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Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right pre-1 

supplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for 2 

response inhibition. However, TMS influences interconnected regions, raising the possibility of 3 

a link between the preSMA activity and the functional connectivity within the network. To 4 

understand this relationship, we applied single-pulse TMS to the right preSMA during 5 

functional magnetic resonance imaging when the subjects were at rest to examine changes in 6 

neural activity and functional connectivity within the network in relation to the efficiency of 7 

response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS 8 

increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated 9 

their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia 10 

activation and the functional connectivity between rIFC and left striatum, and of the overall 11 

network correlated with the efficiency of response inhibition and with the white-matter 12 

microstructure along the preSMA – rIFC pathway. These results suggest that the task-free 13 

functional and structural connectivity between the rIFCop and basal ganglia are critical to the 14 

efficiency of response inhibition. 15 

 16 

 17 

 18 

 19 

 20 
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The ability to stop an on-going action quickly when it is no longer appropriate is an important 22 

part of the human executive control function (Logan and Cowan, 1984; Miyake and Friedman, 23 

2012). This ability may be significantly impaired with brain disorders and lesions that involve 24 

the frontal and basal ganglia system (Aron et al., 2003, Nachev et al., 2007, Sumner et al., 25 

2007, Correa et al., 2010, Dalley et al., 2011, Smith et al., 2011, Sebastian et al., 2012, Benis 26 

et al., 2014). Accumulating evidence indicates that such rapid stopping of an on-going action 27 

relies on the fronto-basal-ganglia network, including the right inferior frontal cortex (rIFC), and 28 

the right pre-supplementary motor areas (preSMA) (Miller and Cohen, 2001, Sumner et al., 29 

2007, Chambers et al., 2009, Aron, 2011).  30 

 31 

Recent work has made significant effort in identifying specific functional roles of the nodes/ 32 

regions within this inhibitory network. A number of studies have used transcranial magnetic 33 

stimulation (TMS), a non-invasive brain stimulation technique (Dayan et al., 2013), to tease 34 

apart the causal role of several cortical regions, particularly, the preSMA, and the rIFC during 35 

the stopping process (Chambers et al., 2006, Chen et al., 2009, Verbruggen et al., 2010, Cai 36 

et al., 2012, Obeso et al., 2013). These studies typically used a variant of the stop-signal task 37 

(SST), a well-established experimental paradigm for measuring the ability of stopping an on-38 

going response (i.e., response inhibition) (Logan and Cowan, 1984, Logan et al., 1984). In the 39 

SST, participants are instructed to respond as quickly as possible to the primary (or “go”) 40 

stimuli, but stop/withhold a response when a stop-signal (either an auditory tone or a visual 41 

cue) appeared shortly after the onset of the “go” stimulus in a small proportion of the trials. The 42 

efficiency of response inhibition is estimated by the stop-signal response time (SSRT) 43 

(Verbruggen and Logan, 2008). However, the observed TMS effects on response inhibition are 44 
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unlikely to be limited to the targeted regions (Obeso et al., 2013, Zandbelt et al., 2013, 45 

Watanabe et al., 2015). Studies applying TMS to the right preSMA or rIFC induced changes in 46 

cortical excitability of the primary motor cortex (M1) assessed by motor-evoked potentials 47 

(Mars et al., 2009, Neubert et al., 2010). Using repetitive TMS (rTMS) over the rIFC or preSMA 48 

prior to fMRI scans (i.e., offline rTMS), Zandbelt et al (2013) and Watanabe et al (2015) 49 

showed that the stimulation altered activation patterns in the basal ganglia and the 50 

supplementary motor complex (SMA), and that significant changes in these regions were 51 

predictive of the SSRT during the stop-signal task performance. Although these studies have 52 

shown that offline TMS (i.e., stimulation over minutes prior to fMRI) induced changes in 53 

network properties over time, to what extent TMS induces immediate changes in patterns of 54 

neural activity and task-free functional connectivity within the fronto-basal-ganglia network 55 

remains unknown.   56 

 57 

The objective of this study was to examine immediate online changes in neural activity and 58 

task-free functional connectivity within the fronto-basal-ganglia network induced by TMS 59 

modulation of the right preSMA and the relation of these changes to the efficiency of response 60 

inhibition. In addition, we examined whether these changes may, in part, reflect differences in 61 

anatomical connectivity that can account for the efficiency of response inhibition (King et al., 62 

2012, Rae et al., 2015). We applied single-pulse TMS during fMRI scans while the subjects 63 

were at rest (i.e., online or concurrent TMS-rfMRI). Concurrent TMS-rfMRI offers a window for 64 

the observation of changes in neural activity independent of task performance and without 65 

compensatory neural adjustments as likely induced in offline rTMS studies (Siebner et al., 66 

2009, Bestmann and Feredoes, 2013). It allows not only the observation of immediate changes 67 
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in neural activity induced by TMS in remote regions, but also the extent to which TMS affects 68 

the network properties including functional connectivity (i.e., temporal coupling of activation) 69 

between distant regions (Horwitz, 2003). We applied single pulse TMS at three different 70 

intensities (i.e. high=120%, medium=80%, and low=40% of the individual motor threshold) to 71 

the right preSMA, a crucial node in the network. The efficiency of response inhibition was 72 

assessed using a stop-signal task separately from the concurrent TMS-rfMRI session (see 73 

Figure 1 and detailed descriptions of the task and TMS setup in Methods and Materials).  74 

 75 

We expected that changes in the neural activity and the strength of functional connectivity 76 

within the network under high-intensity TMS would be correlated with the ability to stop an on-77 

going response (SSRT). We also expected that TMS-induced changes in functional 78 

connectivity would likely be correlated with individual differences in anatomical connectivity 79 

that can account for response inhibition efficiency.  80 

 81 

Materials and Methods 82 

Twenty-two healthy subjects (10 males and 12 females) were enrolled in this study. Five 83 

subjects were excluded due to significant scan artifacts and data acquisition problems. 84 

Seventeen healthy subjects (7 males and 10 females; mean age = 23.7 [±2.7]) were included 85 

in the final data analysis. All participants had a normal structural MRI, neurological 86 

examination, and were right-handed based on the evaluation with the Edinburgh Handedness 87 

Inventory (Oldfield, 1971). All subjects gave their written informed consent to participate in the 88 

study, which was approved by the Combined Neuroscience Institutional Review Board at the 89 

National Institutes of Health (NIH) and in accordance with the Declaration of Helsinki. 90 
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Participants received monetary compensation for their time participating in the study.  91 

 92 

Apparatus and procedure. The fMRI scans were performed on a 3.0 T PET/MRI scanner 93 

(Biograph mMR software VB17P, Siemens, Erlangen, GER) while the participants were at rest 94 

(henceforth, rfMRI). TMS was applied using a Magstim Super Rapid2 magnetic stimulator 95 

(Magstim Company Limited, Whiteland, UK). A Magstim MRI compatible 70 mm TMS coil was 96 

mounted on an in-house built MR compatible TMS-coil holder and connected to the Magstim 97 

stimulator outside the scanner room through an RF waveguide and with a custom-made ferrite 98 

sleeve. The TMS-coil holder included a 10 inch-diameter birdcage fitted with two multi-element 99 

matrix MR coils (mMR Body TIM Coils) as the MR signal receiver. Each of the matrix coils 100 

included six coil elements with an integrated pre-amplifier. Four rfMRI scans (156 volumes per 101 

scan) were acquired using a gradient echo-planar-Imaging (EPI) sequence with a volume TR 102 

of 2000 ms followed by a 300 ms pause at the end of each TR (other parameters: TE = 25 ms, 103 

flip angle = 90º, phase encoding = P -> A; FOV = 24 cm, acquisition matrix = 64 x 64, slice 104 

thickness = 4 mm, and 34 axial slices with interleaved acquisition). Single-pulse TMS was 105 

delivered 150 ms after the onset of the 300 ms pause period (see Figure 1a). To monitor any 106 

potential shift of TMS-coil position throughout the scan session, three radiographic markers 107 

were placed on each subject’s head in addition to head restraints (subject’s head was strapped 108 

to the TMS-coil holder to insure a direct contact with the TMS coil and minimize head 109 

movement). A short (< 15 sec) marker-alignment scan (TR = 330 ms, TE = 1.33 ms, flip angle 110 

= 15º, FOV = 22 cm, slice thickness = 2 mm, slices = 80 per slab, acquisition matrix = 256 x 111 

256) was acquired immediately before and after the four EPI scans. These marker scans were 112 

used to provide an additional estimate of the shift in the head position relative to the TMS-coil 113 
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at the end of the scan session (see Figure 1 in Supplementary material for examples of marker 114 

locations and images of the marker-alignment scans from a representative participant. Also 115 

see Table for MR signal quality indexes). On average, the subjects’ head movement was 116 

minimum (translation: x < 0.1 mm [± 0.2], y < 0.3 mm [± 0.5], z < 0.2 mm [± 0.6]; and rotation: < 117 

0.01 mm [± 0.01] in x, y, z directions). A gradient echo EPI fieldmap and a high resolution 118 

(1×1×1 mm) T1-weighted anatomical image were also acquired (TR = 2900 ms, TE = 3.03 ms, 119 

TI = 1100 ms, FOV = 256 mm, flip angle = 7º, acquisition matrix = 256 x 256, slices = 176 per 120 

3D slab, slice thickness = 1 mm) for unwarping and normalizing the EPI images to a template 121 

brain. In addition, diffusion tensor imaging (DTI) data were acquired for each participant with 122 

the following scan parameters: TR = 1700 m, TE = 98 ms, FOV = 256 mm, acquisition matrix = 123 

128 x128, slice thickness = 2 mm, 90 slices without gap, acceleration factor = 2, 10 volumes of 124 

b value = 0 s/mm2, 10 diffusion directions with b value = 300 s/mm2, and 60 diffusion directions 125 

with b value = 1100 s/mm2. In addition, a T2-weighted scan with Fast Spin Echo sequence and 126 

fat suppression (TR = 5000 ms, TE = 83 ms, FOV = 220 mm, acquisition matrix = 256 x 204, 127 

flip angle = 120º, slices = 90, slice thickness = 2 mm) was acquired for each subject at 1.7 mm 128 

isotropic voxels to be used as a structural target in post-processing.   129 

 130 

The TMS stimulation site (i.e. right preSMA) was determined for each participant based on the 131 

participant’s own T1 anatomical MR images using a stereotactic navigation system (Brainsight 132 

by Rogue research, Inc., Montreal, Canada). It has been shown that preSMA stimulation 133 

induces little discomfort and minimal facial muscle movement relative to other regions (e.g., 134 

IFC) (Sandrini et al., 2011). The center of the TMS coil was placed over the right preSMA, 1 135 

cm anterior to the vertical line from the anterior commissure (AC) perpendicular to the anterior 136 
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– posterior commissure line in the sagittal plane (see Figure 1a and also Tremblay and 137 

Gracco, 2009). The localization of the center of the TMS coil to the target (the right pre-SMA in 138 

native space: x = 10, y = 10) was carried out using the subjects’ own MR T1 structural image 139 

and the stereotaxic neuronavigation system “Brainsight.” The distance between the TMS target 140 

location on the scalp and the vertex (Cz) was also calculated for each subject (mean distance 141 

= 4.5 cm [+ 0.14]) and used to mark the TMS target site on a swim cap worn by participants 142 

during the concurrent TMS-rfMRI session. This distance (> 4 cm) is consistent with previous 143 

studies showing the approximate distance between the vertex and the pre-SMA (Picard and 144 

Strick, 1996, Mars et al., 2009, Arai et al., 2011). The TMS coil was oriented in line with the 145 

longitudinal fissure and with the coil handle pointed posteriorly. Prior to the experiment, the 146 

resting motor threshold (rMT) of each participant was determined using the same MRI 147 

compatible TMS coil. The individual rMT was set as the lowest intensity of TMS stimulation 148 

applied over the left primary motor cortex that was capable of evoking a visible contraction in 149 

the relaxed right first dorsal interosseous muscle on at least 5 out of 10 consecutive 150 

stimulations (Pridmore et al., 1998). The average rMT was 66.5% of the maximum stimulator 151 

output. In order to examine TMS specific effects on the BOLD signal change, three different 152 

stimulation intensities were used during the TMS- rfMRI scans: 40%, 80%, and 120% of each 153 

participant’s own rMT. Thirty single-pulse TMS (10 for each intensity) were delivered semi-154 

randomly with a jittered inter-stimulus-interval (ISI range: 9.2 – 13.8 seconds) during each 155 

rfMRI scan. Four scan runs (< 6 min each) were acquired for each subject with a total of 120 156 

TMS pulses (10 x 4 pulses per TMS intensity).  157 

 158 
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Behavioral task and data analysis. Subjects performed in a separate experimental session, at 159 

least 24 hours prior to the TMS-rfMRI session, a variant of the stop-signal task (SST) used in a 160 

previous study (Xu et al., 2015). They were instructed to stop their response when a visual cue 161 

(i.e., a stop-signal) appeared after the response (“go”) stimulus onset. The stimulus was either 162 

a left or right pointing arrow with a “+” sign in the middle (see Figure 1b). Participants were 163 

instructed to make a response (i.e., a “go” response) as quickly as they could according to the 164 

arrow direction by pressing either the left or the right key on a response box. For 25% of the 165 

trials, the “+” sign (i.e., the stop-signal) turned red after the stimulus onset with a short delay 166 

(i.e., the stop-signal delay or SSD). The SSD was dynamically controlled based on whether a 167 

successful (stop-inhibit) or an unsuccessful (stop-respond) response was made (Verbruggen 168 

and Logan, 2008). The SSD was set at 100 msec (the shortest SSD) for the first Stop trial and, 169 

then a staircase tracking method was implemented such that for every successfully-stopped 170 

(i.e., Stop-inhibit) response, the SSD was increased by 50 msec to make it harder to stop on 171 

the next trial, and for each fail-to-stop (i.e., Stop-respond) trial, the SSD decreased by 50 172 

msec. The longest possible SSD was 450 msec. The stop-signal response time (SSRT), a 173 

measure of the efficiency of response inhibition, was estimated for each participant by 174 

subtracting the mean SSD from the nth (where n is the percentile corresponding to the 175 

probability of the Stop-respond trials) fastest RT of the primary “go” responses (Logan, 1994). 176 

The SSRT was then correlated with the TMS-induced rfMRI BOLD activation, the strength of 177 

functional connectivity of the fronto-basal-ganglia network, and with the DTI white-matter 178 

microstructure indexes (i.e., the fractional anisotropy [FA], fiber track counts, and averaged 179 

fiber length). Recent studies have shown that these microstructure indexes including fiber 180 

bundles and fiber length may be associated with cognitive functions (Marner et al., 2003, 181 
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Behrman-Lay et al., 2014). One participant had unusually short SSRT (88 ms) although all 182 

other scores were in the normal range. Therefore, the SSRT of this participant was excluded in 183 

all correlation/regression analyses to avoid statistical bias.  184 

 185 

MRI data processing and analysis. The rfMRI data were processed and analyzed using the 186 

SPM8 software (the Wellcome Department of Imaging Neuroscience, University College 187 

London, UK). All images were EPI distortion corrected with a gradient echo EPI fieldmap 188 

collected during the concurrent TMS-rfMRI session, and slice-timing corrected, realigned, and 189 

coregistered with the subject’s own high resolution T1 anatomical image. All subjects’ T1 190 

images were combined to generate a T1 template using the DARTEL software and 191 

procedures, and normalized to the MNI (Montreal Neurological Institute, Canada) template. 192 

The normalization parameters from each subject were then applied to the normalization of the 193 

subject’s own EPI images. The normalized EPI images were smoothed using an 8x8x8 mm 194 

FWHM kernel. At the first level analysis, the design matrix included four scan runs/sessions 195 

and three TMS intensity conditions (Low [40%], Mid [80%], and High [120%]) plus six motion 196 

parameters as confounds. The fMRI activation was modeled using the canonical hemodynamic 197 

response function (HRF) with temporal and dispersion derivatives. The data were high-pass 198 

filtered at 128 Hz and the epoch/event duration was set at 1 sec. Contrasts (i.e., t-tests: Low – 199 

baseline, Mid – baseline, and High – baseline) from the first level individual analysis were fed 200 

into the second (group) level analysis using one-way within-subject ANOVAs. Analyses with 201 

the whole brain and a priori regions of interest (ROIs) with a binary mask that included the 202 

fronto-basal-ganglia inhibitory network (i.e., the SMA, preSMA, right IFC, and the basal 203 

ganglia) were performed (the ROI mask was created in the MNI template space using the 204 
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WFU PickAtlas software by the Functional MRI Laboratory at the Wake Forest University 205 

School of Medicine, NC). Additional contracts (t tests) were performed to examine the extent of 206 

changes in distal activation induced by the three TMS intensities with focus on brain regions 207 

showing a monotonic increase or decrease in BOLD signal. All statistical contrasts were 208 

corrected for multiple comparisons using the topological false-discovery rate (FDR) (Chumbley 209 

and Friston, 2009, Chumbley et al., 2010) and all reported significant voxels survived a 210 

corrected threshold of p < 0.01. Voxels showing a significant monotonic change in the preSMA, 211 

SMA proper, rIFC, and the basal ganglia of the network were extracted (8 mm diameter sphere 212 

centered on the peak of each cluster) to further examine the relationship between the TMS-213 

induced BOLD signal change and the efficiency of response inhibition (i.e., the SSRT).  214 

 215 

To examine the effect of TMS intensity on functional connectivity within the inhibitory network 216 

and the extent to which the connectivity strength may be associated with the efficiency of 217 

response inhibition, we performed regional functional connectivity analyses. Partial Least 218 

Square Regression (PLSR) analysis (McIntosh and Lobaugh, 2004, Krishnan et al., 2011) was 219 

performed to estimate the coupling of the BOLD signals between seven regions in the 220 

inhibitory network: the right preSMA, rIFC opercularis (rIFCop), right striatum (rStri), left 221 

striatum (lStri), left pallidum (lPal), right pallidum (rPal), and bilateral subthalamic nuclei (STN) 222 

(Figure 4a). The right preSMA was defined as a sphere (8mm in diameter) centered in the 223 

TMS targeted region (MNI xyz = 10, 10, 50). The remaining regions were defined using binary 224 

masks created in the MNI template space using the WFU PickAtlas software. The connectivity 225 

analysis between two additional regions outside the network (i.e., the right dorsal lateral 226 

prefrontal cortex [rDLPFC], and the right inferior-parietal cortex [rIPC]) was also included as a 227 
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control. The control region, rDLPFC (8mm sphere, MNI coordinate: xyz = 37, 33, 32), was 228 

determined based on previous studies showing its functional connection with the rIPC in 229 

executive control processes (Cieslik et al., 2013). It is adjacent to the fronto-basal-ganglia 230 

network and anatomically connected with the right preSMA (Nachev et al., 2008), but its 231 

connection with the rIPC is not response inhibition specific. We expected that TMS-induced 232 

changes in the connectivity between the rDLPFC and rIPC, if any, would not be predictive of 233 

the efficiency of response inhibition. For each subject, trial-based regression coefficients (i.e. 234 

beta series) (Rissman et al., 2004) from each voxel were extracted from the first level analysis 235 

for each TMS intensity level. PLSR was then used to estimate the connectivity between the 236 

right preSMA and the other regions as well as between rIFCop and the ROIs in the basal-237 

ganglia (i.e., rStri, lStri, rPal, lPal, and STN), and the connectivity of the control connection 238 

between the rDLPFC and rIPC. The regression coefficient between the first extracted PLS 239 

temporal components for each analysis was used as an index of inter-regional connectivity. 240 

The low intensity TMS condition served as a baseline control for nonspecific effects of TMS as 241 

done in previous concurrent TMS-fMRI studies (Feredoes et al., 2011, Heinen et al., 2014). 242 

The analysis of the effect of TMS intensity on changes in connectivity focused on the maximal 243 

difference between the High and Low TMS conditions using planned t-tests with the standard 244 

Fisher’s z transformed correlation coefficients of the connectivity index. Linear regression 245 

analyses were also performed between the averaged connectivity index for the two TMS 246 

intensity conditions and the efficiency of response inhibition (SSRT) to examine the extent to 247 

which the task-free connectivity within the network was predictive of the SSRT.     248 

 249 
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The DTI data were preprocessed with the TORTOISE software (by the Pediatric Neuroimaging 250 

Diffusion Tensor MRI Center at the National Institutes of Health, www.tortoisedti.org) for 251 

volume realignment, eddy current correction, EPI distortion correction, and non-linear tensor 252 

fitting (Basser et al., 1994, Pierpaoli et al., 2010). The preprocessed FA maps were normalized 253 

to the MNI (Montreal Neurological Institute, CA) template space using the TBSS (Tract-Based 254 

Spatial Statistics) nonlinear registration procedure of the FSL software (by the FMRIB Analysis 255 

Group, University of Oxford, UK). Deterministic tractography was performed using the Diffusion 256 

Toolkit (DTK) software (by the TrackVis.org, Martinos Center for Biomedical Imaging, 257 

Massachusetts General Hospital) with normalized tensor images in the MNI space. The fiber 258 

tacks were determined using the FACT method (fiber assignment by continuous tracking) with 259 

the termination angle set at 35 degrees to minimize false positives. Both the FA and DTK track 260 

maps were then used to examine the white-matter microstructure and its relation to the 261 

efficiency of response inhibition and the TMS-induced change in functional connectivity. For 262 

the objectives of the study, we focused on the white-matter regions near the right preSMA (the 263 

locus of TMS) and rIFCop that are known to have direct fiber connections between the 264 

preSMA, rIFCop, and basal ganglia (Aron et al., 2007, Catani and Thiebaut de Schotten, 2008, 265 

Catani et al., 2012, King et al., 2012). Two seed ROI masks (8mm radius) were created 266 

between the right preSMA and rIFCop (see Figure 5) that have been shown to have major fiber 267 

bundle connections (see Catani et al., 2012; Leunissen et al., 2013). The two seed ROIs (in 268 

MNI space: ROI 1 [near right preSMA] = 12, 16, 50; ROI 2 [near rIFCop] = 30, 8, 22) were 269 

placed in the individual DTK track maps. The estimations of fiber counts and fiber length were 270 

determined by constraining/including only fibers that originated in both seed ROIs. In addition, 271 

two mirror seed ROIs and analyses were applied to the left hemisphere to examine whether 272 
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there was any hemispheric specificity in relation to the TMS-induced change of functional 273 

connectivity. 274 

 275 

Results 276 

Behavioral performance of the stop-signal task. On average, the participants made 49% (± 277 

4.7%) of the stop-inhibit (i.e., successfully stopped) responses, the mean SSRT = 195 (± 37) 278 

ms (within the normal range, see Logan, 1994), the mean SSD = 218 ms (± 57), the observed 279 

average Stop-respond (i.e., fail-to-stop response) RT = 378 (± 81) ms, the estimated Stop-280 

respond RT = 412 (± 34) ms, and the averaged “go” RT = 415 ms (± 35). Consistent with 281 

previous studies using the stop-signal task, the correlation between the SSRT and the “go” RT 282 

was not significant (R2 = 0.18, p <0.1).  283 

 284 

TMS-rfMRI results. Figure 2 shows the results of the analysis using a priori ROIs within the 285 

fronto-basal-ganglia network (also see the whole brain results in Figure 2 of the 286 

Supplementary Material). The results showed that multiple regions within the network had a 287 

significant (FDR < .01) monotonic increase of BOLD signal change as the TMS intensity 288 

increased. These regions included the right preSMA, SMA proper, rIFC (opercularis), right 289 

caudate, putamen, pallidum, and the left caudate. Except for the right preSMA and the SMA 290 

proper which were directly under or very close to the TMS coil, all regions showed a significant 291 

monotonic increase in the BOLD signal. Two one-way within-subject ANOVAs performed 292 

separately for these regions showed a significant main effect of TMS intensity (increase in 293 

signal: F(2,32) = 22.1, MSe = 7.8, p < .0001; decrease in signal: F(2,32) = 21.2, MSe = 9.5, p < 294 

.0001). Post hoc Scheffe’s F test (p < .05) showed that the BOLD signal change (%) under the 295 
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three TMS-intensity conditions differed significantly from each other (positive trend: Low TMS = 296 

-1.32%, Mid TMS = 0.16%, High TMS = 1.55%; negative trend: Low TMS = 1.42%, Mid TMS = 297 

-0.56%, High TMS = -3.43%). Separate one-way within-subject ANOVAs for each of these a 298 

priori ROIs (with TMS intensity as the within-subject factor) showed a significant main effect of 299 

TMS intensity for all these regions. Post hoc F test (p < .05) showed significant differences 300 

between the TMS conditions for each of these regions within the network (see Figure 2 for 301 

details). Figure 3 further shows that in the High and the Mid TMS conditions, the BOLD signal 302 

change in the basal-ganglia regions (the left caudate and the right pallidum) had significant 303 

correlations with the SSRT (the right pallidum: High TMS t14 = -3.18, R2 = 0.42, p < 0.01; Mid 304 

TMS t14 = -2.8, R2 = 0.36, P < 0.05; and the left caudate: High TMS t14 = -2.43, R2 = 0.30, p < 305 

0.05). When all the basal-ganglia regions were combined, the BOLD signal change again 306 

showed significant correlation with the SSRT (High TMS: t14 = -2.56, R2 = 0.32, p < 0.03; Mid 307 

TMS: t14 = -2.18, R2 = 0.25, p < 0.05), indicating that, at least in the High and Mid intensity 308 

conditions, TMS may induce significant change in neuronal activity distal to the stimulation site 309 

within the inhibitory network that are predictive of response-inhibition efficiency.   310 

 311 

In addition to the TMS intensity effect on the BOLD signal change and its correlation with the 312 

SSRT, Figure 4b shows that the overall connectivity of the High TMS condition (0.76) was 313 

significantly higher than the Low (0.70) TMS condition (paired t-test: t16 = 1.95, p < .05). 314 

Planned t-tests for each of the connections between the High and Low TMS intensities showed 315 

a significant difference in the connectivity of preSMA - rIFCop (t16 = 2.23, p < .03), rIFCop - 316 

lStri (t16 = 1.8, p < .05), rIFCop – rPal (t16 = 1.95, p < .04), rIFCop – lPal (t16 = 1.87, p < .04), 317 

and of rIFCop – STN (t16 = 1.81, p < .05). The connectivity for these connections was 318 
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significantly stronger in the High TMS condition (.90, .84, .77, .79, and .79) than the Low 319 

condition (.79, .77, .70, .71, and .68). Separate linear regression analyses using the overall 320 

(averaged) connectivity of all connections as the predictor variable showed a significant 321 

negative correlation with the SSRT (t14 = -2.12, R2 = .24, p < .05) in the High but not the Low 322 

TMS condition (R2 = .03). These results indicated a significant relationship between the task-323 

free network connectivity and the efficiency of rapid response inhibition.  324 

 325 

We further examined the relationship between the SSRT and the connectivity of each of the 326 

connections that showed significant TMS effect (Figure 4a, thicker lines). The results of a 327 

multiple regression analysis that included all these five connections showed that only the 328 

connectivity of rIFCop - lStri accounted for a significant amount of the variance in the SSRT (t10 329 

= -2.50, R2 = .38, p < .03) (see Table 1). Simple regression analysis again showed a significant 330 

negative correlation between the SSRT and the rIFCop – lStri connectivity (t14 = -2.25, R2 = 331 

.27, p < .05). As the connectivity increased, the SSRT decreased (see Figure 4). None of these 332 

connectivity measures was significantly correlated with the “go” RT which is not response 333 

inhibition specific. There was also no significant correlation between the SSRT and the control 334 

connection rDLPFC - rIPC, a link outside the fronto-basal-ganglia network. The High and Low 335 

TMS intensity did not have significant effect on the strength of this connection either even 336 

though the rIPC was sensitive to the TMS intensity (see Figure 2 in the Supplementary 337 

Material for results from the whole-brain analysis).  338 

--------------------------------------------------------------------- 339 

Insert Table 1 about here 340 

----------------------------------------------------------------------- 341 
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Based on the results of the TMS-intensity effect on the functional connectivity and its relation 342 

to the response-inhibition efficiency (SSRT), we further examined individual differences in the 343 

white-matter microstructure (reflected in the fiber counts, fiber length, and FA) and its relation 344 

to functional connectivity and response-inhibition efficiency. Pearson correlations were 345 

performed between the fiber counts or length and all the connections (i.e., preSMA - rIFCop, 346 

rIFCop - lStri, rIFCop – rPal, rIFCop – lPal, rIFCop – STN, and the overall network 347 

connectivity) that showed significant change in functional connectivity under the High TMS 348 

condition. The results (Figure 5a) showed significant positive correlations between the fiber 349 

length and functional connectivity of the overall network connectivity (p < .01, R2 = 0.35), 350 

rIFCop – lStri (p < .05, R2 = 0.24), and rIFCop – rPal (p = .05, R2 = 0.23). As the fiber length 351 

increased, functional connectivity increased. There was also a significant negative correlation 352 

between the fiber length and the SSRT (t14 = -2.53, R2 = .31, p < .03), that is, the longer fiber 353 

length was associated with more efficient response-inhibition process (or shorter SSRT). There 354 

was no significant correlation between fiber length and the “go” RT (p < .2), nor were there 355 

significant correlations between the fiber counts and functional connectivity or the behavioral 356 

measures. The fiber counts and length indexes from the left hemisphere also did not correlate 357 

with the TMS-induced functional connectivity or the SSRT. Here, we would like to add a caveat 358 

of caution in regard to the results of the relationship between the functional and structural 359 

connectivity. Although the less stringent statistical correlational analyses revealed significant 360 

relationships between the functional and structural connectivity, this study included a relatively 361 

small sample of subjects. Therefore, the statistical approach is rather exploratory and, 362 

consequently, the results should also be viewed as such. Future studies with larger samples 363 

may provide more conclusive analysis. 364 
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 365 

In addition to the fiber track analysis, we extracted averaged FA values from the same seed 366 

ROIs in the right hemisphere using the coregistered and normalized FA maps (Figure 5b). The 367 

results of the linear regression analyses showed significant correlations between the mean FA 368 

values of both these ROIs and the SSRT (ROI 1: t14 = -2.2, p < .05, R2 = .26; ROI 2: t14 = -2.52, 369 

p < .03, R2 = .31). The FA and the SSRT results indicated a significant relationship between 370 

the white-matter microstructure and the efficiency of response inhibition. Again, no significant 371 

correlations were observed between the FA values and the “go” RT.  372 

 373 

Discussion 374 

In the current study, we applied single-pulse TMS at three different intensities to the right 375 

preSMA during fMRI scans while the subjects were at rest. This task-free concurrent TMS-376 

rfMRI revealed, for the first time, immediate effects of TMS on neural activity and task-free 377 

functional connectivity within the fronto-basal-ganglia network, and their relation to the 378 

efficiency of response inhibition (SSRT) that are not confounded by compensatory neural 379 

adjustments or task-related neural activity.  380 

 381 

The results of the study showed TMS-induced BOLD signal increase in multiple brain regions 382 

within the inhibitory network including the rIFC, caudate, putamen, and the right pallidum. The 383 

BOLD signal change induced by high-intensity TMS in the right pallidum and left caudate also 384 

correlated with the SSRT, but not with the task response (or “go” response) in general. These 385 

results suggest that the widespread effect of preSMA TMS, at least at the suprathreshold level, 386 

on the patterns of neural activity beyond the targeted region (i.e., the right preSMA) was 387 
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immediate and related to the task-free neural activity associated with response inhibition. 388 

Although we cannot rule out completely that the observed effect was not due to subjects’ 389 

anticipation of the onset of the various TMS pulses, all things being equal, such anticipatory 390 

activity would be constant for all three types of stimuli most of the time, at least, with the 391 

jittered stimulus presentation timing. 392 

 393 

More importantly, our results also showed that relative to the Low TMS condition, High 394 

preSMA-TMS induced immediate changes in the coupling of the rfMRI activation (i.e., 395 

functional connectivity) between preSMA and rIFCop, and between the rIFCop and the basal 396 

ganglia (i.e., striatum, pallidum, and STN). In the High TMS condition, the SSRT also 397 

significantly correlated with the connectivity between the rIFCop and left striatum, and with the 398 

mean connectivity of all the connections combined, indicating the impact of preSMA TMS on 399 

the task-free functional connectivity of the network as a whole and the response inhibition 400 

process (also see Kahan et al., 2014 for STN stimulation). The preSMA-TMS effect on 401 

functional connectivity appeared to be more specific to response inhibition relative to the “go” 402 

response that did not require inhibition. No significant correlations were observed between the 403 

functional connectivity and “go” RT. The functional connectivity between the rDLPFC - rIPC, a 404 

control link outside the fronto-basal-ganglia network, also did not correlate with the SSRT, 405 

even though the rIPC activation was sensitive to the TMS intensity.  406 

 407 

These results indicate a functional link between the preSMA and remote activation within the 408 

network, and between the preSMA and the task-free functional connectivity of the network. In 409 

addition, the preSMA TMS appeared to affect directly its functional connectivity with the rIFCop 410 
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more than with other regions within the network. However, the change in the task-free 411 

functional connectivity between the preSMA and rIFCop coincided with significant changes in 412 

the functional connectivity between the rIFCop and the basal ganglia (i.e., lStri, lPall, rPall, and 413 

STN). Although the effect of the preSMA TMS on response inhibition is likely the result of 414 

complex interactions among varying levels of altered neuronal activity in multiple 415 

regions/nodes within the network, we postulate that functional connectivity between the 416 

preSMA and rIFCop itself significantly influences the functional connectivity within the network, 417 

particularly, between the rIFCop and the basal ganglia. It is possible that in the context of 418 

making a rapid stopping response, preSMA communicates directly with the rIFCop as well as 419 

STN, which in turn, induces coordinated neural activity between the rIFCop and the basal 420 

ganglia to achieve the rapid stopping response. Consequently, the functional connectivity 421 

between the rIFCop and striatum, and the BOLD signal change in the basal ganglia were 422 

predictive of the SSRT. This is consistent with previous work showing an interdependent 423 

relationship between the preSMA and rIFCop, and the importance of the rIFCop during the 424 

inhibition process (Duann et al., 2009, Neubert et al., 2010, Zandbelt and Vink, 2010, Zandbelt 425 

et al., 2013, Aron et al., 2014, Picazio et al., 2014).  426 

 427 

The observed changes in the task-free functional connectivity and their relation to the stopping 428 

response suggest a possible mechanism underlying the efficiency of response inhibition. We 429 

speculate that the strength of the task-free functional connectivity between the nodes within 430 

the network may be critical for regulating the efficiency of the stopping process. Differential 431 

effects of TMS loci (e.g., right preSMA vs rIFC) on the task-free functional connectivity may 432 

explain why previous studies applying TMS to the preSMA and the rIFC resulted in 433 
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inconsistent observations regarding the role of these nodes in the stopping process 434 

(Rushworth et al., 2002, Chambers et al., 2006, Chambers et al., 2007, Chen et al., 2009, 435 

Verbruggen et al., 2010, Cai et al., 2012, Obeso et al., 2013, Zandbelt et al., 2013). Recent 436 

studies showed that suprathreshold TMS could significantly increase the power of the natural 437 

frequency of the electrophysiological oscillations associated with neural activity both local and 438 

remote to the stimulation site (Rosanova et al., 2009, Pellicciari et al., 2013, Kundu et al., 439 

2014, Pripfl et al., 2014). Rosanova et al (2009) reported that single-pulse TMS over three 440 

separate cortical sites (Brodmann areas 19, 7, and 6) of the corticothalamic network induced 441 

local and long-range neural activity with beta, alpha, and gamma oscillations of the natural 442 

frequency range differentially associated with these regions. Picazio et al (2014) also reported 443 

that inhibiting a “no-go” response was associated with frequency oscillations at the beta range 444 

from the rIFC relative to the “go” response. Some evidence from intracranial 445 

electroencephalography studies indicated that specific neuronal oscillation frequencies (e.g., 446 

the beta and gamma band) were directly associated with stopping responses (Swann et al., 447 

2009, Swann et al., 2012). Swann et al (2012) reported that intracranial electric stimulation of 448 

the preSMA in a patient evoked strong local field potentials and an increase in the beta band 449 

frequency in the rIFC that was associated with the successful stopping responses. STN 450 

stimulation at rest has also been shown to induce beta oscillatory activity in the rIFC and 451 

modify effective connectivity (i.e., with causal influence) between multiple regions within the 452 

fronto-basal-ganglia network (Swann et al., 2011, Kahan et al., 2014). There is substantial 453 

evidence indicating a direct association and cognitive/functional relevance between the BOLD 454 

signal change and neuronal synchronization across a wide range of frequencies and frequency 455 

power (Scheeringa et al., 2011, Sadaghiani et al., 2012). Functional connectivity is likely 456 
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critical to cognitive processes including rapid response inhibition. If the preSMA TMS not only 457 

changes patterns of neural activity but also modifies the frequency power associated with the 458 

task-free functional connectivity of remote regions, it is likely that the TMS-induced activity in 459 

regions within the fronto-basal-ganglia network would affect the efficiency of response 460 

inhibition when the preSMA TMS is applied during experimental tasks. However, it would be 461 

important in future studies to determine how stimulation of other nodes in the network (e.g., 462 

rIFC) may influence network dynamics. 463 

 464 

Related to the influence of task-free functional connectivity on response inhibition, recent 465 

studies have also demonstrated some degree of correspondence between the functional and 466 

anatomical connectivity of the human brain (Baird et al., 2005, Rykhlevskaia et al., 2008, 467 

Honey et al., 2010, Johansen-Berg, 2010). The preSMA-TMS effect on network activity and 468 

response inhibition may also be influenced by the individual differences in the anatomical 469 

connectivity. It is known that preSMA has direct white-matter connections to the striatum and 470 

the IFC (Akkal et al., 2007, Nachev et al., 2008, Catani et al., 2012). All things being equal, 471 

cortical connectivity between these regions may influence the effect of stimulation of the 472 

preSMA on remote neural activity within the network. As discussed earlier, our results showed 473 

that the suprathreshold preSMA TMS induced significant changes in the functional connectivity 474 

between the preSMA and rIFCop, and between the rIFCop and the basal ganglia. Our DTI 475 

results provided further evidence that the effect of the preSMA TMS on the network may be, in 476 

part, attributable to the variability in the white-matter microstructure (i.e., FA and fiber length). 477 

The fact that fiber length and FA values along the DTI fiber tracks between the right preSMA 478 

and the rIFC were predictive of the SSRT and that fiber length was significantly correlated with 479 
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the task-free functional connectivity between the rIFCop and the basal ganglia, and with the 480 

connectivity of the network as a whole indicates the behavioral relevance of these white-matter 481 

pathways (also see King et al., 2012; Neubert et al., 2010; and Rae et al., 2015). These results 482 

document individual differences in the white-matter microstructures (also see Behrman-Lay et 483 

al., 2014) underlying the major pathways between the preSMA, rIFC, and the basal ganglia. 484 

However,  it should be kept in mind the limitations of the DTI measures and DTI-based 485 

tractography methods applied in the study (Thomas et al., 2014, Reveley et al., 2015), 486 

particularly the crossing fiber issue that would likely influence the DTI tractography, 487 

fiber counts, and FA measurements (Douaud et al., 2011). Future studies are needed to 488 

further disentangle the relationships between functional and structural connectivity and 489 

their relation to behavior. We also cannot explain why the higher the FA values of the 490 

preSMA ROI was correlated with less efficient stopping (Figure 5), while the opposite is true 491 

with the FA values of the rIFC ROI. It is possible that the microstructure of the white matter 492 

underlying the preSMA alone does not help the stopping performance as the preSMA is also 493 

connected with the SMA proper which, in turn, highly connected with the motor cortex. It is 494 

possible that for the stopping response, higher cross-talk between the preSMA and SMA may 495 

impede rapid stopping of an already-initiated response. Future studies may further investigate 496 

the relationship between structural connectivity and TMS-induced changes in functional 497 

connectivity. The relationship between the structural and task-free functional connectivity is 498 

also relevant to the understanding of functional deficiency after traumatic brain injury (TBI) 499 

which has been shown susceptible to diffuse axonal injuries in the white matter (Johnson et al., 500 

2013).  501 

 502 
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This concurrent TMS-rfMRI study revealed a link between the right preSMA and its task-free 503 

functional connectivity within the fronto-basal-ganglia network associated with rapid response 504 

inhibition. The preSMA TMS not only induced a widespread activation within the stopping 505 

network, but also modified the task-free functional connectivity within the network, particularly, 506 

between the rIFCop and left striatum that was predictive of the efficiency of response inhibition. 507 

The efficiency of response inhibition and functional connectivity of the network are also related 508 

to individual differences in the white-matter microstructures. These results showed a complex 509 

effect of preSMA TMS on the network activity, suggesting that the task-free functional and 510 

structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of 511 

response inhibition.    512 

 513 

  514 
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Captions 

1. Figure 1a shows the localization of the TMS target (i.e., the right preSMA) and a schematic 

illustration of the timing of the single-pulse TMS relative to the EPI acquisition sequence during 

the scans. Single-pulse TMS was delivered 150 ms after the onset of the silence period (300 

ms). The rfMRI scans were acquired using a gradient echo-planar-Imaging (EPI) sequence 

with a TR of 2000 ms and a scanner silence period of 300 ms at the end of each TR. Figure 1b 

shows the stop-signal task applied in the study. The stop-signal delay (SSD) was dynamically 

controlled such that it increased 50 ms for every successful stopping (stop-inhibit) response 

and decreased 50 ms for each failed-to-stop (stop-respond) response. 

 

2. Figure 2 shows the results of the TMS-intensity induced BOLD signal change with a binary 

mask that included a priori ROIs of the fronto-basal-ganglia network. The top-left figure shows 

the ROIs. All reported voxels survived corrections for multiple comparisons using the 

topological false discovery rate (FDR) with a threshold of p < 0.01. Voxels showing significant 

differences between the low and high TMS conditions were extracted with an 8 mm diameter 

sphere centered on the peak of each cluster. SMA = supplementary motor area; rIFCop = right 

inferior-frontal cortex opercularis; rCaud = right caudate; rPal = right pallidum; rPut = right 

putamen; * = Scheffe’s test, p < .05.  

 

3. Figure 3 shows the results of linear regression analyses between the SSRT and the BOLD 

signal change (%) in the basal ganglia regions that also showed significant monotonic increase 

of TMS-intensity induced BOLD signal change. All the linear correlations between the SSRT 
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and the BOLD signal change in these regions were statistically significant (p < .05). Right 

Pallidum (xyz): 16, 9 -5; Left Caudate (xyz): -16 26 3.  

 

4. Figure 4 shows results of the analyses of functional connectivity. Figure 4a is a schematic 

illustration of the functional connections included in the study and the functional connectivity 

change (thicker lines) induced by the High TMS condition: right inferior-frontal cortex 

opercularis (rIFCop), right striatum (rStri), left striatum (lStri), right pallidum (rPal), left pallidum 

(lPal), and the subthalamic Nuclei (STN). Figure 4b shows: 1) the overall connectivity (all 

connections combined) in the High TMS relative to the Low TMS condition; 2) TMS-induced 

connectivity change in five connections: right preSMA – rIFCop, rIFCop – lStri, rIFCop – lPal, 

rIFCop – rPal, and rIFCop - STN. The figures at the bottom show negative correlations 

between the functional connectivity and the SSRT.  

 

5. Figure 5 shows significant correlations between the white-mater microstructure (i.e., DTI 

fiber length and FA values), functional connectivity, and the SSRT. Figure 5a shows the 

relationship between the fiber length and the SSRT or task-free functional connectivity. Figure 

5b shows the correlations between the FA values and the SSRT. The FA values were 

extracted from the individual normalized FA maps (in the MNI space) in two regions (4 mm 

diameter: ROI 1 [near right preSMA] = 12, 16, 50; ROI 2 [near rIFCop] = 30, 8, 22) centered on 

the seed ROIs used in the tractography and the origin of the fiber tracks. The track map in the 

figure was from a representative participant.  

 


