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Abstract 16 

Comparative work on animals’ costs of terrestrial locomotion has focussed on the underpinning 17 

physiology and biomechanics. Often, much of an animal’s energy budget is spent on moving around 18 

thus there is also value in interpreting such data from an ecological perspective. When animals move 19 

through their environment they encounter topographical variation, and this is a key factor that can 20 

dramatically affect their energy expenditure. We collated published data on the costs for birds and 21 

mammals to locomote terrestrially on inclines, and investigated the scaling relationships using a 22 

phylogenetically informed approach. We show that smaller animals have a greater mass-specific cost 23 

of transport on inclines across the body mass range analysed. We also demonstrate that the increase 24 

in cost for smaller animals to run up a slope relative to along a flat surface is comparatively low. 25 

Heavier animals show larger absolute and relative increases in energy cost to travel uphill. 26 

Consideration of all aspects of the cost of incline locomotion – absolute, relative, and mass-specific – 27 

provides a fuller understanding of the interactions between transport costs, body mass, incline 28 

gradient and phylogeny, and enables us to consider their ecological implications, which we couch 29 

within the context of the ‘energy landscape’. 30 

 31 

Introduction 32 

Comparative analyses of the energy expended by animals to locomote have shed light on how their 33 

size relates to the costs for them to move around their environment. While in absolute terms the 34 

metabolic cost of terrestrial locomotion increases with an animal’s size, per unit mass this cost is 35 

lower in larger species (Full et al., 1990; Schmidt-Nielsen, 1972; Taylor et al., 1970). However, most 36 

of these data have been derived from animals running on the flat while natural environments often 37 

encompass sloping ground, which is another factor likely to have a large effect on animals’ energy 38 

transportation costs. Thus a better understanding of the energy expended by wild animals when 39 

traversing a landscape is gained from measurements of movement costs on different gradients. 40 

Recently, several papers have analysed across-species relationships between the net cost of 41 

transport (NCOT; ml O2 m
-1), the incline of the ground being walked on and animal body mass. 42 

Snyder and Carello (2008) provide evidence that the efficiency of animals in converting metabolic 43 

energy into vertical work when walking up a slope increases with body mass up to around 1 kg, and 44 

both Tullis and Andrus (2011) and Lees et al. (2013) indicate that per unit mass the cost for an 45 

animal to move uphill is lower for larger species, again up to a mass of about 1 kg. The interpretation 46 

from all of these studies is that the energy disadvantage experienced by particularly small terrestrial 47 

animals when walking on the flat is exacerbated on an incline. 48 

However, these previous analyses all considered inter-specific scaling of the cost of transport on a 49 

mass-specific basis. Such ‘pound for pound’ analyses facilitate comparisons between species of 50 

greatly varying sizes, and provide a means for determining the mechanisms underlying inter-specific 51 

correlations. However, since mass-specific values do not reflect the absolute energy expenditure for 52 

an animal they may also not reflect the ecological consequences to the animal of those metabolic 53 

costs. 54 

Furthermore, concern has been raised (Lees et al., 2013) that inherent confounds limit the 55 

comparative power of the incline NCOT data available in the literature (Lees et al., 2013; Tullis and 56 
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Andrus, 2011), and as such the conclusions from these studies have been tentative (Lees et al., 2013; 57 

Snyder and Carello, 2008; Tullis and Andrus, 2011). The issue is that in all these papers, the analyses 58 

implicitly or explicitly assume that the relationship between energy expenditure and slope angle is 59 

linear and passes through the origin (isometry; Packard and Boardman, 1999). If this assumption 60 

does not hold, then comparisons between species measured on non-identical gradients might be 61 

misleading, and comparisons of animals of different size would be particularly problematic if there is 62 

a confound between animal mass and incline range. These challenges bring into question the 63 

robustness of the repeatedly stated conclusion that the effect of body mass on the economies of 64 

incline locomotion occurs only in smaller animals. 65 

Similarly to previous studies, here we examine the effect of body size on the energetics of incline 66 

locomotion by compiling data from the literature for species representing a wide range of sizes and 67 

analysing the relationships between NCOT, body mass and slope angle. However, our interrogation 68 

of the data explicitly includes whole-animal NCOT and relative NCOT as well as mass-specific NCOT, 69 

and also incorporates information on phylogenetic relatedness. We focus on birds and mammals 70 

alone, for which the range of inclines employed overlap well and previous studies have shown no 71 

systematic difference in NCOT (White et al., 2016), and establish that across the species included 72 

there is no evidence for systematic non-linearity in the (non-transformed) relationship between 73 

NCOT and gradient, at least for the non-negative gradients for which most published data are 74 

available. By investigating variability in the mass scaling exponents of the slopes between NCOT and 75 

incline gradient, our analyses do not assume isometric relationships between the energy cost to 76 

move and gradient angle. 77 

We use these data to demonstrate how considering patterns in all formulations of NCOT  – absolute, 78 

relative, and mass-specific – enables interpretation of the findings from an ecological perspective in 79 

the context of energy landscapes (Wilson et al., 2011). 80 

Materials and Methods 81 

Data for NCOT (ml O2 m
-1) were compiled from the peer-reviewed literature, from studies where 82 

animals were run at more than one gradient, and were converted to J m-1 assuming an energy 83 

equivalence of O2 of 20.1 J ml-1. NCOT was defined as the slope of a linear regression relating 84 

metabolic rate and speed of terrestrial locomotion at a fixed incline. In all studies included, the 85 

animals always ran directly along the treadmill in a cranial-caudal direction. The speeds and slopes 86 

applied were selected by the experimenters. Where NCOT values were not supplied, data were 87 

digitized for regression analysis. In total, data were collected and analysed for 24 species, ranging in 88 

mass from the 30 g mouse Mus musculus to the 492 kg horse Equus ferus. Mass values for each 89 

species were compiled from the same studies from which NCOT data were compiled. Although data 90 

were available in the literature for many groups of animals locomoting on inclines up to 90°, we 91 

limited the analysis to birds and mammals on inclines less than 90° to ensure that there was no 92 

association between body mass and incline in the data set (the largest incline in the data set was 93 

37°, and we excluded one measurement of NCOT for humans climbing up a vertical wall (Booth et 94 

al., 1999). For each data set, we calculated the slope of the relationship between NCOT (J m-1) or 95 

mass-specific NCOT (J kg-1 m-1) and gradient (°) using linear regression. For data sets where animals 96 

were measured running on the level (0°; all but three data sets), we also calculated relative NCOT by 97 

dividing all NCOT values by the value of NCOT measured at 0°, and then calculated the slope of the 98 
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line relating relative NCOT to gradient. For some species, data were available from more than one 99 

study, or for more than one cohort of animals. In these cases, each study or cohort was analysed as a 100 

separate data set, except for the study of Lees et al. (2013), for which winter and summer animals 101 

were pooled (NCOT increased with incline for both winter and summer birds in this study, but the 102 

magnitude of the increase was inconsistent with other studies unless the data were pooled). Studies 103 

of elk (Cohen et al., 1978), reindeer (Fancy and White, 1987), and mountain goats and bighorn sheep 104 

(Dailey and Hobbs, 1989) all provided unique mean mass values for each gradient, and so these were 105 

averaged for analysis. 106 

For those data sets that included measurements of NCOT at more than three non-negative gradients 107 

(Figure 1), we tested for non-linearity in the relationship between NCOT and non-negative gradient 108 

by testing the significance of a quadratic term in a multiple regression. The quadratic term was 109 

significant for quails Coturnix coturnix (t1 = -19.1, p = 0.03, Figure 1A) and for the human data set 110 

spanning the greatest range of gradients (t4 = 17.2, p < 0.001, Figure 1I); the quadratic term was non-111 

significant (p ≥ 0.1) in all other relationships. The relationship for quails appears anomalous, 112 

however, because across the full range of (positive and negative) gradients the relationship exhibits 113 

downward curvature for quails and upward curvature for the remaining species (Figure 1); for 114 

humans, the quadratic explains only 1.6% more variance than the linear function. Although upward 115 

curvature appears common in these data, especially for negative gradients, most data sets provide 116 

measurements at too few gradients to reliably quantify the curvature (Figure 1). For the present 117 

study we therefore use linear functions as a reasonable description of the relationship between 118 

NCOT and gradient for non-negative gradients.  119 

Data were analysed using phylogenetic mixed models (Hadfield and Nakagawa, 2010; Housworth et 120 

al., 2004; Lynch, 1991) implemented in the ASReml-R (Gilmour et al., 2009) package of R v3.0.2 (R 121 

Core Team, 2013). Phylogenetic mixed models were selected over the more commonly used 122 

methods of independent contrasts (Felsenstein, 1985; Rezende and Diniz-Filho, 2012) and 123 

phylogenetic generalised least squares (Grafen, 1989; Rezende and Diniz-Filho, 2012) because 124 

phylogenetic mixed models can formally incorporate phylogenetic non-independence as well as non-125 

independence associated with multiple measurements of single species (i.e. multiple studies of the 126 

same species). The tree used for analysis was constructed using published trees for mammals 127 

(Bininda-Emonds et al., 2007) and birds (Jetz et al., 2012). The mammal tree was constructed using a 128 

formal supertree approach to combine published trees estimated by a range of methods (Bininda-129 

Emonds, 2004), and was built using an explicit source tree collection protocol that minimized data 130 

duplication and the inclusion of source trees of lesser quality, such as those based on taxonomy. The 131 

bird tree was assembled using a sequence data for four protein coding mitochrondrial genes 132 

(cytochrome b, 4902 species; cytochrome oxidase I, 2335 species; NADH dehydrogenase subunit 2, 133 

4308 species; and NADH dehydrogenase subunit 3, 1232 species), and six nuclear loci 134 

(recombination activating protein 1 [rag-1], 1528 species; beta-fibrinogen intron 5 [bfib5] 5, 1089 135 

species; beta-fibrinogen intron 7 [bfib7], 1460 species; glyceraldehyde 3-phosphate dehydrogenase 136 

[gapdh], 967 species; myoglobin [myo], 1867 species; and ornithine decarboxylase [odc], 1405 137 

species), which was combined with taxonomic information for species lacking sequence data to build 138 

trees for each of 158 clades that were then grafted onto a backbone phylogeny (Hackett et al., 139 

2008). For birds, we constructed a single majority rule consensus tree from the published posterior 140 

distribution of 10,000 trees (Jetz et al., 2012) using ‘ape’ v3.1-1 (Paradis et al., 2004). For the 141 

combined mammal and bird tree, branch lengths estimated using Grafen’s (1989) arbitrary branch 142 
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length transformation (branch lengths set to a length equal to the number of descendant tips minus 143 

one).  144 

The models included log10-transformed data for the slope of NCOT on gradient, the slope of mass-145 

specific NCOT on gradient, or the slope of relative NCOT on gradient as the dependent variable, 146 

log10(body mass, kg) as a fixed effect, and phylogeny and species identity as random effects. 147 

Phylogenetic heritability, a measure of phylogenetic correlation equivalent to Pagel’s (1999) λ 148 

(Hadfield and Nakagawa, 2010), was estimated as the proportion of variance attributable to the 149 

random effect of phylogeny. The significance of fixed effects was tested using Wald-type F-tests with 150 

conditional sums of squares and denominator degrees of freedom calculated according to (Kenward 151 

and Roger, 1997). The significance of phylogenetic heritability was assessed using likelihood ratio 152 

tests to compare models with and without the random effect of phylogeny. Approximate standard 153 

errors for the estimate of phylogenetic heritability were calculated using the R ‘pin’ function (White, 154 

2013). 155 

Results 156 

The increase in whole-animal NCOT with non-negative gradient was greater for large animals than 157 

small ones (Table 1, Figure 2A,B). Similarly, the increase in relative NCOT with gradient was also 158 

greater for large animals than for small ones (Table 1, Figure 2B,C). However, the increase in mass-159 

specific NCOT with gradient was not affected by body mass (Table 1, Figure 2E,F). Removing the 160 

outliers indicated in Figures 2B, 2D, and 2F does not alter this conclusion: the scaling exponent for 161 

the increase in mass-specific NCOT with gradient changes very little from -0.038 ± 0.045 [SE] (Table 162 

1) to -0.046 ± 0.027 and remains non-significant. Similarly, weighting by the square root of the 163 

number of gradients for which each relationship was determined does not alter this conclusion. 164 

Phylogenetic heritability was moderate for all of these relationships, but never significantly greater 165 

than zero (Table 1). 166 

Discussion 167 

In both absolute and relative terms, across the range of body masses analysed, lighter birds and 168 

mammals experience a smaller increase in transport energy costs when walking uphill (Figs. 2A-D). 169 

This might be interpreted as indicating that the lower mass of smaller animals provides an energy 170 

advantage on an incline. However, on a mass-specific basis, the increase in NCOT as incline angle 171 

increases is similar across birds and mammals of different size (Fig. 2E, F). These differences in the 172 

effect of incline gradient and NCOT across whole-animal, relative, and mass-specific data highlight 173 

that different and apparently contradictory interpretations are possible with a single data set.  174 

Considering all of these relationships together provides the fullest insights. On a per unit mass basis, 175 

smaller birds and mammals are not more efficient at traversing inclines; there is in fact no 176 

systematic variation across body sizes in the relationship between mass-specific NCOT and gradient 177 

(Figure 2F). This suggests that broadly across species, the main reason for the additional cost 178 

associated with incline locomotion is an extrinsic one - the cost to raise the body’s mass against 179 

gravity (Borghols et al., 1978; Full and Tullis, 1990; Lees et al., 2013), since this should drive an 180 

increase in metabolic costs that is proportional to body mass if the metabolic efficiency of vertical 181 

locomotion is independent of mass. However, the energy costs for small animals to run on the flat 182 

per unit mass are greater than for larger animals (Full and Tu, 1991; Pontzer, 2016) – smaller animals 183 
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are intrinsically less efficient movers - and thus the additional cost smaller animals incur when 184 

running on an incline due to working against gravity is relatively small (Figure 2C,D). 185 

The concept of energy landscapes (Wilson et al., 2011) allows analyses of animal transport costs to 186 

be placed within an ecological context (Halsey, 2016). Quantification of energy landscapes will 187 

provide insight into the movement pathways taken by animals. It is likely that in many cases slope 188 

angle is the most important driver of variation in transport costs and thus, in turn, movement 189 

pathways (Shepard et al., 2013). For example, an animal seeking to minimise its energy outlay, 190 

perhaps because energy availability in the environment is low and thus it is striving to use its energy 191 

stores judiciously, or because it has limited ability to dissipate metabolically produced heat 192 

(Speakman and Krol, 2010), is expected to move in predictable ways within its landscape, repeatedly 193 

using low-cost routes (Rees, 2004). Because absolute and relative NCOT is greater for heavier 194 

animals moving up inclines (Figure 2B, D), we might reasonably expect bigger animals to be more 195 

inhibited in the routes they take across their energy landscape. 196 

Where judicious use of energy stores is the focus, an animal may be less prohibited to climb across a 197 

mountainous landscape if the additional costs of moving uphill are offset by a concomitantly 198 

reduced NCOT when moving down the same incline. In such a scenario the ‘broad scale’ energy 199 

landscape therefore flattens. Hypothetically, smaller animals may expend less energy braking to limit 200 

their speed when going downhill because they are more stable, less at risk of injury, and/or their 201 

mass is a small component in determining force compared to gravitational acceleration (Birn-Jeffery 202 

and Higham, 2014). In turn smaller animals may experience a considerable ‘reimbursement’ of the 203 

additional energy expended going uphill, when they then travel downhill. In contrast larger animals 204 

may tend to expend considerable additional energies on a decline to control their velocity. The data 205 

for NCOT on declines is presently rather limited, however according to the bird and mammal data 206 

available it seems likely that at least for those species represented the additional energy expended 207 

when moving up an incline is not offset by reduced NCOT when moving down the same incline. This 208 

is because the relationship between NCOT and gradient is probably non-linear for negative inclines, 209 

in that the positive slope of the relationship between NCOT and incline gradient is reduced or even 210 

reversed for decline gradients (Figure 1). Additional detailed measurements of NCOT, particularly for 211 

smaller species, at a range of positive and negative inclines are necessary to explore these concepts 212 

further. 213 

The documented routes of African elephant herds support the proposition that bigger animals tend 214 

to be more inhibited in the routes they take across their energy landscape. The movements of many 215 

groups of elephants observed in southern Africa are apparently constrained by the topography of 216 

their home ranges in that they rarely walk on ground where the incline is more than about 4° 217 

(Roever et al., 2012). Wall et al. (2006) argue that this selective behaviour against walking uphill is 218 

due to the massive energy costs of doing so for an animal typically weighing several tonnes. They 219 

reported on another herd, which foraged everywhere in their territory except on a single prominent 220 

hill, despite the presence of lush vegetation at its peak, and estimated that the cost to climb the hill 221 

for an adult elephant would be around 10 000 kJ. Famously, in 218 BC, Hannibal lost many of his war 222 

elephants to emaciation while crossing the Alps.  223 

Our analyses show that due to their large size, elephants will experience not just an absolute but a 224 

relatively high increase in NCOT when incline walking. The elephants studied by Wall et al. (2006) 225 
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already forage for 16-18 hours per day, so perhaps they could not easily compensate for the 226 

additional food intake required to fuel their locomotion uphill. Similarly, it is possible that the 227 

resultant additional heat generated by incline locomotion at a worthwhile speed could not be readily 228 

dissipated from their bodies (Speakman and Krol, 2010). However, there are also other possible 229 

explanations for the herd’s reluctance to walk uphill, based on fundamental scaling principles. For 230 

geometrically similar animals, body mass scales with the cube of linear dimensions of body size while 231 

muscle cross-sectional area scales with the square such that the relative power an animal can 232 

generate decreases with size (Schmidt-Nielsen, 1984); larger animals might therefore be limited in 233 

the slope inclines they can ascend by the power they can generate to walk at a worthwhile speed. 234 

Bone cross-sectional area also scales with the square of body size and thus larger animals may also 235 

be less inclined to walk on slopes because of their relatively high risk of injury if they fall. 236 

Large animals that move around the landscape with little regard for slope angle may highlight the 237 

importance of other factors in shaping their movement patterns (Shepard et al., 2013). For example, 238 

reanalysis of the data presented by Reichman and Aitchison (1981) show little evidence that the 239 

inclines of the paths chosen by mountain-dwelling mammals in the snow relate to their body mass; 240 

both small and large animals readily took paths with both small and large inclines. In this respect 241 

power output appears not to have been limiting to the larger species, and perhaps the time the 242 

animals spent walking on inclines was sufficiently small that the energy costs to do so were 243 

outweighed by advantages such as time savings and predator avoidance. 244 

Conclusions 245 

For their size, lighter birds and mammals expend a lot of energy to move uphill. This is mainly 246 

because their unit-mass cost to run on the flat is high; they are intrinsically uneconomical runners. 247 

Because they have low absolute locomotion costs the additional cost associated with movement 248 

across hilly ground is small. The energy costs to move uphill are also low in relative terms for small 249 

animals and thus inclined ground is unlikely to have a strong influence on their choice of route 250 

through an environment; the energy landscape presented to them is relatively flat even when the 251 

physical landscape is sloping upwards. Our study demonstrates the value and importance of 252 

considering costs of animal locomotion in absolute, relative and mass-specific terms. Together, these 253 

ensure a clearer understanding of the relationships between cost of transport and body mass, 254 

providing both mechanistic insights to the relationships and an understanding of their ecological 255 

implications. We argue that our findings also act as a case study demonstrating the general value of 256 

interrogating measures of metabolic rate in different forms to support data interpretation. 257 
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Table 1. Parameter estimates for the effect of body mass (M, kg) on the slope of the relationship 

between net cost of transport (NCOT) on gradient (°), with NCOT expressed as whole-animal NCOT 

(A, J m-1), NCOT expressed relative to NCOT at an incline of 0° (B, relative NCOT), and mass-specific 

NCOT (C, J kg-1 m-1).  

A) Fixed = Log(slope of whole-animal NCOT on gradient) ~ log(M) 

Term Estimate SE F (df) P 

Intercept -0.319 0.067 22.6 (1,20.1) 0.0001 
Log(M) 0.946 0.045 444.6 (1,18.5) < 0.0001 

Phylogeny 1.00 x 10-7 4.84 x 10-8   
Species 0.0251 0.0307   
Residual 0.06728 0.0303   

 

B) Fixed = Log(slope of relative NCOT on gradient) ~ log(M) 

Term Estimate SE F (df) P 

Intercept -1.26 0.08 284.7 (1,19.1) < 0.0001 
Log(M) 0.222 0.052 18.4 (1,19.0) 0.0004 

Phylogeny 2.67 x 10-8 1.96 x 10-8   
Species 0.0713 0.0329   
Residual 0.0221 0.0162   

 

C) Fixed = Log(slope of mass-specific NCOT on gradient) ~ log(M) 

Term Estimate SE F (df) P 

Intercept -1.64 0.07 579.4 (1,21.2) < 0.0001 
Log(M) -0.038 0.045 0.699 (1,19.7) 0.41 

Phylogeny 1.18 x 10-8 5.40 x 10-9   
Species 0.0216 0.0298   
Residual 0.162 0.053   

 

Parameters in italics are estimates of the residual variance and variances associated with the random effects of 

phylogeny and species. Phylogenetic heritability is 0.29 ± 0.33 [SE] for whole animal NCOT (
2

1 = 0.00, P = 

0.998), 0.76 ± 0.19 for relative NCOT (
2

1 = 0.00, P = 1), and 0.15 ± 0.23 for mass-specific NCOT (
2

1 = 0.00, P = 
999). 
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Figure 1. The relationship between mass-specific net cost of transport and gradient for species 

measured over more than three gradients (irrespective of whether those gradients were negative or 

non-negative). A: common quail Coturnix coturnix, B: brown rat Rattus norvegicus (filled circles: 0.20 

kg; unfilled circles: 0.22 kg; unfilled diamonds: 0.30 kg), C: Pine squirrel Tamiasciurus hudsonicus, D: 

maribou stork Leptoptilos crumeniferus, E: dog Canis lupus, F: mountain goat Oreamnos americanus, 

G: bighorn sheep Ovis canadensis, H: elk calves Cervus canadensis, I: human Homo sapiens (filled 

symbols: 61.2 kg; unfilled symbols: 70 kg), J: caribou Rangifer tarandus (filled symbols: 96 kg; unfilled 

symbols: 102 kg), K: horse Equus ferus asinus. Data and sources are provided in the supplementary 

material. Original image for pine squirrel © John Plaistow and licenced under CC BY-SA 3.0 
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(https://commons.wikimedia.org/w/index.php?curid=681073). The data are coloured by log10(mass) 

from lightest species (blue) to heaviest (orange).  

https://commons.wikimedia.org/w/index.php?curid=681073
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Figure 2. Relationships between NCOT and gradient, on a per species basis. The left panels present 

NCOT as absolute (A, J m-1; n = 26), relative (C, n = 26), and mass-specific (E, J kg-1 m-1; n = 23). Lines 

link data for the same species. The right panels shows the slopes of the linear regressions of NCOT 

against gradient (B), relative NCOT against gradient (NCOTrel, D), and mass-specific NCOT against 

gradient (NCOTms, F), all plotted against body mass (kg). The data are coloured by log10(mass) from 

lightest species (blue) to heaviest (orange). Solid lines in panels B, D, and F show the relationships 

between log10(NCOT), log10(NCOTrel) and log10(NCOTms), respectively, calculated using the 

phylogenetically informed parameter estimates in Table 1. Grey areas enclose the 95% confidence 

interval of the regression. Species identified in panels B, D, and F are those with relatively extreme 

values; 1: king quail Coturnix chinensis weighing 0.043 kg, 2: brown rats Rattus norvegicus weighing 

0.2 kg, 3: barnacle geese Branta leucopsis weighing 1.79 kg, and 4: lions Panthera leo weighing 53.5 

kg. Raw data and sources are provided in the supplementary material. 
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