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ABSTRACT 21 

How animals allocate their time to different behaviours has important consequences for their overall 22 

energy budget and reflects how they function in their environment. This potentially affects their 23 

ability to successfully reproduce, thereby impacting their fitness. We used accelerometers to record 24 

time-activity budgets of 21 incubating and chick-rearing kittiwakes on Puffin Island, UK. These 25 

budgets were examined on a per day and per foraging trip basis. We applied activity-specific 26 

estimates of energy expenditure to the kittiwakes’ time-activity budgets in order to identify the 27 

costs of variation in their allocation of time to different behaviours. Estimates of daily energy 28 

expenditure for incubating kittiwakes averaged 494±20 kJ d-1 while chick-rearing birds averaged 29 

559±11 kJ d-1. Time-activity budgets highlighted that kittiwakes did not spend a large proportion of 30 

their time flying during longer foraging trips, or during any given 24-hour period. With time spent 31 

flying highlighted as the driving factor behind elevated energy budgets, this suggests behavioural 32 

compensation resulting in a possible energetic ceiling to their activities. We also identified that 33 

kittiwakes were highly variable in the proportion of time they spent either flying or on the water 34 

during foraging trips. Such variation meant that using forage trip duration alone to predict energy 35 

expenditure gave a mean error of 19% when compared to estimates incorporating the proportion of 36 

a foraging trip spent flying. We have therefore highlighted that trip duration alone is not an accurate 37 

indicator of energy expenditure.   38 
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INTRODUCTION 39 

During their breeding periods, many animals must increase their foraging effort in an attempt to 40 

provide enough food not only for their own survival but also for the survival and growth of their 41 

offspring (Grémillet, 1997). As movement accounts for a large proportion of energy expenditure in 42 

many free-ranging animals (Brit-Friesen et al., 1989), this elevated foraging effort impacts the energy 43 

budgets of individuals. Thus how animals allocate their time to different behaviours during the 44 

breeding period can be a key component to their eventual reproductive success and fitness 45 

(Gittleman & Thompson, 1988).  46 

 47 

Understanding the interactions between behaviour, energetics, and fitness is a key consideration for 48 

comprehending the roles of organisms in their ecosystems (Tomlinson et al., 2014). However, free-49 

ranging animals are often difficult to observe over long periods of time without interruption. 50 

Seabirds exemplify this difficulty, with individuals often foraging far out at sea, where directly 51 

observing their behaviour is highly impractical. Conventionally, presence or absence of individuals at 52 

their nest has been used to indicate how they allocate their time during the breeding season 53 

(Granadeiro et al., 1998; Lewis et al., 2001), yet this approach lacks detailed information regarding 54 

activity when away from the nest. As time away from the nest comprises of a variable combination 55 

of time spent in either active behaviours (such as flight or foraging) or resting, allocation of time to 56 

activity within this period is likely to be of major energetic importance. Using animal-borne data 57 

loggers such as accelerometers, which measure an animal’s body acceleration continuously,  it is 58 

now possible to collect continuous measurements of the behaviour of individuals to generate 59 

detailed time-activity budgets regardless of location (e.g. Shepard et al., 2008; Halsey et al., 2009b).  60 

 61 
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While the biological implications of variation in time-activity budgets are informative alone, it is even 62 

more informative to estimate how differences in time allocation to behaviour relate to energy 63 

expenditure. Currently the most prominent approaches for estimating energy expenditure in-situ are 64 

the doubly-labelled water (DLW) method and the heart rate method. Although these techniques 65 

have greatly enhanced our understanding of energy expenditure in wild animals, they do have 66 

limitations, notably the DLW method has poor temporal resolution (Butler et al., 2004; Shaffer, 67 

2011) and the heart rate method generally requires surgical implantation of a data logger (Butler et 68 

al., 2004). Alternatively, by combining time-activity budgets with either laboratory or model derived 69 

estimates of activity-specific energy expenditure, time-energy budgets can be constructed 70 

(Goldstein, 1988). Such an approach is not novel in principle, yet the inclusion of accelerometry 71 

derived time-activity budgets now allows for this approach to be applied to continuous, high-72 

resolution behavioural information from highly mobile animals (Shamoun-Baranes et al., 2012). This 73 

alternative approach then allows estimation of energy expenditure of free-ranging animals at a finer 74 

temporal scale than the DLW method, and in a less invasive manner than the heart-rate method. 75 

 76 

In this study, we combine accelerometer-derived time-activity budgets with published values of 77 

activity-specific metabolic costs to estimate the energy expenditure of free-ranging black-legged 78 

kittiwakes (Rissa tridactyla). Kittiwakes are a suitable species on which to apply this approach as they 79 

have a relatively simple repertoire of coarse-scale  behaviours, consisting of flight, being on water, 80 

and attending the nest; these behaviours are readily identifiable from accelerometry traces (Collins 81 

et al., 2015). To date, energy expenditure of kittiwakes has been estimated numerous times with the 82 

DLW method (Gabrielsen, Mehlum & Nagy, 1987; Thomson, Furness & Monaghan, 1998; Golet, Irons 83 

& Costa, 2000; Jodice et al., 2002, 2003; Welcker et al., 2009, 2014; Schultner et al., 2010), 84 

highlighting variation within and between individuals and populations, as well as showing that time 85 

away from the colony is an important component of total daily energy expenditure (DEE) (Fyhn et 86 
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al., 2001). Furthermore, in a study by Welcker et al. (2010) which employed the DLW method, 87 

kittiwakes exhibited remarkably similar DEE across years with different prey availability. They 88 

therefore posited that kittiwakes were operating at an intrinsic energy ceiling, whereby individuals 89 

apparently had a limit to the amount of energy they expend (Drent & Daan, 1980). It is likely that 90 

kittiwakes exhibit behavioural compensation, whereby they adjust time spent in more energetically 91 

demanding activities to limit energy expenditure (Elliott et al., 2014a), however, the poor temporal 92 

resolution of the DLW method coupled with a lack of continuous behavioural data has largely 93 

inhibited the possibility of identifying evidence for this. In this study, by deploying accelerometers on 94 

both incubating and chick-rearing kittiwakes, we quantify how kittiwakes allocate their time, and 95 

what the energetic consequences of variation in time allocation are. By linking behaviour to energy 96 

expenditure we set out to identify if there is evidence for behavioural compensation.  97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 
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METHODS 109 

Data collection 110 

Tri-axial accelerometers (X8m-3 Gulf Coast Data Concepts, LLC; recording range ±8 g, resolution: 111 

0.001 g, weight: 14 g), set to record at 25 Hz, were deployed on 50 kittiwakes over three breeding 112 

seasons. Accelerometers were attached to feathers on the centre of the backs of individuals using 113 

clothed black Tesa® tape. The placement of the accelerometer was kept as consistent as possible 114 

across all birds. Mean body mass was 365±31 g (mean±SD), ranging from 310 – 435 g, with data 115 

loggers weighing on average 3.8±0.3% of body mass. 28 accelerometers were retrieved, of which 21 116 

were functioning correctly. Of these 21 accelerometers, 17 were from individuals during the early 117 

chick-rearing stage (chicks less than 10 days old), and 4 were from adults at the late incubation 118 

stage. Accelerometers were deployed on birds at a similar point within the incubation or chick-119 

rearing process as energy expenditure changes dependent on time into these stages (Fyhn et al., 120 

2001). Accelerometers that were not retrieved were either deployed on individuals which evaded 121 

recapture, or had fallen off before retrieval was attempted. Accelerometers not removed would 122 

have fallen off within two weeks. Deployment time for recaptured birds averaged 58±22 h and 123 

ranged from 23 – 114 h, during which time birds exhibited apparently normal breeding behaviour, 124 

including nest attendance (comprising of care of eggs or chicks) or absence from the nest (most 125 

likely on foraging trips). Fieldwork was carried out on Puffin Island, North Wales in July 2012, July 126 

2013 and July 2014. All work was carried out under Countryside Council for Wales permit numbers 127 

(37727:OTH:SB:2012, 44043:OTH:SB:2013, 53628:OTH:SB:2014).  128 

 129 

Behavioural assignments 130 

To generate time-activity budgets, acceleration data were assigned to three coarse-scale behaviours: 131 

“nest attendance”, “on water”, and “flying”. Although finer-scale behaviours such as foraging, 132 
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preening, and courtship are exhibited by kittiwakes, the amount of time these behaviours take up is 133 

relatively little (Jodice et al., 2003). As per Collins et al. (2015), behaviours were assigned using a 134 

simple method that categorises different activity types based on readily calculable metrics indicating 135 

body orientation or amount of movement. This method has been shown to give high accuracy 136 

(>95%) of coarse-scale behaviour assignments in kittiwakes (Collins et al., 2015). Behaviours of “nest 137 

attendance” and “on water” were assigned depending on the body angle of the bird; periods when 138 

the bird was at a lower angle were assigned as “on water”, and periods at which the bird was at a 139 

higher body angle were identified as being on land. The body angle thresholds at which these 140 

behaviours were separated were specific to each individual. When classified as on land, based on 141 

observations of their behaviours, the birds were assumed to be attending their nest, and were thus 142 

assigned the behaviour “nest attendance”. Flight was assigned based on the standard deviation of 143 

acceleration values in the heave axis, with higher values indicating movement in this channel relating 144 

to flight. Flight was not separated into flapping or gliding, although inspection of acceleration traces 145 

suggested that the kittiwakes flapped much more than glide.  146 

 147 

Time-activity budgets 148 

We constructed time-activity budgets at two scales of interest; daily and complete foraging trips. For 149 

each day and each foraging trip we determined the amount and proportion of time spent on the 150 

three coarse-scale behaviours.  For daily time-activity budgets, only records consisting of 24 hours of 151 

continuous data starting at midnight were used. The sample size for incubating birds was 3 days’ 152 

worth of data from 3 individuals, and that for chick-rearing birds was 25 days’ worth of data from 17 153 

individuals. Foraging trips were defined as a period in which the bird flew from the land, spent time 154 

on water, and then returned to the land, with trips varying in duration. Only trips over 30 minutes 155 

were used, to exclude periods when birds might have left the land for reasons other than foraging 156 

(such as researcher disturbance, or predator avoidance (Collins et al., 2014)). In total 146 trips were 157 
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identified and analysed. Trips were further separated into two types; those which started one day 158 

and finished the next were assigned as overnight trips (n=18), while those starting and finishing on 159 

the same day were assigned as day trips (n=128).   160 

 161 

Time-energy budgets 162 

To estimate the energy expenditure for the behaviours “nest attendance” and “on water” we used 163 

the intraspecific allometric equations for resting metabolic rates of these behaviours reported in 164 

Humphreys et al. (2007). For estimating the energy cost of flight we used the modelling software 165 

Flight 1.25 (http://www.bristol.ac.uk/biology/people/colin-j-pennycuick/index.html, Pennycuick 166 

(2008)). We used the default values for a kittiwake wingspan (0.947 m) and aspect ratio (9.44 m2) 167 

and input mass per bird from our data. We included a payload of 14g to account for the 168 

accelerometer and set altitude at 10m above sea level. Standard errors of energy cost estimates 169 

were calculated through 10 000 iterations of bootstrapping with replacement from the distribution 170 

of the activity-specific energy costs (n=21).  171 

 172 

To estimate the most accurate total DEE possible for each bird we input individual kittiwake mass 173 

into our equations for activity-specific energy expenditure and combined these activity-specific costs 174 

with each individual’s time-activity budget. These values are used to report estimates of DEE for the 175 

population for the incubation and chick-rearing periods overall. To get an estimate of DEE which 176 

indicates how time spent in each behaviour alone influences energy expenditure, we estimated 177 

activity-specific energy costs based on the mean kittiwake mass of 365g and combined these with 178 

each individual’s time-activity budget. This method was also used to estimate foraging trip energy 179 

expenditure. For estimates using mean mass, energy expenditure while attending the nest was 180 

calculated to be 13.6±1.2 kJ h-1, energy expenditure while on water was 18.8±3.0 kJ h-1, and energy 181 
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expenditure for flying was 48.24±5 kJ h-1. Estimating energy expenditure for these behaviours based 182 

on mean mass is justified as preliminary analysis showed no relationship between body mass and 183 

time-activity budgets.   184 

 185 

Statistical analysis 186 

A Welch’s t-test (used due to unequal variances) was applied to test for differences in DEE between 187 

the three study years. As DEE did not significantly differ between years (t13.191 =-0.494, p=0.6297) we 188 

pooled all data for analysis. A Welch’s t-test was also used to test for differences in DEE between 189 

incubating and chick-rearing birds. To analyse differences in foraging trip durations and proportion 190 

of trips spent in flight between breeding stages and trip type, generalised linear mixed models 191 

(GLMMs) including these variables and the interaction between them were constructed. A GLMM 192 

was also constructed to analyse the effect of forage trip duration on the proportion of trip spent in 193 

flight. Due to each kittiwake undertaking numerous foraging trips, in all GLMMs individual bird 194 

identity was assigned as a random factor. Models with foraging trip duration as the response 195 

variable were constructed using a Gaussian family with a log link due to the response variable 196 

conforming to assumptions of normality, while models with proportion of trip spent in flight as the 197 

response variable used a binomial family with logit link, as this response variable did not conform to 198 

assumptions of normality. To assess the accuracy of using foraging trip duration alone to predict 199 

energy expenditure, the difference between estimated energy expenditure for each foraging trip to 200 

that predicted by a general linear model between forage trip duration and energy expenditure was 201 

calculated.  202 

P-values below 0.05 were deemed to be significant, although our analysis places a greater emphasis 203 

on graphical representation of the data due to the imprecise nature of P-values (Halsey et al., 2015) 204 

and low sample sizes in some aspects of the study. All means are presented ±1 standard error unless 205 
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otherwise stated. All data analysis was conducted in R statistical software version R 3.2.1 (R 206 

Development Core Team, 2015) using ‘glmmPQL’ from the ‘MASS’ package.  207 

  208 
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RESULTS 209 

Time-activity budgets  210 

Over a 24-hour period, incubating and chick-rearing kittiwakes differed in how they allocated their 211 

time to the three behaviours (Fig. 1.). Incubating kittiwakes spent a similar percentage of their time 212 

attending their nest as they spent on water (41.7±18.4 and 43.8±20.3%, respectively), and 213 

proportionally less of their time in flight (14.5±3.3%). Chick-rearing kittiwakes spent more of their 214 

time attending their nest (58.9±2.4%), with time spent on water taking up the least amount of their 215 

daily time budget (13.5±5.8%). Chick-rearing kittiwakes spent almost twice as much of their day in 216 

flight than incubating kittiwakes did (27.6±2.1%). 217 

 218 

Time spent on foraging trips, and the proportion of time spent either flying or on water within these 219 

trips, varied considerably both within and between birds. Duration of foraging trips was highly 220 

variable for all kittiwakes (Fig. 2a); mean duration of foraging trips for incubating kittiwakes was 221 

3.10±0.73 h, ranging from  0.53–9.22 h (n= 17), while the mean foraging trip duration for chick-222 

rearing kittiwakes was 2.70±0.20 h, ranging from 0.50-10.83 h (n=129). These differences were not 223 

significant, however (t19 = 1.14, p=0.267). Trip duration was significantly longer for overnight trips 224 

compared to trips starting and ending on the same day (Fig. 2b) (t19 = 13.48, p<0.001), with daytrips 225 

averaging 2.07±0.15 h (range 0.50– 7.88 h, n=128) and overnight trips averaging 7.60±0.47 h (range 226 

3.67–10.83 h, n=18). There was no significant interaction between breeding stage and trip type in 227 

relation to trip duration (t123 = -0.60 p=0.552). 228 

 229 

The proportion of time spent flying during each trip also varied considerably between trips (Figs. 2c 230 

& 2d). For incubating kittiwakes the mean proportion of foraging trips spent flying was 53±9% 231 

(ranging from 24-99%, n=17) while for chick-rearing kittiwakes the mean was 69±2% (ranging from 232 
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47-99%, n=129). As with foraging trip duration, percentage of foraging trip spent flying did not differ 233 

significantly between breeding stages (t19 = -1.55, p=0.137). Trip type (day trip or overnight trip) had 234 

a significant effect on the proportion of time spent flying over the foraging trip, with the proportion 235 

of time spent flying during daytrips (mean= 72±2%, ranging from 2-99%, n=128) being significantly 236 

greater (t123 = -6.78 p<0.001), than proportion of time spent flying during overnight trips (mean = 237 

31±4%, ranging from 30-74%, n=18). There was no significant interaction between breeding stage 238 

and trip type in relation to proportion of time spent flying (t123 = -0.35 p=0.725).  239 

 240 

Energy expenditure 241 

Estimated individual DEE averaged 552±12 kJ d-1 (n=28). The average for incubating kittiwakes was 242 

494±20 kJ d-1 (n=3), which was 13% lower than chick-rearing kittiwakes which averaged 559±11 kJ d-1 243 

(n=25) however these estimates did not differ significantly (t5=2.0, p=0.10). Individual DEE values 244 

(range 358±31 - 745±67 kJ d-1) as well as mass and time spent in each behaviour are presented in 245 

Appendix S1.  246 

 247 

Using estimates of energy expenditure based on average mass, due to the higher energy cost per 248 

unit time of flight, kittiwakes that spent a greater proportion of the day flying had higher DEE (Fig. 249 

3.). As a result, high variation in the proportion of time individuals spent flying across the day drove 250 

the variability in estimated DEE (Fig. 3.).  251 

 252 

As foraging trips were highly variable in both duration and allocation of time to either flying or 253 

resting on water, the estimated energy expenditure across those trips also varied widely, from  14±1 254 

kJ to 368±19 kJ, averaging 103.1±7 kJ (n=153) (Fig. 4.). Expressed as rate of energy expenditure, on 255 
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foraging trips kittiwakes expended between 19.5±1.4 and 48.2±2.2 kJ h-1, averaging 38.2±1.9 kJ h-1.  256 

Of all 153 foraging trips measured, 62% of them cost less than 100 kJ of energy, with 84% costing 257 

less than 200 kJ. Shorter foraging trips were highly variable in time spent flying, but had the highest 258 

recorded percentage of time spent flying across foraging trips (Fig. 4.). Overall, proportion of time 259 

spent in flight decreased significantly with duration (t124 = -5.52, p<0.001). As foraging trips which 260 

lasted longer tended to have a lower proportion of time spent in flight, the hourly rate of energy 261 

expenditure for such trips was lower than for shorter trips. No kittiwakes exhibited extremely high 262 

percentages of time spent in flight during foraging trips of longer duration, with the maximum 263 

estimated energy expenditure of 368±19 kJ corresponding to a trip lasting 10.29 h, of which 57.6% 264 

(5.92 h) was spent flying.  265 

 266 

Foraging trip duration alone was a poor predictor of estimated foraging expenditure. Although the 267 

R2 value of the linear fit between foraging trip duration and total energy expenditure (Fig. 5a) was 268 

high at 0.88, estimated energy expenditure differed from that predicted by this relationship by an 269 

average of 19.8%, ranging from 0.1 to 60.1% (Fig. 5b). This translates to a mean difference in energy 270 

expenditure of 20.1 kJ (range 0.1 – 95.7) over the foraging trip. 271 

  272 
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DISCUSSION 273 

Activity and energy expenditure over 24 hours 274 

Across the 24-hour day, individual kittiwakes spent the majority of time exhibiting the less 275 

energetically expensive behaviours of either attending their nest or being on the water. A greater 276 

percentage of time allocated to less energetically expensive behaviours could be due to intrinsic or 277 

extrinsic limiting factors (Humphreys, Wanless & Bryant, 2006; Welcker et al., 2009, 2010). For time 278 

spent flying to be limited intrinsically would suggest that there is a physiological reason preventing 279 

kittiwakes from flying for more of the day, whereas extrinsic limiting factors would suggest that their 280 

behaviour was determined by an external feature such as prey availability. Both intrinsic and 281 

extrinsic factors could, and are likely to be, influencing the patterns in behaviours we recorded 282 

(Humphreys et al., 2006). To elucidate the causes of the potential limitations to daily activity 283 

presented, it would be ideal to combine measurements of time spent flying with indicators of rates 284 

of prey acquisition and measures of body condition. This has been achieved in two studies on chick-285 

rearing murres, which found both an energetic ceiling determined by the ability of individuals to 286 

digest food  (Elliott et al., 2014b), and behavioural compensation limiting DEE (Elliott et al., 2014a). 287 

 288 

It is clear from our results that chick-rearing birds spend a greater proportion of time flying than do 289 

incubating birds (Fig. 1). This increased amount of time spent flying is likely to be a result of adults 290 

needing to make regular foraging trips to provision chicks (Rishworth & Pistorius, 2015). In contrast, 291 

during incubation foraging trips are less frequent due to the need for adult kittiwakes only to meet 292 

their own energy requirements (Ponchon et al., 2014).  With flight being energetically expensive 293 

(Jodice et al., 2003), it stands to reason that incubating birds are more capable than chick-rearing 294 

birds of mediating their energy expenditure by flying less.  Indeed, an increase in time spent flying is 295 

likely to be the most important factor in the greater DEE recorded during chick-rearing in 296 
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comparison to incubation identified in many bird species (e.g. Humphreys et al., 2006; Rishworth, 297 

Tremblay & Green, 2014). For kittiwakes, such an increase in energetic expenditure during this 298 

period is a likely contributor towards them having a poorer body condition, greater levels of stress, 299 

and a greater likelihood of breeding failure while chick-rearing than when incubating their eggs 300 

(Kitaysky, Wingfield & Piatt, 1999; Ponchon et al., 2014).  It should be noted, however, that the 301 

sample size for incubating birds in this study was much lower than that for chick-rearing birds, thus 302 

for incubating birds the time and energy estimates must be considered with caution.  303 

 304 

Activity and energy expenditure over foraging trips 305 

By examining time-activity and time-energy budgets at the level of the foraging trip we have 306 

provided a more detailed level of behavioural information than has been previously available for 307 

kittiwakes. We have highlighted a large degree of variation in the relationship between trip duration 308 

and proportion of time spent flying. Although foraging trip duration correlated positively with total 309 

energy expenditure (Fig. 5), the variation around a positive linear relationship between trip duration 310 

and energy expenditure had an average error of 19% when compared to estimates of energy 311 

expenditure which took proportion of trip spent flying into account (Fig. 5). Notably, when looking at 312 

proportion of time spent flying plotted against duration of foraging trip (Fig. 4) there is an absence of 313 

data points in the top right hand corner where energy costs are highest. This provides some 314 

evidence towards the presence of behavioural compensation, whereby individuals limit total energy 315 

expenditure on longer trips by spending a lower proportion of time flying. This could also be seen as 316 

providing support for the idea of an energetic ceiling, whereby individuals are constrained in their 317 

total energy expenditure at this scale (Welcker et al., 2010; Elliott et al., 2014b). This finding also 318 

highlights the inadequacy of using foraging trip duration alone as a proxy for energy expenditure. 319 

Foraging trip duration is often used as a direct indication of energy expended when away from the 320 

nest (Welcker et al., 2010; Rishworth et al., 2014), as well as an indication of foraging conditions and 321 
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food availability (Kitaysky et al., 1999). However, we suggest that both trip duration and time spent 322 

flying should be considered together before making inferences relating to energy expenditure. 323 

Indeed, to further improve estimates of energy expenditure when away from the colony, wind 324 

conditions and time spent in either flapping or gliding flight could be taken into account.  325 

 326 

Estimates of energy expenditure 327 

The absolute DEE values we estimated for breeding kittiwakes are lower than existing published 328 

studies (Table 1). Reports of energy expenditure differ between kittiwake colonies (Table 1) and as 329 

such it may be that kittiwakes on Puffin Island are less active and expend less energy than those 330 

from other colonies. There are many possible explanations for this.  For example, low intraspecific 331 

competition due to low breeding density of kittiwakes on Puffin Island could have reduced the 332 

amount of energy they needed to expend to successfully forage (Ballance et al., 2009), relatively 333 

short day lengths at Puffin Island compared to higher latitude colonies could limit time spent 334 

foraging, and/or the presence of the accelerometer itself may have decreased the amount of time 335 

kittiwakes spent flying (Chivers, Hatch & Elliott, 2016). 336 

 Methodological considerations may also explain our comparatively low estimates of energy 337 

expenditure. The flight model we used to estimate flight costs has been shown to sometimes 338 

misestimate energy expenditure in comparison to empirical estimates (Mcwilliams et al., 2004; 339 

Schmidt-Wellenburg et al., 2007). The only other study providing activity-specific estimates of 340 

energy expenditure for kittiwakes, Jodice et al. (2003), suggests that flight is 5.6 times more 341 

expensive than nest attendance, whereas our approach estimates it to be 3.5 times more expensive. 342 

By following Jodice et al. (2003) and multiplying basal metabolic rate by activity-specific factors, our 343 

estimates of DEE increase to 833 ± 23 kJ d-1 (detailed in Appendix S1). Although the suitability of 344 

multiplying basal metabolic rates to estimate energy expenditure during activity is contested 345 
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(Pennycuick, 2008), this does indicate that low flight costs are likely driving our low energy 346 

expenditure estimates. Furthermore, the estimates of DEE we have presented have a strong linear 347 

correlation (r2 =0.97, Appendix S1) with those we achieved by following the method in Jodice et al. 348 

(2003). This indicates that between these methods it is only the absolute values of energy 349 

expenditure that differ, rather than the key biological findings.   350 

Our approach also does not take into account variation in energy expenditure relating to varying 351 

degrees of movement during behaviours. Energetic variation during behaviours may arise from 352 

sources such as switching between flapping and gliding flight, or from take-offs and landings (Shaffer 353 

et al. 2001). Amount of body movement can be quantified from acceleration data as dynamic body 354 

acceleration (DBA). DBA can be calibrated with energy expenditure either through oxygen 355 

consumption measurements in the laboratory (Halsey et al. 2009a) or with estimates from the DLW 356 

technique (Elliott et al., 2013). This has been attempted for kittiwakes by Kristiansen (2014), who 357 

regressed DBA against energy expenditure as measured through the DLW technique for five birds, 358 

having discarded measurements from a sixth bird due to it being a heavy outlier.  By applying the 359 

equation from their linear regression to calculations of DBA from our study birds, we estimate DEE 360 

to be 1130 ± 28 kJ d-1 (Appendix S1). Estimates of individual DEE we achieve by following this 361 

approach have a positive linear relationship with an r2 value of 0.70 when correlated with the 362 

estimates we have presented (Appendix S1). This indicates that the overall trends found using these 363 

two methods do correspond, however at the individual level, estimates of energy expenditure are 364 

variable depending on the method used. There are some serious limitations with this approach 365 

however. Firstly, a number of previous studies using DLW on seabirds have shown that estimate 366 

errors on an individual basis tend to be very large (Shaffer, 2011) and as such they should not be 367 

relied upon (Butler et al., 2004), and in addition to this, the small sample size of the study severely 368 

limits the confidence we can have in the reported linear relationship. Furthermore, the relationship 369 

between rate of energy expenditure and DBA is not always constant across different behaviours and 370 
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as such different equations for different behaviours are required to accurately estimate metabolic 371 

rate (Green et al., 2009; Elliott et al., 2013). 372 

Estimates of energy expenditure from the current study, Jodice et al. (2003) and Kristiansen (2014) 373 

vary substantially in absolute estimates of energy expenditure, although they do all positively 374 

correlate (Appendix S1), thus indicating that our overall biological findings, if not the exact estimates 375 

of energy expenditure we produce, are robust regardless of method used. To identify if our low DEE 376 

estimates are due to biological or methodological reasons, detailed time-activity information is 377 

required from other colonies. The method we employ is essentially an update of traditional 378 

observation-based time-activity budgets; it is simple to implement and allows insights into variations 379 

in behaviour and their energetic consequences at a range of temporal scales and without the need 380 

for logistically demanding proxy calibrations. 381 

 382 

Conclusion 383 

By constructing time-activity and time-energy budgets through coupling accelerometry data with 384 

activity-specific rates of energy expenditure, we have highlighted key features of the behavioural 385 

ecology of kittiwakes as well as the deficiency of examining forage trip duration alone when 386 

considering energy expenditure in breeding seabirds. In particular, we have provided further 387 

evidence for behavioural compensation linked to a limitation in the amount of energy individuals 388 

expend. A lack of studies using a similar method to ours has not allowed us to make a detailed 389 

comparison of DEE to that of kittiwakes at other colonies, however the relative simplicity of our 390 

approach should prompt others to employ it.  391 

 392 

 393 
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FIGURE LEGENDS 507 

Fig. 1. Mean ± SE daily percentage of time spent undertaking three recorded coarse-scale behaviours 508 

for incubating (n=3) and chick-rearing kittiwakes (n=25). Only days with 24 hours-worth of data were 509 

used.  510 

 511 

Fig. 2.  Duration of foraging trip dependent on breeding stage (a) and trip type (b), and proportion of 512 

individual foraging trips spent flying dependent on breeding stage (c) and trip type (d). Black dots 513 

indicate individual foraging trips, black lines indicate the median value. 514 

   515 

Fig. 3. The daily energy expenditures of kittiwakes of average mass, dependent on allocation of time 516 

to nest attendance, being on the water, and flying. Each black symbol represents a full 24-hour 517 

period of recorded activity from an individual incubating (triangle) or chick-rearing (circle) kittiwake. 518 

Percentage of time spent in each activity should be read parallel to the direction of the tick marks for 519 

each axis, respectively. 520 

   521 

Fig. 4. Total energy cost (kJ) of foraging trips dependent on percentage of trip spent flying in relation 522 

to duration of foraging trip. Black dots indicate values from individual foraging trips from 21 523 

kittiwakes.   524 

 525 

Fig. 5.  a) The relationship between foraging trip duration and total estimated energy expended 526 

during each foraging trip. The least squares regression line of best linear fit is shown. b) Difference in 527 

total measured energy expenditure as a percentage of total energy expenditure predicted from 528 

foraging trip duration using the linear relationship displayed in a). 529 
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 530 

Table 1. Estimates of mean±SD daily energy expenditure and mean body mass of chick-rearing 531 

kittiwake adults from studies published to date. All previous studies used the DLW method for 532 

estimating energy expenditure.  533 


