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Abstract 40 

The redistribution of species has emerged as one of the most pervasive impacts of 

anthropogenic climate warming, and presents many societal challenges. Understanding how 42 

temperature regulates species distributions is particularly important for mobile marine fauna 

such as sharks given their seemingly rapid responses to warming, and the socio-political 44 

implications of human encounters with some dangerous species. The predictability of species 

distributions can potentially be improved by accounting for temperature’s influence on 46 

performance; an elusive relationship for most large animals.  We combined multi-decadal 

catch data and bio-logging to show that coastal abundance and swimming performance of 48 

tiger sharks Galeocerdo cuvier are both highest at ~22°C, suggesting thermal constraints on 

performance may regulate this species’ distribution. Tiger sharks are responsible for a large 50 

proportion of shark bites on humans, and a focus of controversial control measures in several 

countries. The combination of distribution and performance data moves toward a mechanistic 52 

understanding of tiger shark’s thermal niche, and delivers a simple yet powerful indicator for 

predicting the location and timing of their occurrences throughout coastlines. For example, 54 

tiger sharks are mostly caught at Australia’s popular NSW beaches (i.e. near Sydney) in the 

warmest months, but our data suggest similar abundances will occur in winter and summer if 56 

annual sea surface temperatures increase by a further 1-2°C. 

 58 

Introduction 

Exploring the influence of temperature on species’ distributions has a long history in ecology, 60 

and a focus on temperature-dependent biogeography has intensified in recent decades with 

concerns over a warming climate. Distributions of marine animals appear to be responding 62 

more rapidly to climate change than are those of terrestrial animals (Sorte et al., 2010), and 

this is particularly the case for mobile and broadly distributed species (Sunday et al., 2015) 64 
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such as many sharks. Understanding and predicting distribution shifts in sharks is 

increasingly important given their declining global abundances (Ferretti et al., 2010), the 66 

consequences of such declines for top-down control of ecosystems (Ferretti et al., 2010), and 

the socio-political implications of human encounters with some potentially dangerous species 68 

in coastal areas.  

 Among biogeographers, a central and commonly-posed question (e.g. Buckley et al., 70 

2010; Davis et al., 1998; Kearney & Porter, 2009; Thomas et al., 2004) is how well models 

predict future species distributions when they are parametrised solely by identifying 72 

correlations between distributions of organisms and environmental conditions.  It is 

increasingly recognised that predictions can be refined by incorporating measured 74 

relationships between environmental conditions (e.g. temperature) and organism performance 

(e.g. locomotion or feeding) because doing so can reveal the proximate constraints limiting 76 

distributions (Kearney & Porter, 2009). These so called ‘mechanistic models’ have been 

influential in predicting distributions of broad taxa, including terrestrial arthropods, lizards 78 

and amphibians (e.g. Buckley, 2007; Kearney et al., 2008; Kearney & Porter, 2004). Due to 

difficulties associated with measuring performance of large marine animals such as sharks, 80 

our understanding of how temperature regulates their distributions is based almost 

exclusively on correlations between environmental temperature and relative abundance. 82 

Potential limitations of these correlative approaches are exacerbated by the often 

geographically disparate nature of tagging and bycatch studies that form the basis of our 84 

knowledge of current shark distributions. 

 Tiger sharks Galeocerdo cuvier are large ectothermic apex predators distributed 86 

throughout the world’s tropical, subtropical and warm-temperate oceans. Tracking studies 

have implicated temperature as a driver of their movement in Australia (Ferreira et al., 2015; 88 

Holmes et al., 2014), Hawaii (Papastamatiou et al., 2013), and the Northwest Atlantic (Lea et 
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al., 2015), and catch data suggest coastal abundance responds to temperature variation in 90 

several regions (Dicken et al., 2016; Heithaus, 2001; Reid et al., 2011). Nevertheless, like 

most shark species, a combination of tiger sharks’ broad distribution, low relative abundance, 92 

and the geographically discrete nature of published studies have precluded a clear 

understanding of the thermal ecology of this species. They can be variously considered 94 

ocean-scale migrants (Lea et al., 2015) or perennial island residents (Fitzpatrick et al., 2012; 

Meyer et al., 2010), and individuals inhabit a broad variety of thermal niches. Our poor 96 

ability to predict when and where tiger sharks will occur is a particularly important problem 

given they are responsible for the highest number of recorded human fatalities after white 98 

sharks Carcharodon carcharias, and are currently a key focus of controversial bather 

protection programs (including culling) is several countries (e.g. Dicken et al., 2016; Holmes 100 

et al., 2012). Development of simple indicators (such as water temperature) that can reliably 

predict when and where sharks are most likely to occur could represent powerful tools both 102 

for forecasting ecological consequences of range shifts with future warming and for 

maximising the efficacy of bather protection programs. Approaches that additionally account 104 

for temperature’s influence on performance of sharks should be more powerful and 

potentially more robust than those based solely on correlative distribution data (Davis et al., 106 

1998; Kearney & Porter, 2009). Recent advances in bio-logging technology have provided 

new possibilities for measuring performance of large marine organisms, and a potential 108 

means of deriving performance proxies from animals with which laboratory experimentation 

is difficult. For example, accelerometers quantify mechanical work done by animals (Gleiss 110 

et al., 2011; Wilson et al., 2006), and have shown promise as a tool for measuring 

temperature’s influence on locomotor performance in several wild estuarine fish species 112 

(Gannon et al., 2014; Payne et al., 2016).   
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 If the likely increases in sea surface temperate over the coming decades are to see a 114 

corresponding shift in the distributions of tiger sharks, predicting the location and timing of 

such shifts could be valuable for ecologists and managers alike. In this study, we combined 116 

relative abundance and physiological performance data to explore how temperature regulates 

the distribution of tiger sharks. First, we compiled a spatially extensive (spanning ~ 18° of 118 

latitude along Australia’s eastern coast), multi-decadal dataset on tiger shark coastal catch 

rates, and by pairing catch data with high resolution temperature records estimated how 120 

temperature influences tiger shark relative abundance. Next, we used animal-borne 

accelerometers to measure dynamic body activity (a proxy of swimming performance) of 122 

tiger sharks as they swam freely in their environment, and determined how swimming 

performance varies with water temperature. Our aim was to understand how temperature 124 

influences both the broad scale distribution patterns of tiger sharks and their physiological 

performance, thus enabling more robust (Kearney & Porter, 2009) predictions about how 126 

populations of this species will respond to future warming. 

 128 

Methods 

Catch data 130 

As a proxy of tiger shark relative abundance, we used multi-decadal records of sharks caught 

in coastal areas along Australia’s eastern coastline by government shark control programs. 132 

Data from the Queensland shark control program (QSCP) were provided by the Department 

of Agriculture and Fisheries, Queensland Australia, for the period spanning May 1996 to 134 

December 2015. A detailed description of the program can be found in Holmes et al (Holmes 

et al., 2012). Briefly, the QSCP deploys mostly baited drum lines and some nets 136 

approximately 500-1000 m from shore adjacent to 85 popular bathing locations across the 

state. Fishing contractors check gears at least every second day (average of 15-20 days per 138 
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month) and record information including gear type, species, total length, and since mid-1996, 

the temperature of surface waters immediately adjacent to captured sharks. New South Wales 140 

(NSW) adjoins the southern extent of the QSCP, and a shark netting bather protection 

program has been operating in NSW since 1949, with nets currently deployed off 51 beaches 142 

across the State. These nets are set every weekend day and 9 weekdays per month, however 

since 1987 the program has excluded winter months (Reid et al., 2011). A previous paper 144 

(Reid et al., 2011) reported the percentage of tiger shark catches reported across the NSW 

shark netting program per calendar month from 1950 to 1982 (a period where within-year 146 

effort has remained constant), so we included those data in our analysis.  

Standardisation of catch data 148 

Within each location, the number of deployed drum lines and nets have remained relatively 

constant since 1993, particularly within years (Holmes et al., 2012), whereas the number and 150 

type of gears varies by location, as do factors such as distance of gears from shore, bait type, 

and local bathymetry (Holmes et al., 2012). Given these complexities, we chose not to 152 

compute metrics such as ‘catch-per-unit-effort (CPUE)’ for testing temperature’s influence 

on catches across locations, and instead examined relative trends in catch between months 154 

within locations. Because sampling effort and site effects have remained constant within 

years at each location over the 20-year sampling period, for the QSCP, we computed the 156 

percentage of total catches of tiger sharks reported per calendar month at each location across 

the period spanning 1996-2015, and paired these monthly data to mean catch temperatures 158 

(temperatures recorded at the location and timing of each captured shark by the fishing 

contractors) per calendar month  at those locations (i.e. all data pairs from the 20 years were 160 

grouped into one of 12 months). This removes the difference in magnitude between location, 

and allows us to explore relative trends with temperature. Water temperatures are not 162 

recorded on location for the NSW program, so we paired monthly percentage catch data to 
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mean monthly SSTs collected by the Australian Government’s Meteorology and 164 

Oceanography Hydrographic Service (www.metoc.gov.au). Monthly SST was measured 

within 10km of Sydney’s coast (33.5°S), and averaged over a 10-year period (2006-2015). 166 

The added benefit of using ‘% catch’ is that we can also include different gear types (i.e. 

baited hooks and nets) into the analysis – this is not possible with CPUE data. Subsequent 168 

analyses were based on these location-specific percentage catch data. Consequently, catch 

results reflect absolute monthly differences in catch within locations, but not between 170 

locations. To estimate the temperature coinciding with highest catches across both the QSCP 

and the NSW program, we grouped tiger shark catch and temperature data for each calendar 172 

month into four latitudinal zones (16-19, 21-25, 26-28 and 33-34°S), and fitted a two-part 

thermal performance curve of the form 174 
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where A is percentage catch, Topt is the temperature (T) at which catch rate is maximised, σ is 

the standard deviation for the normally distributed half of the curve, Tcrit is the high 178 

temperature where A is zero, and S is a scalar. Curves were fitted using minimum least 

squares non-linear regression in the program R (R-Core-Team, 2016). Because our shark-180 

temperature data were presence-only (water temperature was only recorded when sharks were 

caught), we also built thermal performance curves using the (catch-independent) Metoc 182 

coastal SST data, which were all 10-year monthly averages and with SST recorded within 

50km of the coastline at each drum-lining location. 184 

http://www.metoc.gov.au/
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 Rather than exploring the role of location, or to create a predictive model to calculate 

absolute catch of tiger sharks, the goal of our analysis is to identify the shape of the 186 

relationship between temperature and catch, and particularly to identify a Topt. Because 

catches of tiger sharks were reasonably uncommon, we summed monthly across years in each 188 

zone to improve our ability to generalise the temperature-catch relationship. By creating 

samples that span a number of years and locations (within zones), we give ourselves the 190 

greatest power to detect differences between our factors of interest (temperature, and 

geographical region). As a means of validating our percentage catch approach, we conducted 192 

several additional analyses. First, we tested for spatial and temporal dependency by fitting a 

generalised additive model (GAM) and generalised additive mixed model (GAMM) to the 194 

tiger shark percentage catch data. The GAM included a smoother for ‘temperature’, and the 

GAMM included an additional cyclic smoother for ‘month’, and an autoregressive term 196 

(AR1) for ‘month’ nested in ‘zone’.  These models were fitted using the ‘mgcv’ R package  

(Wood, 2011, 2017). Second, we used a subset of the catch data (including only drumline 198 

data [which excludes all NSW data], and only months where ‘effort’ was reported; see 

Holmes et al., 2012) to compute CPUE, which we modelled with a GAM, using a smoother 200 

of ‘temperature’ and with ‘zone’ (3 levels) as a fixed factor. There was no residual serial 

correlation (evaluated using the ‘acf’ autocorrelation function in R) so this GAM excludes 202 

temporal dependency terms. 

 For comparison with tiger sharks, we also computed monthly percentage catch and 204 

temperature data (as for tiger sharks) for other shark species reported in the QSCP and NSW 

programs that are known to have biogeographies different to tiger sharks; these were the 206 

cool-water white shark Carcharodon carcharias and the tropical blacktip shark Carcharhinus 

limbatus (due to imperfect species identification by contractors, it is likely that reports of 208 

“blacktip sharks” include some contribution of C. tilstoni and C. melanopterus, but since all 
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three blacktip species are characterised by tropical distributions, a blacktip complex serves as 210 

a useful comparison to the temperature dependence of catches of tiger and white sharks, with 

those species having quite different biogeographies).  212 

Bio-logging and telemetry 

Overall dynamic body acceleration (ODBA; Gleiss et al., 2011; Wilson et al., 2006) is a 214 

proxy of mechanical work done by animals, and generally well-correlated with rates of 

energy expenditure (Halsey et al., 2009; Payne et al., 2011). Recently, ODBA has also been 216 

shown to vary strongly with temperature in wild fishes and in a manner consistent with 

theoretical expectations (Angilletta, 2009) of thermal performance curves (Gannon et al., 218 

2014; Payne et al., 2016). Because temperature’s influence on physiological performance 

generally cannot be measured in controlled environments for large shark species (Payne et 220 

al., 2015), we measured ODBA of tiger sharks swimming freely in the wild. When measured 

in the wild, ODBA does not directly measure variation in physiological performance 222 

‘capacity’, but rather the combination of intrinsic physiological constraints and behavioural 

decisions made in a dynamic environment (see Payne et al., 2016). Since both intrinsic 224 

physiology and behaviour are central parameters for improving mechanistic understanding of 

species’ niches (Kearney, 2006), we considered measuring temperature’s influence on ODBA 226 

of wild sharks to be a useful approach to understanding thermal limitation of their 

performance. Throughout October and November 2011, five tiger sharks (247-387 cm total 228 

length, three female and two male) were instrumented with accelerometer packages on the 

dorsal fin off the east coast of Oahu, Hawaii (~ 21.5°N, 157.75°W), with full details of 230 

tagging reported in Nakamura et al (Nakamura et al., 2011). After release, tri-axial 

acceleration, depth and temperature were recorded for between 14 h and 7.4 days (mean of 232 

2.9 days per shark), with acceleration sampled at either 8 or 16 Hz, and both depth and 

temperature sampled at 1Hz. The static component of acceleration was filtered from each axis 234 
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using established methods (Sato et al., 2003) in order to compute ODBA. We then resampled 

the full ODBA record to only retain values coinciding with the temperature measurements 236 

recorded at 1Hz. For each deployment, mean ODBA was calculated per 0.1°C bin after a 

recent study reporting the thermal sensitivity of ODBA in several fishes (Payne et al., 2016). 238 

Because small differences in accelerometer placement and shark size can influence absolute 

acceleration measurements, we rescaled all mean bin data to a range of 0-1 for each shark, 240 

and then calculated the grand mean ODBA per 0.1°C for the five sharks combined. We 

excluded bins where fewer than 20 ODBA readings were provided per bin per individual 242 

(corresponding to < 20 seconds of ODBA data) to reduce the influence of temperature bins 

that were encountered very infrequently, and mean ODBA values that were unlikely to 244 

represent steady-state swimming. To estimate the temperature at which ODBA is greatest, we 

fitted the two-part performance curve as above, where A is ODBA. While we used the same 246 

approach to generating a thermal performance (ODBA) curve as Payne et al. (2016), 

differences in the resolution of accelerometer data (≥ 1 Hz versus < 0.01 Hz in the earlier 248 

paper), monitoring durations (days versus months), and species’ ecologies (large negatively-

buoyant sharks transiting through broad depth ranges versus small-bodied benthic and 250 

demersal teleosts) demand caution when directly comparing parameters of the thermal 

performance curves between this study and that of Payne et al. (2016). 252 

 The accelerometer loggers recorded ambient water temperature, and since the 

instrumented sharks were large, their core body temperatures were probably sometimes 254 

different to ambient temperatures (Sato, 2014).  To examine how tiger shark movement 

varies with body temperature, we internally implanted tiger sharks with temperature sensors 256 

and used acoustic telemetry to compare tiger shark body temperature to the time they spent in 

coastal regions of Hawaii.  We felt that measuring the combination of how ambient 258 

temperature influences swimming performance and how body temperature influences coastal 
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movement for the same population of tiger sharks provided a good overview of temperature’s 260 

influence on behaviour and activity of these animals. In October 2013, acoustic transmitters 

containing a temperature sensor (Vemco V16T) were implanted into the peritoneal cavity of 262 

four female tiger sharks (310-413 TL). These transmitters recorded body temperature and 

transmitted measurements approximately every 3 min. Time-stamped body temperature 264 

records and shark movements were monitored via an array of 14 acoustic receivers (Vemco 

VR2W) deployed around the coast of Maui (Hawaii). Receivers were all deployed off the 266 

western half of the island, with seven of them within 700m of the coast and the other seven 

within 5 km of the coast. The deepest receiver was in ~ 90m water depth, with most receivers 268 

in < 50m depth.  Inshore receivers were deployed at high recreational use (i.e. swimming, 

snorkelling and surfing) sites, including locations of recent shark bite incidents. The Maui 270 

acoustic array is part of a broader array spanning the Hawaiian Islands operated by the 

University of Hawaii (for details see Meyer et al., 2010; Papastamatiou et al., 2013), with the 272 

detection range of receivers measured at up to 950m (Meyer et al., 2010), and thus a 

maximum horizontal monitoring area of ~ 2.8 km
2
 per receiver. Because the absolute 274 

frequency of acoustic detections is not always a reliable indicator of marine animal residency 

(Payne et al., 2010), we calculated the total number of hours that each shark was detected 276 

(using a threshold of > 2 detections per hour to deal with potential ‘false detections’) at any 

of the coastal receivers in each calendar month , and expressed each monthly value as a 278 

percentage of the total number of hours detected per shark. To give equal weight to each 

shark, we then calculated the mean monthly percentage of hours detected across the four 280 

sharks. Second order polynomial regression was used to compare mean body temperature 

(recorded by the acoustic receiver array) per month to the percentage of time spent at 282 

Hawaiian coastal receivers per month. 

  284 
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Results  

Coastal catch rates 286 

A total of 4,750 records of historical tiger shark catches were obtained over ~ 18° of latitude 

along Australia’s eastern coast (Cairns [16.9°S 145.8°E] to Wollongong [34.5°S 150.9°E]) 288 

and a period spanning 1950 to 2015. The size of sharks ranged from 0.5 to 5.5m TL. Sex was 

often not reported, but 61% of sexed sharks were female. Most records were of tiger sharks 290 

caught on baited drumlines off Queensland, with 4,566 sharks and corresponding 

measurements of water temperature reported from 1996 to 2015 in that State. Only 184 tiger 292 

sharks were caught by the New South Wales bather protection program from 1950 to 1981 

(Reid et al., 2011). Stratifying catches in each of four latitudinal zones into each calendar 294 

month showed that the percentage of catches in each zone varied markedly with temperature 

(Fig. 1a). Tiger shark catches were highest during the coolest months in the northern tropical 296 

zone (16 – 19°S), but highest during the warmest months in the southernmost zone (33 – 34 

°S). The seasonality of catches in each zone suggested a consistent trend towards catches 298 

being highest in coastal water temperatures of ~ 22°C regardless of latitude (fitting of a two-

part thermal performance curve to all monthly catch data in the four zones returned a Topt 300 

estimate of 21.6°C and 95% CIs of 20.1 – 23.1°C; σ = 2.37, S = 10.09, Tcrit =31.75; P < 0.05, 

R
2
 = 0.37; Fig. 1a). Use of the independent coastal SST dataset gave very similar results (Topt 302 

= 22.4°C, 95% CIs of 19.9 – 24.3°C; σ = 2.9, S = 9.7, Tcrit =31.3; P < 0.05). 

 Both the GAM and GAMM spines for the % catch data were highly significant (P = 304 

0.0001 and 0.002, respectively) and almost identical, with Topt ~ 22°C (as with our 2-part 

curve; Fig. S1). The small amount of residual autocorrelation had little impact on the 306 

relationship between temperature and % catch (Fig. S1, Table S1), suggesting the domed 

pattern shown in Fig. 1 is reliable. For the reduced CPUE dataset, absolute CPUE varied 308 

between the three zones, but the GAM including zone as a factor returned a domed 
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relationship between CPUE and temperature (P < 0.05), with a Topt ~ 22°C (as with all other 310 

analyses; Fig. S2, Table S2).  

 The higher catches of tiger sharks near 22°C were in stark contrast to the relationships 312 

between coastal water temperature and catch rates for shark species with different 

biogeographies that were caught throughout Queensland (as reported by the bather protection 314 

program in that State); e.g. catches of the tropically-distributed blacktip shark Carcharhinus 

limbatus continued to increase up to the warmest temperatures encountered in coastal areas 316 

(28-29°C; Fig. 1b), whereas catches of the regionally-endothermic white shark C. carcharias 

were highest at cooler temperatures (~ 19°C or lower; Fig. 1c), with a complete reduction in 318 

catches coinciding with the temperature of the endothermic muscles (~ 26°C) of that species 

(Goldman, 1997) (note: two-part performance curves could not be fitted to catch data for C. 320 

limbatus and C. carcharius, so we fitted fourth-order polynomial curves to those data for 

graphical purposes; Fig. 1 dashed lines. Best-fit model for C. limbatus: y = -0.0012x
4
 + 322 

0.1072x
3
 – 3.6185x

2
 + 55.231x – 321.24; C. carcharius: y = -0.02135x

4
 + 2.015x

3
 – 70.65x

2
 

+ 1089x – 6198 ). 324 

 The ratio of winter to summer (Dec-Feb and Jun-Aug respectively) catches decreased 

strongly with increasing latitude (least-squares linear regression on ratios from the 27 326 

locations from which at least one tiger shark was captured in summer and winter; F1,25 = 

44.5, P < 0.0001); tiger shark catches were approximately three times higher in winter than in 328 

summer at the equatorward limit of the sampling region, but catches were twice as high in 

summer as in winter in the southern regions (i.e. around Sydney [34°S] ; Fig. 2). This shifting 330 

seasonality of tiger shark catches with latitude reflected their higher catches in water 

temperatures of ~ 22°C, with the change from higher catches in winter to summer occurring 332 

at latitudes where mean annual sea surface temperatures (SSTs) are in the range of 22-23°C 

(Fig. 2).  334 
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Bio-logging 336 

A thermal performance curve fitted to the relationship between ODBA and water temperature 

was somewhat variable over the ~14°C temperature range that the sharks encountered (~13–338 

27°C), but data returned a Topt  of 21.2°C and 95% CI of 18.8 – 24.0°C; σ = 3.92, S = 0.22, 

Tcrit = 29.0°C; Fig. 3a (note: the Tcrit estimate does not indicate that the sharks were 340 

motionless at 29°C; ODBA data were rescaled to the range of 0-1, so Tcrit was the 

temperature coinciding with the minimum ODBA values recorded during the study).342 

 From October 2013 to June 2015 we recorded 4806 internal body temperature 

readings from the four transmitters (1986, 1244, 864 and 712 readings from 282, 163, 121 344 

and 69 different hours, respectively), with all sharks detected relatively consistently across 

the 33-month monitoring period. The sharks were detected more frequently in coastal regions 346 

of Hawaii when their body temperatures were lowest (the coolest SSTs in Hawaii throughout 

the year are in the region of 24°C), and less frequently in those regions when their body 348 

temperatures increased (Fig. 3b).  Internal body temperatures of those sharks were very 

similar to SSTs whenever they were in coastal shelf habitat (85% of mean hourly body 350 

temperature readings were within ± 1.0°C of SSTs throughout the 30 month monitoring 

period; Fig. S3). The range of coastal SSTs experienced by the acoustically-tagged Hawaiian 352 

sharks (Fig. S3) was similar to the range of coastal temperatures over which tiger sharks were 

caught in the northernmost zone in Australia (Fig. 1a). 354 

 

 356 
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Fig. 1. Temperature dependence of shark catch rates along Australia’s eastern coast. 

Multi-decadal catch data were grouped into four latitudinal zones (inset legend) and 382 
presented as percentage catch per calendar month in each zone for (A) tiger sharks 

Galeocerdo cuvier, (B) blacktip sharks Carcharhinus limbatus and (C) white sharks 384 
Carcharodon carcharias. The curve in A represents a two-part thermal performance curve, 

whereas dashed lines in B and C are fourth-order polynomial curves. 386 
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Fig. 2. Shifting seasonality of tiger shark catches along Australia’s eastern coast. Blue 388 

data represent the ratio of total tiger shark catches recorded in winter months (Jun-Aug) to 

those recorded in summer months (Dec-Feb) at each of 27 locations over multiple decades. 390 

The blue line represents the least squares regression fitted to catch ratios across latitude, and 

the black line represents mean annual coastal sea surface temperatures across latitude over 392 

the past decade (www.metoc.gov.au). The dashed horizontal line represents the temperature 

coinciding with maximum tiger shark catches (from Fig. 1a). 394 
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Fig. 3. Swimming activity and body temperature of tiger sharks in coastal Hawaii. (A) 424 

Temperature’s influence on swimming activity (overall dynamic body acceleration; ODBA) 

for five free-ranging tiger sharks swimming off the eastern coast of Oahu, Hawaii, for an 426 

average of ~ 3 days per shark. ODBA data were rescaled for each shark and grand means 

calculated per 0.1°C bin across all sharks (see Methods), with the black curve representing a 428 

two-part thermal performance curve fitted to those data. (B) Grand mean body temperature 

per calendar month for four tiger sharks internally implanted with temperature sensors and 430 

monitored by an array of coastal receivers off Oahu, Hawaii. The y-axis in B represents the 

relative amount of time spent in coastal areas of Hawaii for the corresponding body 432 

temperatures.  
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Discussion 434 

Our combination of diverse datasets reveals temperature can be a powerful indicator of the 

relative likelihood of both tiger shark coastal occurrences and their activity levels, with both 436 

being maximised at the same temperature. The integration of functional trait information is a 

critical advance over studies that rely solely on correlations between species distributions and 438 

environmental conditions, as it suggests tiger sharks may be most abundant in coastal waters 

of 22°C because they are more active at that temperature. The ultimate cause of the elevated 440 

activity levels near 22°C for this species is uncertain; tiger sharks are ectotherms whose 

maximum power outputs, speeds minimising cost of transport, and minimum cruising speeds 442 

will all be influenced by temperature (Iosilevskii & Papastamatiou, 2016), but they are also 

predators that are likely to be more-active in prey-rich environments. Several other recent 444 

studies have measured temperature’s influence on growth and activity of wild fishes and 

found close links with geographical range limits (Neuheimer et al., 2011; Payne et al., 2016). 446 

Regardless of the specific pathways by which temperature regulates activity or growth, 

performance of wild ectotherms may prove a valuable functional trait for informing 448 

mechanistic distribution models, and extrapolating projections to future climate scenarios. 

 Temperature’s influence on tiger shark coastal occurrences was pervasive; at any 450 

latitude, catches were highest when coastal SSTs were nearest 22°C (Fig. 1a, Fig. S2b). They 

are thus more likely to be found in coastal areas in winter in the tropics but in summer 452 

towards temperate latitudes (Fig. 2).  The strength of this seasonal shift is noteworthy because 

it implies that temperature per se is the major determinant of coastal occurrences of the 454 

species. There was evidence that Hawaiian sharks showed a similar pattern to Australian 

sharks, with Hawaiian sharks being more prevalent in coastal waters when temperatures were 456 

at their coolest (Fig. 3b). It also appears to hold both on the west coast of Australia (where 

catches on drum lines in Shark Bay are near zero in coastal water temperatures of 16-17°C, 458 
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and generally increase up to maximum summer temperatures of ~ 23-24°C; Heithaus, 2001) 

and South Africa (where catches at latitudes near the poleward extent of our Australian catch 460 

array are highest during the warmest months; Dicken et al., 2016). Further, there is evidence 

that at least some tiger sharks choose to encounter SSTs of 22°C year-round: two tiger sharks 462 

tagged with satellite transmitters off the east coast of Australia (data originally presented in 

Holmes et al., 2014) were recorded migrating seasonally over approximately 12° of latitude, 464 

continuously exposing themselves to SSTs close to 22°C in the process (Fig. 4 . The sharks 

were fitted with SPOT5 satellite transmitters). While derived from just two individuals, these 466 

data offer evidence that a proportion of tiger sharks track latitudinal shifts in the 22°C 

isotherm, with seasonal migrations up and down the east coast of Australia (a pattern similar 468 

to that seen in the northwest Atlantic; Lea et al., 2015) being a plausible mechanism for 

explaining the strong trends seen in our catch data (Fig. 1a, Fig. 2). The importance of 470 

acclimation or regional adaptation to temperature variation is not clear from our data, with 

relative catch rates being highest at around 22°C regardless of latitude.  A similar finding was 472 

made for growth rates of several fish species off Australia’s coast, with the temperature’s 

maximising growth appearing conserved within-species across broad latitudinal ranges 474 

(Payne et al., 2016). Further exploration of this pattern for tiger sharks could come from 

activity data collected across a range of latitudes.  476 

 Taken together, abundance, performance and movement data suggest a persistent 

thermal optimum of 22°C for this species, and greater confidence that temperature will be a 478 

useful mechanistic predictor of future tiger shark populations than would models 

parameterized by distribution data alone. An important caveat is that elevated shark activity 480 

might increase their catchability on drumlines and nets, such that catch rate is somewhat 

reflective of activity as well as abundance. The proportionality of CPUE to abundance is  482 
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 484 

Fig. 4. Tiger sharks tracking their optimal temperature. Green and orange data represent 

daily latitudinal locations of two tiger sharks (tracks reproduced in inset map) overlaid onto 486 

average monthly coastal sea surface temperatures for 10 locations along eastern Australia 

(SST data from www.metoc.gov.au). White areas indicate the thermal optimum for catch 488 

rates and swimming activity (~ 21.5°C) of tiger sharks (this study). Satellite tracking data 

derived from Holmes et al (2014). 490 

 

long-debated (Harley et al., 2001) and disentangling the influence of shark activity and 492 

abundance on catch rate would require independent abundance data (such as from aerial 

surveys or trawls) that is currently unavailable. 494 

 Catch data from Australia and performance data from Hawaii suggest relative coastal 

abundance and performance are highest near 22°C, yet some tiger sharks in some regions 496 

appear to rarely encounter such temperatures. For example, tagged tiger sharks throughout 

the Hawaiian Islands only spent a small proportion of time in water temperatures below 24°C 498 

http://www.metoc.gov.au/
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across several months (Papastamatiou et al., 2013 and Fig. 3b in this paper). This species 

clearly has a broad thermal niche, as highlighted by the large temperature range over which 500 

tiger sharks were caught and can maintain performance in our study (Fig. 1a, Fig. 3a), and 

negative fitness impacts associated with inhabiting temperatures outside their optimal range 502 

can be buffered by other factors. For example, the annually resident tiger sharks at Raine 

Island, northern Australia, encounter SSTs of almost 30°C during the summer months, but 504 

are rewarded by having access to the highest density green turtle Chelonia mydas rookery in 

the world during this period (Fitzpatrick et al., 2012), and can expend minimal foraging 506 

energy there by scavenging (Hammerschlag et al., 2016). So although tiger shark 

distributions are not constrained by availability of temperatures close to 22°C, our data show 508 

that the likelihood of their occurrence and activity levels increases nearer this temperature. 

The ability of ectotherms to behaviourally buffer deleterious effects of sub-optimal 510 

temperatures are becoming increasingly recognised (Kearney et al., 2009; Sunday et al., 

2014), and is an important consideration when forecasting tiger shark distribution shifts, 512 

particularly at range boundaries. For example, the acoustically-tagged Hawaiian sharks were 

still detected over the warmest months (Fig. 3b), but need not travel far to have access to 514 

cooler habitat at depth, as other sharks are known to seek out (Sims et al., 2006). 

 Human encounters with potentially dangerous shark species are an increasingly 516 

contentious socio-political issue, and have motivated recent research seeking to identify the 

most important risk factors (such as the type of ocean activity undertaken by humans; Ferretti 518 

et al., 2015) influencing the likelihood of attacks. Beyond the implications of our results for 

understanding the distribution of tiger sharks, it is important to note that revealing the 520 

temperature at which this species is most active may also have implications for predicting the 

likelihood of shark bites. Our current understanding of the ultimate mechanisms influencing 522 

variability in shark attack frequency is poor (Ferretti et al., 2015), so it is unclear whether 
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more-active sharks are more likely to bite humans. Our accelerometry results could provide 524 

impetus for future studies exploring the mediating role of activity levels in any links between 

temperature and the likelihood of shark attacks. Accounting for variability in the behaviour of 526 

both humans (e.g. Ferretti et al., 2015) and sharks could provide for the most informed shark 

management programs. 528 

 

Conclusion 530 

The integration of performance and abundance data makes an important step toward a 

mechanistic understanding of how temperature regulates tiger shark distributions, and 532 

highlights the usefulness of temperature as a predictor for models linking distribution with 

fitness and performance. Models based solely on temperature may be of great benefit to 534 

management programs wishing to provide easily understood metrics relating shark 

occurrences to their environment, as compared to species distribution models underpinned by 536 

multivariate predictors. Our data suggest that tiger sharks are willing to move in response to 

(or alongside) patterns in SST, and that they will be a species whose spatial distribution 538 

responds to future changes in SST. We would also expect a southward shift in the latitude at 

which winter and summer occurrences are similar; a further ~1-2°C warming could see 540 

beaches around Sydney (some of the most popular in the country for bathers) hosting tiger 

sharks in similar abundances in both summer and winter (Fig. 2). SST might be a better 542 

predictor of tiger shark range extensions (into temperate regions) rather than complete 

distribution shifts, which (given their current broad temperature range in tropical regions) 544 

will likely be buffered by complex biogeographical processes. Indeed, the past decade has 

seen tiger sharks observed off the northern coast of Tasmania (41°S) – a global warming 546 

‘hotspot’ – for the first time in recorded history (Last et al., 2011), and while most global 

populations of the species have declined in recent decades (Baum et al., 2003; Holmes et al., 548 
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2012) catches of tiger sharks off the temperate coast of South Africa have increased (Dicken 

et al., 2016), consistent with a poleward distribution shift. Recent climate change scenarios 550 

predict further increases in summer SSTs of ~1°C by the middle of this century in the waters 

off south eastern Australia, so it would be unsurprising if tiger sharks became more prevalent 552 

in that region in coming decades; particularly since average summer temperatures in the 

region of the recent tiger shark encroachments to northern Tasmania (~ 17-18°C; 554 

www.metoc.gov.au) match the lower temperature limit in which the species is caught 

throughout Australia’s bather protection program (Fig. 1a). 556 

 Shifts in the distribution of sharks in coastal areas is an important socio-political 

issue, and one often cited with a perception of an increasing likelihood of shark bites on 558 

humans in recent decades (Ferretti et al., 2015). Incorporating seasonal trends in water 

temperature into bather protection programs may simultaneously improve public safety and 560 

reduce ecological impacts of shark removal programs, because being able to predict when 

and where potentially dangerous sharks are both most active and most likely to occur in 562 

coastal zones could facilitate dynamic management programs that do not simply rely on 

killing sharks. For example, the Queensland government in Australia has reduced incidences 564 

of bather injury caused by dangerous cubozoans through public awareness campaigns aimed 

at educating the general public as to when and where those species occur across the State. A 566 

similar approach to shark management could have the broadest benefits. 

 568 

Acknowledgements 

NLP was supported by a Cascade COFUND fellowship, JS by ARC Linkage project 570 

LP120100592 and AB by the Winifred Violet Scott Foundation. Use of the Queensland shark 

control program data by courtesy of the State of Queensland, Australia through the 572 

Department of Agriculture and Fisheries. Funding for the Australian satellite tracking 



Distribution and performance of tiger sharks 

24 
 

component was provided by F.G. Wilson Pty. Ltd., RipCom Telecommunications, Elanora 574 

State School, Mohammed Bin Zayed Species Conservation Fund, Discovery Channel, 

Wildlife Preservation Society of Queensland, Fisheries Queensland, New South Wales 576 

Recreational Fishing Trust and the New South Wales Game Fishing Association. 

Accelerometer tagging was supported by the Bio-Logging Science of the University of Tokyo 578 

(UTBLS) group. Thanks to Shaun Killen and four anonymous reviewers for comments that 

improved the manuscript. 580 

References 

Angilletta, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis: Oxford 582 

University Press. 

Baum, J. K., Myers, R. A., Kehler, D. G., Worm, B., Harley, S. J., & Doherty, P. A. (2003). 584 

Collapse and conservation of shark populations in the Northwest Atlantic. Science, 

299(5605), 389-392. 586 

Buckley, L. B. (2007). Linking traits to energetics and population dynamics to predict lizard 

ranges in changing environments. The American Naturalist, 171(1), E1-E19. 588 

Buckley, L. B., Urban, M. C., Angilletta, M. J., Crozier, L. G., Rissler, L. J., & Sears, M. W. 

(2010). Can mechanism inform species’ distribution models? Ecology Letters, 13(8), 590 

1041-1054. 

Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B., & Wood, S. (1998). Making 592 

mistakes when predicting shifts in species range in response to global warming. 

Nature, 391(6669), 783-786. 594 

Dicken, M., Cliff, G., & Winker, H. (2016). Sharks caught in the KwaZulu-Natal bather 

protection programme, South Africa. 13. The tiger shark Galeocerdo cuvier. African 596 

Journal of Marine Science, 1-17. 

Ferreira, L. C., Thums, M., Meeuwig, J. J., Vianna, G. M., Stevens, J., McAuley, R., & 598 

Meekan, M. G. (2015). Crossing latitudes—long-distance tracking of an apex 

predator. Plos One, 10(2), e0116916. 600 

Ferretti, F., Jorgensen, S., Chapple, T. K., De Leo, G., & Micheli, F. (2015). Reconciling 

predator conservation with public safety. Frontiers in Ecology and the Environment, 602 

13(8), 412-417. 

Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R., & Lotze, H. K. (2010). Patterns and 604 

ecosystem consequences of shark declines in the ocean. Ecology Letters, 13(8), 1055-

1071. 606 

Fitzpatrick, R., Thums, M., Bell, I., Meekan, M. G., Stevens, J. D., & Barnett, A. (2012). A 

comparison of the seasonal movements of tiger sharks and green turtles provides 608 

insight into their predator-prey relationship. Plos One, 7(12). 

Gannon, R., Taylor, M. D., Suthers, I. M., Gray, C. A., van der Meulen, D. E., Smith, J. A., & 610 

Payne, N. L. (2014). Thermal limitation of performance and biogeography in a free-

ranging ectotherm: insights from accelerometry. Journal of Experimental Biology, 612 

217(17). 



Distribution and performance of tiger sharks 

25 
 

Gleiss, A. C., Wilson, R. P., & Shepard, E. L. C. (2011). Making overall dynamic body 614 
acceleration work: on the theory of acceleration as a proxy for energy expenditure. 

Methods in Ecology and Evolution, 2(1), 23-33. 616 
Goldman, K. J. (1997). Regulation of body temperature in the white shark, Carcharodon 

carcharias. Journal of Comparative Physiology B, 167(6), 423-429. 618 
Halsey, L. G., Shepard, E. L. C., Quintana, F., Laich, A. G., Green, J. A., & Wilson, R. P. 

(2009). The relationship between oxygen consumption and body acceleration in a 620 
range of species. Comparative Biochemistry and Physiology a-Molecular & 

Integrative Physiology, 152(2), 197-202. 622 
Hammerschlag, N., Bell, I., Fitzpatrick, R., Gallagher, A. J., Hawkes, L. A., Meekan, M. G., . 

. . Barnett, A. (2016). Behavioral evidence suggests facultative scavenging by a 624 
marine apex predator during a food pulse. Behavioral Ecology and Sociobiology, 

70(10), 1777-1788. 626 
Harley, S. J., Myers, R. A., & Dunn, A. (2001). Is catch-per-unit-effort proportional to 

abundance? Canadian Journal of Fisheries and Aquatic Sciences, 58(9), 1760-1772. 628 
Heithaus, M. R. (2001). The biology of tiger sharks, Galeocerdo cuvier, in Shark Bay, 

Western Australia: sex ratio, size distribution, diet, and seasonal changes in catch 630 
rates. Environmental Biology of Fishes, 61(1), 25-36. 

Holmes, B. J., Pepperell, J. G., Griffiths, S. P., Jaine, F. R., Tibbetts, I. R., & Bennett, M. B. 632 
(2014). Tiger shark (Galeocerdo cuvier) movement patterns and habitat use 

determined by satellite tagging in eastern Australian waters. Marine Biology, 161(11), 634 
2645-2658. 

Holmes, B. J., Sumpton, W. D., Mayer, D. G., Tibbetts, I. R., Neil, D. T., & Bennett, M. B. 636 
(2012). Declining trends in annual catch rates of the tiger shark (Galeocerdo cuvier) 

in Queensland, Australia. Fisheries Research, 129, 38-45. 638 
Iosilevskii, G., & Papastamatiou, Y. P. (2016). Relations between morphology, buoyancy and 

energetics of requiem sharks. Royal Society Open Science, 3(10). 640 
Kearney, M. (2006). Habitat, environment and niche: what are we modelling? Oikos, 115(1), 

186-191. 642 
Kearney, M., Phillips, B. L., Tracy, C. R., Christian, K. A., Betts, G., & Porter, W. P. (2008). 

Modelling species distributions without using species distributions: the cane toad in 644 
Australia under current and future climates. Ecography, 31(4), 423-434. 

Kearney, M., & Porter, W. (2009). Mechanistic niche modelling: combining physiological 646 
and spatial data to predict species' ranges. Ecology Letters, 12(4), 334-350. 

Kearney, M., & Porter, W. P. (2004). Mapping the fundamental niche: physiology, climate, 648 
and the distribution of a nocturnal lizard. Ecology, 85(11), 3119-3131. 

Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral 650 
thermoregulation to buffer "cold-blooded" animals against climate warming. 

Proceedings of the National Academy of Sciences of the United States of America, 652 
106(10), 3835-3840. 

Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., & Pecl, G. 654 
(2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a 

response to climate change and fishing practices. Global Ecology and Biogeography, 656 
20(1), 58-72. 

Lea, J. S., Wetherbee, B. M., Queiroz, N., Burnie, N., Aming, C., Sousa, L. L., . . . Sims, D. 658 
W. (2015). Repeated, long-distance migrations by a philopatric predator targeting 

highly contrasting ecosystems. Scientific Reports, 5. 660 
Meyer, C. G., Papastamatiou, Y. P., & Holland, K. N. (2010). A multiple instrument 

approach to quantifying the movement patterns and habitat use of tiger (Galeocerdo 662 



Distribution and performance of tiger sharks 

26 
 

cuvier) and Galapagos sharks (Carcharhinus galapagensis) at French Frigate Shoals, 

Hawaii. Marine Biology, 157(8), 1857-1868. 664 

Nakamura, I., Watanabe, Y. Y., Papastamatiou, Y. P., Sato, K., & Meyer, C. G. (2011). Yo-

yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. 666 

Marine Ecology-Progress Series, 424, 237-246. 

Neuheimer, A. B., Thresher, R. E., Lyle, J. M., & Semmens, J. M. (2011). Tolerance limit for 668 

fish growth exceeded by warming waters. Nature Climate Change, 1(2), 110-113. 

Papastamatiou, Y. P., Meyer, C. G., Carvalho, F., Dale, J. J., Hutchinson, M. R., & Holland, 670 

K. N. (2013). Telemetry and random‐walk models reveal complex patterns of partial 

migration in a large marine predator. Ecology, 94(11), 2595-2606. 672 

Payne, N. L., Gillanders, B. M., Seymour, R. S., Webber, D. M., Snelling, E. P., & Semmens, 

J. M. (2011). Accelerometry estimates field metabolic rate in giant Australian 674 

cuttlefish Sepia apama during breeding. Journal of Animal Ecology, 80(2), 422-430. 

Payne, N. L., Gillanders, B. M., Webber, D. M., & Semmens, J. M. (2010). Interpreting diel 676 

activity patterns from acoustic telemetry: the need for controls. Marine Ecology-

Progress Series, 419, 295-301. 678 

Payne, N. L., Smith, J. A., Van der Meulen, D. E., Taylor, M. D., Watanabe, Y. Y., 

Takahashi, A., . . . Suthers, I. M. (2016). Temperature dependence of fish 680 

performance in the wild: links with species biogeography and physiological thermal 

tolerance. Functional Ecology, 30(6), 903-912. 682 

Payne, N. L., Snelling, E. P., Fitzpatrick, R., Seymour, J., Courtney, R., Barnett, A., . . . 

Semmens, J. M. (2015). A new method for resolving uncertainty of energy 684 

requirements in large water-breathers: the ‘mega-flume’ seagoing swim-tunnel 

respirometer. Methods in Ecology and Evolution, 6(6), 668-677. 686 

R-Core-Team. (2016). R: A language and environment for statistical computing. Vienna, 

Austria: R Development Core Team Retrieved from http://www.R-project.org 688 

Reid, D., Robbins, W., & Peddemors, V. (2011). Decadal trends in shark catches and effort 

from the New South Wales, Australia, shark meshing program 1950–2010. Marine 690 

and Freshwater Research, 62(6), 676-693. 

Sato, K. (2014). Body temperature stability achieved by the large body mass of sea turtles. 692 

Journal of Experimental Biology, 217(20), 3607-3614. 

Sato, K., Mitani, Y., Cameron, M. F., Siniff, D. B., & Naito, Y. (2003). Factors affecting 694 

stroking patterns and body angle in diving Weddell seals under natural conditions. 

Journal of Experimental Biology, 206(9), 1461-1470. 696 

Sims, D. W., Wearmouth, V. J., Southall, E. J., Hill, J. M., Moore, P., Rawlinson, K., . . . 

Morritt, D. (2006). Hunt warm, rest cool: bioenergetic strategy underlying diel 698 

vertical migration of a benthic shark. Journal of Animal Ecology, 75(1), 176-190. 

Sorte, C. J., Williams, S. L., & Carlton, J. T. (2010). Marine range shifts and species 700 

introductions: comparative spread rates and community impacts. Global Ecology and 

Biogeography, 19(3), 303-316. 702 

Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & 

Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory 704 

behavior across latitude and elevation. Proceedings of the National Academy of 

Sciences of the United States of America, 111(15), 5610-5615. 706 

Sunday, J. M., Pecl, G. T., Frusher, S., Hobday, A. J., Hill, N., Holbrook, N. J., . . . 

Wernberg, T. (2015). Species traits and climate velocity explain geographic range 708 

shifts in an ocean‐warming hotspot. Ecology Letters, 18(9), 944-953. 

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. 710 

C., . . . Hannah, L. (2004). Extinction risk from climate change. Nature, 427(6970), 

145-148. 712 

http://www.r-project.org/


Distribution and performance of tiger sharks 

27 
 

Wilson, R. P., White, C. R., Quintana, F., Halsey, L. G., Liebsch, N., Martin, G. R., & Butler, 

P. J. (2006). Moving towards acceleration for estimates of activity-specific metabolic 714 

rate in free-living animals: the case of the cormorant. Journal of Animal Ecology, 

75(5), 1081-1090. 716 

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood 

estimation of semiparametric generalized linear models. Journal of the Royal 718 

Statistical Society: Series B (Statistical Methodology), 73(1), 3-36. 

Wood, S. N. (2017). Generalized additive models: an introduction with R: CRC press. 720 

 

 722 

 

 724 

 

 726 

 

 728 

 

 730 

 

 732 

 

 734 

 

 736 

 

 738 

 

 740 



Distribution and performance of tiger sharks 

28 
 

Supplementary Material 

 742 

 

Fig. S1. a) Fitted temperature smoother in the GAM of % catch data. b) Fitted temperature 744 

smoother in the GAMM of % catch data. The GAM included a smoother for ‘temperature’, 

and the GAMM included an additional cyclic smoother for ‘month’, and an autoregressive 746 

term (AR1) for ‘month’ nested in ‘zone’. 

 748 

Table S1. Results of the smoother terms in the GAM and GAMM fitted to the % catch data 

(Fig. S1). The fitted models are given in script notation, where ‘s’ refers to the smoothing 750 

function. The AR1 term does not account for the correlation between December and January, 

but the cyclic smoother of month does. 752 

 edf F P 

Model: % Catch ~ s(Temp) 

s(Temp) 4.1 6.45 0.0001 

Model: % Catch ~ s(Temp) + s(Month, bs=‘cc’), corAR1(~Month|Zone) 

s(Temp) 3.6 5.25 0.002 

s(Month) 0.3 0.04 0.313 

 

 754 

 

 756 
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 758 

Fig. S2a-b. a) The tiger shark catch-per-unit-effort (CPUE; sharks drumline
-1

 day
-1

). b) Fitted 

temperature smoother in the GAM of CPUE data in (a). 760 

 

Table S2. Results of the GAM fitted to the CPUE data (Fig. S2b). 762 

Model: CPUE  ~ s(Temp) + Zone 

 Estimate S.E. t P 
Intercept 2.15 0.15 14.2 < 0.001 
Zone 2 0.75 0.21 3.5 0.001 
Zone 3 -1.18 0.22 -5.3 < 0.001 

 edf F P  
s(Temp) 2.1 3.0 0.04  
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 782 

 

Fig. S3. Relationship between hourly recorded SST (Kahului Harbor, Maui 784 

https://tidesandcurrents.noaa.gov) and mean hourly internal body temperatures of four tiger 

sharks implanted with temperature sensors and monitored in coastal regions of Maui from 786 

October 2013 to June 2015. Body temperatures generally matched corresponding SSTs (solid 

line represents xy unity), with 85% of hourly body temperature readings falling within ± 788 

1.0°C of SSTs throughout the 33 month monitoring period. 

https://tidesandcurrents.noaa.gov/

