram treatment (see 

Table 1 for demographic information). In the remaining seven patients relevant data were not 

available at the end of the treatment period (four patients dropped out before the six week 

assessment, and scanning data from a further three patients were not available due to 

technical issues). All participants were assessed with the Structured Clinical Interview for 

DSM-IV (Spitzer et al. 1995) for the presence of current and past psychiatric disorders. The 

depressed patients met criteria for a primary diagnosis of major depressive disorder; 

exclusion criteria were psychosis or substance dependence as defined by DSM-IV, a 

clinically significant risk of suicidal behaviour, contraindications to escitalopram treatment or 

treatment with psychotropic medication less than three weeks before the study (five weeks 

for fluoxetine), major somatic or neurological disorders, pregnancy or breast-feeding, any 

contra-indications to MR imaging or concurrent medication which could alter emotional 

processing. All participants were right-handed. 
 
The study was approved by the Oxford 

Research Ethics Committee and all participants gave written informed consent.  

 

Study design and drug treatment 

Following the baseline fMRI scan patients received 10mg escitalopram each morning for a 

period of 6 weeks without dose adjustment. Assessment of depressive severity and treatment 

response was made using the 17 items Hamilton Depression Rating Scale (HAM-D) 

(Hamilton 1960), with anxiety being measured with Spielberger’s State-Trait Anxiety 

inventory (STAI) (Spielberger 1989)
 
at baseline and week 6. The fMRI assessments were 

completed at the same time points. The current analysis focuses on how baseline differences 

in the function of pgACC were able to predict clinical response at week six of treatment. 

Methods 
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After the 6 week duration of the study, all patients were offered treatment openly with 

escitalopram according to usual clinical practice. Clinical response to the SSRI was defined 

as a reduction in HAM-D of 50% or more from baseline after six weeks of treatment (Angst 

et al. 1993).
 
  

fMRI data acquisition 

Functional MRI data were acquired on a 3T Siemens TIM TRIO (Siemens AG).   Data were 

acquired with a voxel resolution of 3x3x3mm, TR/TE/FA =2000ms/28ms/89
o
.   A total of 

256 volumes were acquired in an experiment lasting 6 minutes. T1-weighted structural 

images were acquired using a magnetisation prepared rapid acquisition by gradient echo 

(MP-RAGE) sequence with a voxel resolution  1.0x1.0x1.0 mm on a 208 x 256 x 200 grid, 

TE/TI/TR= 4.68/900/2040ms. To monitor cardiac and respiratory processes subjects wore a 

pulse oximeter and respiratory bellows. 

fMRI experimental task 

During fMRI scanning, participants completed a backward masking task. This task consisted 

of viewing pairs of faces, paired in such a way that the first face, expressing sad, happy or 

neutral emotion, was shown for 30ms, and then immediately ‘masked’ by another face of 

neutral expression, shown for 70ms; this procedure has been shown to interfere with explicit 

perception of the first face (Victor et al. 2010). After each pair of faces was presented for 

100ms in total, participants were asked to report the gender of the face via an MRI 

compatible key pad; the gender of both faces was the same. Each participant was shown 4 sad 

blocks, 4 happy blocks and 9 neutral blocks, which were interleaved with sad and happy 

blocks (N-S-N-H-N-S-N-H-N or N-H-N-S-N-H-N-S-N). Between each block, there was a 

10-s block of a baseline fixation cross.  
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fMRI preprocessing and statistical analysis 

Functional MRI data were preprocessed and analysed using FSL (Jenkinson et al. 2012). 

Briefly, motion correction was applied using a rigid body registration to the central volume; 

brain matter was segmented from non-brain using a mesh deformation approach.
. 
Gaussian 

spatial smoothing was applied with a full width half maximum of 5mm; high pass temporal 

filtering was applied using a Gaussian-weighted running lines filter, with a 3dB cut-off of 

120s.
 

A general linear model was fitted in pre-whitened data space. Three explanatory variables 

(plus their temporal derivatives) were modelled: ‘sad faces’, ‘happy faces’ and ‘neutral 

faces’. All explanatory variables were convolved with a default haemodynamic response 

function (Gamma function, delay=6s, standard deviation =3s), and filtered by the same high 

pass filter as the data. The impact of physiological noise on the BOLD signal was reduced 

using the Physiological Noise Modelling (PNM) tool of FSL. Pulse oximetry and respiratory 

bellows data were processed by PNM to create 33 nuisance regressors which were added to 

the first level fMRI model.  The full model was simultaneously regressed against the BOLD 

data, giving the best-fitting amplitudes for each explanatory variable while accounting for the 

physiological noise. 

The task contrast of interest in this study was the relative activation of sad vs. happy faces. 

The degree to which the change in neural activity in this contrast predicted participants’ 

clinical response on the HAM-D to medication over six weeks, was tested using a two level 

analysis. The first level consisted of the sad vs. happy contrast maps, as described above, 

calculated for each depressed subject. Second level, between subject, random effects analysis 

assessed whether this change in neural activity differed between depressed patients who went 

on to respond to the medication and those who did not.  Baseline HAM-D score was included 
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as a regressor in the second level analysis to account for the potential influence of initial 

depression severity effects on overall clinical response (NB baseline HAM-D score did not 

differ between the two groups, responders and non-responders, Table 1, and equivalent 

results were obtained when the analysis was run without this covariate, Sup Table 4).  

The mask for the ACC as a priori region of interest was derived from the Harvard–Oxford 

Cortical anatomical atlas and used in small volume correction analysis SVC (clusters 

determined by Z>2.3 and a (corrected) cluster significance threshold of P=0.05). The mask 

included 1531 voxels. The results of group level the whole brain analyses were corrected 

using cluster-based thresholding with a height threshold of Z > 2·3 and a (whole-brain 

corrected) spatial extent threshold of P = 0.05. 

Additional analysis was performed with randomise, FSL’s non-parametric tool using 

Threshold-Free Cluster Enhancement (TFCE) thresholding approach, with baseline HAMD 

as a nuisance variable. This allowed for non-parametric permutation-based inference without 

a pre-defined arbitrary threshold, reducing the likelihood of false positive results Five 

thousand permutations were performed 

Predictive analysis 

In addition to the analysis described above, in which participant groups were defined based 

on future response to treatment, we were also interested in whether activity of the ACC could 

be used to predict response for individual patients. This was done using a leave-one-out 

approach in which training and testing data were kept completely separate. This analysis 

involved: firstly defining a cluster of voxels in which activity was greater for responders than 

non-responders to the sad-happy contrast within the ACC (NB the cluster was defined using 

Z>2.3 and p<0.05 with a structural ROI based on the Harvard-Oxford Cortical Atlas) using 
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just the training data (i.e. data from all but one participant). Secondly, extracting mean 

activity within this cluster for all participants, with the data from the training sample being 

used to generate a receiver operator characteristic (ROC) curve. Lastly, defining a cut-off 

from the ROC curve of the training data as the point furthest from the leading diagonal and 

classifying the held out participant as a responder or non-responder based on this cut-off. 

Note, this analysis was repeated for every participant and resulted in different clusters of 

voxels used in each classification as well as different cut-offs for the classification. This 

analysis provides an initial estimate of the ability of activity within the ACC to predict 

response at the level of the individual patient. 
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Results 

Clinical and demographic data 

After six weeks’ escitalopram treatment, 20 out of 32 patients (62%) were classified as 

responders.  There were no differences between responders and non-responders in terms of 

gender, age, baseline depression severity, baseline trait anxiety or duration of current episode 

(See Table 1).  

fMRI data 

ROI analysis. We performed SVC-corrected analysis of pgACC. In line with our hypothesis, 

we found an increased fMRI response to sad vs. happy faces in the group of patients who 

after 6 weeks responded to treatment, as compared to those who did not, both with and 

without controlling for baseline depression HAMD severity (family wise error (FWE)-

corrected P<0.05, SVC; 248 voxels, Z-value of the peak voxel 3.48, p=0.005). Exploring 

each emotion separately vs baseline showed that non-responders had numerically greater 

pgACC responses to both sad and happy faces, with the majority of the difference between 

the two groups apparently being due to altered responses to happy faces (Figure 1).  

While we used an ACC mask based on the commonly used Harvard–Oxford Cortical 

anatomical atlas, the part of the cluster identified can be described as located in the anterior 

midcingulate cortex (aMCC).  An additional analysis with a 600 voxel mask consisting only 

of volumes anterior to the genu of corpus callosum was run, and a similar response to 

reported above was observed in a cluster of 123 voxels, the part of the original cluster 

corresponding to strictly defined anterior cingulate cortex (results not reported).  

Whole-brain analysis. The exploratory analysis at the whole brain level using a parametric 

approach revealed a greater activation to sad vs happy faces in treatment responders as 
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compared to non-responders across a network of structures including ACC, paracingulate, 

right and left caudate, right thalamus and a small part of left thalamus, left putamen, and a 

small portion of fronto-occipital cortex, both when controlling for baseline depression 

HAMD severity, and not (P<·05, FWE corrected); see Figure 2. For details on functional 

clusters, see Table 2. The TFCE (Threshold-Free Cluster Enhancement) non-parametric 

method revealed a similar increased activation in response to sad vs happy faces in treatment 

responders vs non-responders across a network of structures, with the peak in the  ACC, and 

inclusing paracingulate gyrus, bilateral middle frontal gyrus, bilateral frontal orbital cortex, 

frontal pole, bilateral thalamus, and left insula. 

Prospective analysis allowed predicting classification into responders and non-responders 

with moderate accuracy of 71.875%. The centre of mass of the clusters is shown in Figure 2. 

A histogram of cut off scores and confusion matrix are shown in Figure 3 and 4, respectively.  
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Discussion 

Our study showed that pretreatment neural activation of pgACC in response to subliminal 

emotional information was predictive of short-term (6 weeks) therapeutic response to an 

SSRI escitalopram in patients with depression. A similar pattern was observed in a network 

of cortical and limbic areas associated with depression. Our findings support the body of 

evidence pointing to the ACC as currently the most reliable marker of response to various 

modes of treatment for depression and show its role in response to emotional information 

presented below the level of conscious awareness.  

Our findings are consistent with meta-analyses by Pizzagalli (2011) and Fu et al. (2013), and 

other more recent studies implicating the pgACC as the region in which baseline function is 

linked to future response to antidepressant treatment (eg. Klumpp 2017, Crane 2017, Cullen 

2016, Vai 2016, Dichter 2015, Victor 2013, Miller 2013, Kozel 2011, Roy 2010). Of recent 

investigations, the study by Victor et al. (2013) was of particular relevance to our 

investigation because it also employed an implicit emotional task based on presentation of 

masked sad and happy faces. Victor et al. (2013) found a decrease in the haemodynamic 

response in the pgACC to the contrast of masked sad vs happy faces after 8 weeks of 

treatment with another SSRI, sertraline, in 10 participants with depression. They also found a 

positive correlation between symptomatic improvement in depression ratings and baseline 

pgACC activation to masked sad vs happy faces, implicating pgACC in antidepressant 

response and its prediction. Studying a larger group of participants, and using a similar task 

based on masked presentation of emotions, we were also able to show differential baseline 

pre-treatment activity of the pgACC in treatment responders and non-responders.  
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The pgACC is a part of an extended medial prefrontal network, uniquely positioned with 

connections both to the amygdala and PFC (Drevets 2001, Mayberg 2003). It plays an 

important role in emotion appraisal and regulation, evaluation of the salience of emotional 

stimuli and emotion-related learning (Stevens et al. 2011), the processes that are dysregulated 

in depression and improve with successful treatment. Since the seminal publication by 

Mayberg et al. (1997), a wide range of research has consistently implicated pgACC as a brain 

region linked to treatment response. 

Increased activity in the pgACC was typically found to be predictive of better  treatment 

outcomes regardless of the  modality used to measure ACC activity (fMRI, PET, MEG and 

EEG), design  (ie. resting state or task-based) and form of treatment employed 

(pharmacotherapy, transcranial magnetic stimulation, CBT and sleep deprivation), as 

reviewed by Pizzagalli in 2011. Although only five out of 23 studies included in this review 

were fMRI studies, other fMRI studies have since been published, including a meta-analysis 

by Fu et al. (2013) of 20 functional neuroimaging papers (14 fMRI studies, 10 using various 

emotional processing tasks, and 4 using non-emotional tasks, and 6 PET studies in resting 

state conditions). Similar to Pizzagalli’s paper (2011), this meta-analysis showed a higher 

likelihood of improvement in response both to pharmacotherapy (14 included studies) or 

CBT (6 included papers) in patients with increased pre-treatment activation in the pgACC, as 

well as in subgenual and medial prefrontal cortices.  

Since the publication of these meta-analyses other studies, including ours (Godlewska et al., 

2016), have added to the relatively consistent body of evidence suggesting increased ACC 

activation during emotional processing and resting state as a putative marker of good clinical 

response to treatment. Although the results are not unequivocal (Fu et al. 2013) and are still 

some way off routine clinical application, currently the pgACC is considered to be one of the 
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most – if not the most – promising pre-treatment imaging biomarkers of antidepressant 

response, both because of its postulated role in the pathophysiology of depression and the 

consistency of reports on its role in treatment response prediction. 

In addition to the pgACC, our exploratory whole-brain analysis revealed a number of other 

regions showing a similar neural response to the employed task, ie. increased activity in 

response to sad vs happy facial expressions allowed differentiation between future treatment 

responders and non-responders. These regions included paracingulate cortex, thalamus, 

caudate, putamen, nucleus accumbens and orbitofrontal cortex (OFC) (Figure 2).  These 

structures are a part of networks involved in the processing of emotionally valenced 

information and reward, and their disruption has been hypothesized to contribute to low 

mood and anhedonia, core symptoms of depression (Graham et al. 2013, Fettes et al. 2017).  

The basal ganglia regions identified in this study: the caudate nucleus, the putamen and the 

nucleus accumbens, are involved in reward processing and form connections with the ACC 

and thalamus, with the ACC-basal ganglia-thalamus loop suggested to monitor unexpected 

events and to recruit adaptive mechanisms as required (Maia and Frank, 2011). Our results 

suggest that the pgACC is clearly a node in a distributed network of regions involved in 

processing of emotionally salient information. It is likely that differences in the function of 

this network, rather than solely in the pgACC function, are associated with antidepressant 

response.    

The period of time when response to antidepressants was assessed, six weeks into treatment, 

was chosen to be consistent with common clinical practice. Six weeks is around the time 

when clinicians often make decisions as to whether to continue treatment unchanged, adjust 

the dose or switch to a different medication, and is in line with current treatment guidelines 

(NICE Pathways, 2017). A reliable marker of this early response could potentially save a 
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patient from unnecessary weeks of delay in finding treatment they respond to. Treatment 

response was defined as baseline at least 50% decrease in HAMD scores as this definition, 

although somehow arbitrary, is a commonly used measure (Angst et al., 1993).  

To be clinically useful, a biomarker of treatment response needs to classify patients into 

responders and non-responders with reasonable  accuracy; so far no known biomarker has 

been consistently replicated in subsequent studies with accuracy high enough to be deemed 

useful in clinical practice (Fu and Costafreda 2013). Predictive analysis performed in this 

study allowed classification of participants into responders and non-responders with an 

accuracy of 71.9%, which differs from a probability of 0.5 with a p of 0.02. However, caution 

is required with this estimate of accuracy as leave-one-out (LOO) approaches to validation, as 

used in the current study, will tend to overestimate classifier accuracy when compared to 

validation in a fully held out sample (Hastie et al., 2009). This limitation is related to a 

number of statistical and methodological aspects of LOO procedures. First, clinically relevant 

classification requires between-dataset generalisation of classification performance 

(predictions need to be made on completely unseen data) which are not accounted for by 

LOO procedures which are based only on within dataset performance. Second, individual 

data points in LOO procedures will be used in all but one training sets, meaning that 

influential (e.g. outlying) data points can have exaggerated effects on classifier performance 

across training sets, which can skew estimates of classifier performance. As a result it will be 

essential to test whether pgACC activity is able to meaningfully predict treatment response in 

a fully held out sample of patients.  

A number of studies have used machine learning approaches to derive classifiers from fMRI 

data. These approaches tend to have many more predictors (i.e. voxels) than data points 

(patients) and are also difficult to interpret from a mechanistic perspective as they incorporate 
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complex interactions between predictors. In our study we used a very simple, univariate 

outcome from a pre-specified region which provides a mechanistically transparent predictor. 

Clearly however, it may be possible to improve on the predictive performance reported here 

by employing a multivariate approach to combine different features in the classifier. 

Additionally, there may well be alternative methods for deriving the predictive features from 

the fMRI data. In the current study we used mean signal change from clusters, defined in the 

training set. The clusters were defined on the basis of anatomical location (within the ACC) 

and statistical significance. It may be that using alternative methods for cluster/feature 

definition (e.g. changing the level of statistical significance for the cluster, or relaxing the 

anatomical specification) would increase the information contained in the cluster and 

improve classification performance.   

The ACC response seems to predict positive therapeutic outcome to many different kinds of 

treatment (Pizzagalli 2011, Fu et al. 2013). Therefore it does not currently point to selection 

of a particular antidepressant treatment modality or psychotherapy in preference to 

pharmacotherapy. Equally it does not suggest an alternative treatment regime for patients 

with low ACC responsivity who, at the moment, are predicted to do less well with various 

kinds of antidepressant therapies.  At the same time it may play an important role in 

identifying people with poor prognosis who can be given more intensive treatment from the 

start, leading to improving overall time to remission. It might also serve as a marker of 

efficacy when testing new drugs for antidepressant properties.  

Our study has some limitations. The main limitation is the small size of the group. The group 

itself was composed of carefully chosen drug free patients, yet increasing the number would 

increase the power and allow for more complex analyses combining different putative 

markers, an approach aiming at increasing accuracy of classification. The lack of a control 
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group may be considered as another limitation, however, the aim of the current study was to 

explore markers of treatment response prediction, for which a group of healthy volunteers or 

placebo treated patients is not strictly necessary. One limitation reflects a general question of 

feasibility of using imaging biomarkers in clinical settings, as scanning is not yet widely 

available and the procedure is still relatively costly. However, if the prediction using imaging 

biomarkers becomes sufficiently accurate, benefits including a decrease of depression burden 

on both individuals and society achieved through more efficient therapeutic processes could 

make it cost-effective.  

In summary, our study has shown that pre-treatment pgACC activity is predictive of response 

to antidepressant treatment after 6 weeks. It has also identified other brain regions where 

differential activity in response to an implicit emotional task had a similar predictive value. 

Our study adds to the growing body of evidence pointing at the pgACC as a reliable predictor 

of subsequent treatment response to a variety of therapeutic approaches to depression. 

Although the accuracy of classification in our study was moderate, it was higher than by 

chance and given that the pgACC pre-treatment function as response prediction marker has 

been the most consistently replicated neuroimaging finding, it makes it the most promising 

putative fMRI-based treatment response biomarker. To understand better the potential of 

pgACC imaging in this context, future studies are needed, on large groups and in patients at 

different stages of depression, employing machine learning approaches to combine pgACC 

effect with other neuroimaging and/or behavioural measures to increase classification 

accuracy. 
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Table 1. Demographic information for responders and non-responders to 6 weeks treatment 

with escitalopram. Presented as mean ± standard error (SE). 

 Responder s 

(n=20) 

Non-Responders 

(n=12) 

 

Gender 10F/10M 8F/4M p=0.358, 

χ2=0.847 

Age at the time of the 

scan (years) 

28.25 ± 2.64 28.75 ± 9.28 p=0.886, t=0.144 

Baseline depression 

severity (HAM-D) 

23.0 ± 1.1 23.67 ± 0.9 p=0.687, t=0.407 

Baseline depression 

severity (BDI-I) 

31.2 ± 1.5 33.1 ± 1.5 p=0.420, t=0.818 

Baseline trait anxiety 

(STAI-T) 

59.5 ± 1.9 63.2 ± 10.8 p=0.298, t=1.059 

Duration of current 4.5 ± 0.6 8.8 ± 2.6 p=0.06, t=1.992 
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episode (months) 

 

 

 

 

Table 2. Prediction of clinical response after 6 weeks of escitalopram treatment from baseline 

differences in pre-treatment neural response to sad compared with happy facial expressions. 

The table shows functional clusters identified by the exploratory analysis at the whole brain 

level. Please refer to Figure 1 for more details.    

Cluster content Peak voxel 

MNI Coordinates 

Cluster 

size, 

voxels 

Z-value P-value 

x y z 

Parametric approach (Gaussian Random Field Theory) 

Cluster A: 

L middle frontal gyrus, 

ACC, paracingulate 

gyrus, R caudate, R 

thalamus leaking into L 

thalamus 

-28 32 28 2173 3.66 0.000000238 
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Cluster A: local maxima 22 12 16  3.59  

24 -28 26  3.59  

22 16 22  3.54  

30 26 24  3.53  

-6 30 20  3.48  

Cluster B: 

Frontal Orbital Cortex, L 

Putamen, L Caudate, L 

Accumbens 

-32 34 -4 544 3.68 0.0276 

Cluster B: local maxima -18 22 -4  3.37  

-28 40 -4  3.24  

-22 48 -8  3.04  

-24 12 -18  3.03  

-22 44 -8  3.00  

Cluster C: 

ACC, paracingulate 

gyrus 

26 36 0 523 3.7 0.0336 

Cluster C: local maxima 16 36 -4  3.37  
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18 42 2  3.27  

34 42 -2  3.04  

20 26 10  3.03  

20 42 -8  2.89  

Non-parametric approach (Threshold-Free Cluster Enhancement) 

Cluster: 

ACC, paracingulate 

gyrus, bilateral Middle 

Frontal Gyrus, bilateral 

Frontal Orbital Cortex, 

Frontal pole, bilateral 

Thalamus, left Insula 

 

-4 30 16 6617 4.99 <0.05 
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Figure 1. Baseline differences in neural response (percent signal change) in the pgACC 

region of interest in response to sad vs happy facial expressions differentiated between 

responders and non-responders to 6 weeks treatment with escitalopram. The figure represents 

(a) results of SVC-corrected analysis in the anterior cingulate cortex using a parametric 

approach (Gaussian Random Field Theory); (b) extracted signal change in the identified 

cluster (mean and standard error); c) results of SVC-corrected analysis in the anterior 

cingulate cortex using a non-parametric approach (Threshold-Free Cluster Enhancement). 

Analysis was thresholded at Z=2.3 and cluster-corrected with a FWE P<0.05. ACC, anterior 

cingulate cortex; FWE, family wise error; SVC, small volume correction. Baseline HAM-D 

scores were entered as a covariate.  

 

 

 

Figure 2. Baseline differences in neural response (percent signal change) at the whole brain 

level in response to sad vs happy facial expressions differentiated between responders and 

non-responders to 6 weeks treatment with escitalopram. The figure represents (a) results of 

the exploratory analysis at the whole brain level  using a parametric approach (Gaussian 
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Random Field Theory);  (b) extracted signal change in the identified clusters (mean and 

standard error); c) results of the exploratory analysis at the whole brain level using a non-

parametric approach (Threshold-Free Cluster Enhancement). Details of the clusters can be 

found in Table 2. Analysis was thresholded at Z=2.3 and cluster-corrected with a FWE 

P<0.05. ACC, anterior cingulate cortex; FOC fronto-orbital cortex; FWE, family wise error. 

Baseline HAM-D scores were entered as a covariate.  

Figure 3. Confusion plot. Green squares represent correctly classified cases: TP – true 

positives, TN – true negatives, the number of correct classifications by the trained network, 

percentage of all cases they represent. Red squares represent incorrectly classified cases: FP – 

false positives, FN – false negatives, the number of correct classifications by the trained 

network, percentage of all cases they represent. The blue square represents the percentage of 

correct and incorrect classifications.  

The first row represents predicted non-responders, of whom 61.5% were classified correctly, 

and 38.5% incorrectly. The second row represents predicted responders, of whom 78.9% 

were classified correctly, and 21.1% incorrectly. Out of 12 non-responders, 66.7% were 

correctly predicted as non-responders and 33.3% were predicted as responders. Out of 20 

responders, 75% were correctly classified as responders and 25% were classified as non-

responders. Overall, 71.9% of the predictions were correct and 28.1% cases were classified 

incorrectly. 

 

Figure 4. Histogram of the cut off scores used in the classifier.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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