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Dynamic elastic response prostheses alter approach angles and ground 1 

reaction forces but not leg stiffness during a start-stop task 2 

Abstract 3 

In a dynamic elastic response prosthesis (DERP), spring-like properties aim to replace the 4 
loss of musculature and soft tissues and optimise dynamic movement biomechanics, yet 5 
higher intact limb (IL) loading exists. It is unknown how amputees wearing a DERP will 6 
perform in start-stop movements and how altering the prosthetic stiffness will influence the 7 
performance and loading. This study assessed movement dynamics through comparisons in 8 
spatiotemporal, kinematic and kinetic variables and leg stiffness of intact, prosthetic and 9 
control limbs. The effect of prosthetic stiffness on movement dynamics was also determined. 10 
Eleven male unilateral transtibial amputees performed a start-stop task with one DERP set at 11 
two different stiffness – Prescribed and Stiffer. Eleven control participants performed the 12 
movement with the dominant limb. Kinematic and kinetic data were collected by a twelve-13 
camera motion capture system synchronised with a Kistler force platform. Selected variables 14 
were compared between intact, prosthetic and control limbs, and against prosthetic stiffness 15 
using ANOVA and effect size. Pearson’s Correlation was used to analyse relationship 16 
between leg stiffness and prosthetic deflection. Amputees showed a more horizontal approach 17 
to the bound during the start-stop movement, with lower horizontal velocities and a longer 18 
stance time on the IL compared to controls. In both stiffness conditions, the IL showed 19 
selected higher anteroposterior and vertical forces and impulses when compared to the 20 
controls. Leg stiffness was not significantly different between limbs as a result of the 21 
interplay between angle swept and magnitude of force, even with the change in prosthetic 22 
stiffness. A main effect for prosthetic stiffness was found only in higher impact forces of the 23 
prosthetic limb and more horizontal touchdown angles of the I when using the prescribed 24 
DERP. In conclusion, amputees achieve the movement with a horizontal approach when 25 
compared to controls which may reflect difficulty of movement initiation with a DERP and a 26 
difficulty in performing the movement dynamically. The forces and impulses of the IL were 27 
high compared to control limbs. The consistent leg stiffness implies compensation strategies 28 
through other joints. 29 

 30 

Keywords: 31 
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1. Introduction 1 

Physical activity is important for amputees to gain from the physiological and 2 

musculoskeletal health benefits associated with exercise. Though para-sports often require 3 

amputees to participate without their prosthesis (wheelchair tennis and basketball, sitting 4 

volleyball, football), the review by Deans et al. (2012) suggests that amputees would prefer to 5 

engage in inclusive, integrated sports wearing their prosthesis. However, amputees perceive 6 

that their prosthesis limits their performance (Deans et al., 2012).  7 

Passive-elastic prostheses, commonly known as dynamic elastic response prostheses (DERP), 8 

have been developed to enable lower limb amputees to run (Nolan, 2008). The principle 9 

behind DERP is that the passive-elastic spring is deformed in loading and the stored energy is 10 

returned during unloading of the foot, contributing in forward propulsion (Zelik et al., 2011). 11 

The ideal prosthetic stiffness should vary according to the speed and dynamics of the 12 

movement performed. Currently, a DERP can only return the energy absorbed while in 13 

biological limbs, the powerful contraction of the ankle plantarflexors is the primary 14 

contributor to propulsive force production (Hamner et al., 2009) and running speed (Dorn et 15 

al., 2012). In dynamic non-locomotor movements, where the role of the ankle-foot complex 16 

in absorbing and generating the load is modulated depending on the task (Neptune et al., 17 

2001; Zajac, 2002), amputee performance may be compromised due to the passive prosthetic 18 

spring, as evidenced in jumping (Schoeman et al., 2012; 2013). A prosthetic spring that 19 

modulates in response to the demands of the movement in a similar way to an intact active 20 

ankle is not viable due to weight and material limitations. Manufacturers recommend 21 

prosthetic spring stiffness to be based on the weight and activity requirements of the user. 22 

However, there is little research to indicate the effect of prosthetic stiffness on the 23 

performance of the athlete or on potential injury mechanisms (Butler et al., 2003), other than 24 

Wilson et al. (2009), who found that prosthetic stiffness has significant effect on leg stiffness 25 

of the intact limb (IL) in a case study of a transtibial amputee male sprinter. 26 

If DERP are to be used in sports, they must allow amputees to complete a variety of dynamic, 27 

non-locomotor manoeuvres effectively.  Since DERP have been designed for steady state 28 

running (Nolan, 2008) and are optimal at the natural frequency of the spring, their 29 

performance in other activities may be compromised resulting in undue strain on the IL. Past 30 

research on amputee walking and running has suggested that (i) the IL is overloaded 31 

compared to the prosthetic limb (PL) (Rossi et al., 1995; Snyder et al., 1995; Grabowski et 32 
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al., 2009) and when compared to the biological limb of an able-bodied control group (Baum 1 

et al., 2016) as a result of the reduced push-off contralaterally (Morgenroth et al., 2011) and 2 

(ii) the increased force is responsible for increased leg stiffness on the IL (Hobara et al. 2013; 3 

McGowan et al. 2012). How and why the increased loading occurs is unclear due to a number 4 

of limitations. Past research has executed the analyses using many different types of 5 

prostheses (Hobara et al 2013, Baum et al 2016) which may influence the results. Research 6 

has been conducted on walking and running with variable step lengths between limbs which 7 

results in different velocities at touchdown (TD) and take off (TO). Consequently, the 8 

impulse required against the ground is adjusted to ensure ongoing stepping. Finally, the 9 

influence of manufactured prosthetic stiffness on the loading and leg stiffness may play a role 10 

and has not been assessed.   11 

It is not known how amputees wearing a DERP will perform in start-stop movements 12 

common in court-based sports, how the limbs will experience the load to enable the 13 

movement and how altering the prosthetic stiffness will influence the performance. To 14 

investigate this, we chose a controlled start-stop movement to assess the ability of the 15 

amputees to initiate movement, bound forward dynamically on the assessed limb and then 16 

stop the movement in a stable erect stance (Fig 1). We chose to focus on the stance phase of 17 

the bound to assess the biomechanics on the intact and prosthetic limbs and the effect of 18 

stiffness. As this stance phase will be affected by the initial and terminal conditions, we chose 19 

to control these by defining the distances to be achieved in each part of the movement. The 20 

purpose of this research in analysing a controlled forward movement is to develop our 21 

understanding of mechanisms which underpin movement mechanics and loading in amputees 22 

during activities other than walking and running. 23 

Thus, the first aim of the research was to determine spatiotemporal, kinematic and kinetic 24 

differences between the IL, PL and control limb (CL) when executing a start-stop dynamic 25 

movement using their Prescribed DERP. The second aim was to determine the effect of 26 

prosthetic spring stiffness on the movement performance. We hypothesised that there would 27 

be no between-limb difference in spatiotemporal (initiation time, stance time, flight time, and 28 

movement completion time) and kinematic variables (TD and TO angles, and pelvis velocity) 29 

since the controlled nature of the task would require a similar execution. We hypothesised 30 

that the kinetic variables (peak vertical and anteroposterior forces and impulses) and leg 31 

stiffness (Kleg) would be greater on the IL and less on the PL compared to each other and to 32 

the dominant biological limb of an able-bodied control group (CL) as a result of the presence 33 
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of the prosthesis. Finally, we hypothesised that a change in prosthetic stiffness would have no 1 

effect on kinematic variables but would increase the loading and leg stiffness variables on the 2 

PL and IL.  3 

2. Methods 4 

 5 

2.1.Participants 6 

Eleven male unilateral traumatic transtibial amputees (Mean [SD]: 36 [8] years, 83 [21] kg, 7 

1.80 [0.09] m) for the study group (SG) and eleven male able-bodied individuals (35 [10] 8 

years; 77 [12] kg; 1.81 [0.06] m) for the control group (CG) were recruited.  All participants 9 

provided informed consent to an Institutional Review Board-approved protocol and were 10 

asymptomatic of neurological or musculoskeletal disorders. Amputee participants were all 11 

involved in recreational physical activity and had at least six months’ experience using the 12 

same brand of DERP (BladeXT; Blatchford & Sons Ltd., Hampshire, UK) without the 13 

requirement of additional mobility aids.   14 

 15 

 16 

Figure 1: An illustration of the start-stop task performed by participants in this study. A mark 17 

on the floor indicated the initial take off position at a distanced normalized to the 18 

participant’s leg length (1.3*LL) to a mark at the centre of the force platform. Distance 19 

between this mark and the stop zone, which was marked with tape was fixed at 1.10 m. The 20 

participants were asked to land with their heels beyond the stop-zone mark. The LEG-G and 21 

PEL-G angles at touchdown are shown. 22 

 23 
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2.2.Procedures 1 

Spatiotemporal and kinematic data were collected by a twelve-camera motion capture system 2 

(Vicon, Oxford, UK) at 120 Hz using sixteen retro-reflective markers according to the lower 3 

body model created by Davies et al. (1991). Three extra markers (piston, blade, and toe) were 4 

used to model the elastic blade of the DERP (Fig 2). Kinetic data were collected in synchrony 5 

with kinematic data via a Kistler force platform (400x600mm) at 1000 Hz.  6 

 7 

Figure 2: The dynamic elastic response prosthesis used by amputee participants in this study 8 

– BladeXT (Blatchford & Sons Ltd., Hampshire, UK; 9 

http://www.blatchford.co.uk/endolite/bladext/), with the three extra markers (*) 10 

 11 

Following a five-minute self-directed warm-up, participants performed the start-stop task 12 

(Fig.1), which was demonstrated to the participants. The instruction given to all participants 13 

was the same: “Perform a two-step forward movement during which you need to be airborne 14 

for each step. You must start at the first mark, leap forwards to land with the middle of your 15 

foot on the second mark. Then, as quickly as possible, leap forwards again to land with the 16 

other foot beyond the third mark. Here you need to stop and bring the opposite foot down to 17 

balance in standing. Hold your balance until I say that you are finished”. Although this 18 

particular movement is unlikely to be replicated during court games, imposing these controls 19 

allowed a mechanistic analysis of dynamic landing while maintaining some ecological 20 

validity. Initial take off occurred at a distance normalized to 1.3 times the participant’s leg 21 

length, defined as the distanced from the greater trochanter to the ground measured in 22 

http://www.blatchford.co.uk/endolite/bladext/
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standing. This distance ensured that a flight phase was required to execute the task. This 1 

distance was adjusted for the both intact and prosthetic limbs. A minimum distance of 1.10 m 2 

from the force platform was set for the final landing, since some study participants found it 3 

difficult to target a mark that was set at a distance normalised to LL. The minimum threshold 4 

allowed all participants to execute the movement as instructed.  5 

SG participants performed the start-stop task first with the DERP at the stiffness prescribed 6 

on prosthetic fitting (DERPp). Then, a certified prosthetist fit the participants with a stiffer 7 

prosthesis (DERPs) and assured proper component alignment and fit. The BladeXT has 9 8 

spring set ranges and a particular spring set is prescribed according to the user’s body weight 9 

and activity level. Prosthetic stiffness was increased by one spring set in the range above the 10 

prescribed stiffness, as per prosthesis manufacturer guidelines (Blatchford & Sons Ltd.), 11 

ensuring a standard relative increase in prosthetic stiffness amongst SG participants. In the 12 

absence of research on the effect of prosthetic stiffness on injury risk and prosthesis structural 13 

integrity, the prosthetic stiffness was only increased by one spring set range to ensure the 14 

safety of the task for study participants. Participants were allowed a one-hour adjustment 15 

period before repeating the start-stop task with the DERPs. For each condition, the movement 16 

was also performed with the intact limb leading. CG participants performed the movement 17 

with the dominant limb leading. Limb dominance was defined as the preferred limb to kick a 18 

ball. Repeated trials were collected until five valid trials were captured. A valid trial was 19 

based on the foot placement on the force platform, achieving flight in each step and the 20 

ability to control movement termination, that is, successfully stop beyond the threshold 21 

without stepping forward. 22 

2.3.Data analyses 23 

Kinematic and kinetic data were filtered with a fourth order low-pass Butterworth filter and 24 

cut off frequency of 6 Hz and 30 Hz, respectively in Vicon Nexus (Version 2.2). 25 

Spatiotemporal variables of initiation time (start of movement to TD on force platform), 26 

stance time (ground contact time on force platform), time in loading during stance, flight time 27 

(TO from force platform to second TD) and movement completion time (start to end of 28 

movement) were also calculated. The start and end of the movement were determined by the 29 

horizontal displacement of the PEL marker as these events did not occur on a force plate. A 30 

threshold of 2mm determined the start and end of the motion and the displacement-time curve 31 

was visually inspected to ensure the robustness of the result. Velocity of the PEL marker was 32 
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differentiated to calculate velocity which was reported at TD and TO. The beginning and end 1 

of stance was defined by a vertical ground reaction force (GRF) threshold of 20 N. Stance 2 

was divided into loading and propulsion at the point where the anteroposterior (AP) GRF 3 

equalled zero (Fy0) (Fig. 3). GRFs were measured as discrete peak values. Impulses were 4 

calculated via the trapezoidal rule integration method. GRFs and impulses were normalized 5 

to body mass. The loading rate was calculated by the slope of the force-time curve from the 6 

time required for the vertical GRF to rise from 50 N to body weight plus 50 N, and vice versa 7 

for the decay rate (Munro et al., 1987).  8 

 9 

Figure 3: An example of the typical ground reaction force (GRF) time profiles seen in this 10 

study. Vertical GRF curves for the PL and the CL are illustrated in red and blue respectively. 11 

Fy0 is indicated by a dotted line, dividing the stance into loading and propulsion phase. 12 

Discrete measures for the vertical GRF at Fy0 are indicated with an *. 13 

 14 
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A pelvic marker (PEL) generated by Vicon’s Plug-In-Gait which represents the origin point 1 

of the pelvis segment was used as a marker of the centre of mass (CoM) (Glaister et al., 2 

2007). The global angle of attack was defined by the PEL to the heel (PEL-G) and right 3 

horizontal at TD and the angle of take-off was defined by the PEL to toe and right horizontal 4 

at TO. These were determined through coordinate data. The angle of the shank (LEG-G) 5 

against the heel and toe was also calculated through coordinate data using the knee marker to 6 

overcome any inaccuracies of a changing ankle joint in DERP. Angle and displacement data 7 

were restricted to the sagittal plane. 8 

The leg stiffness during the loading phase (Kleg) was calculated using the spring mass model 9 

(Blickhan, 1989; McMahon & Cheng, 1990). Since an AP GRF of zero (Fy0) is chosen to 10 

represent the end of loading in this study, Kleg is calculated as the ratio of the vertical GRF to 11 

the lower body compression (ΔL) at Fy0 (Fig. 4). 12 

Kleg = vertical GRF at Fy0 / ΔL         (1) 13 

ΔL was calculated from the maximum vertical displacement of PEL (Δz), the initial leg 14 

length (L0) and the angle swept (θ) from initial contact till Fy0. L0 was measured as the 15 

distance from the PEL to the Heel marker in standing. θ was defined by the angle formed 16 

between the PEL and Heel marker from heel strike until Fy0, measured via coordinate data.   17 

ΔL = Δz + L0 (1 - cos θ)         (2) 18 

Prosthetic deflection was measured as the maximum displacement between the Piston and 19 

Toe extra markers during loading. 20 

Averaged data from five valid trials were used for statistical analyses of all variables (mean 21 

and standard deviation [SD]). 22 
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 1 

Figure 4: Diagram representation of the spring-mass model and the calculation of leg 2 

stiffness during the start-stop task. 3 

2.4.Statistical analyses 4 

Data was statistically analysed using SPSS version 22.0.0.1 (IBM Corp., USA). Upon 5 

meeting the assumptions of normality and homogeneity of variance, a three-way independent 6 

analysis of variance (ANOVA) was used to test for differences between the prosthetic, intact 7 

and control limbs for each condition (i.e. DERPp and DERPs). If a significant main effect 8 

was found (α = 0.05), Planned Contrasts (Repeated & Simple) were used to determine which 9 

between-leg (IL, PL, CL) factors were significantly different when analysing movement 10 

dynamics. A two-way repeated measures ANOVA was used to compare movement 11 

biomechanics in the SG when using two different levels of prosthetic stiffness (prescribed 12 

and stiffer) and thus analyse the effect of prosthetic stiffness on a start-stop movement. To 13 

determine clinical importance of significant differences, effect size (Hedges’ g) was also 14 

calculated for each comparison according to Cohen (1988) using the pooled standard 15 

deviation, where by large, medium and small effect sizes are denoted by values greater than 16 

0.8, 0.5 and 0.2 respectively. To determine if the change in mechanical stiffness of the DERP 17 

resulted in a change of deflection of the spring, Mann-Whitney Test was used to detect a 18 

statistical difference in prosthetic deflection between DERPp and DERPs, since deflection 19 

data was non-parametric. To determine if leg stiffness was associated with prosthetic 20 

deflection, Pearson’s Correlation was used to analyse the relationship between Kleg and 21 

prosthetic deflection in each condition.  22 
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3. Results 1 

3.1.Movement Dynamics  2 

Our first aim was to determine any biomechanical differences between the IL, PL and CL 3 

when amputees execute a start-stop movement using their Prescribed DERP 4 

3.1.1. Spatiotemporal & Kinematic variables  5 

Within the SG, no significant differences or large effect sizes were found for the 6 

spatiotemporal and kinematic variables between the IL and PL (Table 1) but noteworthy 7 

differences were found between the SG and the CG. There was no difference in movement 8 

completion time when performing the start-stop movement. However, a shorter initiation 9 

time with a large effect (g=1.13) was seen for bounding onto the PL compared to the CL. A 10 

longer stance time, with a large effect (g=0.88), was seen when bounding on to the IL 11 

compared to the CL. 12 

All angles of attack at TD (PEL-G & LEG-G) for the IL and PL were significantly lower 13 

(more horizontal) compared to the CL with a large effect size. For PL, the TO angle (LEG-G) 14 

was significantly lower with a very large effect (g=1.15, P=0.004) compared to the CL. 15 

Although TD and TO LEG-G angles tended to be lower on PL compared to IL, no significant 16 

or large effect was found within the SG participants (g=0.60-0.67).  17 

The horizontal (AP) PEL velocity at both TD and TO was reduced when bounding onto the 18 

IL compared to the CL, with a large effect (TD: g=0.90; TO: g=1.05). No noteworthy results 19 

were found for the vertical PEL velocity at TD or TO. 20 

3.1.2. Kinetic variables 21 

Within the SG, no significant differences or large effect sizes were found for the peak GRFs 22 

and impulses between the IL and PL (Table 2). However, noteworthy differences were found 23 

when the IL and PL were compared to CL. The AP GRF braking peak for the IL was 24 

significantly higher compared to the CL with a large effect size (g=0.88, P=0.009). The 25 

vertical GRF impact peaks were higher with a large effect size for the both IL (g=0.80) and 26 

PL (g=0.97) compared to the CL. At Fy0, both the IL and PL showed significantly lower 27 

vertical GRF with very large effect sizes when compared to CL (IL: P=0.003, g=1.17; PL: 28 

P<0.001, g=1.27). There were no between-limb differences for the horizontal or vertical GRF 29 

peaks in the propulsion phase.  30 
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Braking AP impulses were greater for the IL compared to CL, with a large effect size 1 

(g=0.82). Horizontal and vertical propulsive impulses of the IL were higher compared to CL, 2 

with a large effect size (AP GRF: g=0.91; vertical GRF: g=0.80). The IL also showed a larger 3 

total vertical impulse (g=0.80) compared to the CL. 4 

The IL tended to experience, on average, the higher loading rates while the PL experienced 5 

the lowest loading rates when compared to the CL. However, there was no significant 6 

difference or effect in this result. No noteworthy results were found for the decay rate.  7 

3.1.3. Leg Stiffness (Kleg) 8 

Although Kleg of the PL was marginally higher than the Kleg of the IL or CL, no results were 9 

significantly different or indicated a large effect size. 10 

3.2.Prosthetic Stiffness  11 

Our second hypothesis assessed the effect of the prosthetic stiffness on the IL and PL. There 12 

was no difference in deflection (U = 39.0 p = 0.436 r = 0.23) between the prescribed 13 

prosthesis (Median: 0.025 m) and the stiffer prosthesis (Median: 0.024 m). 14 

In the DERPs condition, a significantly longer initiation time with a large effect (g=0.87, 15 

P=0.031) is seen when bounding onto the IL compared to the PL. No main effect of 16 

prosthetic stiffness was found in spatiotemporal and kinematic variables except for TD 17 

angles. The IL showed a significantly less horizontal approach (PEL-G: P=0.007, g=0.29; 18 

LEG-G: P=0.005, g=0.49) on TD when using the DERPs compared to the DERPp, although 19 

the difference in TD angle is small (PEL-G: 1.3o; LEG-G: 1.5o). The vertical PEL velocity at 20 

TD was lower for PL in the DERPs condition compared to the CL, with a large effect 21 

(g=0.83). 22 

Apart from impact GRF peaks which were significantly higher for the PL when using the 23 

DERPp compared to the DERPs (P=0.034, g=0.33), no main effect of prosthetic stiffness was 24 

seen in the selected kinetic variables. However, a large effect for the loading rate was found 25 

between the IL and PL in DERPs (g=0.90).  26 

There is no main effect of prosthetic stiffness on Kleg of either the intact or prosthetic limb in 27 

the SG.  28 
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No significant correlations for prosthetic deflection with Kleg were present in the DERPp 1 

condition (Intact: P = 0.060, R = 0.522; Prosthetic: P = 0.260, R = 0.232) or the DERPs 2 

condition (Intact: P = 0.246, R = 0.227; Prosthetic: P = 0.402, R = 0.090). 3 

  4 
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Table 1: Mean and Standard Deviation [SD] of Spatiotemporal and Kinematic variables for the Control Group (CG) and Study Group (SG) participants when performing the 
start-stop task, and bounding onto the control, intact and prosthetic limbs respectively. Large Hedges’ g Effect Size (*) and significant p values for between limb differences 
in both the Prescribed DERP and Stiffer DERP condition are reported. Only significant p values are reported for the main effect of stiffness (i.e. differences between DERPp 
and DERPs) since no large effect sizes (Hedges’ g) were found. 
 Control Prescribed DERP Stiffer DERP Stiffness 

  Intact Prosthetic Large effect 
size 

Intact Prosthetic Large effect 
size 

Significant P 
value 

Initiation Time (s) 0.81 [0.08] 0.74 [0.10] 0.69 [0.08] PvC 0.76 [0.10] 0.68 [0.06] IvP+  
PvC++ 

 

Stance Time (s) 0.44 [0.07] 0.50 [0.06] 0.50 [0.09] IvC 
 

0.49 [0.08] 0.49 [0.10] /  

Flight Time (s) 0.13 [0.05] 0.10 [0.04] 0.12 [0.04] / 
 

0.11 [0.04] 0.12 [0.05] /  

Movement completion time (s) 2.06 [0.12] 2.04 [0.16] 2.01 [0.16] / 2.02 [0.16] 1.96 [0.17] /  
         
Time in Loading (%Stance) 50.88 [7.09] 47.24 [7.10] 52.16 [9.35] / 50.30 [9.07] 52.04 [9.69] /  
TD angle – PEL-G (o) 72.60 [3.98] 66.89 [4.64] 66.55 [6.00] IvC+ 

PvC+ 
68.21 [4.34] 66.90 [6.37] IvC 

PvC+ 
I+ 

TD angle – LEG-G (o) 88.66 [4.29] 82.27 [2.84] 78.47 [6.60] IvC+ 
PvC++ 

83.81 [3.06] 79.65 [7.73] IvC+ 
PvC++ 

I+ 

AP PEL velocity at TD (m/s) 2.35 [0.16] 2.18 [0.17] 2.25 [0.19] IvC 
 

2.18 [0.17] 2.26 [0.16] IvC 
 

 

Vertical PEL velocity at TD (m/s) -0.48 [0.17] -0.36 [0.21] -0.34 [0.30] / -0.42 [0.19] -0.29 [0.23] PvC  
TO angle – PEL-G (o) 70.85 [5.21] 68.64 [5.35] 68.45 [3.60] / 69.94 [4.81] 68.37 [4.24] /  
TO angle – LEG-G (o) 71.91 [6.12] 68.35 [8.60] 64.05 [4.23] PvC+ 67.78 [7.84] 63.52 [5.20] PvC++  
AP PEL velocity at TO (m/s) 2.44 [0.17] 2.26 [0.09] 2.35 [0.19] IvC 2.27 [0.17] 2.41 [0.25] IvC  
Vertical PEL velocity at TO (m/s) 0.32 [0.38] 0.11 [0.25] 0.27 [0.25] / 0.21 [0.33] 0.30 [0.30] /  
 
Abbreviations: I – intact limb; P – prosthetic limb; C – control limb; TD – touchdown; TO - take off; AP – anteroposterior 
 
Note: The indicated limb represents the limb performing the bound. 
 
+   P < 0.05  
++  P < 0.001 
 
*The magnitude of Hedges’ g may be interpreted using Cohen's (1988) convention as small (0.2-0.5), moderate (0.5-0.8), and large (>0.8) effect sizes. Only large effect sizes are reported.  

 1 
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Table 2: Mean and Standard Deviation [SD] of Kinetic variables and Leg Stiffness for the Control Group (CG) and Study Group (SG) participants when performing the start-
stop task, and bounding onto the control, intact and prosthetic limbs respectively. Large Hedges’ g Effect Size (*) and significant p values for between limb differences in 
both the Prescribed DERP and Stiffer DERP condition are reported. Only significant p values are reported for the main effect of stiffness (i.e. differences between DERPp 
and DERPs) since no large effect sizes (Hedges’ g) were found. 
 Control Prescribed DERP Stiffer DERP Stiffness 

  Intact Prosthetic Large effect 
size 

Intact Prosthetic Large effect 
size 

Significant 
P value 

Peak GRF – AP (N/Kg) 
Brake  -2.53 [0.99] -4.18 [2.12] -3.07 [1.45] IvC+ -4.08 [2.17] -2.77 [1.05] IvC+  
Propulsion  1.84 [0.48] 2.11 [0.51] 1.95 [0.62] / 2.26 [0.63] 1.97 [0.59] /  

Peak GRF – vertical (N/Kg) 
Impact 12.77 [1.37] 16.00 [5.55] 16.00 [3.74] IvC 

PvC 
15.95 [4.92] 14.89 [2.65] IvC 

PvC 
P+ 

Loading 15.77 [1.05] 16.09 [1.88] 15.59 [2.62] / 16.05 [2.12] 15.67 [2.49] /  
Propulsion 15.21 [1.51] 14.15 [1.86] 14.04 [1.75] / 14.86 [1.56] 14.49 [2.06] /  
At Fy0 16.38 [2.48] 12.90 [2.02] 12.33 [2.05] IvC+ 

PvC++ 
13.04 [1.98] 12.67 [3.37] IvC+ 

PvC+ 
 

Impulse – AP (Ns/Kg) 
Brake -0.26 [0.10] -0.36 [0.13] -0.35 [0.18] IvC -0.36 [0.13] -0.33 [0.16] IvC  
Propulsion  0.21 [0.05] 0.28 [0.08] 0.28 [0.14] IvC 0.28 [0.10] 0.28 [0.13] /  
Total -0.04 [0.12] -0.08 [0.11] -0.07 [0.13] / -0.09 [0.12] -0.06 [0.17] /  

Impulse – vertical (Ns/Kg) 
Loading 2.87 [0.65] 2.97 [0.41] 3.15 [0.76] / 3.10 [0.57] 3.02 [0.81] /  
Propulsion  2.22 [0.42] 2.57 [0.39] 2.39 [0.71] IvC 2.44 [0.56] 2.37 [0.73] /  
Total 5.09 [0.54] 5.54 [0.46] 5.54 [1.08] IvC 5.54 [0.64] 5.38 [0.95] /  

Rate of Force (N/Kg/s) 
Loading Rate 445.55 [185.5] 508.12 [190.0] 392.99 [112.2] / 533.24 [198.4] 351.45 [147.3] IvP  
Decay Rate 138.37 [40.86] 121.91 [31.91] 139.07 [40.49] / 135.95 [37.65] 135.85 [35.73] /  

Leg Stiffness 
Kleg (N/Kg/m) 114.93 [33.72] 118.80 [39.25] 125.85 [74.66] / 110.23 [43.28] 137.49 [77.66] /  
 
Abbreviations: I – intact limb; P – prosthetic limb; C – control limb; AP – anteroposterior 
 
Note: The indicated limb represents the limb performing the bound. 
 
+   P < 0.05  
++  P < 0.001 
 
*The magnitude of Hedges’ g may be interpreted using Cohen's (1988) convention as small (0.2-0.5), moderate (0.5-0.8), and large (>0.8) effect sizes. Only large effect sizes are reported.  

1 
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4. Discussion 1 

The present study aimed to assess the performance of transtibial amputees, whose ankle 2 

cannot adapt to specific movement requirements like an anatomical ankle, during a start-stop 3 

movement when using a dynamic prosthesis. The study aimed to determine between-limb 4 

differences in spatiotemporal, kinematic and kinetic variables and leg stiffness when the 5 

initial and terminal conditions which influence the loading were controlled. Finally, the 6 

research aimed to determine if a change in prosthetic stiffness, which may reflect an 7 

alteration to the ankle mechanism, affects movement performance. We controlled the start-8 

stop movement by fixing the step lengths, to be able to compare the bounding phase loading 9 

patterns  10 

We found that for amputees to achieve the start-stop task, there were some significant 11 

changes in performance between the SG and the CG. Results indicate that amputees had a 12 

more horizontal approach to the bound during the start-stop movement, when compared to 13 

controls. When bounding onto the IL the amputee participants also experienced longer stance 14 

times, and slower horizontal velocities at TD and TO. We found that there was an effect of 15 

limb on the loading variables but no effect on leg stiffness. On the IL, the higher braking 16 

forces and impulses compared to the CG in conjunction with the lower force at Fy0 suggests 17 

a less vertically dynamic movement. We had expected that altering the prosthetic stiffness 18 

would mimic an ankle adaptation and that this would influence the performance of the 19 

movement and limb loading. A main effect for prosthetic stiffness was found only in higher 20 

impact GRF peaks of the PL and more horizontal TD angles of the IL when using the 21 

DERPp. It must be noted that prosthetic stiffness was only increased by one spring set in the 22 

stiffer condition and no statistical difference in deflection was found between conditions. 23 

Thus, attention should be focused on dynamic movement execution rather than prosthetic 24 

stiffness to promote performance and prevent injury. 25 

In controlling the step length to approach we had attempted to control the velocity at TD, thus 26 

ensuring the mechanisms of loading could be realised under controlled conditions. The 27 

amputees manipulated the TD velocity by altering the angle of attack at TD. It is likely that 28 

the reduced forward velocity and horizontal limb angle when bounding onto the IL compared 29 

to the CL reflects the difficulty in starting and stopping the movement on the prosthesis 30 

contralaterally. The lower velocity at TD is likely due to the reduced push-off from the 31 

prosthesis in the previous stance and is associated with difficulty to initiate movement and 32 
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achieve flight in amputees (Vrieling et al., 2008; Strike & Diss, 2005). The lower velocity of 1 

the IL at TO suggests a controlled propulsion to enable the amputees to stop on the 2 

prosthesis. As indicated in the methods (Section 2.2), we had to adapt the second bound 3 

distance based on the first two amputee participants who found stopping on the prosthesis at 4 

the 1.3*LL target more difficult than control participants. In addition to the reduced 5 

horizontal velocity of the IL, the peak braking force and braking impulse were higher 6 

compared to the CL, suggesting a particular loading pattern is adopted by the amputees to 7 

control the movement. It seems that movement initiation and termination was more 8 

influenced by the prosthesis than the inability to maintain momentum in the bound. Future 9 

work investigating the initiation and termination steps is required to understand the influence 10 

of the contralateral limb on TD and TO velocity and thereafter on limb loading.   11 

When bounding onto the PL, the more horizontal limb angle and tendency towards reduced 12 

horizontal velocity compared to the CL also suggests a more horizontal movement. Past 13 

research on running suggests that amputees land with a more vertical limb to ensure knee 14 

stability and loading of the prosthetic spring (Sanderson & Martin, 1996). Thus, we expected 15 

that the amputee would land in a more vertical position when bounding onto the prosthesis. In 16 

this study, the more horizontal motion in conjunction with the tendency towards higher 17 

horizontal forces and impulses may be a generally more cautious performance by the 18 

amputees or a strategy to obtain more energy return from the DERP. In past research running 19 

prostheses have been aligned to enable a “running on the toes” posture (Nolan 2008) using 20 

running specific prostheses (RSP) which do not have a heel spring. The different design of 21 

the Blade XT, with its heel component (Fig 2), may have both engaged the heel spring and 22 

allowed for a more heel-strike pattern. However, this may have resulted in higher impact 23 

vertical GRF peaks compared to CG participants. 24 

There was an effect of limb on selected loading variables. Past research in walking and 25 

running (Baum et al., 2016) has indicated an increased loading on the IL, though it is unclear 26 

if this is as a result of the variability of the TD and TO velocities which are not controlled in 27 

locomotion analyses which require ongoing stepping. Though we tried to control the velocity 28 

at TD to assess the limb loading independent of velocity, the technique used by the amputees 29 

manipulated the velocity, suggesting that adapting loading is a priority for this population. 30 

The more vertical dynamic movement of the CG is underlined by the higher vertical force at 31 

Fy0 and the difference in force curves compared to the SG (Fig. 3). In the CG, the shorter 32 

stance time and the shape of the vertical GRF curve (i.e. a single active peak) is typical of 33 
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plyometric activities such as running on the toes (Williams et al., 2000) and drop jumping 1 

(McKay et al., 2005).  In the SG, the multiple active peaks for both the IL and PL in both 2 

conditions is more typical of walking (Geyer et al., 2006) and likely reflects the amputees 3 

moderating the use of the prosthetic spring or engaging a separate loading of the heel and toe 4 

springs. This, in conjunction with the consistent spring deflection with DERPp and DERPs, 5 

indicates the inability of the prosthesis to adapt the ‘ankle’ spring to this start-stop movement. 6 

During initial loading the amputees showed greater impact vertical force peaks than controls, 7 

but the loading rate of the PL tended to be lower than in the CL and IL, however there is 8 

large variability in the result. These results suggest that, as well as the prosthesis limiting 9 

force generation at Fy0 as previously found in running (Grabowski et al., 2009), the elastic 10 

properties of this DERP limit loading rates. This is likely to prevent injury of the residual 11 

limb (Dudek et al., 2005; Milner et al., 2005). The high impact peaks and tendency towards 12 

higher loading rates of the IL agrees with past research on running (Hobara et al., 2014) and 13 

implies that higher loading persists across many movements and supports the suggestion that 14 

amputees are at risk of greater chronic injury risk such as osteoarthritis of the IL (Norvell et 15 

al., 2005; Lloyd et al., 2010; Gailey et al., 2008).  16 

Despite the reduced force at Fy0, Kleg did not differ between IL, PL and CL in this study. 17 

This contrasts with previous literature on running with an RSP which found that leg stiffness 18 

of IL to be greater than the PL during running in transtibial amputees (Hobara et al., 2013; 19 

Wilson et al.,2009), which was linked to the inability to generate GRFs with a RSP 20 

(McGowan et al., 2012). In walking and running research, the loading experienced by each of 21 

the IL and PL in comparison to CLs may be influenced by the asymmetrical step lengths and 22 

the reliance on step frequency to increase running speed (McGowan et al., 2012). In this 23 

study, the Kleg result may be explained by the fact that, although we controlled the step 24 

lengths it was changes in the angle swept during loading (i.e. significant TD angles) that 25 

maintained leg stiffness. The leg stiffness results need to be interpreted with caution as the IL 26 

and PL appear to have contravened the requirements of a spring, the execution of the task 27 

was less dynamic than the CL and the peak force did not coincide around the time of Fy0. 28 

Compensation via modulation of knee and hip joint stiffness may also be present to maintain 29 

a constant Kleg in the absence of an active biological ankle joint (Farley & Morgenroth, 30 

1999). Future work should assess the changes in leg stiffness through the stance phase to 31 

investigate why the timing of the peak loading force did not coincide with Fy0 for the SG. 32 
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Contrary to expectation, systematically modifying the prosthetic stiffness (i.e. DERPp vs 1 

DERPs) showed no statistical effect on prosthetic deflection or on Kleg for either the IL and 2 

PL. It seems that the difference in prosthetic stiffness may have been too small to cause 3 

sufficient changes in the ‘ankle’ to evoke a performance response or the movement was too 4 

conservative to require change. We had expected that the stiffness of the prosthesis would 5 

influence the performance, given Farley & Morgenroth (1999) concluded that ankle joint 6 

stiffness is the primary mechanism for leg stiffness adjustment. Furthermore, the ankle 7 

plantarflexor fascicle shortening velocities and their corresponding force production are 8 

known to alter with movement demands (Adamczyk & Kuo, 2015). Yet, we found few 9 

variables affected by prosthetic stiffness. The intact limb showed more horizontal pelvis and 10 

leg TD angles when using the DERPp compared to the DERPs, possibly due to initiating 11 

movement with a softer prosthetic spring which likely allowed a greater roll-over. Higher 12 

vertical impact GRF peaks for the PL were observed with the DERPp than the DERPs. Future 13 

studies are recommended to evaluate the effect of changing prosthetic stiffness at different 14 

prescription ratings on dynamic movement biomechanics. Nevertheless, ethical 15 

considerations are crucial since a large change in prosthetic stiffness may compromise the 16 

ability to complete designated task and increase risk of injury.  17 

In this study, GRFs and impulses were utilized to evaluate movement biomechanics since the 18 

biomechanical representation of the prosthetic foot by the link segment model contains 19 

inaccuracies (Prince et al., 1994), leading to overestimation of joint forces, moments and 20 

powers (Geil et al., 2000). Future research on more appropriate modelling of dynamic 21 

prosthesis with a changing centre of rotation is warranted. The start-stop movement in this 22 

study was relatively slow, likely slower than that experienced in a game situation. 23 

Nonetheless, it was a useful task to assess the ability of the amputees to perform a controlled 24 

game-type movement that is dynamic and non-locomotion, and enabled an analysis of limb 25 

loading under controlled conditions. Further research needs to build on this study to 26 

determine the mechanisms that enable agility in the absence of an active ankle joint, 27 

particularly in investigating the influence of the initiation and termination steps on the 28 

movement TD and TO velocity and limb loading. Increasing our knowledge will enhance our 29 

understanding of the mechanisms of limb loading and thereafter in the development of 30 

training programmes and the design of multi-direction games type prostheses. 31 

 32 
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To conclude, the results of the present study suggest that transtibial amputees could perform a 1 

relatively dynamic start-stop movement but that they exhibit differences in spatiotemporal, 2 

kinematic and kinetic variables in comparison to able-bodied individuals, regardless of the 3 

prosthetic stiffness (DERPp vs DERPs) utilized during the movement. Amputee participants 4 

demonstrated a more horizontal approach with lower TD and TO angles, lower forward 5 

velocities and greater braking and propulsive peak forces and impulses compared to the more 6 

vertical, dynamic movement in control participants. The more horizontal movement of 7 

amputees, particularly when loading the intact limb may reflect a priority to adapt the load or 8 

a difficulty with movement initiation with a DERP, which warrants further research. Peak 9 

braking forces and impulses of the IL were significantly higher compared to the CL. Leg 10 

stiffness remained constant between limbs and with change in prosthetic stiffness, which may 11 

reflect compensation strategies through knee and hip joints. Further research should aim to 12 

enhance understanding of amputee movement biomechanics in relation to rehabilitation and 13 

prosthetic design. 14 
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