
1 
 

 1 

Revision for submission to Proceedings of the Nutrition Society 2 

 3 

 4 

 5 

 6 

Tryptophan supplementation and serotonin function: genetic variations in behavioural 7 
effects 8 

 9 

 10 

E. L. Gibson 11 

 12 

Department of Psychology, University of Roehampton, London, SW15 4JD 13 

 14 

Address for correspondence: 15 

Department of Psychology 16 

Whitelands College 17 

University of Roehampton 18 

London 19 

SW15 4JD 20 

Email: l.gibson@roehampton.ac.uk 21 

 22 

 23 

Short title: Tryptophan loading, genes and behaviour 24 

 25 

Key words: tryptophan supplementation; serotonin and behaviour; 5-HTTLPR; genetic 26 
polymorphism; stress;  27 

 28 

  29 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Roehampton University Research Repository

https://core.ac.uk/display/334799994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract 30 
 31 

The neurotransmitter serotonin has a role in affective disorders such as depression and anxiety, as 32 

well as sleep, cognitive function and appetite. This review examines the evidence that serotonin-33 

related genotypes may moderate the behavioural effects of supplementation with the serotonin 34 

precursor amino acid tryptophan (TRP), on which synthesis of serotonin (or 5-hydroxytryptamine; 35 

5-HT) depends.  However, 95% of serotonin is synthesised and used in the periphery, and TRP is 36 

also metabolised via non-5-HT routes such as the kynurenine pathway.  Moreover, understanding of 37 

genotypes involved in regulation of serotonin raises questions over the generalisability of TRP 38 

effects on behaviour across individuals with varied serotonergic genotypes. To date, only 39 

differences between variants of the 5-HT transporter-linked promoter region (5-HTTLPR) have 40 

been investigated in relation to behavioural effects of TRP supplementation. Effects of 5-HTTLPR 41 

genotypes are usually compared between the alleles that are either high (L/L’) or low (S/S’) 42 

expressing of mRNA for the 5-HT transporter receptor.   Yet, another key genetic variable is sex:  43 

in women, the S/S’ genotype predicts sensitivity to improved mood and reduced cortisol by TRP 44 

supplementation, during stressful challenges, whereas the L/L’ genotype protects against stress-45 

induced mood deterioration.  In men, the L/L’ genotype may confer risk of stress-induced increases 46 

in negative affect; there are insufficient data to assess effects in male S/S’ genotypes.  However, 47 

better powered studies to detect sex by genotype by stress by TRP interactions, as well as 48 

consideration of more genotypes, are needed before strong conclusions and recommendations for 49 

behavioural effects of TRP treatment can be reached. 50 

 51 

  52 
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Dietary tryptophan and the pathways to serotonin function 53 
 54 

Serotonin, or 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter in the central 55 

nervous systems (CNS) of the majority of animals including human beings.  Its synthesis depends 56 

on supply of the essential amino acid, l-tryptophan (TRP), which cannot be biosynthesised by 57 

human beings and so must be obtained from dietary sources.  Moreover, serotonin synthesis rate 58 

depends on availability of the precursor TRP.  The scope of this review is to consider recent 59 

findings from research involving effects of supplementing TRP supply on behaviour and their 60 

interaction with genetic susceptibility, including indirect evidence that TRP supplementation likely 61 

alters affective states via effects on central serotonin function.   62 

An important consideration for understanding effects of TRP administration is that only 63 

about 5% of endogenous serotonin is found in the brain; the remainder is in the gut (about 90%), 64 

principally released by enterochromaffin cells, and in peripheral tissue or in the blood, where it is 65 

taken up into blood platelets (1; 2; 3). Indeed, the name serotonin derives from its discovery in blood 66 

70 years ago and the observation that it caused contraction of vascular smooth muscle (4); thus, one 67 

function of serotonin is to regulate local blood flow.  This imbalanced distribution between brain 68 

and periphery needs to be borne in mind when considering the possible impact of dietary 69 

manipulation of central serotonin by TRP, and the potential influence of alternative metabolic 70 

pathways as well as probable moderating effects on these metabolic routes.  These issues are 71 

considered further below; nevertheless, serotonin is a widely distributed and important CNS 72 

neurotransmitter, arising from neuronal cell bodies located in the higher and lower raphe nuclei of 73 

the brainstem, and acting at multiple receptor subtypes with a range of behavioural effects (5).   74 

Serotonin’s established importance in affective disorders and appetite, as well as sleep and 75 

cognition (6), make understanding who might benefit most from therapeutic use of TRP an important 76 

goal of research . 77 

Metabolic pathways for l-tryptophan 78 
 79 

As with other essential amino acids, TRP can contribute to hepatic biosynthesis of proteins; 80 

however, TRP is typically incorporated into proteins at only 1-2% of total amino acids, making it 81 

the scarcest of amino acids in dietary proteins (3; 7).  Nevertheless, if TRP is acutely deficient, 82 

incorporation into protein synthesis will contribute to a substantial lowering of plasma TRP levels 83 
(8; 9). However, in the absence of TRP deficiency, the majority of consumed TRP is metabolised via 84 

other pathways, including for synthesis of 5-HT, melatonin and niacin (vitamin B3).  Indeed, it has 85 
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been estimated that only 1% of dietary TRP is used for brain 5-HT synthesis (10).  TRP use for 86 

synthesis of niacin is via the oxidative kynurenine pathway, which has also been termed the 87 

‘tryptophan catabolite’ pathway (TRYCAT) (11).  This pathway is becoming increasingly recognised 88 

as having important implications for health, including neuropsychiatric conditions such as 89 

depression (11; 12). A further route for TRP metabolism is via degradation by gut microbiota, which 90 

can lead to production of both positive and detrimental active metabolites, including quinolinic acid 91 
(1); therefore, individual variation in the gut microbiome may have implications for TRP metabolism 92 

and thus brain health and psychological wellbeing (13).   93 

 The kynurenine, or TRYCAT, pathway involves an initial rate-limiting metabolism of TRP 94 

to kynurenine catalysed by the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), which can be 95 

induced by glucocorticoid hormones (14).  However, under inflammatory conditions, the extrahepatic 96 

enzyme, indole 2,3-dioxygenase (IDO) becomes increasingly important in metabolising TRP to 97 

kynurenine, due to induction by pro-inflammatory cytokines (11).  These inductive influences on 98 

diversion of TRP metabolism away from 5-HT synthesis have been proposed as mechanisms 99 

underlying the link between stress, inflammation, deficient 5-HT function and depression (11; 12). 100 

 The metabolism of TRP for synthesis of 5-HT is catalysed by the rate-limiting enzyme, 101 

tryptophan hydroxylase, which converts TRP into 5-hydroxytryptophan (5-HTP).  In turn, 5-HTP is 102 

decarboxylated to 5-HT by the enzyme aromatic amino acid decarboxylase.  The key observation 103 

for this pathway is that TRP hydroxylase (TPH) is not fully saturated by its substrate TRP under 104 

normal conditions, so that raising brain TRP levels could increase serotonin synthesis. However, 105 

brain TRP levels are buffered from plasma TRP by the blood brain barrier (BBB): to be transported 106 

into the brain, TRP has to compete for uptake across the BBB against other amino acids, in 107 

particular a group known as the large neutral amino acids (LNAA), especially the branched chain 108 

amino acids, leucine, isoleucine and valine, but also phenylalanine and tyrosine (the precursors for 109 

catecholamine – dopamine, adrenaline, noradrenaline - transmitter synthesis).  Thus, the ratio of 110 

plasma or serum TRP to LNAA (TRP/LNAA) is recognised as the best peripheral biomarker of 111 

uptake of TRP into the brain (7).  Some 90% of TRP in blood is typically bound to the blood protein 112 

albumin, and it is often assumed that the remaining free unbound fraction of TRP should be taken to 113 

be the best predictor of TRP entry across the BBB.  However, it has been shown that TRP binding 114 

to albumin is very labile, such that TRP can easily be released in cerebral circulation.  Furthermore, 115 

TRP can be displaced from or prevented from binding to albumin by free fatty acids (FFA), which 116 

also bind readily to albumin (7; 9).   Therefore, factors that alter FFA levels in blood will affect 117 

availability of free TRP for entry into the brain: for example, sympathetic activation by stress or 118 



5 
 

exercise will induce lipolysis, increase plasma FFA and so release more TRP from albumin.  This 119 

acute stress-induced increase in availability of TRP for serotonin synthesis might contribute to the 120 

observation that even mild stress can increase 5-HT release in rat brain (15).  It also suggests caution 121 

is required in interpreting correlations between single measures of plasma free TRP and personality 122 

traits such as anxiety or aggression, as these may interact with the experimental procedure and 123 

perceived stressful nature of the study to modify TRP levels.  In contrast, food or drink that 124 

stimulates insulin release, and so promotes uptake of FFA into tissue, will tend to reduce 125 

availability of free plasma TRP, but at the same time will remove competing LNAA from plasma 126 

into tissue (7).  Thus, measuring both free and total TRP may ensure better prediction of TRP entry 127 

into brain and its behavioural associations (9; 16). 128 

 However, 95% of 5-HT is synthesised and used in the gut, blood and peripheral tissue (1; 14).  129 

Although the synthesis of 5-HT from TRP follows a similar biochemical path in brain and 130 

periphery, the form of the enzyme TPH by and large differs slightly between these regions; these 131 

isoforms are known as TPH1 and TPH2 respectively, indicating the order of characterisation (17; 18).  132 

To be precise, in the brain the principal isoform, TPH2, shown to depend on expression of a 133 

different gene form from TPH1 (18), was found to be highly expressed by measuring mRNA specific 134 

to the brainstem raphe nuclei, where brain serotonin is primarily synthesised, whereas TPH1 was 135 

found to be responsible for 5-HT synthesis, and ultimately melatonin, in the pineal gland (19) and gut 136 
(18).  However, this classification is oversimplified, as TPH1 mRNA has also been shown to be more 137 

highly expressed in the amygdala and hypothalamus than TPH2 (20), although its precise role in 138 

those sites is uncertain.  139 

Serotonin and behaviour 140 
 141 

Serotonin has long been associated with several fundamental aspects of behaviour including 142 

sleep, appetite, cognition, and social and emotional behaviours such as anxiety, depression, 143 

empathy and aggression (21; 22).  These influences of serotonin on behaviour will be briefly reviewed 144 

prior to consideration of the impact of TRP supplementation and its interaction with 5-HT-related 145 

genotypes. 146 

Early neurophysiological and lesion work on the function of CNS 5-HT demonstrated a 147 

clear role in regulating sleep (23), whereas the therapeutic use of monoamine oxidase inhibitors 148 

(which prevent serotonin, and other monoamine, metabolism by the enzyme monoamine oxidase; 149 

MAO), as well as development of tricyclic antidepressants (which inhibit synaptic reuptake of 150 
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monoamine neurotransmitters), such as imipramine, to treat depression, led to the “serotonin 151 

hypothesis” of depression, in which depression is seen primarily to result from a deficit in 5-HT 152 

function (24; 25). The theory expanded to consider a role for CNS 5-HT in associated clinical 153 

affective disorders as well as regulation of mood in healthy people (25). However, this 154 

pharmacotherapeutic evidence was non-specific to serotonin, and ironically, notwithstanding the 155 

risk of oversimplifying neural bases to complex disorders, the best evidence for a major role for 156 

CNS 5-HT in control of affect has come from studies that manipulate TRP entry to the brain (26).  157 

Furthermore, whilst recent studies combining neuroimaging with administration of selective 158 

serotonin reuptake inhibitors (SSRI) have also strengthened the evidence for a role for central 5-HT 159 

in depression (27), other evidence is emerging for the importance of peripheral metabolic pathways 160 

for TRP, including roles in inflammatory processes and melatonin synthesis, underlying major 161 

depression, seasonal affective disorder and bipolar disorder (1; 11; 12; 28). 162 

Central serotonin is known to be involved in cognitive function, especially memory, 163 

attention, decision making and information processing, as well as in the processing of emotionally 164 

relevant stimuli (26; 29; 30).  However, cognition and emotion, or affect, are not entirely separable, and 165 

are often strongly interdependent (31; 32; 33).  Emotions, via their neural substrates, influence memory 166 

and attention for example, and depression and anxiety are associated with cognitive impairments 167 

and biases that can contribute to the affective disorder and its maintenance (32; 34).   168 

Effects of acute tryptophan depletion 169 
 170 

This review is mainly concerned with genetic susceptibility to effects of forms of TRP 171 

administration that may lead to increased serotonin synthesis in the brain; however, by way of 172 

comparison, and given the scientific influence, a brief overview is included of findings, and their 173 

implications, on deficits in central 5-HT induced by acute TRP depletion (ATD) methods (Young 174 

2013; Young et al. 1985).  ATD is usually induced by ingestion of amino acid loads devoid of the 175 

precursor amino acid TRP to suppress 5-HT synthesis, and can be preceded by a low-TRP diet for a 176 

few days (29). This results in a substantial (e.g. >70%) and rapid drop in plasma TRP, and 177 

TRP/LNAA ratio (>80%) that may last 4-6 hours (30; 35); similar effects have been found with a 178 

more palatable low-TRP collagen protein mixture (36), and more recently a gelatin-derived TRP-free 179 

protein/carbohydrate mixture has been used (9).  Moreover, the serotonin metabolite, 5-180 

hydroxyindole acetic acid (5-HIAA) measured in cerebrospinal fluid (CSF) declined by about one-181 

third at 12 hours, after which measurements stopped (37). ATD methods have provided the most 182 

consistent evidence for serotonergic involvement in cognition, including impairment of memory 183 
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consolidation (38; 39), and aspects of cognitive flexibility including learning (40) and decision-making 184 
(41). Moreover, evidence in animal models is persuasive of opposing effects of both ATD and TRP 185 

supplementation on brain 5-HT (6; 42; 43; 44). 186 

 In support of a key role for serotonin in affective disorders, ATD also alters emotional 187 

processing and regulation (45; 46; 47). Reducing TRP access to the brain by ATD tends to mimic the 188 

cognitive biases seen in depressed populations, such as impaired memory for, attention to, or 189 

recognition of positive vs. negative information including facial expressions (34; 48; 49).  However, 190 

positive effects of ATD on cognition, for example on decision making and focused attention have 191 

also been reported (50; 51; 52), albeit interacting with history of depression (53).  One explanation has 192 

been that serotonin may affect “hot” cognitive tasks that include an affective component, but not 193 

“cold” cognitive tasks that do not obviously involve emotional stimuli (49).   194 

Neuroimaging techniques show that activity of brain regions involved in emotion regulation 195 

such as the limbic system and prefrontal cortex is sensitive to ATD (46).  The evidence is consistent 196 

with a normally inhibitory role of serotonin on any tendency for negative emotional bias (54; 55).  197 

Importantly, family or personal history of depression, sex and at-risk genotypes, have been reported 198 

to moderate effects of ATD on brain activity to emotional stimuli (46; 47; 56). 199 

Despite a history of use of anorexigenic drugs with serotonergic agonist activity such a d-200 

fenfluramine (57), and reductions in food intake established for high doses of TRP (58), and thus an 201 

expectation that ATD might increase appetite, the few studies addressing this directly in human 202 

beings suggest little effect of ATD on appetite despite concurrent mood effects (59; 60; 61).  Two 203 

studies comparing ATD in women with Bulimia Nervosa vs. healthy controls found conflicting 204 

results (60; 62): though both studies found increased negative affect in bulimic women, only one 205 

reported increased energy intake in these women (62), although the other did find an increased desire 206 

to binge eat (60).  However, curiously, another study reported a concurrent increase in both nausea 207 

and hunger in healthy women (63). These findings also need to be considered in the context of 208 

opposing relationships between depression and appetite across patients (64). 209 

Two other behaviours that appear to be sensitive to serotonin depletion are aggression and 210 

impulsivity (33; 65).  ATD has resulted in increased aggressive behaviour in the majority of studies 211 

where measured (33), and aggressive traits have correlated with plasma levels of TRP and CSF 212 

indices of serotonin turnover (65).   However, gene by environment interactions, including stressful 213 

life events, and sex differences, are likely to moderate findings (66; 67), and a meta-analysis of 214 

associations between 5-HT function and aggression in human beings revealed only a weak negative 215 
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relationship (68).  It may be that stronger associations will be found when genetic variants 216 

influencing serotonin function, such as in enzymes involved in synthesis and metabolism, or 217 

polymorphisms in transporter systems (see below), are taken into account (69; 70). Indeed, a key 218 

criticism put forward is the observation that ATD lowers TRP quite universally across participants, 219 

and yet the behavioural effects differ considerably depending on a propensity to dysfunction of 220 

mood or emotional regulation, or poor stress coping (9). 221 

Effects of TRP administration and supplementation 222 
 223 

 In contrast to ATD, which is a research tool to investigate serotoninergic processes in human 224 

beings, and for which most effects are not beneficial, administration of TRP (and its first-stage 225 

metabolite, 5-HTP) has a long history of being studied for potential clinical benefit in depression, as 226 

well as for basic research, as a means to facilitate entry of TRP into the brain and thus elevate 5-HT 227 

synthesis and release (26; 33).  The methods can vary from intravenous administration of TRP to oral 228 

supplementation of TRP, or use of TRP-rich proteins or peptide preparations, either acutely or 229 

chronically (26; 29; 71).  It is also possible to increase the TRP/LNAA ratio, and so enhance TRP entry 230 

across the BBB, by feeding a carbohydrate-rich, very low-protein meal, since the rise in insulin 231 

removes more LNAA into surrounding tissue.  This dietary method has been shown to benefit 232 

cognitive and emotional function, and reduce the cortisol response to stress, in more stress-prone, 233 

neurotic participants (72; 73; 74; 75). This mechanism has also been suggested to underlie dietary effects 234 

on mood and performance, such as calming after high-carbohydrate meals vs. arousal after protein-235 

rich meals (76; 77).  Recently, using data from the US National Health and Nutrition Examination 236 

Survey for nearly 30,000 adults, dietary intake of TRP was found to be inversely associated with self-237 

reported levels of depression, and positively related to sleep duration (more strongly in women; 238 

adjusted for protein intake) (78).  Thus, even in complex whole diets, TRP intake appears to provide 239 

psychological benefits. 240 

TRP supplementation has been employed as a potential treatment for depression and sleep 241 

disturbance since the early 1960s (24; 79), although a Cochrane Review of 108 trials (including for 5-242 

HTP) for antidepressant effects in 2002 found that only two trials were of sufficient quality to be 243 

included (80).  Nevertheless, on that limited evidence, TRP was considered to be better than placebo 244 

in alleviating depression, at least in mild to moderately depressed people.  Moreover, for more than 245 

a decade prior to that review, the US Food and Drug Administration had banned over-the-counter 246 

sales of TRP following an outbreak in 1989 of harmful eosinophilia-myalgia syndrome in users of 247 

TRP supplements.  The cause was eventually traced to impurities in TRP supplements from one 248 
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Japanese manufacturer, after which the ban was lifted in 2001 (10; 26).  Thus, for at least 5 decades, 249 

TRP has been used pharmacologically, i.e. at daily doses sometimes well in excess of 10 times the 250 

RDA (5 mg/kg) for this essential amino acid. There was early evidence for probable enhancement of 251 

brain 5-HT function: after 50 mg/kg TRP (3.5 g per 70 kg subject) was consumed in a milk drink, 252 

plasma TRP increased 8-fold, TRP in cerebrospinal fluid (CSF) increased 6-fold after 6-8 hours, and 253 

the metabolite 5-HIAA increased almost two-fold in CSF by 8 hours, suggesting increased turnover 254 

of brain 5-HT (81).  This two-fold increase in 5-HT turnover was replicated in a later study of CSF 5-255 

HIAA changes, using 3 g and 6 g TRP, with no further increase at the higher dose, although the level 256 

was sustained for longer, i.e. 12 hours vs. 8 hours (82). 257 

 In a review of potential side effects, Fernstrom (26) concluded that such use of TRP appears 258 

to be largely safe from adverse events, although the evidence is limited and not systematic.  There 259 

are some reports of symptoms such as nausea, tremor or dizziness when high doses are used (although 260 

these are also common symptoms reported in placebo-treated subjects).  However, the greatest risk 261 

of side-effects occurs when TRP is combined with other drugs that enhance 5-HT availability, such 262 

as antidepressant serotonin selective reuptake inhibitors (SSRI) or MAO inhibitors (MAOI): then a 263 

toxic ‘serotonin syndrome’ may occur that can include hyperthermia and coma (26).  A more common 264 

effect of high doses of TRP is fatigue or drowsiness, which has led to TRP being used to aid sleep, in 265 

which case sedation is not an unwanted side-effect (26).  However, a complication of oral TRP at 266 

higher doses is that it increases release of several hormones including growth hormone, cortisol and 267 

prolactin (83) (the latter thought to indicate increased central serotonin - and dopamine - activity).  A 268 

recent study also reported that intragastric administration of 1.56 g TRP increased plasma 269 

cholecystokinin and glucagon-like peptide 1 (GLP-1), as well as slowing gastric emptying (84): 270 

although subjective appetite was not affected, it is likely that these mechanisms contribute to reduced 271 

food intake reported after higher doses of TRP (58).  Even so, food intake might be reduced merely 272 

due to TRP-induced drowsiness. 273 

There is also concern that excess metabolism through pathways such as TRYCAT could lead 274 

to high levels of neuronally active metabolites such as kynurenic acid and quinolinic acid.  However, 275 

a recent review did not find evidence for adverse side-effects via these routes, although it was 276 

acknowledged that more systematic research is needed (1).  Furthermore, it has been argued that the 277 

modest antidepressant effect of TRP loading is due to accelerated hepatic degradation of TRP in 278 

depressives, probably via stress-related neuroendocrine enhancement of the catabolic hepatic enzyme 279 

TDO (85). 280 
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As would be expected in a treatment with antidepressant potential, there is considerable 281 

evidence for beneficial effects of TRP on mood and social behaviour, and these findings have recently 282 

been reviewed (22; 33). There is some evidence that TRP can reduce aggression in schizophrenic 283 

patients (33), and reduce quarrelsomeness while increasing agreeableness in healthy participants with 284 

a tendency to irritability or aggression (22).  Thus, it has been proposed that serotonin may influence 285 

a basic drive to be social, and that modulation of serotonin can alter more complex social behaviours 286 

by affecting social behaviour along an agreeable-quarrelsome axis (33).  For example, there is evidence 287 

that TRP supplementation can promote prosocial behaviour in economic decision-making tasks (22).   288 

Somewhat counterintuitively, a more recent study, in which 1 g TRP was given 3 times per day for 289 

14 days to those with a family history of depression, found increased quarrelsomeness and reduced 290 

agreeableness (at home), but improved mood, compared to placebo (86).  This was interpreted as 291 

possibly reflecting development of more control in social interactions at home. 292 

Effects of TRP-rich protein preparations 293 
 294 

Bearing in mind such concerns about loading with high doses of TRP as the single amino 295 

acid, in recent years methods have been developed to enhance TRP availability to the brain by 296 

administering TRP-rich dietary proteins: the most published example is the whey protein α-297 

lactalbumin. The effects of this protein are usually compared to responses after ingestion of another 298 

protein, typically casein hydrolysate (another milk protein), which has lower levels of TRP but 299 

greater amounts of the competing LNAA (29). 300 

 Similarly to a high-carbohydrate meal, α-lactalbumin has been shown to enhance (or correct) 301 

serotonin function (indexed by prolactin release) and cognition, and to reduce cortisol release, in 302 

stress-prone (more anxious) participants (87; 88). Alpha-lactalbumin attenuated deficits in delayed 303 

memory in women suffering from premenstrual syndrome (89) and in recovered depressives and 304 

healthy subjects (90). This TRP-rich protein also improved perception of emotional faces with in 305 

women (91): however, effects on emotional face processing tend to be weaker than dosing with TRP 306 

alone (92). 307 

Another TRP-rich protein that has been used for research in this area is a proprietary peptide 308 

product, which is an egg white protein hydrolysate formulation that contains fewer competing 309 

LNAAs (DSM Nutritional Products Ltd., Basel).  This peptide, taken in drink form, has been shown 310 

to be more effective in raising plasma TRP/LNAA ratios than either α-lactalbumin or TRP alone (93; 311 
94).  Preliminary studies using a 12-g dose (0.66 g TRP) of this TRP-rich protein hydrolysate 312 

showed improved mood in all subjects and enhanced psychomotor and vigilance performance in 313 
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individuals more resilient to stress (93; 95).  This was supported by an fMRI study in young women 314 
(96) which found that this dose improved mood acutely as well as increasing activation of brain 315 

limbic circuitry, especially medial cingulate gyrus, during a fear induction task.  Conversely, during 316 

reward anticipation, activation of reward pathways was reduced.  Effects on resting state 317 

connectivity were in line with modulation of brain regions involved in regulation of mood.  318 

Subsequently, lower doses were found to be effective in enhancing mood and positivity in 319 

emotional processing acutely (0.13 g TRP) (97), and chronically (0.07 g TRP for 19 days) in 320 

improving aspects of mood and sleep, as well as modest benefits to cognition, in middle-aged 321 

women, relative to a casein control treatment (98). 322 

 323 

Role of genetics in moderating effects of TRP supplementation or challenge on 324 
serotonin-related behaviours 325 

 326 

Gene polymorphisms involved in metabolism of TRP and regulation of serotonin could have a 327 

substantial influence on behavioural effects of manipulations of TRP availability.  There is potential 328 

for moderation of TRP effects by polymorphisms in each of the key enzymes influencing TRP 329 

metabolism and thus serotonin synthesis, i.e. TPH1, TPH2, TDO, IDO, and also by polymorphisms 330 

of the monoamine oxidase A (MAO-A) enzyme that metabolises central serotonin (Figure 1).  331 

These various 5-HT-related polymorphisms may form an interactive system that determines the 332 

aetiology and prognosis of various forms of affective disorder (17; 99; 100; 101; 102). However, the most 333 

evidenced serotonergic genetic influence on behaviour is the 5-hydroxytryptamine transporter-334 

linked promoter region (5-HTTLPR) polymorphism of the serotonin transporter gene (SLC6A4) 335 
(103; 104). The recommended classification of 5-HTTLPR genotypes is a functional combination of 336 

variable number tandem repeats (VNTR) of short or long length of the gene promoter amplicon and 337 

single nucleotide polymorphism (SNP) variants, LA and LG, where LG is functionally equivalent to 338 

the short, and LA to the long, VNTR forms (103; 104). Effects of 5-HTTLPR genotypes are usually 339 

compared between the homozygous alleles that are either high (long variants; L/L’) or low (short 340 

variants but including LA; S/S’) expressing of mRNA for the 5-HT transporter receptor.   341 

Another important genetic factor in predicting serotonergic effects on behaviour is sex.  342 

Women are more susceptible to, and have higher heritability for, affective disorders (even allowing 343 

for sociocultural effects on presentation), may be more sensitive to stress, and tend to be more 344 

responsive to SSRI treatment (67).  Brain 5-HT synthesis rates are reportedly 50% lower in women 345 
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than men (105), and ATD causes greater lowering of mood in women than men (106).  In some studies, 346 

women also appear to be more sensitive to, or to benefit more from, TRP supplementation; indeed, 347 

some researchers chose to study women only for these reasons (97; 98).  Furthermore, sex interacts 348 

with serotonergic gene polymorphisms in several systems, including 5-HTTLPR, TPH1, TPH2 and 349 

MAO-A (67; 107), and these interactions can be further moderated by stress (108; 109; 110; 111).  Therefore, 350 

the sex of participants needs to be considered when interpreting findings in this area. 351 

 352 

TRP administration and 5-HTTLPR genotypes 353 
 354 

Only a few studies have investigated whether these 5-HT- and TRP-related genotypes alter 355 

the effects of TRP loading (or challenge or supplementation), and these appear to be limited to 356 

comparison of 5-HTTLPR genotypes: these studies are summarised in Table 1. In the earliest 357 

published study (108) to examine moderation of TRP loading by the 5-HTTLPR tri-allelic genotype, 358 

41 men and 31 women were infused intravenously with a high dose of TRP (100 mg/kg), while 359 

aspects of mood were assessed (Profile of Mood States; POMS).  Far from improving mood, this 360 

procedure generally increased negative affect, but the effects were moderated by genotype and sex: 361 

in men, only those with the high-expressing L/L’ polymorphism showed increased negative mood, 362 

whereas in women, only the L/L’ group showed no increase in negative mood.  This opposing 363 

interaction between sex and 5-HTTLPR genotype is in line with evidence based on the impact of 364 

social stressors on negative affect in adolescents (111).  However, sample sizes were small, especially 365 

in the S/S’ groups (7 men; 9 women). 366 

Using a far lower dose, and oral administration, Markus and Firk (112) examined potential 367 

interactions between acute TRP supplementation, stress and 5-HTTLPR genotype on mood, cortisol 368 

and cognition.  They hypothesised that the TRP challenge would ameliorate the effects of stress on 369 

mood and cortisol in subjects homozygous for the tri-allelic S/S’ genotype compared to those with 370 

the L/L’ genotype.  In a cross-over design, 30 student participants (16 S/S’-allele; 14 L/L’-allele; 371 

only one man in each group) received either TRP (2 x 0.4 g) or placebo (lactose), prior to a stressful 372 

challenge, with baseline and post-stress measures of mood (POMS) and salivary cortisol.  The 373 

stressor consisted of repeated unpredictable cold pressor stress (hand on a 1.5-oC cold plate) 374 

interspersed with a Serial-7 subtraction task (repeatedly subtracting 7 from a variable starting 375 

number), performed in front of a camera and researcher; errors were recorded.  The design did not 376 

include a stress-free condition, and only a single baseline measure of cortisol, so interpretation of 377 

the observed decline in cortisol after stress is difficult, as this decline is anyway typical for cortisol 378 
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during the morning.   However, neither TRP treatment nor genotype significantly altered this 379 

decline in cortisol.  Nevertheless, the stressor caused mood to deteriorate, with increases in feelings 380 

of anger, depression and fatigue, but a decrease in vigour.  A key finding of this study is that the 381 

TRP treatment reduced depression and fatigue, while increasing vigour, specifically in the S/S’ 382 

allele group only.  However, these effects were pooled across stress condition, so presumably were 383 

not significantly altered by stress (data for a pre/post-stress x genotype x treatment interaction were 384 

not presented).  Genotype also influenced performance on the subtraction task: the S/S’ group 385 

performed worse that the L/L’ group after placebo, but after TRP, performance was the same for 386 

both allele groups; again, this result was independent of stress.  Even so, pre-stress results were not 387 

presented, so stress may have contributed somewhat to the findings.  For example, the fact that the 388 

S/S’ group made more mistakes in the subtraction task under placebo may indicate that subjects 389 

with this genotype were not coping as well with the stressful aspect of the task: that this detriment 390 

was removed by TRP treatment strongly suggests it reflected suboptimal 5-HT function during a 391 

demanding task.  It is also important to note that this sample consisted of 28 women and only 2 392 

men. 393 

A subsequent report from this group (113) used the same stressor and TRP treatment to 394 

examine interactions of treatment, stress and 5-HTTLPR genotype on another measure of mood 395 

(Positive and Negative Affect Schedule; PANAS) and attentional bias (inhibitory responses) to 396 

negative emotional stimuli.  This bias was measured by reaction times to facial expressions varying 397 

in emotional valence and primed by previous stimuli of the same or opposite valence (Negative 398 

Affective Priming; NAP).  This study appears to have used the same participants as Markus and 399 

Firk (112) except excluding the two men (i.e. 28 women).  In the placebo condition, negative affect 400 

increased after stress only for the S/S’ genotype group, and furthermore this rise in negative mood 401 

was prevented by TRP treatment.  For the NAP task, there was an interaction between stress and 402 

genotype, such that S/S’ subjects showed faster responding to congruently than incongruently 403 

primed negative expressions after stress, an indicator of reduced inhibition to negative affective 404 

stimuli.  The L/L’ group showed the opposite response, suggesting that this allele may confer some 405 

resilience to effects of stress on emotional processing.  However, no effects of TRP treatment were 406 

found for this behaviour, though, as the authors point out, the study has a relatively small sample 407 

size and may be underpowered to detect three-way interactions of this sort. 408 

Subsequently, Markus, Verschoor and Smeets (114) established a larger student cohort 409 

screened for 5-HTTLPR genotype, and studied 19 female S/S’ and 23 female L/L’ homozygous 410 

allele groups, with about half of each group selected to be either high or low on restrained eating 411 
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(Three Factor Eating Questionnaire, TFEQ (115)).  This study investigated potential interactions 412 

between TRP treatment, 5-HTTLPR genotype, stress, restraint and emotional eating, in a double-413 

blind placebo-controlled crossover design.  Stress was elicited using a modified Trier Social Stress 414 

Test (116); TRP challenge was accomplished using an egg white protein hydrolysate enriched with 415 

TRP (4-g dose given as a 200-ml drink, containing 0.24 g TRP;  DSM, Delft; see above), versus a 416 

casein hydrolysate placebo (0.03 g TRP).  Blood samples were taken for amino acid analysis 90 417 

minutes after consuming the drinks, and four salivary samples were taken during the study to assess 418 

cortisol levels.  Interestingly, there was a significantly greater increase in plasma TRP/LNAA 419 

following TRP treatment for the L/L’ group (70% increase) compared to the S/S’ group (30% 420 

increase).  However, although stress resulted in a rise in cortisol, there were no significant effects of 421 

either TRP treatment, genotype or restrained eating on cortisol in this study.  Mood generally 422 

deteriorated from before to after the stress; of particular interest, the increase in anger after stress 423 

occurred in all groups except the L/L’ genotype group who had received TRP supplementation, in 424 

whom there was no change in anger following stress. 425 

Liking (pleasantness of taste) for a variety of foods of different sensory categories (sweet or 426 

savoury, low- or high-fat) was assessed using ratings of images of the foods.  Only the high-fat 427 

sweet food liking ratings showed significant effects: in the L/L’ allele group, liking for high-fat 428 

sweet foods declined following stress only when given the TRP supplement, whereas there were no 429 

significant changes to liking ratings for the S/S’ allele group.  Actual food intake was assessed by 430 

offering several of snack foods (mini chocolate bars, pretzels and nuts) both before and after stress.  431 

The only significant result was a 38% reduction in snack intake after TRP treatment (averaged 432 

across stress pre/post measures); no effects of genotype, stress or restrained eating were seen.  An 433 

overall appetite-suppressant effect of TRP may be expected, given that ATD tends to increase 434 

appetite (63), and higher doses of TRP (at least 2 g) have long been known to suppress appetite and 435 

reduce food intake by 10-20% (58); nevertheless, the dose of TRP effective here is considerably 436 

smaller (0.24 g), so the size of this effect is remarkable. 437 

There are several intriguing findings in this study, not least the weaker increase in plasma 438 

TRP/LNAA in the S/S’ subjects.  The authors point out that this difference between genotypes is a 439 

unique finding, and speculate that it may be due to increased diversion of peripheral TRP to 440 

metabolism via the kynurenine pathway, due to induction of the hepatic TDO and peripheral IDO 441 

enzymes, which are known to be stress-sensitive (14).  However, direct evidence for such a 442 

mechanism reducing the TRP/LNAA ratio in S/S’ allele subjects after TRP supplementation is 443 

lacking.  One study that measured 5-HTTLPR genotypes and administered 50 mg/kg TRP did 444 
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assess the plasma kynurenine:TRP ratio as an index of TDO activity; however, this was in male 445 

patients with alcohol use disorder, and the study did not assess behavioural effects of TRP (117). 446 

Those patients who experienced “blacked-out violent impulsive behaviour” during binge drinking 447 

showed a higher kynurenine:TRP ratio than those who did not, suggesting that less TRP would be 448 

available to the brain.  Nevertheless, no differences were reported for 5-HTTLPR genotype 449 

subgroups, although sample sizes may have been two small (9 cases, 9 alcohol-dependent controls, 450 

received oral TRP) for meaningful statistics in this pilot study, and polymorphisms in the enzymes 451 

themselves were not measured.  This may be important as there is evidence for example that the 452 

TPH1 218AA polymorphism is a risk factor for alcoholism and bipolar disorder (118).  Anyhow, this 453 

impaired effect of TRP treatment on the plasma ratio in this S/S’ group (114) may explain the lack of 454 

behavioural effects seen for this group in this study, in contrast to some effects that were specific to 455 

the L/L’ genotype.  On the other hand, the most likely explanation for a lack of stress-induced, or 456 

emotional, eating is the probability that few of the participants had emotional eating tendencies.  457 

Participants were selected on the basis of scores on the TFEQ restrained eating scale, which, unlike 458 

some items on the disinhibition or hunger scales of this questionnaire, does not explicitly assess 459 

emotional eating and is usually orthogonal to it.  We have argued previously that cognitive restraint 460 

per se is not a good predictor of stress eating tendencies (119; 120).  Furthermore, in a more recent 461 

study from this group, S/S’ allele subjects (both male and female) were shown to be more likely to 462 

eat sweet fatty foods after mild stress than L/L’ genotypes, an effect that was reduced by a sucrose 463 

preload (121).  However, in that study, there was no manipulation by TRP load.  Another study from 464 

this group investigated whether examination stress would differentially affect appetite for these two 465 

genotype groups (122): findings confirmed that the S/S’ genotype group were more likely to show 466 

stress-induced eating of sweet snacks, though again there was no manipulation of TRP.   467 

Nevertheless, the interaction between genotype, stress, emotional eating and effects of 468 

subchronic TRP supplementation was investigated in mainly female participants (99 women, 19 469 

men) asked to self-administer 3 g TRP per day for 7 days (or placebo cellulose), before undergoing 470 

an acute stress test (repeated cold pressor and serial-17 subtraction task known as the Maastricht 471 

Acute Stress Test; MAST) (123).  Changes in appetite ratings, snack intake, mood and cortisol were 472 

assessed.  Subchronic TRP treatment reduced the cortisol response to stress only in the S/S’ allele 473 

group.  Similarly, the TRP treatment resulted in significantly less stress-induced increase in anxiety 474 

only in the S/S’ group, but independently of trait neuroticism. Stress increased rated appetite, but 475 

interestingly TRP reduced this increase specifically in S/S’ subjects who also scored highly on 476 

neuroticism.  The parallels across these TRP by genotype interactions are notable.  By comparison, 477 
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the only significant finding reported for post-stress snack intake was a greater intake of sweet fatty 478 

snacks by the low neuroticism vs. the high neuroticism group, perhaps due to health concerns in the 479 

latter group. The interaction of genotype with neuroticism on stress-induced change in rated 480 

appetite is similar to the results of an earlier study in which mainly female participants with low or 481 

high trait anxiety were subjected to stress (mental arithmetic during loud noise) and treated acutely 482 

with either TRP-rich α-lactalbumin or casein (124).  Food liking and preference was assessed by 483 

responses to food images displayed via a computer program (125).  While appetite ratings increased 484 

for all groups after stress, both liking and preference for sweet foods increased specifically for high 485 

anxious participants, and these increases were prevented by α-lactalbumin treatment, implying that 486 

the increased desire for sweet food induced by stress in high-anxious participants was related to 487 

impaired 5-HT function.  However, in this study, genotypes were not measured.  Moreover, in the 488 

case of actual eating (122), it seems that other factors influenced the behaviour, although differences 489 

in timing between stress and food intake could be involved, and in this subchronic treatment design, 490 

no treatment was given on the test day.  491 

Another group also examined effects of a similar subchronic TRP treatment (2.8 g/day for 6 492 

days) on responses to stress (TSST) in relation to 5-HTTLPR genotype (126).  In this study about half 493 

the participants were female (22 women, 24 men), although sex was included as a covariate in 494 

analyses, rather than reporting interactions with sex.  There was a clear interaction between stress, 495 

genotype and treatment on salivary cortisol:  S/S’ allele subjects on placebo (cellulose) showed the 496 

largest rise in cortisol induced by the stress, supporting a stress sensitivity of this genotype, but this 497 

effect was substantially reduced by prior TRP treatment (even though no TRP was taken on the test 498 

day): the lower cortisol response in L/L’ participants was not further reduced by TRP.  However, 499 

while mood deteriorated after the stress, this was not differentially influenced either by treatment or 500 

genotype, contrary to Capello and Markus (123).  501 

Subsequently, a recent study investigated whether a similar subchronic treatment with TRP 502 

(3 g/day for 7 days) could benefit quality of sleep, and whether this might depend on 5-HTTLPR 503 

genotype (127).  Thus, this study compared effects between S/S’ allele subjects (46 women, 11 men) 504 

and L/L’ allele subjects (46 women, 8 men).  Potential effects of neuroticism were investigated 505 

using a median split of questionnaire scores into high and low neuroticism groups.  General sleep 506 

quality was assessed prior to treatment, then sleep quality after the week of treatment was measured 507 

for a further week.  Higher neurotic participants tended to report lower general sleep quality, 508 

unrelated to genotype.  However, following treatment, specifically S/S’ genotype together with 509 
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higher neuroticism was associated with poorer sleep quality for the placebo group, but with better 510 

sleep quality for the TRP-treated group. 511 

Finally, there is recent evidence of differential impact of 5-HTTLPR genotypes on mood 512 

changes during challenging tasks in the context of two intervention studies that had found beneficial 513 

effects of acute (97) and chronic (98) treatment with a TRP-rich egg-white protein hydrolysate (DSM) 514 

on mood, emotional processing and cognition in Caucasian women aged 45-65 years (128).  515 

Participants were genotyped for the tri-allelic 5-HTTLPR polymorphism, and distributions of 516 

genotypes were in accordance with Hardy-Weinberg equilibrium (allele sample sizes; acute study: 517 

SS/SLG = 11, SLG/SLGLA = 36, LALA = 13; chronic study: SS/SLG = 13, SLG/SLGLA = 36, LALA = 518 

10). 519 

We planned to compare the two homozygous groups (SS/LG
 [designated S/S’] vs. LALA 520 

[designated L/L’]) on behavioural outcomes; however, with several different treatment groups, cell 521 

sizes would be too small for meaningful analyses of treatment by genotype effects.  Therefore, we 522 

examined outcomes on the pretreatment baseline day, when the participants completed the same set 523 

of tests as during treatment, which allowed us to pool the outcome data for all participants within 524 

each genotype group.  The series of cognitive and behavioural tests lasted for 3.5 hours from the 525 

baseline (pre-test) mood measure to the final post-test mood measure, with one hour of rest in 526 

between, so represented a challenging and potentially ego-threatening process for the participants. 527 

Furthermore, we compared pre-test to post-test changes only in those emotions that had proved 528 

responsive to subsequent TRP supplementation treatment.  Specifically, these were well-being and 529 

fatigue in the acute study, and a positive feeling of ‘high energy’ (stimulated, buzzing, impulsive) in 530 

the chronic study (emotions were derived by factor analyses of ratings on 28 items presented on a 531 

computer, known as the Mental and Physical Sensations Scale).  For the acute study, we found that 532 

well-being declined from pre- to post-test in the S/S’ group, but not in the L/L’ group, whereas 533 

fatigue increased significantly only for the S/S’ group.  For the chronic study, ‘high energy’ mood 534 

increased from pre- to post-test for the L/L’ group, but did not change for the S/S’ group.     535 

These differences in genotypes for mood changes during challenging and potentially 536 

stressful tasks are in line with evidence that the S/S’ genotype would confer greater risk of affective 537 

disorders such as anxiety or depression, or conversely a protective effect of the L/L’ allele, in 538 

women.  Moreover, the known sensitivity of these changes in mood to TRP treatment supports 539 

mediation via changes in serotonin function. 540 

[Table 1 about here] 541 
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 542 

Conclusions 543 
 544 

The main theme emerging from the literature on TRP supplementation and genotypes is the 545 

observations of interactions between TRP and genotypes, sex and stress on changes in mood, 546 

cognition, cortisol and appetite.  It is particularly important to consider the influence of a key 547 

‘genotype’, sex.  For example, in women, the 5-HTTLPR S/S’ genotype predicts sensitivity to 548 

improvements in mood by TRP supplementation, especially during stressful challenges, whereas the 549 

L/L’ genotype tends to be protective against stress-induced mood deterioration and rise in cortisol, 550 

but may differ in sensitivity to TRP administration.  In men, if anything, the L/L’ genotype confers 551 

risk of stress-induced increases in negative affect; however, there are insufficient studies with 552 

adequate power to detect sex x genotype x stress x TRP in the literature to draw strong conclusions. 553 

Since the 5-HTTLPR genotypes may influence neurodevelopment and/or tonic 5-HT 554 

adaptive responsiveness at least as much as acute functioning of the brain serotonin system (103; 129), 555 

it would be advantageous to assess extent of early life stress and/or stressful life events, as well as 556 

personality traits predictive of affective disorders, in studies of TRP effects on behaviour.  557 

However, when measuring multiple influences on behaviour, as well as sex differences, 558 

investigators need to ensure sufficiently large sample sizes to increase the likelihood of reliable 559 

findings (107): routinely screening for genetic polymorphisms in suitable populations would be 560 

helpful. 561 

There is a need to broaden studies on the potential benefits of TRP supplementation to 562 

include a greater range of serotonin-related genotypes, including enzymes involved in key 563 

metabolic pathways (Figure 1).  This may eventually lead to clear predictions as to who is likely to 564 

benefit most from this relatively simple nutrient-based treatment.  Until then, although there is 565 

preliminary evidence that individuals with some genotypes, particularly the 5-HTTLPR S/S’ allele 566 

in women, may benefit from TRP supplementation as an aid to stress coping and emotional 567 

regulation including comfort eating, further research is needed before reliable recommendations can 568 

be made on targeted use of TRP treatment, or adjustment of dietary TRP intake, for beneficial 569 

behavioural outcomes. 570 

 571 
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Table 1: Summary of studies investigating interactions between TRP supplementation or challenge and tri-allelic 5-HTTLPR genotypes on 897 

behaviour 898 

Reference Sample Design and 
intervention 

Measures Main findings Comments 

Brummett et al. 
(2008) (108) 

Healthy adults; 
31 females, 41 
males; 54% 
Mean ±SD age 
= 33.5 ±9.1 

Single blind. 
Overnight fast. TRP 
(10 mg/kg body 
weight) i.v. infusion. 
Saline infusion day 
1, followed by TRP 
on day 2. 

Negative affect assessed 
by Profile of Mood 
States (POMS) prior to 
and 1 hr after start of 
infusion. 

Scores for Depression-
Dejection increased 3-fold 
from pre- to post-TRP 
infusion for L/L’ males, but 
did not change for S/L or 
S/S’ males.  In females, 
L/L’ scores did not change, 
but increased moderately for 
S/S’ genotypes. 
 

Small sample size for 
S/S’ groups (7 males, 
9 females). No saline 
infusion on same day 
as TRP. No 
significant effects on 
fatigue, anxiety and 
anger. 

Markus & Firk 
(2009) (112) 

28 female and 2 
male students. 
Mean ±SD age 
= 19 ±2. 

Double-blind cross-
over design. 
Overnight fast. Oral 
TRP (2 x 0.4 g) or 
lactose placebo 
capsules, then 
stressful challenge 
(cold pressor and 
Serial-7 tasks in 
front of camera).   
 

POMS at baseline and 
post-stress.  Cortisol in 
saliva. 

TRP reduced depression and 
fatigue scores, and increased 
vigour, only in S/S’ 
genotypes.  No interaction 
with pre/post-stress. 

No stress-free 
condition.  Single 
cortisol samples pre- 
and post-stress.  No 
effect of TRP or 
genotype on cortisol. 

Markus & De 
Raedt (2011) 
(113) 

28 female 
students. Mean 
±SD age = 19 
±2. 

Double-blind cross-
over design. 
Overnight fast. Oral 
TRP (0.8 g) vs. 
cellulose placebo, 
then stressful 
challenge (cold 

Negative affect priming 
(NAP) using pictures 
with positive or negative 
valence – assesses 
tendency to inhibit 
negative emotional 
information.  Positive 

TRP prevented the modest 
increase in negative affect 
seen after placebo for S/S’ 
but not L/L’ allele group.  
Stress weakened ability to 
inhibit negative information 
in S/S’ allele group but 

No stress-free 
condition.  Despite 
NAP being sensitive 
to stress and 
genotype, no effect of 
TRP on this measure. 
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pressor and Serial-7 
tasks in front of 
camera).   

and negative affect by 
questionnaire (Positive 
and Negative Affect 
Schedule; PANAS). 
 

enhanced it in L/L’ group.  
No effect of TRP on this 
measure. 

Markus et al. 
(2012) (114) 

42 female 
students (19 
S/S’, 23 L/L’). 
High or Low 
restrained eaters. 
Mean ±SD age 
= 19 ±2. 

Double-blind cross-
over design, 
counterbalanced for 
genotype and 
restraint level. TRP-
rich protein 
hydrolysate drink 
(235 mg TRP) or 
placebo (casein 
hydrolysate), then 
stress: adapted Trier 
Social Stress Test 
(TSST). 

Baseline, pre- and post-
stress measures of 
salivary cortisol (3 before 
stress, one after), mood 
(POMS), urge for food, 
snack food intake. 

No effect of TRP or 
genotype on stress-induced 
rise in cortisol.  Stress 
increased anger in both TRP 
and placebo conditions, 
except for L/L’ group who 
did not increase anger after 
TRP.  This same L/L’ group 
showed reduced liking for 
high-fat sweet foods after 
stress in the TRP condition 
only.  Overall, TRP reduced 
food intake vs. placebo 

No interactions with 
restrained eating, but 
this is not a good 
measure of emotional 
eating tendencies.  
Snack food intake 
during the study may 
have modified impact 
of TRP treatment, but 
note that L/L’ 
showed greatest 
increase in plasma 
TRP/LNAA after 
TRP treatment vs. 
placebo. 
 

Cerit et al. 
(2013) (126) 

22 females, 24 
males; approx. 
half of each 
were S/S’ or 
L/L’. Mean ±SD 
age = 20.4 ±3. 

Double-blind 
between-subjects, 
stratified by 
genotype. 
Subchronic oral TRP 
(2.8 g/day as 7 x 0.4 
g capsules taken 
morning, afternoon 
and evening) for 6 
days, then TSST on 
day 7. 
 

Anxiety and depression 
(Hospital Anxiety and 
Depression Scale; 
HADS); positive and 
negative affect 
(PANAS); tension, 
anxiety, sadness, 
annoyance by single-item 
Mood States Scale 
(MSS) 

No effects of TRP on 
mood/symptoms measures.  
Stress increased tension, 
anxiety and annoyance 
(MSS).  No interactions 
with genotype.  S/S’ group, 
not L/L’ group, showed 
higher stress-induced 
cortisol rise after placebo 
that was suppressed in TRP 
condition. 

Cortisol results 
suggest that S/S’ 
show greater stress 
responsiveness that in 
turn is reduced by 
TRP.  Cortisol AUC 
not analysed. Sex 
analysed as a 
covariate, but 
significance not 
reported.  
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Capello & 
Markus (2014) 
(123) 

99 female, 19 
male, students; 
60 in S/S’ and 
58 in L/L’ 
groups. Mean 
±SD age = 24.0 
±1.7. 

Double-blind 
between-subjects, 
stratified by 
genotype and 
neuroticism (N) trait 
(Dutch Personality 
Inventory; DPQ-N). 
Subchronic oral TRP 
(3 g/day as 2 x 0.5 g 
capsules taken 3 
times/day) for 7 
days, then stress 
(Maastricht Acute 
Stress Test) after 
lunch on day 8. 

Salivary cortisol (one 
baseline, two post-
stress), mood (POMS), 
anxiety (state scale of 
State and Train Anxiety 
Inventory), appetite 
ratings, pre- and post-
stress.  Snack food intake 
after stress. 

Stress-induced rise in 
cortisol was reduced by 
TRP only in the S/S’ group.  
TRP treatment also reduced 
the stress-induced rise in 
anxiety (STAI) only in the 
S/S’ group. Negative affect 
(POMS) was increased by 
stress but not altered by 
genotype or treatment.  For 
S/S’ only, high N subjects 
showed stress-induced 
increase in appetite after 
placebo but not after TRP.  
Curiously, low N subjects 
ate more high-fat sweet 
snacks than did high N. 
 

Relatively large 
sample but not 
enough males to 
examine sex effects.  
Parallel effects of 
TRP in S/S’ subjects 
for cortisol, anxiety 
and appetite.  Lunch 
intake, sex and body 
mass index controlled 
for by covariance.  
Avoidance of high-
fat sweet snacks in 
high N subjects may 
be related to 
health/weight 
concerns. 

Van Dalfsen & 
Markus (2015) 
(127) 

S/S’ allele 
group: 46 
women, 11 men; 
L/L’ allele: 46 
women, 8 men. 
Mean ±SD age 
= 23.9 ±1.7. 

Double-blind 
between-subjects, 
stratified by 
genotype and 
neuroticism trait 
(median split on 
DPQ-N). Subchronic 
oral TRP (3 g/day as 
2 x 0.5 g capsules 
taken 3 times/day) 
for 7 days. 

Prior to treatment: 
subjective sleep quality 
(1 month; adapted 
Pittsburg Sleep Quality 
Index, PSQI), 
neuroticism (DPQ-N), 
depression (Beck 
Depression Inventory, 
BDI), Stressful Life 
Events (SLE; Dutch Life 
Events Questionnaire).  
During treatment: Daily 
Hassles Checklist.  After 
treatment: PSQI sleep 
quality for 1 week. 
 

More neurotic participants 
had lower general sleep 
quality, unrelated to 
genotype, and also reported 
more SLE.  Following 
treatment, only S/S’ 
genotype together with 
higher neuroticism was 
associated with poorer sleep 
quality for the placebo 
group, but with better sleep 
quality for the TRP-treated 
group.  

The main effect of 
neuroticism was 
stronger when BDI 
depression was not 
accounted for as a 
covariate.  Sex and 
SLE were not 
significant covariates. 
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Figure 1 caption: 899 

This figure illustrates metabolic and other biochemical pathways in gut and blood that moderate the ability of supplementary tryptophan (TRP) 900 

to enter the brain as the precursor for synthesis of brain serotonin (5-HT), and thus to alter behaviour, especially mood, cognition and appetite.  901 

Rounded rectangles indicate enzymes involved in the various pathways.  Thus, IDO and TDO are involved in catabolism of TRP via the 902 

‘TRYCAT’ pathway, resulting in kynurenine (KYN) and then niacin formation.  This could alter the TRP/LNAA ratio and thus TRP entry into 903 

the brain, where the enzyme tryptophan hydroxylase (TPH; present as either TPH1 or TPH2) is the rate-limiting step for conversion of TRP to 5-904 

HT in serotonergic neurones. Action of 5-HT at the synapse can in turn be modified by the enzyme monoamine oxidase-A (MAO-A), and by the 905 

5-HT transporter system that has functional genetic variants in the 5-HT transporter-linked promoter region (5-HTTLPR).  Abbreviations in bold 906 

represent influences that have known functional genetic variants which may vary in their moderating effects; these in turn can interact with sex.  907 

Other abbreviations: LNAA, large neutral amino acids; IDO, indole 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase. 908 

  909 
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