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Abstract

In the last two decades the incidence rate of cutaneous malignant melanoma have
been risen faster than any other form of cancer worldwide in the white-Caucasian
population. The mortality rates over time show that an early diagnosis is the key
point for quick treatment, which increase survival rates.

As a standard procedure dermatologists use a dermascope or the naked eye
for evaluation of possible lesions, where experts have a higher chance of spotting
infiltrated tissue than untrained persons.

Multiple investigations on diagnostic imaging for the detection of melanoma
have been conducted in the past, like Ultrasound, Near-Infrared spectroscopy or
Optical Coherence Tomography, with mixed, but not sufficient results to date.

In recent years terahertz radiation has shown to be a promising technology for
the early detection of various types of cancers, i.e., colon (ex-vivo), breast (ex-
vivo) and non-melanoma skin cancers (ex-vivo and in-vivo) as terahertz radiation
is able to penetrate slightly into the bio-tissue but also deemed to be a non-ionising
and therefore safe method for diagnosis of lesions in-vivo.

Investigations into the practicality and benefits of using terahertz reflectometry
for the early diagnosis of melanoma has never been performed.

Therefore, as a pilot study, an investigation into the modalities of utilising
terahertz technology on freshly excised human cutaneous melanoma is anticipated,
which includes a comparison of the collected 3D terahertz images with visuals,
comparison of histopathologists findings but also investigations about modelling
skin and abnormalities of the skin using terahertz radiation.

Diverse and manifold results can be reported based on the study conducted,
which show that there is a good potential of terahertz detecting abnormalities on
a per patient basis of up to 78% sensitivity and 95% specificity respectively. How-
ever, skin is a very diverse medium and results of the modelling approach have
to be seen very critically. As modality for a diagnostic tool, this investigation
suggests that there is potential in detecting margins and active regions of cancer-
ous region spreading, which may help to support the dermatologists to determine
better margins for the excision of the lesion.
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Chapter 1

Introduction

Incidence rates of melanoma, a cutaneous malignancy with the highest mortality

rate of all skin cancers, have risen faster than they have for any other form of

cancer in the last decade — especially in caucasian populations [1–7]—with an

increase of 4.1% per annum [7].Diagnosis at an early stage increases the chance

of successful treatment of the lesion. The treatment outcome will depend on

the penetration depth of the carcinogenic lesion, as the risk of metastatic spread

increases with an increase in the malignant tumour thickness. Patients whose

melanoma thickness is less than 1 mm have a 94% survival rate over five years,

whereas a 3 mm tumour reduces the chance of survival to 50% over five years [5].

Multiple staging/scoring systems to support visual examination are used to

predict, diagnose, identify or stage cutaneous melanoma. Common techniques

for clinical diagnoses of visible lesions include the ABCD rule (asynchronousness,

border, colour, and diameter) and the seven-point checklist [8]. These systems

are used to simplify the process whereby either an expert dermatologist or an

untrained individual identifies melanoma.

In addition to these scoring methods and visual-examination techniques, tech-

nical imaging systems may improve the chance of identifying melanoma. Whilst
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dermoscopy is the most common technique and the current gold-standard used

over the last decade for the identification of malignant melanoma, technical imag-

ing systems — such as total-body photography (TBP) [9], multispectral imaging,

confocal microscopy, optical coherence tomography and near-infrared imaging [10]

— have been investigated to support the diagnosis of cutaneous carcinoma.

These techniques, however, have not yet progressed into clinical practice; thus,

there remains a clinical need for additional tools to enhance clinician decision

making and improve the early recognition of melanoma, both to improve patient

outcomes and to minimise the number of unnecessary, invasive and uncomfortable

surgical procedures.

Terahertz-pulsed imaging (TPI) and spectroscopy (THz-TDS) are relatively

new technical instruments currently under investigation for biological tissue and

security applications [11], industrial observations (surface texture), astronomy,

signal transmission [12], and analysis of pharmaceutical materials [13]. Terahertz-

frequency electromagnetic radiation has a wavelength between 3 mm and 30 µm

(equivalent to frequencies between 100 GHz to 10 THz). Materials have different

absorption properties in the THz Region; for example, metal, because of its very

high refractive index, is a full reflector and water is one of the strongest absorbers

due to rotational transitions and intermolecular vibrations [14, 15]. Terahertz

beams are also non-invasive because of their low energy output (4.4 meV at 1

THz) [16]. In pharmaceutical applications, the composition of tablets and coating

analysis [17] are of interest, as they allow the non-destructive examination of

tablets through packaging, for example.

The fact that water is one of the strongest absorbers in the terahertz regime

led to investigations aimed at distinguishing between different kinds of biological

tissues. Successful attempts to discriminate between cancerous and healthy tis-

sues have been undertaken with non-melanoma skin cancer (basal-cell carcinoma
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(BCC) and squamous-cell carcinoma (SCC)), breast cancer, cervical cancer and

colon cancer [18]. Apart from cancerous tissue, other types of human soft tissue

— such as skin, fat, bones, eyes, and teeth [16, 19–22] — have also been subjects

of interest in recent years. These investigations provide evidence that terahertz

radiation might also be able to distinguish between moles and melanoma. The

differentiation of soft-body tissue can be attributed to the different complex re-

fractive indices of the tissues under investigation, which may be compared to

either the refractive index of air (n=1) or to that of water [16, 23, 24]. It has

been suggested that the differences arise mostly from the different water con-

centrations of the tissue, which are caused by conformational changes in protein

structures [25] and thus by a measurable difference of the water absorption of the

tissue. However, Woodward et al. (2003) state that they were able to distinguish

between dried-out healthy skin and dried-out BCC as well [26], which leads to the

suggestion that different inter-molecular vibrations and rotations of proteins may

be detectable in the terahertz regime [27–29]. These differences may be caused

by the hydration water being influenced by two or more protein molecules which

have different dynamical behaviours from that which they exhibit around single

proteins [25, 30].

1.1 Outline of this report

This thesis is the result of a pilot study of the determinations of freshly excised

cutaneous human melanoma scanned with terahertz reflectometry. To the author’s

best knowledge, this is the first time 3D images of ex-vivo human cutaneous

melanoma have been gathered and compared to histology findings. Furthermore,

a novel predictive modelling technique is evaluated here which is used to predict

melanoma in the terahertz regime and to compare the results to visual images.
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The overall aim of this study is to determine if and to what extent terahertz

analysis could help dermatologists and individuals make decisions regarding the

diagnosis of cutaneous melanoma.

1.2 Thesis structure

Chapter 2 provides an overview of the modalities of skin and skin-cancer types.

Furthermore, current clinical-practise standards (GOLD standard) and staging

systems applied to visual examination or images are described in detail and are

compared regarding their specificity and sensitivity to melanoma diagnosis.

Chapter 3 introduces and compares current non-invasive imaging techniques

applied to skin cancer and gives a detailed description of terahertz-systems tech-

niques which are currently used for bio-medical applications. This is followed

by a state-of-the-art literature review of bio-medical applications with a focus on

cancer and skin cancer in the terahertz regime.

Preliminary investigation of terahertz modalities for bio-medical applications is

discussed in Chapter 4. The first half of the Chapter deals with the general setup,

pre-processing and image registration that have been used throughout the thesis.

The second half covers miscellaneous experiments that have been evaluated before

sample gathering, including wavelet de-noising and defining the time window for

safely processing and handling patients’ melanoma samples.

Chapter 5 evaluates a descriptive analysis of the samples covered. Visual and

terahertz images are compared descriptively and discussed together with results

from histopathology, which offers an indication of the underlying morphological

features seen on histopathologists’ slides compared to terahertz images.

Chapter 6 evaluates the features and feature-reduction techniques gathered

from 3D terahertz data. Using the raw (denoised) waveforms, principle com-
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ponent analysis (PCA) as input for various predictive-modelling techniques in

comparison to the visual images shows similarities which indicate the applicabil-

ity of THz technique for melanoma diagnosis. Results are investigated by the

ReliefF algorithm to show which parts of the input variables are accountable for

the results.

Chapter 7 deals with the physical principle used to describe human skin ex-vivo

in the terahertz regime by converting the time-domain data into the frequency de-

pendent, complex refractive index. Malignant samples are compared with healthy

moles and described in terms of their refractive indices. The Chapter concludes by

offering recommendations for further investigations into melanoma using terahertz

devices.

The final Chapter, Chapter 8, concludes the thesis and offers a comprehensive

outlook for further research.
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Chapter 2

Modalities of human skin

In recent years, the incidence rate of cutaneous malignant melanoma has risen

faster than that of any other form of cancer worldwide [3]. While the probability of

developing any kind of cancer rises proportionally with age, malignant melanoma

has increased rapidly in the of 20-30 years old age group. It has risen four-

fold in caucasian men and eight-fold in caucasian women [31]. Recent studies in

Croatia [2], Netherlands [1], the U.S. [4] and the U.K. [6] show a rapidly increasing

incidence rate of melanoma over the last 50 to 60 years.

If diagnosed and treated early, the chances of survival are excellent but decrease

gradually over time, as tumour growth progresses through deeper layers of the

skin, eventually reaching the lymph system or blood vessels [32].

The following part provides a comprehensive overview of the topic of this

investigation. It begins with an overview of the structure of human skin and

then focuses on the three most common types of skin cancer: namely, basal-

cell carcinoma, squamous-cell carcinoma and malignant melanoma (MM). This

is followed by a discussion of the current screening modalities for diagnosing,

staging and scoring suspicious cutaneous melanoma based on visual examination

by experts or untrained individuals. The pattern-analysis algorithms used on
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visuals are evaluated with respect to their sensitivity and specificity, which are

discussed briefly.

2.1 Structure of human skin

The skin is the largest organ of the body. Depending on the literature, the skin

is mainly divided into three layers: the epidermis, the dermis and the subcutis.

The epidermis, the outer part of the skin, ranges in thickness from 0.05 mm at

the eyelid up to 1.5 mm at the sole of the foot. Thickness depends on the location

on the body. The epidermis is sub-divided into five regions, from the outer to

the inner: stratum corneum (horny layer), stratum lucidum (only on soles and

palms), stratum granulosum (granular layer), stratum spinosum (spinal or prickle

cell layer) and the stratum basale (basal layer or stratum germinativum) [33]. The

epidermis is followed by the dermis, the thickest part of skin, which consists of

two layers: the papillary layer and the reticular layer. The subcutis (hypodermis)

is found under and attached to the dermis and consists mainly of adipose tissue.

Depending on the literature, the subcutis is not always considered part of the skin

(cmp. [34, 35]). It functions as the anchor between the skin and the rest of the

body. Figure 2-1 gives an overview of the layers of the skin.

2.1.1 The epidermis

The epidermis comprises up to five layers depending on the body region being

considered. It reaches a thickness of 0.05 mm on the eyelids up to 1.5 mm on

the palms and soles [36]. The epidermis consistently develops basal cells from the

stratum basale towards the outer layers of the epidermis by invoking apoptosis

and granulation. As the dead cells move towards the stratum corneum, they form

a natural barrier against xerosis (drying out). They also form a protective, water-
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Figure 2-1: Overview of the composition of human skin (source [33])

repellent barrier. The five layers, in descending order from outer to inner are as

follows:

� stratum corneum (cornified layer)

The stratum corneum is the most outer layer of the epidermis and consists

of 25 to 30 layers of flattened, dead keratinocytes. It is also known as the

keratinised squameous layer. Dead keratinocytes are continuously shed and

replaced by cells from the deeper layers—a process based on apoptosis, which

describes the wanted, programmed process of cell death [37]. The stratum

corneum consists mainly of keratin and lipid secretions from lamellar gran-

ules, which create an effective water-repellent barrier and protect the deeper

layers from injury and microbial invasion [35].

� stratum lucidum (clear/translucent layer)

The translucent layer is made out of three to five layers of flattened, dead

keratinocytes and exists only in areas of the skin that are prone to friction,

like the palms and the heel, where the skin is relatively thick compared to

other regions of the body [36].

� stratum granulosum (granular layer)
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The stratum granulosum forms the third, middle layer of the epidermis. Like

the stratum lucidum, it consists of three to five layers of flattened keratinoc-

tytes. Lipids are released by membrane-enclosed lamellar granules which are

present in the keratinocytes. This liquid fills the space between cells of the

stratum corneum, the stratum granulosum and the stratum lucidum, and

it acts as a water-repellent sealant that retards the loss of body fluids and

denies entry to foreign materials [38]. In this layer, the keratinocytes appear

flattened (squamous), as they lose their nuclei, and the cytoplasm appears

in a granular form.

� stratum spinosum (spinous layer)

The stratum spinosum—also referred to as the spinous or prickly layer [36]

because the desmosomes, which act as intercellular bridges, appear micro-

scopically as prickles—consists of eight to ten layers of keratinocytes [35].

As the basale cells begin to clone and replicate, they progress towards the

upper layers of the epidermis and form the spinous layer. Furthermore, most

Langerhans cells are found in this layer. These are immunologically active

cells, also known as antigen-presenting cells, which cause immune reactions

of the skin. Langerhans cells appear in all layers of the epidermis, but they

are mostly found in the stratum spinosum [39].

� stratum basale (basal/germinal layer, germinativum)

The stratum basale is the innermost layer of the epidermis and is attached to

the dermis. At the interface between the epidermis and the dermis, the base-

ment membrane consists mainly of dividing and non-dividing kertinocytes

attached by hemidesmosomes.

When keratinocytes divide and differentiate, they initially begin to move

from the basal membrane towards the outer layers of the epidermis until
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they reach the surface of the skin.

Melanocytes, which produce the pigment melanin, comprise a small pro-

portion of the basal cell population. Characteristic features of melanocytes

are dendritic processes, which stretch between relatively large numbers of

neighbouring keratinocytes. Melanin accumulates in melanosomes that are

transferred to the adjacent keratinocytes, where they remain as granules.

The pigmentation of the melanin inside the basal cells protects the body

against ultraviolet radiation. The ratio of keratinocytes and melanocytes

increases with the amount of exposure to light. Therefore, more melanin

is typically found in the facial skin or outer arm than in the lower back or

inner arms. The number of melanocytes is the same in equivalent body sites

in white and black human skin, but the distribution and rate of production

of melanin differ. Intrinsic ageing diminishes the melanocyte population.

Merkel cells are also found in the basal layer, with large numbers in touch-

sensitive sites such as the fingertips and lips. They are closely associated

with cutaneous nerves and are involved in light touch sensation [39].

2.1.2 The dermis

The dermis varies in thickness, ranging from 0.6 mm on the eyelids to 3 mm on

the back, palms and soles. The dermis is directly attached to the epidermis and

is comprised of a tough, supportive cell matrix. Two layers comprise the dermis:

a thin papillary layer and a thicker reticular layer.

The papillary dermis lies below and connects with the epidermis. It contains

thin, loosely arranged collagen fibres. Thicker bundles of collagen run parallel to

the skin surface in the deeper reticular layer, which extends from the base of the

papillary layer to the subcutaneous tissue. The dermis is made up of fibroblasts,
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which produce collagen, elastin and structural proteoglycans together with im-

munocompetent mast cells and macrophages. Collagen fibres make up to 70% of

the dermis, giving it strength and toughness. Elastin maintains normal elasticity

and flexibility while proteoglycans provide viscosity and hydration. Embedded

within the fibrous tissue of the dermis are the dermal vasculature, lymphatics,

nervous cells and fibres, sweat glands, hair roots and small quantities of striated

muscle [40].

2.1.3 The subcuties

The subcutaneous tissue (subcutis or hypodermis) consists of connectivity tissue

and adipose tissue. It connects the dermis with the underlying periosteum and

fascia and acts as a shifting layer. The adipose tissue mainly serves the purpose of

thermal insulation, but it also functions as an energy accumulator and can grow

up to a couple of centimetres [41]. It also features large blood-vessels and nerves.

2.2 Cutaneous malignancies

In general, cancer can be defined as a disease in which a group of abnormal cells

grow uncontrollably by disregarding anti-grow signals from tumour-suppressor

genes. Normal cells are constantly subjected to chemical-signal interactions that

trigger cell division, apoptosis or differentiation into other cell types. Cancerous

cells, on the other hand, develop autonomy from these signals, which results in

uncontrolled growth and mutation by ignoring apoptosis but produce oncogenes

(a constant growth, cell-division stage) [42] further to angiogenesis, a process of

growing blood vessels around the malignancy to maintain nutrition.

The most common form of skin cancer is BCC [43], which is followed by SCC

and MM. However, rare forms of non-melanoma skin-cancer types like Merkel-cell
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or Langerhans-cell carcinoma also exist. The following section provides a brief

overview of the three most common skin-cancer types in Caucasian population.

2.2.1 Basal-cell carcinoma

Basal-cell carcinoma is the most common malignancy in the Caucasian population

[44], though it is also the one with the lowest mortality, as BCC rarely spreads [43].

BCC originates from the stratum basale, where the highest rate of cell division

takes place. A recent study conducted and published in 2016 by Sánchez-Danés et

al. suggests that the origin of BCC lies in the clonal dynamics of epidemical stem

cells, which cause mutation and therefore abnormal cell growth [45]. Since BCC

affects the basal cells, which are subject to apoptosis and are pushed towards the

outer layers of the epidermis, the mortality rates for BCC are considerably lower

than for other cutaneous cancers. BCC rarely reaches the lymph nodes or the

blood-vessel stream; thus, the creation of metastasis is limited.

BCC patients often present with a non-healing sore of varying duration. The

lesions are typically seen on the face, ears, scalp, neck or upper trunk, as BCC orig-

inates mainly in regions with high Sun (or other ultraviolet-radiation) exposure.

A history of chronic recreational or occupational Sun exposure is commonly cited.

Intense Sun exposure in childhood or young adulthood dramatically increases the

probability of creating BCC [46]. The most common therapy is surgical excision.

Since BCC rarely creates metastasis, it is usually not investigated by histopathol-

ogists and does not have to be reported to the NHS.

2.2.2 Squamous-cell carcinoma

The second most common skin malignancy is squamous-cell carcinoma, which

accounts for approximately 20% of all non-melanoma skin cancers. It is typically

found in persons aged 50 and above. Though the spread of metastasis is more
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likely with SCC than with BCC, SCC is often diagnosed early due to its distinct

features—especially ulceration and the appearance of “bumps”, often with red

patches. An early type of in-situ SCC is called Bowens disease. As with all skin

cancers, SCC usually occurs in parts of the skin exposed to sunlight, but it appears

twice as often in men and in regions around the head, face, neck and arms [47].

SCCs are found in the squamous cells, which form in the epidermis, as they

are flattened keratinocytes, which follow the apoptosis. Due to the uncontrolled

growth phase of SCC, the risk of reaching the lymph system to form metastasis

in considerably higher than it is from BCC.

The general treatment of SCC is excision via a process called Moh’s surgery

[48], which describes the excision of the lesion layer by layer. Each excision sam-

ple is directly analysed by histopathologists using a microscope. This process is

repeated until the lesion does not show any form of cancerous features in the

cells [48].

Non-surgical treatments of SCC include “topical chemotherapy, topical immune

response modifiers, photodynamic therapy (PDT), radiotherapy, and systemic

chemotherapy” [33]; however, most of these treatments are either applied at the

location of a premalignant state of in-situ lesions or where metastatic spread has

occurred.

2.2.3 Melanoma

This and the upcoming sections describe the physical abnormalities of melanoma,

progression and diagnosis, staging. A histopathology description is also offered for

cutaneous malignant lesions of the skin. Genetic factors, molecular aspects and

cell infiltration and prevention, therapies and risk factors—these topics lie beyond

the scope of this thesis. A good overview of these topics is given by Whiteman

(2011) [49]. This section focusses on the three most common types of cutaneous
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melanoma among Caucasians: namely, superficial spreading melanoma (SSM),

nodular melanoma (NM) and lentigo melanoma (LM). Other forms of melanoma

include mucosal melanoma, which can be found (amongst other places) in the oral

cavity, the eye, the inner organs, the brain and the central-nervous-system [50];

acral lentiginous melanoma, which accounts for 90% of melanoma in the black

African population [51] and desmoplastic melanoma. These forms are mentioned

for completeness but will not be discussed in detail.

Cutaneous melanoma has its origin in the melanocytes which lie between the

dermis and the epidermis, close to the basement membrane. The out-of-control

growth phase of melanocytes that may start the development of nevi and ulcera-

tion is called melanomagenesis.

Due to stimulation from ultraviolet (UV) radiation, melanin is continuously

transferred from the melanocytes into the keratinocytes, causing a constant, ex-

tensive interaction between the keratinocytes and the adjacent melanocytes. The

stimulation due to UV radiation can cause DNA alterations and thus create ab-

normalities in genetic pathways within the melanocyte [51]. Growth factors such

as stem-cell factor, fibroblast growth factor and transforming growth factor are

produced by the action of solar radiation on melanocytes and surrounding ker-

atinocytes and fibroblasts [51].

From a histopathology view, malign invasion begins with the proliferation of

melanocytes, a benign nevi, which is colloquially described as a freckle or mole

(Step 1). The benign nevi presents a clear delimitation or demarcation and shows

uniform pigmentation. The second step is the forming of a dysplastic nevi, which

is a development of aberrant growth and originates either from existing moles or

from a new location. Dysplastic nevi exhibit asymmetry and irregular borders

and are usually still benign.

The radial growth phase (RGP) is the third stage. It is a phase of abnormal
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horizontal growth of the lesion, but it does not penetrate into the dermal-epidermal

junction [52]. Extensive growth of the RGP usually leads to the most common

sub-type of melanoma: the SSM. Because the tumour cells do not grow into the

dermis but rather stay at the basal membrane, it is unlikely that the malignancy

will spread, as it has not yet reached the blood vessels or the lymph system.

Histologically, the lesion now presents cytomorphological cancer. The Breslow

thickness of this stage is typically less than 0.75 mm (Breslow Level I). At Breslow

Level I, the infiltrated region can usually be completely removed by excision.

At the end of the RGP, the mutated melanocyitcism is replaced by a clonal

change, which begins with a growth from RGP to the vertical growth phase (VGP),

which offers a survival advance of the malignancy [53]. During the VGP, the

tumour grows into the dermal-epidermal junction, reaching the papillary layer of

the dermis and eventually the reticular layer, which often leads to nodules [53].

The tumour thickness is usually more than 1 mm and attains invasive potential.

It can infiltrate the surrounding tissue and may form metastasis once the lymph-

system or the blood-vessels are reached.

During the VGP, the body may elicit an “immunological reaction against the

tumour which is judged by the presence and activity of the tumour infiltrating

lymphocytes (TILs)” [54]. At the stage of the TIL, the tumour may spread and

form metastasis, and immuno-reactions may appear which may destroy the pri-

mary tumour. This process is known as regression. It forms the last stage of

melanoma development, in which the primary lesion is completely destroyed but

only metastatic secondary lesions may be discovered. If the tumour penetrates

into and beyond the subcuties, it may reach the underlying fascia or the perios-

teum. Histologically, this is the final, fifth step of the process. Figure 2-2 shows

the differences and the depth of the RDP and the VGP.

If the RGP dominates over time (five to seven years), it is described as a
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Figure 2-2: Radial and vertical growth phases of superficial spreading MM (al-
tered, from [55])

subtype of melanoma called SSM, which is the most common type of melanoma

and accounts for around 70% of all melanomas [33]. In SSM, the lesion appears

as a freckle with brown / light-brown colouring and with asymmetric features and

irregular edges.

Nodular melanoma (NM), which accounts for approximately 20% of all melanoma,

has a relatively short RGP which is replaced by a rapid VGP and is presented

with “sharply demarcated borders on the skin, often shiny with a slightly infil-

trated base. The colour, generally darker and more uniform than that of SSM,

may vary from black to unpigmented” [56].

The third most common form of MM is LM, which develops from lentigo ma-

lignant lesions (melanosis praecancerosa of Dubreuilh or Hutchinson’s melanotic

freckle) [56]. LM appears mainly in middle-aged persons from the fifth decade

onwards but reaches its highest occurrence during the eighth and ninth decades.

LM is primarily located at the face, neck and forearms due to Sun and UV ex-

posure [57]. It emerges as a tan macule with irregular edges. As the tumour

progresses, the colour typically changes to a darker, brown-black tone. The first

horizontal phase, which is not-invasive, may have an active growth phase of up

to 20 years. When the clonal phase change appears, VGP may develop, clinically

presenting the LM as a pigmented nodule [56].
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Having discussed the three most common types of melanoma and their typical

pathways, a brief description of staging and tumour progression of MM is given

next. This is followed by a discussion of current pattern-analysis techniques that

may be applied to MM.

2.3 Tumour progression (pathophysiology) and stag-

ing systems for cutaneous melanoma

A biopsy of suspicious lesions is the gold standard for the diagnosis and therapy of

malicious behaviour of the skin. After surgery, the sample is cut into slices of ap-

proximately four micrometres and studied by histopathologists via a microscope.

The histopathologists determine tumour type and tumour depth by considering

the morphological features of the lesion. If the lesion is to be malign, the thickness

is measured and evaluated according to the Breslow Depth or TNM staging sys-

tem. If metastasis or depth into the papillary layer of the dermis is measurable,

further actions such as lymph-node biopsy are required.

The two phases of the melanoma progression, the RGP and VGP, form the

basis for the classical staging systems for MM: the Clark and Breslow staging

systems.

The Breslow classification system was introduced by Alexander Breslow in

1970. It divides the tumour thickness of the histopathology image into four stages

(originally five stages) depending on the penetration depth into the skin [58]. The

measurement is taken from the stratum granulosum of the epidermis until the

deepest layer of invasion where the tumour is still visible. Consider Table 2.1:

Breslow stages with tumour depth and five year survival rate [59]. In contrast

to Clark’s-Level (see below) the Breslow depth does not take different dermal

and epidermal layers into account. While the Breslow depth is still one of the
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Table 2.1: Breslow stages with tumour depth and five year survival rate [59]

Breslow stage Tumour depth Approx. 5 year survival rate
I <1 mm 95-100%
II 1 – 2 mm 80-94%
III 2.1 – 4 mm 60-80%
IV >4 mm <60%

Table 2.2: Description of Clark’s-Levels [61]

Clark’s Level Depth description
I Melanoma confined of the epidermis (in-situ)
II Invasion into the papillary layer of dermis
III Invasion to the junction of the papillary and reticular layer of the dermis
IV Invasion into subcutaneous fat

most used diagnostic and prognostic systems, it has been incorporated into and

replaced by the AJCC TNM staging system discussed below. The Breslow depth

also gives an accurate prognosis of survival and is classified into the following

stages summarised in Table 2.1.

The Clark’s-Level scheme is in many ways similar to the Breslow depth; how-

ever, instead of giving a tumour depth in mm, Clark recognizes five stages de-

pending on how deeply the infiltrated area has passed (epi-)dermial layers [60].

The Clark’s-Level and Breslow staging systems have been integrated and re-

placed by a staging system from the American Joint Committee on Cancer (AJCC),

which divides stages depending on the TNM factor. TNM stands for primary tu-

mour (T), regional lymph nodes (N) and distant metastasis (M). The TNM staging

consists of four stages with divisions amongst them (A-C). It gives prognostic five-

year survival rates and is based on a multivariate analysis of around 38,000 cases of

melanoma [62]. See Table 2.3: TNM tumour depth staging (excerpt, altered [62]).

Specifically for melanoma, each factor (T,N,M) is divided into sublevels (from 1 to
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Table 2.3: TNM tumour depth staging (excerpt, altered [62])

T-Stage Tumour depth Ulceration / Mitosis status
1 <1 mm a – without ulceration and mitosis < 1mm2

b – with ulceration and mitosis > 1mm2

2 1 – 2 mm a – without ulceration
b – with ulceration

3 2.1 – 4 mm a – without ulceration
b – with ulceration

4 >4 mm a – without ulceration
b – with ulceration

Figure 2-3: Survival rate over time depending on the tumour depth and ulceration
/ mitosis based on the TNM staging system (source [62])

4) to describe further states of each category, like ulceration, micrometastasis or

distant metastasis. The stages of T1-4 also subdivide into a (without ulceration)

and b (with ulceration). One of the most important factors for classification is

still the tumour thickness, which is determined by T1-4. Ulceration / mitosis is

summarised in Table 2.3.

As with Breslow depth and Clark’s level, the survival rate over time strongly

depends on tumour depth, as indicated in 2-3:

The final stages (I and II) are defined by the primary tumour thickness only.
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They subdivide into subsections A-B for Stage I and subsections A-C for Stage II.

Stage II is reached as soon as any micrometastatic behaviour within the lymph

nodes become visible but divide into the stages IIIA up to IIIC, while the final

Stage IV depends only on the distant metastasis. The full classification of the

AJCC TNM staging for melanoma can be found in Appendix A.

2.4 Pattern analysis for the diagnosis of cutaneous

lesions

When a suspicious lesion is identified as melanocytic in origin, it must be de-

termined whether this lesion is benign, suspect or malignant. To differentiate

between these three groups, various classification systems have been investigated.

These systems rely on hundreds [8, 63] of patients’ data and/or images, and they

are evaluated by expert dermatologists. The pattern-analysis systems have been

developed from various analyses of histopathology results and expert knowledge

and help to identify lesions using only a small amount of pattern description. Pat-

tern analysis exists to support untrained or trained persons in decision making

and to provide a structured mode of justification and a standardisation. Pat-

tern recognition has historically been used by clinicians and histopathologists to

differentiate benign lesions from malignant neoplasms [64].

The main classification systems for melanoma are based on pattern analysis.

Six different approaches are most commonly used [65]: ABCD(E) classification,

seven-and three-point checklist, Menzies method, the CASH algorithm and pat-

tern analysis by Pehamberger. All of these methods will be discussed in this

section followed by a comparison in terms of their respective specificity and sen-

sitivity.

Sensitivity and specificity are statistical measures of the performance of a bi-
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nary classification test and are widely used as standards for the quantification of

results in determining and evaluating abnormalities in medicine. In general, they

are used when a simple misclassification rate would not provide enough signifi-

cance. The term sensitivity describes the “true positive rate” and is a measure of

the proportion of actual positives which are identified (by an algorithm or individ-

uals) as such. On the other hand, the term specificity describes the “true negative

rate,” which is the proportion correctly identified as negative. In a medical en-

vironment, the specificity is most often related to images or patients who do not

show the condition under test. Sensitivity and specificity are closely related to

statistical hypothesis testing with respect to Type 1 and Type 2 errors. A perfect

prediction of data for a binary classification system would result in a sensitivity of

100% and a specificity of 100%; however, theoretically, any predictor will possess

a minimum error bound known as the Bayes error rate [63, 66]. A more detailed

description of the statistical evaluation of sensitivity, specificity and accuracy is

offered in Chapter 4.2.

2.4.1 The ABCD(E) Rule

The currently most often used rule is the ABCD(E) rule, which considers asymme-

try, border, colour, differential structure and sometimes evolution. It has become

the quasi-standard for professional and untrained individuals and is highly pro-

moted by all cancer organizations for use in identifying a suspicious lesions and

seeking medical consultation. The asymmetric feature is mainly built on the fact

that moles are typically round, but SSM often presents different structures on the

sides of the lesion. The border factor describes a crisp, clearly differentiable border

between the lesion and the surrounding skin, whereas MM are often present with

unclear, blurry or irregular edges. The colour may show differentiable structure

but also may show dark to black and blue or green patches, which may account
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for ulceration in malign lesions. Formerly, for visual inspection by the naked

eye, diameter was used instead of differential structure. A diameter larger than

or equal to 6mm increases the chance of a malignancy. Various studies show,

however, that diameter does not seem to be a valid parameter—especially for

the early detection of melanoma, where the lesion might be smaller than 6mm

(compare [67, 68]). The differential structure describes the structure of the le-

sion, which may contain dots, globules and structureless or homogeneous areas.

For untrained individuals, the scoring system in Table 2.4 is not valid, as the

scoring works only for trained persons who review many lesions over time. For

untrained individuals, medical advice should be sought when two or more of the

five variables are present. Each variable (ABCD) is multiplied by a score factor,

and the sum, the final dermatoscopic score, is used to classify the lesion as either

benign, suspicious or malignant [69]. This information is summarized in Table 2.4.

The ABCD criteria represent a commonly used clinical guide for the diagnosis of

early melanoma [70] because it considers factors—especially asymmetry and loss

of clear border — which can be used to differentiate from moles. The evolution

(E) factor is not always present in the guidelines but describes a general growth

or translation of the lesion over time, which may be used to observe suspicious

lesions using photography or total-body photography (TBP) over time to identify

changes.

Since the ABCD rule is the most common rule used for the early diagnosis of

melanoma, and because it is used by both untrained and trained persons, it has

been subject to much research regarding its specificity and sensitivity. The overall

accuracy of determining any form of melanoma gradually rises with the experience

and the training of the subject. Trained and experienced dermatologists can reach

an accuracy of 80%, a sensitivity of 91%, and a specificity of 99% [73]. However,

these values degrade with less experienced persons down to 78% sensitivity and
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Table 2.4: Description of ABCD rule with weighting and score factors [71,72]

Weighting factor Score Min - Max value
Asymmetry (A) 1.3 0-2 0 - 2.6
Border (B) 0.1 0-8 0 - 0.8
Colour (C) 0.5 1-6 0.5 - 3

Differential Structure (D) 0.5 0-5 0 - 2.5
Total Dermascopic Score (TDS) 0.5 - 8.9
Classified as Benign: < 4.76
Classified as Suspicious: 4.76 - 5.45
Classified as Malign: > 5.45

96% specificity. It can be assumed that these numbers further degrade for GPs

[73].

A similar study reveals that 10 years or more experience for dermatologists

improves sensitivity to 76% in comparison with 59%, 48% and 65% for dermatol-

ogists with less than 1, 1-3 and 3 to 10 years of experience [74], respectively.

2.4.2 Seven-point checklist

Another potentially useful diagnostic test is the revised seven-point checklist de-

veloped in the United Kingdom in 1998 by Argenziano et al. [8]. The seven criteria

together with their scoring values are presented in Table 2.5. It was found that the

seven-point checklist features a high sensitivity and a relatively low specificity. It

has therefore been thought to be useful for ruling cutaneous melanoma out from

the suspicious lesions if the test shows negative results. If this test was to be

used without further diagnosis, the large number of false positives would lead to

a higher possibility of unnecessary biopsies and therefore to more patients.

Studies of physicians’ global assessments of melanomas vary widely for sensi-

tivity (50% to 97%) but are consistent for specificity (96% to 99%). In addition,

some studies have shown higher percentages of correct diagnoses of malignant
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Table 2.5: The seven-point checklist according to Argenziano [8]

Criteria Score
Major Criteria

Atypical pigment network 2
Blue-white veil 2
Atypical vascular pattern 2

Minor Criteria
Irregular streaks 1
Irregular pigmentation 1
Irregular dots/globules 1
Regression structures 1

melanoma by dermatologists than by non-dermatologists; however, all of these

studies used lesion images rather than patient examinations [65]. In an early

study of the seven-point checklist it has been found that three out of the seven

criteria (i.e., change of size, shape and colour) were more likely to be linked with

melanoma than others. The seven criteria have thus been divided into major and

minor criteria [59,75].

2.4.3 Three-point checklist

The results of the seven-point checklist have been used to create the three-point

checklist, which is based on the evaluation of only three dermoscopic criteria:

namely, asymmetry, atypical network and blue-white structures. These criteria

are similar to the major criteria discussed in Table 2.6. Preliminary results demon-

strate that the three-point checklist allows non-experts to reach sensitivity values

for malignant skin lesions which are comparable to those obtained by experts [61].

A primarily study of non-experts and one trained dermatologist who was shown

169 images of cutaneous lesions showed that the sensitivity of the non-experts was

even higher (96.3%) than that of the dermatologists (94.2%). However, the ex-

periment also showed a very low rate of specificity of the non-experts, who scored
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Table 2.6: Three-point checklist proposed by Argenziano [65]

Asymmetry Asymmetry in colour and/or structures in 1 or 2 perpendicular axes
Atypical Network Pigmented network with thickened lines and irregular distribution

Blue-white structures Any blue and/or white colour within the lesion

32.8% compared to the 82.8% of dermatologists [76].

2.4.4 Menzies Method

In the Menzies method [77] for diagnosing melanoma, neither of the following neg-

ative features may be found: a single colour (tan, dark brown, grey, black, blue,

and red, but white is not considered) and "point and axial symmetry of pigmen-

tation" (which refers to pattern symmetry around any axis through the centre of

the lesion) [78]. This criterion does not require the lesion to exhibit symmetry of

shape. In addition, at least one positive feature must be found [65] to account for

a malignancy. The negative and positive features are summarized in Table 2.7.

The evaluation of the Menzies method revealed a sensitivity of up to 92% with

a specificity of 71% for experienced dermatologists [79]. Indeed, another study

suggests that the Menzies method is preferred by some less-experienced derma-

tologists due to the simplicity with which it rules out melanoma [80]. However,

the results of specificity vary widely depending on the experience and the sample

source of the study.

2.4.5 The CASH system

The CASH algorithm (which considers colour, architecture, symmetry, and homo-

geneity) is very similar to the ABCD rule. Both evaluate colour, symmetry, and

dermoscopic structures. However, the CASH algorithm includes a new evalua-

tion value called architecture, which is used for dermatologists to make an overall
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Table 2.7: Features according to Menzies method [77]

Negative features
Point and axial symmetry of pigmentation
Presence of a single colour
Positive features
Blue-white veil
Multiple brown dots
Irregular dots/globules
Pseudopods
Radial streaming
Scar-like de-pigmentation
Peripheral black dots-globules
Multiple blue/grey dots
Broadened network
Multiple colours (5 or 6)

judgement of the organisation of the lesion. This is an important skill used in

the more sophisticated, though difficult-to-learn, technique of pattern analysis.

The CASH algorithm provides a regimented way of teaching pattern analysis to

the novice dermoscopist. Another benefit of CASH is that it does not require

any weighting factors to calculate a total score, thus making it quicker and easier

to use [81]. For distinguishing between melanoma and neoplasm melanocytes, it

received a sensitivity of 98% with a specificity of 68% [82], and it can be seen as

comparable to the Menzies method.

2.4.6 Pattern Analysis by Pehamberger

Like the term pattern recognition used by histopathologists and dermatologists,

the term pattern analysis as used by Pehamberger refers to a system to aid diagno-

sis malignancies based on dermoscopic features. It was described by Pehamberger

et al. based on the analysis of more than 7000 pigmented skin lesions [65,83]. Pe-

hamberger pattern analysis is not just used for the identification of melanoma but
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Table 2.8: Pattern Analysis by Pehamberger, (altered from [65])

Malignant Melanoma
Heterogeneous (colours and structures)
Asymmetry (colours and structures)

Irregular pigment network
Irregular border with abrupt peripheral margin

Structure less areas
Gray-blue or red-rose veils

Red
Pseudopods/radial streaming
Point and hairpin vessels

also for a various kinds of pigmented skin lesions. It is primarily used by experts

dermatologists utilising a dermascope. For simplicity, only the relevant informa-

tion is summarised in Table 2.8. The full table can be found in [65] and [64].

2.4.7 Comparison of methods

The pattern-analysis algorithms discussed in this Chapter are compared with re-

spect to their sensitivity and specificity, as shown in Table 2.9. The data evaluated

in Table 2.9 might be unlike the values obtained in the text, as sensitivity and

specificity may exhibit a large variability depending both on the sample size and on

the number and profession of the people who are evaluating the pattern-analysis

algorithm. Therefore, it was anticipated to take the results of studies containing

non-experts and large sample size as underlying criteria for Table 2.9.

While it is very unlikely that any study would show a 100% correct false pos-

itive and true negative rate, it can be seen that the seven-point checklist and the

CASH algorithm must deal with low specificity while the sensitivity for all algo-

rithms is above 80% for five out of the six algorithms under investigation. This

result shows that all of these algorithms favour the determination of malignant

melanoma over under-fitting, which would result in more patients having unnec-
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Table 2.9: Comparison of visual pattern classification systems in accordance to
their sensitivity and specificity

Algorithm Sensitivity Specificity Source
3-point checklist 86% 71% [10]
7-point checklist 78% 65% [63,84]
ABCD(E) Rule 84% 75% [63,84]
CASH algorithm 98% 68% [10,82]
Menzies method 85% 85% [84,85]

Pattern Analysis by Pehamberger 85% 79% [63,84]

essary surgery and mole removal. However, it also shows that still up to 22% of

melanoma would be falsely identified as a mole or non-critical abnormality such

that surgery would not be seen as the favoured choice.

Furthermore, traditional pattern analysis is taken out and evaluated on the

basis of qualitative data by experts who do not always define a measurement: e.g.,

for asymmetry or state of ulceration. It therefore relies heavily on the experts’

ability to differentiate between MM and moles. Techniques that rely on the anal-

ysis of data gathered by quantification would be very beneficial in supporting the

dermatologists’ decision regarding whether a lesion is benign, suspicious or ma-

lign. They might also help inexperienced non-experts acquire a further degree of

certainty. In the next Chapter, the standard clinical practice of patient evaluation

for cutaneous melanoma is described before a discussion is offered about imaging

technologies currently under investigation.

2.5 Clinical practice for the diagnosis of cutaneous

melanoma

The following passage introduces the process of melanoma diagnosis and treat-

ment, which can be summed up to the following steps: patient assessment (pa-
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tients’ background information), physical examination (screening), biopsy and

histopathological reporting (staging), treatment, and follow-up check-ups.

Patients’ background information can help identify higher-risk persons for

melanoma by their skin type, sun-exposure (especially in the childhood), family

history of melanoma, and number of multiple-common nevi and atypical nevi [86].

2.5.1 Physical examination

Physical examination usually starts with visual inspection of the suspicious lesion.

Various pattern-analysis systems exist to help trained or untrained individuals

identify lesions. However, trained persons are more likely to find suspicious lesions

because their training and experience results in significantly higher specificity and

sensitivity [87].

Depending on the lesion, it may be observed before any action is taken, for

example by total body photography. Dermatology consultation is needed if a

change in the nevi’s colour, ulceration or size is recognized. In the majority of

cases, the lesion has to be investigated by a dermatologist utilizing a dermascope.

2.5.2 Total body photography

Total body photography is typically used on patients containing multiple suspi-

cious moles (more than 50) or a historic background in the family with multiple

suspicious lesions that need to be monitored where the suspicion does not (yet)

satisfy clinical surgery. Total body photography is used over time to determine

changes of the suspicious lesions. The goal is to reduce the number of unnecessary

biopsies and to facilitate the early detection of malignant lesions.

Total body photography consists of taking multiple visual images, at least 20,

over the whole body (i.e., over the entire skin surface) at a particular time. These

images establish a baseline for each individual and can be used as a comparison
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during physical examinations to identify lesions that have changed in colour, size

or position on the body. Such lesions are most likely to be of malign origin, and

the usual treatment is excision.

2.5.3 Dermoscopy

If suspicious lesions are found, patients are forwarded to a dermatologist. Typi-

cally, a dermatoscope is used to examine the lesion of interest. With specialists

trained in dermoscopy, there is considerable improvement in the sensitivity and

specificity compared with naked eye examination. The accuracy by dermatoscopy

is increased up to 20% in the case of sensitivity and up to 10% in the case of

specificity compared to naked eye examination [88]. The sensitivity of clinical

diagnosis by experienced dermatologists is about 70% [86].

Dermoscopy is a technique used to see a variety of patterns and structures in

lesions that are not discernible to the naked eye. Examinations with dermascopes

reveal several features that are helpful in differentiating between benign and ma-

lignant pigmented lesions. A dermascope is a magnifying glass with a light emit-

ter that uses polarised light beams, which penetrate deeper into the skin than

unpolarised light. Dermoscopy provides additional criteria for the diagnosis of

melanoma [36].

However, in order to diagnose accurately, knowledge and experience are re-

quired. Experienced dermatologist may still fail to accurately diagnose the lesion

as 20% or more cases of melanoma lack classic dermoscopy features of melanoma.

The dermoscopy feature which is most commonly detected in thin melanomas

(Breslow thickness of 0.75 mm) is an irregular pigment network. Atypical nevi

often exhibit hyperpigmentation and bridging of the rete ridges, which give them

a similar appearance by dermoscopy. Dermoscopy criteria for melanoma vari-

ants—such as amelanotic melanomas, desmoplastic melanomas, lentigo malignant
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melanoma, or nevoid melanomas—are lacking. A patient’s report of change in a le-

sion is an important risk factor for melanoma. Approximately 10% of melanomas

yield no characteristic dermoscopy findings. The decision to perform a biopsy

of a lesion with a moderate to high clinical suspicion for melanoma before der-

moscopy observation should not be changed by the lack of dermoscopy criteria for

melanoma [36].

The accuracy of the clinical diagnosis of cutaneous melanoma with the un-

aided eye is only about 60%. Dermoscopy has the potential to improve diagnostic

accuracy and is therefore the standard tool of diagnosis for the dermatologist [89].

In this Chapter the structure of the human skin layers (epidermis, dermis

and subcuties) have been introduced and the most common types of skin caner,

namely basal-cell carcinoma, squameous-cell carcinoma and melanoma have been

discussed. Furthermore, tumour progression and different scoring and staging

systems have been described as well as current clinical practice procedure for the

diagnosis of cutaneous melanoma has been given. In the next Chapter an overview

of current non-invasive imaging techniques for the detection of melanoma is given

before terahertz technology is introduced in detail and current research for the

use of terahertz technology with bio-medical applications are given.
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Chapter 3

Imaging modalities for the diganosis

of cutaneous melanoma

Having discussed the structure of the human skin as well as the most common

types of cutaneous malignancies, in this Chapter an overview of current imaging

techniques using measurements at different wavelengths is given. Where obtain-

able, research papers have been included that demonstrate the ability to differen-

tiate between malignancies and healthy skin in terms of sensitivity and specificity.

Furthermore strength and weaknesses of the techniques will be discussed and

summarised.

The second part introduces the terahertz spectral regime as a relatively new

technology for bio-medical applications. This is followed by a discussion about

measurement modes suitable for bio-medical sensing. The Chapter closes with

a state-of-the-art review about medical investigation topics using terahertz rays

with a focus on (but not limited to) the human skin as well as oncology. The final

discussion of this chapter outlines opportunities, challenges and gaps of knowledge

that forms the basis for this thesis.

32



3.1 Imaging technology for cutaneous melanoma

detection

While the gold standard for suspicious pigmented skin lesions is still excision

followed by microscopic analysis by histopathologists, other imaging-technology

techniques have been studied in recent years in pursuit of non-invasive techniques

for the early diagnosis of melanoma, preferably in-vivo. Since the very early phase

of MM may be particularly difficult to identify due to similarities with moles or

birthmarks, there is a considerable need for new technologies that may help the

non-expert or dermatologist identify malignancies in pigmented skin lesions so as

to improve health outcomes without biopsy or excision of lesions for testing.

The following section provides an overview of imaging techniques that have

been investigated with the non-invasive diagnosis of melanoma. It excludes inva-

sive imaging techniques such as fluorescence tomography and PET and techniques

that are used to diagnose metastasis. The Chapter concludes by considering pos-

sible opportunities in which terahertz imaging could facilitate the diagnosis of

malignant melanoma.

3.1.1 Multi-spectral Imaging (MSI)

The penetration depth of light is wavelength dependant. Multispectral images

are sequences of images taken at different wavelengths of light, typically in the

visible and infra-red spectrum (i.e., 400 – 970 nm). Multispectral imaging has

been subject to research for the diagnosis of melanoma since the end of the 1990s.

As a contactless optical method, multi-spectral imaging is regarded as a non-

invasive, safe method. Halogen lamps, incandescent lamps, or white-light emitting

diodes can be used as broadband illumination sources. Advanced image process-

ing allows for mapping the main skin "absorbing chromophores—oxyhemoglobin,
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deoxy-hemoglobin, and melanin" [90].

In a study conducted by Elbaum et al. the lesion is illuminated with 10

narrow band wavelengths and detected by a camera, which then creates 10 images

of different wavelengths. Statistical pattern analysis is applied to the images to

distinguish between healthy and infiltrated tissue and to give a prognosis of the

outcome [91]. Images created by MSI feature a low noise level on high-resolution

images with a field-of-view of approximately 2 cm x 2 cm. The study of Elbaum

et al. shows that a linear classifier consisting of 13 parameters can differentiate

melanoma from non-melanoma lesions with a sensitivity of 100% and a specificity

of 85%. Furthermore, a non-linear classifier model using 12 parameters was able

to achieve a sensitivity of 100% but with a specificity of only 75%.

Spectral images provide information on the distribution of collagen, melanin

content, and blood-vessel distribution within skin lesions. A fully automated

system using 15 spectral bands between 483 nm (blue) through 951 nm (near

infrared) has been shown to achieve a 97% contour accuracy in a sample of 1,856

pigmented lesions. A follow-up study using multispectral analysis and an artifi-

cial neural network showed that it could recapitulate clinicians’ assessments with

88% sensitivity and 80% specificity [10]. Table 3.1 gives a brief overview of the

prediction techniques used to discriminate MM from other lesions based on MSI

techniques. The sensitivity and the specificity values seem to differ greatly be-

tween the experiments, which may be due (amongst other factors) to sample size

and sample selection criteria. Thus, these values must be regarded critically. Also,

non-malignant melanoma from Table 3.1 may refer to healthy surrounding skin,

other nevi or other skin cancers. Tomatis (2005) concludes that a higher amount

of differentiation of the MM lesion should be taken into account (i.e., the vertical

and horizontal size of the lesion) [92].

MSI is not eligible for full-body screening due a limited field-of-view, image
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Table 3.1: Overview of predictive modelling techniques using MSI on MM with
results in terms of sensitivity (SE) and specificity (SP)

Technique n MM Non-MM SE % SP % AUC Source
Artificial Neural Network 1391 184 1207 80 76 0.85 [92]
parametric image algorithm 81 22 59 86 91 n/a [94]
discriminant analysis 237 67 170 80 51 n/a [95]
Artificial Neural Network 573 132 441 78 76 0.85 [96]
multivariate discriminant
analysis

573 132 441 76 57 0.76 [96]

MSI on 8 bands using ANN
(and Genetic Algorithm)

47 12 35 92 91 n/a [97]

acquisition and processing time, but it does make it possible to investigate sus-

picious, atypical nevi. Furthermore, the training of the model requires expert

knowledge to adjust the underlying mathematical or statistical model [93].

3.1.2 Ultrasound Imaging

Ultrasound imaging (sonography) is a longstanding medical-imaging modality

with manifold applications in diagnosis, preventive examinations, therapy and

image-guided surgery. Image-guided surgery uses either a single frequency or a

range of frequencies, typically between 20 and 100 MHz. In dermatologic on-

cology, diagnosis relies mainly on surface indicators such as colour, shape and

texture, whereas the two more reliable measures are the depth of the lesion and

the number of skin layers that have been invaded [98]. Lassau et al. investigated

the use of high-frequency ultrasound (HFUS) for the depth identification. They

concluded that the depth of the lesions is indeed visible but that they were over-

estimated when compared to those of the histopathologists [99]. High-frequency

transducers and 3D probes have opened new opportunities for performing non-

invasive diagnostics using ultrasound images. However, changing dermatological

practices require the development of robust segmentation algorithms [98].
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The lower ultrasound wavelength at around 20 MHz has been shown to be ad-

vantageous for the determination of the penetration depth of cutaneous melanoma

[100] and is thus used for thickness mapping. In a study carried out by Machet et

al. [101], a trained model was able to determine the thickness of melanoma to ±

0.01 mm when compared with histopathologists’ results. Furthermore, the mar-

gins of the lesion were correctly determined in 26 out of 31 patients. In a different

meta-analysis of the use of ultrasound for excisional margin detection, the overall

accuracy was 72%. It was also found that ultrasound was performed insufficiently

when the real tumour depth was smaller than 1 mm, thus making this technique

reliably usable only for malignancies > 1 mm deep. Like HFUS, the disadvantage

of ultrasound is that it tends to overestimate the penetration depth of the tumour

compared to histopathologists’ results. It was concluded that the overestimation

is likely due to an inflammatory infiltration from under the melanoma which pro-

duces a hypoechoic area similar to the hypoechoic area from the melanoma. Thus,

HFUS cannot be used to differentiate both areas. Furthermore, ultrasound cannot

substitute for biopsy, as the differentiation between benign and malign tumours

has not been quantified [102].

In the majority of the literature, ultrasound imaging has been used as a follow

up to determine lymph-node metastasis prior to excision, which is due to the

higher penetration depth at the ultrasound spectrum compared to other imaging

techniques. While the literature suggests that ultrasound imaging cannot be used

to identify skin cancer in general, but is used to detect metastasis spread around

the lymph system [103], ultrasound imaging has been frequently used as a modality

for the estimation of tumour depth and compared to histology findings, thereby

resulting in a correlation between these two [101].

Even though major features of the sample are visible, HFUS does not provide

cellular resolution and therefore can only be used in the follow-up of chronic and
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inflammatory skin diseases on pre- and post-operative assessments of skin tumours

(especially malignant melanoma and basal-cell carcinoma). It can also be used as

a guide during surgical procedures [103].

3.1.3 Optical Coherence Tomography

Optical coherence tomography (OCT) is a low-coherence interferometry technique

that produces cross-sectional images of tissue with a high resolution. The signal

arises from light backscattered at index of refraction mismatches in the sample.

OCT is very similar to ultrasound; however, it features higher resolution of about

5–15 µm, though the penetration depth is limited to a maximum of 1 mm [104].

While the layers of the skin (i.e. the epidermis, dermis, adnexal structures

and blood vessels) can be seen, the basement membrane zone and cellular features

cannot be visualized; therefore, OCT is of limited use in the early detection of

melanoma [103] but allows for a maximum penetration depth up to the papillary

dermis.

Some studies of non-melanoma skin cancer acknowledge a promising sensitiv-

ity of 79% to 94% and a specificity 85% to 96%; but these also state that the

misclassification rate of atypical nevi and BCC is high, with a 50% error [105].

This is due to the limited penetration depth and the high backscattering intensity.

The infiltration depth of melanoma can be measured only in thin tumours (up to

1 mm in thickness) because of the limitation of the light penetration depth into

the skin [106] and the lateral resolution [107].

One of the first trials conducted by De Giorgi et al. (2005) studying melanocytic

lesions with the use of OCT and dermoscopy found that OCT - in some cases -

allows an in-vivo correlation between dermoscopic features and histopathologic

results [108]. However current limits in resolution make a differentiation between

benign and malign lesions difficult, Furthermore, OCTs limited penetration depth
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makes it challenging to determine the depth of the infiltration [109,110].

Most recently, Turani et al. (2019) have proposed an imaging algorithm called

"optical properties extraction (OPE)" as post-processing step to improve the clas-

sification between non-melanoma and melanoma OCT images of 69 patients, which

resulted in a 97% sensitivity and 98% specificity [111]. However, Turani claims

that more subjects may need a more sophisticated classification algorithm then

the one established [111].

3.1.4 Infrared Spectroscopy

In recent years, near infrared spectroscopy (NIR) has been widely explored in the

field of cutaneous malignancies and covers a wavelength from 780 nm up to 3

micrometres.

NIR radiation is in resonance with molecular overtone and combination vibra-

tions. As a consequence, the molar absorption with NIR is typically quite small.

In contrast to mid-infrared, NIR has the advantage that it can penetrate deeper

into the sample and is therefore useful in probing bulk material though it is not

particularly sensitive.

The molecular overtone and combination bands seen in the NIR are typically

very broad and overlap, thus leading to complex spectra. This makes it difficult

to assign features to chemical components. Multivariate analysis, like principle

component analysis, neural networks and partial least squares are frequently used

to extract desired chemical information.

However, in recent years, near infrared spectroscopy has been investigated

for the determination of melanoma: McIntosh et al. (2002) conducted an in-vivo

experiments to study the differentiation of various pigmented skin lesions by using

NIR from "actinic keratosis, basal-cell carcinoma, benign nevi, dysplastic nevi,

actinic lentiginous and seborrheic keratosis" [112], which involved placing a fibre-
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optic probe on the skin. Using linear discriminant analysis (LDA) as a calibration

technique, they determined whether spectra could be classified according to the

lesion type. This study resulted in accuracies of 70–98% in differentiating benign

from pre-malignant or malignant lesions [112].

Wald et al. (2015) have used Fourier-transform IR (FTIR) on histological

slides of melanoma and a supervised partial least squares discriminant analysis

(PLS-DA) to detect various types of cells that typically appear in and around

melanoma with an accuracy of over 90%. Furthermore, a comparison of primary

tumours of the disease has been performed with the result that differentiation

between patients showing Stage I or II and Stage III and Stage IV could be shown.

The unsupervised model of the PLS-DA has a relatively high sensitivity of 88.9%

and a good rate specificity of 70.6%. It also gave a good demonstration of the

usefulness of NIR in the clinical prediction of malignant melanoma lesions [113].

In 2018, Rey-Barroso et al. [114] studied the usefulness of extended NIR

(exNIR) based on an InGaAs sensor (which covered a wavelength of 995 to 1613

nm) covered with a combination of a previously developed combined NIR with

visible-light multispectral analysis. Rey-Barroso et al. found that the higher

wavelength is suitable for the evaluation of deeper skin layers due to the high

penetration depth of the photons at these wavelengths. By comparing various

classifications systems, Rey-Barroso et al. achieved a sensitivity of 78.6% with a

specificity of 84.6% after comparing 14 melanoma with 39 nevi from Caucasian

patients in-vivo.

Furthermore, in 2011, Herman et al. showed the potential of thermal infrared

imaging for the determination of malign regions due to differences in the thermal

behaviour. The suspicious region was cooled down for one minute with a stream

of cold air. After this, an infrared camera photographed the lesion every couple

seconds. When the skin returns to normal, significant differences can be seen in
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the tumour region. This is because cancer tumours re-heat faster than surrounding

tissue [115].

3.1.5 Confocal Scanning Laser Microscopy

Confocal microscopy is an optical imaging technique used to increase optical reso-

lution and the contrast of a micrograph by using point illumination and a spatial

pinhole to eliminate out-of-focus light in specimens that are thicker than the focal

plane. In the literature, it is also often referred as reflectance confocal microscopy

(RCM). It facilitates the reconstruction of three-dimensional structures from im-

ages up to a resolution reaching histologic detail [116]. The penetration depth of

CSLM in skin is limited to 200 to 300 µm up to the level of the papillary layer of

the dermis [117].

While confocal microscopy allows the visualisation of structures with greater

resolution deeper into the skin than conventional CSLM, it can still image only

relatively shallow structures. For imaging deeper into skin tissue, OCT is perhaps

better suited [103].

A meta-analysis by Stevenson et al. (2013) systematically reviews papers

concerning CSLM for the detection of melanoma. The authors found promising

studies that showed a sensitivity between 91% to 97% with a specificity of 68%

up to 81% and with a number of lesions ranging from 85 to 351 specimens [118].

The average prevalence of melanoma in the studies included in the review was

36%. However, given the baseline studies analysed in the context of CSLM being

used as an add-on to dermoscopy, the authors conclude that CSLM does not have

the potential to replace dermoscopy, as its image-acquisition time is remarkable

higher than that of expert dermatologists.
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3.1.6 Comparison of imaging techniques

While OCT has the potential to be used to detect local superficial metastasis, it

currently lacks the resolution needed to detect early-stage metastasis of melanoma.

In conclusion, despite an extensive range of non-invasive imaging techniques, there

is still a need for imaging techniques with a high resolution which can be used to

determine whether or not a melanoma tumour has invaded through the basement

membrane, as this is critical in the staging and treatment of these very difficult-

to-treat cancers [103].

CSLM features very high resolution (up to the cellular level) but is limited

with regard to depth penetration, which makes this technique feasible for further

investigations in BCC. However, it is unlikely to become a non-invasive technique

for the detection of melanoma [119,120].

Ultrasound and high-frequency ultrasound have been investigated to differen-

tiate the melanoma of healthy tissue, but they have not been found useful for the

detection of early stage melanoma in particular, as it is limited to the lateral and

axial resolution and penetration depth. However, these methods can be used to

determine if the lymph system is already infiltrated by melanoma [121].

Despite the variety of techniques available for detecting melanoma, there re-

mains a critical need for a high-resolution technique which can answer the question

whether tumours have invaded through the basement membrane [103]. Table 3.2

gives an overview of current imaging techniques summarized by their spatial and

depth resolution, dis/advantages and mode of operation.
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Having summarised the current non-invasive imaging techniques for the early

detection of melanoma, I now give an overview about terahertz technologies, the

setup modes and the application to current bio-medical applications. The Chapter

ends by showing the potentially usefulness of terahertz technology for the detection

of melanoma.

3.2 Terahertz technology

The term terahertz regime has been around for approximately two decades. Though

it first appeared in 1976, it has only attracted research since the late 1990s and was

thus previously referred to as the terahertz gap due to the lack of suitable devices

for emitting and detecting terahertz radiation. With new advances in physics and

ultrafast laser development, new terahertz devices have been created in recent

decades that are cost-effective, portable and stable and are thus allowed to per-

form experiments at room temperature with an acceptable signal-to-noise ratio

(SNR). The first commercial devices have been available since the 1990s, and they

have been improved over the last years such that the devices are smaller, more

cost effective and more reliable.

3.2.1 Foundations of terahertz technology

The terahertz frequency range, also referred as sub-millimetre band, is broadly

defined as the region between infrared and microwave and covers a spectral range

from 300 GHz up to 3 THz [24], which corresponds to a wavelength ranging from

1000 µm to 100 µm. This definition of the spectral range is not fixed and depends

on who is writing about it. In this thesis, the definition given above is used, as

it is applicable to the frequency range given by the device used throughout the

thesis.

43



Figure 3-1: The electro-magnetic spectrum (altered from [130])

Due to a lack of suitable emitters and detectors, the terahertz regime was re-

ferred to as the "terahertz gap" before the late 90s. Traditionally, the terahertz

band lies in a region where conventional electro-optical and electromagnetical de-

vices do not reach the required wavelength. From the microwave side, traditional

electronic components such a transistors, have a principle limit of working up to

300 GHz. From the optical side, on the other hand, semiconductors only operate

down to a frequency of 30 THz, which creates a situation in which traditional elec-

tric components do not operate in the region between 300 GHz up to 30 THz [130].

In the last two decades, progress in physics, the creation of laser sources, and

fibrebased laser systems and semiconductor manufacturing have made it possible

to create terahertz devices that yield a stable output, are more cost efficient and

may operate at room temperatures. The low energy output of these systems

remains a challenge, however.

The hunt for suitable components for the creation and detection of terahertz

rays is ongoing. In fact, current research of this topic is so broad that discussion

of it could easily fill a complete thesis of its own. Therefore, this section focuses

on the fundamentals of detecting and emitting terahertz light which is suitable for

medical systems—i.e., machines that cover a broad THz range and are suitable

for use at normal temperature.
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All terahertz systems are of high-power electromagnetic waves fired on some

kind of substrate that emits a terahertz beam. In almost all cases, a laser is used

for this purpose. Pulsed terahertz emission and detection requires a high-power

femtosecond pulse, which is most commonly produced by mode-locked lasers [131].

Optical rectification and photoconductive antennas are the two main principles

that are able to create pulsed terahertz broadband emission and detection [130].

3.2.2 Terahertz creation and detection with the TPS3000

The Teraview TPS3000 uses a Titanium-Sapphire (Ti:Sa) Laser provided by the

company Coherent Inc. The Ti:Sa laser utilises the principle of mode-locking

using the Kerr-effect. High intensities create a perceptible influence between the

electric-field and the index of refraction which changes the optical properties due

to a realignment of free carriers [132]. This procedure has certain advantages:

At first the Kerr-effect induces a Kerr-lense which creates an (auto) self-focussing

beam within the crystal. Secondly, since the light-beam wanders between the

mirrors, it is automatically pulsed when exiting the laser system [133].

The most common device for emission and detection of Terahertz waves are

the photoconductive antennas which utilises a photo carrier transport to create

a Hertzian dipole [134]. "A PC antenna is an electrical switch exploiting the

increase in electrical conductivity of semiconductors and insulators when they are

exposed to light. The photoconductivity results from an increase in the number

of free carriers—electrons and holes—generated by photons. The photon energy

must be sufficiently large to overcome the bandgap of the material" [135]. A PC-

A typically consists of a semiconductor material, such as low-temperature grown

Gallium arsenide (ltGaAs), Indium arsenide (InAs) or Indium phosphide (InP)

which is embedded in the centre of two metallic strips. Emitters use a dc-bias of a

couple of volts to create a potential difference between the anode and the cathode.
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When an ultrashort laser pulse of up to 100 fs hits the semiconductor substrate

and the energy is equal or greater than the bandgap free charge carriers are created

and the semiconductor becomes photoconductive. Due to the impressed voltage,

the free charge carriers are accelerated towards the anode which creates a time

dependent dipole and therefore a time dependent electrical field. The lifetime

of the pulse created is approximately 1 ps as the electron-hole-pairs begin to

recombine.

The carrier acceleration and recombination phases define the width of the

output pulse and it is therefore of importance to accelerate the recombination time

down to an overall width of 1ps. This is done by using fast intraband relaxation

as well as defect levels, which further accelerate the recombination of the photon

with the electron.

The output of the PC-A, the THz radiation is highly divergent because the size

of the source is much smaller than the terahertz wavelength. Thus a silicon lense

attached behind the PC-A to collimate the THz radiation is a critical component

for the THz emitter [136]. Silicon is best suited for the component because the

refractive index matches well with typical substrate materials, the linear absorp-

tion is very low at the THz frequencies, dispersion over the whole THz spectrum

is almost negligible, and the fabrication of high-quality components is reasonably

simple [135,137].

The detector using a PC-A is very similar to the emitter, however instead of a

DC-bias an ampere meter is used to measure the difference of the energy arrived

at the detector. The detector acts like an optical switch only measuring the THz

signal when the laser probe pulse opens the switched gate for the duration of a

couple of fs. This is important for a gated detection of the terahertz signal in

order to provide high stability with a low energy terahertz output as well as to

reduce the effects of noise and blackbody radiation.
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Figure 3-2: Schematic of a terahertz setup in transmission mode (altered from
[130,138])

3.2.3 Terahertz modes

The TPS3000 can be operated in multiple modes. In this section, the most com-

monly used, transmission and reflection mode will be described. At the end of

the section, a brief overview about other configurations suitable for bio-medical

imaging will be provided as well as new devices created for that field of study

While throughout this thesis the angle based reflection mode will be the preferred

choice of the imaging of biological tissue, a comparison between the two modes in

regards of advantages and disadvantages is anticipated, thus a brief description of

the transmission mode and interferometer based modes are provided.

In transmission mode, a terahertz pulse is fired on the substrate of investiga-

tion passing through it. The transmitted beam is detected by the PC antenna.

Depending on the substrate, the terahertz pulse changes its index of refraction

but also bounces back at the interfaces of the substrate due to internal reflec-

tion, dispersion and absorption, causing a loss of transmitted energy through the

media. The electric field is measured before and after propagation through the
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Figure 3-3: Simplified schematic of a terahertz setup in reflection mode

sample. Since the electric field is measured, both, the refractive index (n) and the

absorption coefficient (𝛼) can be measured simultaneously. A schematic of the

setup is give in Figure 3-2.

Typical applications are found in the pharmaceutical environment for the

quantification of polymorphs, the discrimination of transformation dynamics, anal-

ysis of tablet coating as well as coating thickness and chemical mapping and

imaging of tablets [139]. Bio-medical samples have been investigated through

transmission mode scanning as well, like monitoring the hydration of leaves from

plants [140,141].

One of the major hurdles for biomedical applications lies in the poor THz

transmittance of polar liquids, which makes it difficult to extract information

about solute molecules [142]. To overcome these difficulties, the transmission

sample chamber can be modified using parabolic mirrors to change a transmission

beam into a reflection beam.

In terahertz pulsed reflection mode, the terahertz beam gets redirected onto

the sample interface using parabolic mirrors. Using the TPS3000 the apparatus

consists of 8 mirrors, redirecting the beam towards the sample interface with a
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fixed angle of 30 degrees. A simplified schematic of the general setup is provided

in Figure 3-3.

The reflection mode allows to acquire information about the changes of the

refractive index at the interface between two media, therefore making it suitable

to pass through multiple layers of materials. However in order to obtain quan-

titative results, exact focusing to the desired interface is required, which can be

difficult to achieve. While in transmission mode, a measurement of the empty

sample chamber can be used as a reference (considering that the energy of the

incidence beam equals the energy of the collector beam), in reflection mode a

second medium needs to be acquired with known optical properties in order to

retrieve a reference beam. This is most frequently done using a golden plated

mirror, with a reflectivity close to 1. Furthermore, in cases of non-solid materials,

a sample holder is required with the following properties: The sample holder must

be non-absorpting and must contain a stable and constant refractive index over

a wide terahertz frequency spectrum. Currently most often used sample holders

are silica based quartzes which fulfil these requirements.

Another method is reflectance interferometry (which acts similar to a Michel-

son interferometer) was introduced by Johnson et al. [143, 144]. In this case, the

reference and the sample beam are coupled with a phase shift of 180 degres. Be-

cause the receiver collects the combined beam, the reference beams cancels out

the incident beam leaving the interference between those two, which can be used

to enhance the reflection results from the material under investigation. Another

advantage is that the beam is focused onto the sample without any angle of in-

cidence, which will reduce (and simplify) the phase-dependant Fresnel equations

to the once from normal incidence (compare [132]). One disadvantage would rely

in the THz beamsplitter as shown in Figure 3-4, a 50% transparent mirror, which

divides the beam into the sample and reference beam, as the already low power
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Figure 3-4: Terahertz reflectance interferometry (adapted from [144])

outcome of a sample beam is further declined due to the split.

3.2.4 External terahertz probes

With the constant research and development of cheaper, yet smaller devices, in

recent years two devices have become available that are suitable in performing

medical studies in-vivo. The external terahertz reflected scanner from Teraview

is available as an additional add-on to the TPS3000. The probe head, which is

connected to the laser system consists of the terahertz emitter and the detector

and features a line scan of 15 pixels using rotating prisms [145] as shown in Figure

3-5. The principle setup is the same as described in the last section. The THz

emitter and detector are connected via fibre optic couplers to the laser system.

The external system allows greater flexibility when measuring samples in-vivo and

has been used to characterise the skin of the palms, as due to the thickness of the

stratum corneum a secondary interface is visible on the reflected pulses [146].

An endoscopic device with a size of 2x4x6 mm has been developed Ji et al. [148]

in 2009 which for the first time demonstrated the use of terahertz imaging from

the mouth and tongue region in-vivo as illustrated in Figure 3-6. Furthermore,
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Figure 3-5: External terahertz reflected scanner (altered, from [147])

Figure 3-6: Endoscopic Terahertz device schematic (from [144])

Doradlla et al. (2014) have demonstrated another endoscopic device which uses

CW-mode lasers which is able to detect polarization specific changes of a sample

using reflection and transmission mode simultaneously [149]. Up to now, no quan-

tified results are found in the literature concerning the opportunities to detect skin

cancer by these devices, however, the University College London in collaboration

with the University Hospitals London are currently taking a phase 2 study on the

detection of non-melanoma skin cancers using the external handheld probe but

results have not been published yet.

Most recently, Pickwell-MacPherson et al. (2017) have designed a table-top

interface apparatus for the TPS3000 suitable to measure the epithelial tissue in-
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vivo [150]. The design is similar to a gantry created at De Montfort University,

which I call the “one-point reflectance”-module as no scanning motor is attached

to the system making it impossible to obtain images from the device. Our device

can be operated on top of the TPS3000 sample chamber making it possible to

measure reflection using the quartz sample holder, but also external probes are

attached to the top of the device suitable to scan a reflection without the need

to the sample holder However, in our early studies I found that the maximum

reflection from the external probes is very complicated to measure and this has

not been used for this study.

3.2.5 Terahertz radiation for bio-medical sensing

In recent years, terahertz technology has attracted some interest in bio-medical

engineering. This is reflected in the number of publications that appear per year in

professional magazines and conference publications. While terahertz technology

is a niche in the wide field of medical and biomedical applications, a growth of

interest can be observed, as shown by Figure 3-7. This growth may be explained

by the development of smaller and therefore more portable, more applicable (they

work at room temperature) and less cost-intensive devices which are due to new

developments in physics. These include laser devices developed in the last two

decades that operate in CW and pulsed mode.

While terahertz as a modality for the investigation of biological tissue has

to compete with various other techniques, it has advantages relative to infrared

spectroscopy (NIR), for example, because of its lower level of Rayleigh scattering

and the ability to access lower-frequency vibrational modes (of proteins and/or

molecules) [151]. The low photon energy of 4.14 meV (at 1 THz) makes it a non-

ionising, safe method [152] to use for studies conducted both in-vivo and ex-vivo.

This Section aims to give an overview of biomedical applications using tera-
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Figure 3-7: Number of publications using the keywords "terahertz" and
"medicine", "biomedical", "medical" or "biology", retrieved from ScienceDirect
29.08.2019

hertz technology with a focus on cancer detection.

Energies corresponding to molecular rotations, hydrogen bonding stretches and

torsions and bond vibrations lie within the terahertz range. Water in particular

plays an important role in biological systems, with a network of water molecules

surrounding and influencing the dynamical behaviour of biomolecules, such as

proteins [25]. Proteins are structures made of a large number of atoms, and

terahertz technology can be used to probe the collective vibrational modes of

whole molecules, as different molecules vibrate differently.

All of the mentioned modes (transmission and reflection) have been used for

the study of bio-medical applications using terahertz radiation. However, as men-

tioned above, due to the limitations of transmission measurements with respect to

the strong absorbance from bio-medical media, terahertz technology is typically

used when the sample is very thin (up to 500 µm), when the sample has been

dried to reduce water vapour effects, and for medical applications that is most

often excited tissue which has been sliced (normal while undergoing standard

histopathology procedures).

Terahertz technology has been of increasing interest in the field of bio-medicine
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regarding the detection of skin burns [153] or basal-cell carcinoma (whether ex-

vivo and in-vivo) [154] and detectable alterations of the hydrogen bond network

in the protein structure of infiltrated tissue [155].

The first appearance of the applied-medical applications of terahertz systems

appeared in the late 90s by research conducted by Arnone et al. [156], which in

essence describes the terahertz setup from the last Chapter in transmission and

reflection mode. Various healthy tissues have been taken from chicken and from

pork—such as liver, kidney and skin tissues—to demonstrate the advantages of

terahertz rays on excised and dried-out tissue. Furthermore, the use of TPI on

a human tooth was demonstrated and showed the differentiation of enamel and

cavity [156].

Loeffler et al. used terahertz dark-field imaging to show structural changes

caused by the diffraction of canine skin tissue containing cancerous tissue in trans-

mission mode. It was concluded that the deflection loss at low THz frequencies

might provide a suitable method for margin detection of carcinogenic tissue [157],

as the standard procedure of histopathology is similar: Histopathologists look for

structural (and morphological) differences at the margins of the tumour region.

In 2002/2003, Woodward and Wallace et al. [26,154,158] carried out extensive

studies of the detection of BCC in-vitro and in-vivo by using terahertz pulsed

imaging (in reflection mode). This is the first time terahertz was used for in-vivo

studies in the time and frequency domain [158]. The study yielded results compa-

rable to those of histopathologists. It was shown that BCC gives a positive con-

trast when compared to healthy skin, whereas skin inflammation gives a negative

contrast. It was concluded that this result is most likely because the keratinocyte

within the BCC contains more water and therefore absorbs the terahertz energy

more strongly than healthy tissue. They also investigated the stratum corneum

thickness, which might be visible on the samples as well; however, it was found
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that this depends on the position of the body, as the thickness of the SC can

change greatly. A secondary reflection from the SC interface was recognisable at

body positions in which the SC is typically thick, especially the palm. Samples

obtained from the neck and head showed an SC thickness smaller than 20 µm,

which is beyond the resolution limit of terahertz beams [26].

Similar results are reported by Pickwell-MacPherson and Cole et al. [159–161]

who investigated the response of THz radiation to normal skin in-vivo. Since the

stratum corneum of the forearm is typical 10 µm which lies beyond the resolv-

ing capabilities of a typical TPI system, the reflected waveform from the volar

forearm was dominated by the reflection of the epidermis, and the optical prop-

erties of this layer could be measured. On the palm, wich has a bigger stratum

corneum, the system was able to resolve the stratum corneum as the layered struc-

ture showing multiple reflections and thus the possibility to calculate the thickness

out of the optical delay between the reflected peaks [162]. Having investigated

normal skin in-vivo, Woodward et al. (2003) have also acquired in-vivo images

of skin cancer (BCC) [158]. Wallace et al. [154] described a portable TPI reflec-

tion system which was used to image 18 BCCs ex-vivo and five in-vivo. They

found regions of diseased tissue identified in the THz images correlated well with

histology and therefore implying that the technique could be used in-vivo to de-

lineate tumour margins pre-operatively [162]. Analysis of the reflected terahertz

pulses reflected from infiltrated and healthy tissue showed a broadening of the

reflected THz pulse when compared with normal tissue due to unknown changes

in the frequency-dependent absorption and refractive index [163,164]. By combin-

ing spectroscopy measurements [155] and the finite-difference time-domain model

with Debye theory [159], Pickwell-MacPherson et al. [165] were able to demon-

strate that the contrast visible in the images was due to in the refractive index

and absorption of the tissue [162,165].
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Figure 3-8: Images from melanoma sample, where a) is the relative pulse am-
plitude, b) time delay between reference and sample pulse and c) FWHM of the
pulse, the arrow indicates the epidermis layer (from [166]).

In terms of skin cancer, BCC and SCC have been subjected to wide study in

combination with terahertz radiation. However, little information can be found

when inspecting melanoma-infiltrated tissue. In fact, at the time of this writing

there are five scientific papers which describe melanoma and terahertz. The first

melanoma inspection using terahertz was introduced by Berry et al. [166] in 2004

using excised, sliced melanoma and BCC samples prepared for histology. They

were dehydrated and fixed in formalin, as the imaging-acquisition time may require

over 24 hours. Three “features” from the time-domain waveforms were chosen for

k-means multi-spectral imaging: i.e., the relative pulse amplitude, the time delay

relative to reference pulse and the full-width at half-maximum (FWHM) of the

positive pulse peak.

Berry et al. conclude that terahertz images offer the possibility of providing

information from deeper structures than are currently available to the pathologist

from stained slides. “Whilst the edges of the tumours appear to have been defined,

it is necessary to confirm this experimentally. Similarly, the differences between

tumour types that have been suggested in this study require further investigation,

and in particular it is essential to include location-specific diagnoses using one or

more reference techniques, and samples of healthy tissue for comparison” [166].

Two more papers were published by Sim et al. [167, 168] in 2013 on a freshly

excited oral melanoma which was directly frozen using dry ice in the operation
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room. The authors performed temperature studies on the sample at 20 degrees

Celsius and concluded that a higher quantitative difference is obtained using the

frozen sample than the one kept at room temperature. The terahertz sample from

Figure 3-9 was obtained using terahertz-reflection geometry after excision. The

diseased tissue was clearly visible at both temperatures. The freshly excised oral

melanoma was 15 x 12 mm in size and contained both healthy and melanoma

sections. It had a thickness of approximately 3 mm [168].

In 2019 Vilagosh et al. build a computational phantom of frozen melanoma at

0.45 terahertz and discussed the differences between a sample at room temperature

and a frozen sample. They state that the depth limitation, due to the high

absorption coefficient of water (80-350 𝑐𝑚−1 at 0.1 to 2 terahertz [169] at room

temperature, is limited to 0.2 up to 0.3 mm for biological tissue when assuming

that the tissue consists of about 70% up to 85% water content [170]. However, for

ice, the absorption coefficient of water is much lower (1 - 7 𝑐𝑚−1) and thus the

penetration depth could be enhanced. They have chosen 0.45 terahertz as "the

disparity results is 90% of the incident signal surviving to a depth of 1.0 mm in

ice, compared to a mere <0.0001% of the signal surviving in liquid water" [171].

For the simulation they concluded that low terahertz frequencies could indeed

provide a differentiation between melanoma and skin up to a depth of 4mm, due

to the different water content of skin being around 70% and melanoma about 80

to 85% [171].

A recent study carried out by Zaytsev et al. [172, 173] (2015) investigates

dysplasia (an enlargement of an organ associated as a pre-step to cancer) on skin

using terahertz imaging in-vivo. The authors conclude that the dysplasia (on

four patients) shows a different permittivity and dielectric loss (𝜀’ and 𝜀”) at low

terahertz frequencies (0.3 to 0.5 THz) and at higher frequencies (0.8 to 0.9 THz)

than does healthy skin tissue and non-dysplastic nevi [172]. A follow-up study on
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Figure 3-9: Images obtained from Sim et al. showing a photograph of the excited
melanoma sample (top), a) maximum amplitude at -20 degrees Celsius and b)
maximum amplitude at 20 degrees Celsius [168].

the complex refractive index showed significant changes between BCC and skin at

frequencies between 0.8 and 1 THz; however, dysplastic and non-dysplastic nevi do

not seem to distinguish between it and skin. The absorption coefficient, however,

shows a change in BCC when compared to non-dysplastic nevus and healthy skin.

It was concluded that significant differences between the THz characteristics of

healthy skin and pathology may be observed and that THz-pulsed spectroscopy

could become an effective tool for skin neoplasm diagnosis [173].

In 2017, Park et al. [174] performed a study on metastasis of frozen, excised

lymph nodes of mice which were infected by murine melanoma cells for 30 and

15 days. Cellular interfaces in the dichotomized melanoma images were strongly

correlated with the histological results. It was concluded that the image-processing

technique is able to distinguish between metastatic and normal lymph nodes and

may be useful as a supplementary technique for cryogenic pathologic examinations.
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3.3 Potential for terahertz in melanoma diagnos-

tics and imaging

Terahertz has been shown to be a promising technology for the detection of var-

ious (human) cancerous tissues. In particular, recent studies of BCC and SCC

suggest the possibility of the detection of melanoma as well. Recent studies of the

potential of terahertz for cutaneous melanoma are rare, which opens the oppor-

tunity for a study of terahertz technology’s general ability to diagnose cutaneous

melanoma ex-vivo as a tool to support dermatologists. Since melanoma originates

from the dermal-epidermal junction at the stratum basale, which is deeper than

BCC or SCC, it cannot be said with certainty that THz is applicable as a diagno-

sis tool. Because secondary peaks are visible at the stratum-corneum interface at

the palms, where the SC is typically thick, there is a possibility that MM might

reflect a secondary peak as well, due to changes in the RI. Alternatively, though

melanoma might not be directly visible because of the infiltration thickness, dif-

ferences in the surrounding tissue of the skin caused by changes in the apoptosis

of the upper layers of the epidermis (on top of the MM) may be visible. Fur-

thermore, terahertz might be useful for the detection of early stages of melanoma

during the RGP, which would describe SSMM. And finally, if differences in the

skin structure can be observed, terahertz reflectometry might be useful for margin

detection, which could be of help to dermatologists during excision of suspicious

lesions. As a consequence, while in this thesis the properties of freshly excised

MM ex-vivo are investigated, the data acquisition is performed from the top of

the skin rather on than sliced samples from histology to study the opportunity

for using terahertz for the detection of melanoma in-vivo, e.g., with the help of a

handheld probe.

In this Chapter, imaging modalities for the detection of cutaneous melanoma
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have been discussed and terahertz technology has been introduced. Terahertz

modes and external probes have been introduced and a literature review about

the current status of bio-medical applications in the field of terahertz research

has been given. The Chapter ended with a brief outlook about the potential use

of terahertz technology for the detection of melanoma. In the next Chapter, the

principle methods as well as noise-reduction techniques for the use of terahertz

with freshly excised cutaneous melanoma are developed. Segmentation as the

input for classification projects is introduced. Furthermore a study of the time

window of chicken as a phantom for freshly excised melanoma will be performed.
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Chapter 4

Method Development

The upcoming Chapters four, five and six broadly follow the steps that need to be

performed for building computational models. The process starts with the sample

data acquisition. As a second steps data cleaning is performed which deals with

normalisation of the given data set, denoising and handling of null-variables as

well as transformation of the data. The process also includes feature extraction

and, for supervised systems, definition of classes for the classification process as

well as feature selection. To create a supervised model, the labelled feature set is

divided into training and test sets in order to determine the goodness of the model

and to enhance the model during the training phase. The process is visualised in

Figure 4-1.

This Chapter on method development describes the setup, measurement of

Figure 4-1: Steps for data analysis and supervised model building
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the skin samples and transformations of the time-domain waveform which will be

used in further Chapters. It is broadly divided into the “principle methodology

and transformation” part (Section 4.1) but also covers some miscellaneous studies

which were made before the melanoma samples were obtained. This includes a

preliminary investigation of wavelet denoising (Section 4.2), which is typically

applied to the raw terahertz waveforms before any transformations are performed

and is a basic step before feature extraction. After the denoising, a description

is given of the retrieval of features; pre-processing steps, such as straightening

and segmentation of the visual images; and terahertz images (Section 4.3), which

have been used for this study to compare visual images with the terahertz data

obtained from the melanoma samples. Furthermore, a preliminary study (Section

4.4) using chicken skin was performed before human skin samples were obtained

so as to define the time window in which it is safe to scan the future melanoma

samples to prevent them from degradation. This was needed to obtain ethical

approval from the LRI and the East Midlands Research Committee.

4.1 Principle methodology and setup for 2D and

3D Terahertz

This Chapter covers the basic setup used to scan the MM, which forms the basis

of the thesis. Furthermore, transformations from the energy time-domain wave-

form are discussed. These include the transformation of the time-domain intensity

waveform and Fourier transformation and the further processing conducted to ob-

tain obtaining the frequency-dependent complex refractive index and the complex

permittivity. Most of the transformations are used later to extract features from

the data obtained for further processing and modelling.
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4.1.1 Terahertz setup

Terahertz waves were generated using a Teraview TPS3000 in combination with

the Imaga module provided by Teraview, Cambridge, UK. Terahertz waves are

generated by firing a femto-second-laser beam at a superconductive dipole switch

(ltGaAs). For focusing reasons, directly behind that switch there is a highly

resistive hyperhemispherical silicon lens. By using a beam splitter, the beam is

divided into a reference beam and a sample beam. The reference beam is used to

detect the THz wave by using an optical gated switch.

For the purpose of measuring biological tissue, it is almost always necessary

to use terahertz in reflectance mode rather than in transmission mode. The re-

flectance module redirects the beam to the sample with an incidence angle of 30°.

Since the THz-signal is very sensitive to the exact position of the sample, a SiO2

quartz sample holder with a refractive index of 2.08 is used. The SiO2-sample

holder has a negligible absorbance but changes the incidence beam angle towards

the sample to 14.5° (based on an initial angle of 30°) because of its refractive

index.

4.1.2 The time-domain waveform

THz waveforms detected from angle-based reflectometry are recorded using the

propriety software provided by Teraview, with a maximum peak centred at unity

of the time window to make measurements comparable with each other. The

time window has been selected to be 35 ps (5 Volts) with a resolution of 17 fs,

which results in a THz waveform consisting of 2,048 data points. This window

size is chosen to capture the largest amount of data while avoiding Fabry Perot

(multiple reflections) effects from the underlying quartz sample holder, as a sec-

ondary reflection must be filtered out via bandpass filters to further process the

data—especially to avoid secondary harmonics in the frequency domain.
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Figure 4-2: Air – Sample holder reflection from the top of the quartz with and
without purging the underlying sample chamber with nitrogen.

To produce 3D images, an x,y-stepper motor has been setup to capture a region

of 2x2 cm with a resolution 0.2 mm. This has resulted in a 3D image the size

of 100x100 waveforms, which equals 10,000 waveforms in total for each sample.

Beforehand, the x,y adjustment was set up to the centre of the quartz sample

holder for reproducibility and comparability. A window size of 2x2 cm captures

the whole circular sample holder and parts of the surrounding metal gantry as

well.

To avoid water-vapour artefacts from the beam travelling through air under

the sample holder, the underlying chamber is purged with nitrogen; the differences

with / without nitrogen are shown in the resulting waveforms in Figure 4-2. To

ensure that the chamber has been completely purged, experiments are performed

five minutes after purging with nitrogen began.

4.1.3 Hilbert Transform for intensity transform

To transform an energy waveform in the time domain into its corresponding in-

tensity waveform, one is required to transform the real-valued collected waveform

into its analytical signal. The resulting intensity function has no negative values

and removes the phase information from the original signal.
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By transforming the energy waveform 𝐸(𝑡) into the intensity function 𝐼(𝑡),

the complex conjugate of the real-valued signal is required. This may be easily

obtained by utilising the Hilbert transform, which is conventionally used in signal

processing to obtain the complex envelope of a real-valued signal.

The Hilbert transform is obtained by convolving 𝐸(𝑡) with 1/𝜋𝑡. In the fre-

quency domain, this is equivalent to shifting the phase of the negative frequency

components by +𝜋/2/2 and of the positive frequency components by −𝜋/2 [175].

Figure 4-3 shows the process of a THz TD waveform transformed into its

corresponding analytical signal and its corresponding intensity function using the

quartz sample holder in contact with air.

The definition of the Hilbert transform Hf of a function f is as follows:

𝐻 · 𝑓(𝑡) =
1

𝜋

∫︁ ∞

−∞

𝑓(𝑥)

𝑡− 𝑥
𝑑𝑥 (4.1)

By transforming a real-valued signal to an analytical signal, an envelope of

the real-valued signal is established. The envelope is calculated by creating the

analytic signal of the input using the Hilbert transform. An analytic signal is a

complex signal in which the real part is the original signal and the imaginary part

is the Hilbert transform of the original signal.

Mathematically, the envelope 𝑒(𝑡) of a signal 𝑥(𝑡) is defined as the magnitude

of the analytic signal, as is shown by the following equation:

envelope =

√︁
𝐸(𝑡)2 + �̂�(𝑡)2 (4.2)

where is �̂�(𝑡) the conjugate complex of the real-valued signal 𝐸(𝑡).

The relationship between the measured energy field and the intensity is given

as follows:

𝐼 ∝ |𝐸|2 (4.3)
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Since the Energy 𝐸 rather than 𝐸2 is measured, it can be seen from Equation

4.4 that one has to multiply 𝐸 with its conjugate complex. However, since the

signal is real valued only, the Hilbert-transform is applied to transform the real

signal into an analytical signal, which is then transformed according to Equation

(4.3). From Equations (4.2) and (4.3), it can be seen that

|𝐸|2 = 𝐸�̄� = envelope =

√︁
𝐸(𝑡)2 + �̂�(𝑡)2 (4.4)

The intensity waveform may be beneficial for further processing, as it might

be easier to interpret and process because the phases are not taken into account

by the intensity function. Furthermore, it could make the results comparable to

other frequently used techniques: e.g., TD-NIR, which measures intensity rather

than energy.

4.1.4 Fourier Transform for frequency spectrum

The discrete Fourier transform is used to dissemble a finite time-domain signal

into its sinusoidal components, using

𝑦𝑘 =
𝑛∑︁

𝑗=1

𝜔𝑗𝑘𝑥𝑗 (4.5)

where 𝜔 is

𝜔 = 𝑒−2𝜋𝑖/𝑛 (4.6)

The Fourier transformation provides the frequency-dependant magnitude and

the corresponding phases that are used to dissemble the time-domain waveform

into its sinusoidal components and forms the basis for further transformations,

such as the frequency-dependant refractive index and absorption but also the

complex permittivity. Since the phase information is typically wrapped around,
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Figure 4-3: Original THz beam of air in contact with the sample holder (top), con-
verted to the analytical signal with real and imaginary part (centre) and resulting
intensity TD waveform after transform (bottom).
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Figure 4-4: Wrapped phase (top) and unwrapped phase (bottom) of air in contact
with the sample holder.

phase unwrapping is also performed to correct phase angles and enhance plots,

as illustrated in Figure 4-4 taken from the sample holder in contact with air in

refection geometry.

The unwrapped phase plot from Figure 4-4 seems to indicate that a stable

phase can be obtained between 0.3 and 1.3 THz, which corresponds with the

magnitude image shown in Figure 4-5.

4.1.5 Frequency dependent complex refractive index

The refractive index (𝑛) gives the optical properties of the material under inves-

tigation in terms of the optical density compared to the speed of light in vacuo.
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Figure 4-5: Magnitude of the sample holder in contact with air.

It is defined as the dimensionless unit dividing the speed of light of the medium

(𝑐𝑚𝑒𝑑𝑖𝑢𝑚) with the one in vacuo (𝑐𝑣𝑎𝑐𝑢𝑜):

𝑛 =
𝑐𝑚𝑒𝑑𝑖𝑢𝑚

𝑐𝑣𝑎𝑐𝑢𝑜
(4.7)

If the medium has absorptive properties, the frequency-dependant refractive

index becomes complex, wherein the imaginary part is the extinction coefficient

(𝜅).

�̂� = 𝑛 + 𝑗𝜅 (4.8)

Since the absorption coefficient (𝛼) is dependent on the angular frequency (𝜔),

the extinction coefficient is used to obtain the absorption as follows:

𝛼 = 2𝜅
𝜔

𝑐𝑣𝑎𝑐𝑢𝑜
(4.9)

To obtain the refractive index of an unknown material, a second measurement

of a material with known refractive index (or a full reflective mirror) is required.

This is obtained by utilising the Fresnel equations and is discussed in detail in

Chapter 7.1.
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4.1.6 Complex Permittivity

The complex permittivity is used to describe the electro-magnetical properties of

materials and can be obtained from the complex refractive index. The connection

can be made through the Kramers-König relationship, which has been used to

improve sample characterisation in the terahertz regime (compare [176] and [177]).

The relationship is given by

(𝑛 + 𝑗𝜅)2 = (𝜖′𝑟 + 𝑖𝜖′′𝑟)𝜇𝑟 (4.10)

where 𝜖′𝑟 and 𝜖′′𝑟 are the real and imaginary parts of the permittivity and 𝜇𝑟 is

the magnetically permeability. Considering a negligible magnetically permeability

(𝜇 = 1), the conversion from equation 4.11 is simply:

𝜖′𝑟 = 𝑛2 − 𝜅2 (4.11)

and

𝜖′′𝑟 = 2𝑛𝜅 (4.12)

Both, the refractive index and the permittivity have been used to investigate

skin cancer samples in the terahertz regime.

4.2 Noise reduction using the wavelet transform

The low systems energy, which is typically in the femto- up to nanojoule range

[178] provides a relatively low signal output. In addition, signals reflecting from

the surface of (or inside) biological tissue can be weak, as they contain a large

amount of water, which is one of the strongest absorbers in the THz regime.

In the case of the detection of metal in a biological tissue, measurements have to
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be taken in reflectance mode, as the metal, being an almost perfect reflector [179],

does not allow the terahertz beam to pass through. It should also be stressed

that, to detect signals in reflectance mode, the incidence beam has to travel twice

as far through the sample material before it reaches the detector, which further

attenuates the signal strength.

A simple method for noise reduction is to average the signal; however, this

method increases the data-acquisition time and may not be suitable for ex-vivo

biological measurements, as the tissue is prone to drying out.

Alternatively, noise can be reduced by using digital signal-processing filters

based on high-pass or low-pass filters. One of the best known de-noising algo-

rithms is the wavelet family, which denoises a signal using an iterative algorithm.

However, suitable mother-wavelets and scales have to be chosen to ensure that

the process will not over-fit (over-denoise) and therefore lose the original signal.

A number of authors have used wavelet analysis to good effect in terahertz

imaging: Ferguson et al. describe the usefulness of wavelets and Wiener deconvo-

lution filtering for de-noising terahertz imaging in transmission mode [180]. Yin et

al. used wavelets to restore topographic images out of transmission mode measure-

ments [181] while Hadjiloucas (et al.) studied denoising and system identification

in the wavelet domain to enhance the frequency range in THz images [182]. Chen

et al. used wavelets in the frequency domain in reflection imaging to deconvolve

a signal obtained from a human palm in-vivo [183].

Therefore, for this study, the aim is to find suitable denoising algorithms using

the wavelet transform to enhance the visualisation of the penetration depth of

a metal microneedle within a biological tissue (ex-vivo) using terahertz imaging

in reflectance mode. The microneedle embedded in skin acts as a phantom of a

secondary reflection from inside the skin sample. The aim is to find a suitable

denoising technique that would not alter the primary reflection—i.e., from the
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Figure 4-6: Schematic of the reflection measured from the sample and the mi-
croneedle.

skin / sample holder reflection—as it needs to be used for further processing. It

is also necessary to enhance the secondary reflection and remove noise from data

obtained from inside the skin.

4.2.1 Tissue preparation

Fresh pig tissue was obtained from a veterinary school in Loughborough, and

the skin from the back of the ear was dissected, as this is similar to human

skin [184, 185]. For each measurement, the sample was slightly wiped to reduce

water artefacts at the skin / quartz interface. Depending on the size of the sample,

a 3D image scan took between 10 and 15 min. at an x,y-resolution of 0.2mm.

A microneedle with a length of 1mm and a width of 200 microns was inserted

into the skin. A 3D image was acquired with and without the microneedle. In

the time domain, the microneedle was visualised by a second reflection of the

incidence waveform reflecting from the metal/skin interface, as indicated in Figure

4-6. Three samples (4, 10, and 12) were chosen for this study, as the secondary

reflection was clearly visible without wavelet denoising beforehand.
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Figure 4-7: Schematic process of the wavelet denoising process.

4.2.2 Wavelet transforms for denoising and reconstruction

The wavelet transform attempts to remove noise from signal but retains the orig-

inal signal by utilising a multi-level decomposition approach. In each step, the

sample (S) is divided by a low-pass and a high-pass filter into two new waveforms,

called Approximation (A) and Detail (D). Using the approximation from the last

scale as the input for the next filter process, an iterative multi-level process is

used until the maximum number of scales are reached. It is noteworthy, that the

Approximation and Detail data are down-sampled and contain half the size of the

initial wave.

To quantify and compare results from the wavelet transforms, the signal-to-

noise ratio (SNR) is used, which is defined as the maximum energy peak (𝐸𝑀𝑎𝑥)

divided by the standard deviation of (the assumed) noise (𝜎):

𝑆𝑁𝑅 =
𝐸𝑀𝑎𝑥

𝜎𝑛𝑜𝑖𝑠𝑒

(4.13)

The maximum energy peak is used, as it is important to maintain the maxi-

mum peak for further analysis when creating the ratios of the reference wave and

the sample wave.

The Wavelet Transform is used with a soft, fixed threshold function [133]

determined from unscaled white noise.
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Figure 4-8: Original waveform (top) and wavelet de-noised waveform (bottom) of
sample 4. A second reflection is clearly visible at around 3 ps.

4.2.3 Results: Wavelet denoising

The standard deviation of noise was defined as the optical delay between approx-

imately 10 ps to 15 ps (points 1000 to 1500) in the waveform, as this is the region

in which no significant data is reflected. We choose the region only up to 15 ps

because, a small negative peak is shown on all data collected at around 20ps,

which is most likely due to an internal reflection from the silica lens.

Figure 4-8 (top) shows the original waveform reflected from Sample 4. The

initial peak (𝐸𝑀𝑎𝑥) is the reflection from the quartz/skin interface, and the second

(negative) peak is the reflection from the microneedle. The phase change of the

microneedle reflection is due to the full reflecting metal causing a phase shift of

180 degrees, which is a boundary condition of the Fresnel equation.

The first analysis was carried out using the Daubechies 4 mother wavelet on

different scales to determine at which scale the denoising process would begin to

overfit. As shown in Table 4.1 and Figure 4-9, using three different samples, the
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Table 4.1: SNR of sample 4,10 and 12 using Debauchies 4 with scales 1 to 8

Scale Sample 4 SNR Sample 10 SNR Sample 12 SNR
Raw 40.07 61.4 126.67
DB4-1 41.83 63.42 130.85
DB4-2 51.20 71.36 147.60
DB4-3 67.14 87.31 172.90
DB4-4 87.62 118.60 213.24
DB4-5 108.82 130.21 224.83
DB4-6 98.38 95.19 187.70
DB4-7 90.89 31.48 50.12
DB4-8 78.52 17.44 8.25

Figure 4-9: Signal to noise ratio of sample 4,10,12 using DB4 on different levels

SNR improves until the maximum values of 𝑆𝑁𝑅𝑠𝑎𝑚𝑝𝑙𝑒4 = 108.82, 𝑆𝑁𝑅𝑠𝑎𝑚𝑝𝑙𝑒10 =

130.21 and 𝑆𝑁𝑅𝑠𝑎𝑚𝑝𝑙𝑒12 = 224.83 are reached and before a decrease in the SNR

is observed at scale 6 and beyond. This has been observed on all mother-wavelets

under investigation (data not shown).

The energy maximum peak value from the time-domain waveform has been

taken as quantification as a measure of the signals stability (durability). The

maximum peak remains stable until the fifth scale of the wavelet transform before

it begins to degrade on all samples, as shown in Figure 4-10. The maximum

peak differences between the three samples are most likely due to fluctuations in
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Figure 4-10: Maximum energy peak values of the raw and the denoised waveforms
of samples 4, 10 and 12

laser emission energy but may be normalised to the reference and/or the baseline

measurement for further research.

Further analysis was carried out using the DeBauchies 1 to 10, Symlets 2 to 8,

Coiflet 1 to 5, Haar and the discrete approximation of the discrete Meyer (dmey)

wavelet on all samples on Scale 5 to find the most suitable mother-wavelet, which

further improves the SNR (Table 4.2). All mother wavelets increase the SNR

significantly; however, the discrete Meyer wavelet showed the best performance

with an improvement of the SNR by factors of 2.8 (Sample 4), 2.2 (Sample 10)

and 1.8 (Sample 12).

Furthermore wavelet analysis was performed on the quartz/air interface and

the quartz/mirror reference interface without a biological sample and with the

equivalent maximum SNR results on discrete Meyer Scale 5, with 𝑆𝑁𝑅𝐴𝑖𝑟 =

168.68 (from original 76.31) and 𝑆𝑁𝑅𝑀𝑖𝑟𝑟𝑜𝑟 = 129.86 (from original 79.52).

In a key result, we found that the Meyer mother wavelet on the fifth scale

would produce the most reliable result, as is shown in Figure 4-10 before and

after wavelet denoising.
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Table 4.2: SNR of samples 4,10 and 12 using different mother wavelets on scale 5.

Wavelet Sample 4 Sample10 Sample 12
Original 40.07 61.46 126.67
Coif1 110.31 126.49 222.92
Coif2 108.69 130.41 224.97
Coif3 107.79 131.54 225.82
Coif4 107.15 132.03 226.38
Coif5 106.68 132.29 226.78
Sym2 110.40 126.22 222.78
Sym3 109.45 128.92 224.13
Sym4 108.82 130.21 224.83
Sym5 108.34 130.95 225.30
Sym6 107.95 131.40 225.66
Sym7 107.61 131.71 225.97
Sym8 107.32 131.92 226.22
DB1 112.04 118.71 219.28
DB2 110.40 126.22 222.78
DB3 109.45 128.92 224.13
DB4 108.82 130.21 224.83
DB5 108.34 130.95 225.30
DB6 107.95 131.40 225.66
DB7 107.61 131.71 225.97
DB8 107.32 131.92 226.22
DB9 107.07 132.08 226.45
DB10 106.85 132.20 226.64
Dmeyer 112.00 133.23 227.48
Haar 112.04 118.71 219.28

Figure 4-11: Original peak reflectance image of skin sample 4 with the microneedle
(left) and wavelet denoised result of the same peak reflectance (right).
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4.2.4 Conclusion

This study analyses wavelet denoising and reconstruction, which were used to iden-

tify a microneedle in freshly excised pig skin. It has been demonstrated that the

fifth scale of the wavelet transform increases the SNR. Furthermore, the wavelet

families Haar, Meyer, Daubechies, Symlet and Coiflet were used to increase the

signal-to-noise ratio. Overall, the Meyer mother-wavelet outperformed the other

wavelets using five scales with an SNR improvement factor between 1.8 and 2.8.

The technique might be used to enhance the usefulness of terahertz in combina-

tion with targeted drug delivery via microneedle channelling technology, thereby

allowing more precise targeting of cancerous tissue and / or to observe the healing

process.

This method might be used to improve the reflection signal from different layers

of biological tissue. It may be used in conjunction with penetration-enhancing

agents (i.e., glycerol) [186] to further improve the signal-to-noise ratio in-vivo and

ex-vivo.

4.3 Segmentation based on visual images of lesions

Visual images were collected right before the examination with the terahertz ma-

chine on the sample holder by performing an overhead shot with a conventional

digital camera (Olympus VG-160). To quantitatively compare the visual images

taken before the terahertz scanning from under the quartz, a number of pre-

processing steps are needed to accurately map the THz data onto the visual image

and to perform feature extraction. The skin terahertz data collected needs to be

separated from the surrounding air and air-gaps that may occur and may need to

be filtered out. On the visual image, the regions of clearly infiltrated tissue need

to be separated from the presumably healthy tissue. By using image-registration
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Figure 4-12: Overview of pre-processing steps for segmentation and mapping of
visual images onto terahertz data.

methods, the visual image will be mapped on the terahertz image by reducing the

resolution and performing translation, rotation and scaling.

Figure 4-12 identifies the steps needed to perform feature extraction and seg-

ment the terahertz data into inter-visual (IVR) and extra-visual regions (EVR).

This method was applied to all malign samples collected to compare the features

from the terahertz data with the visual images. In the following section, these

steps are discussed in detail.

4.3.1 Straightening (rectifying) Terahertz data

Though all practical steps were performed in the initial setup of the terahertz

machine to gain the maximum energy reflected by the sample, misalignments

may appear during the setup of the x and y-stages which cannot be ruled out by
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Figure 4-13: B-Scan of a sample surrounded by air before (left) and after (right)
the correction process.

adjusting the mirrors and moving the top of the sample holder to the focus of the

terahertz beam. Such misalignments are difficult to circumvent, as they appear

to be in a range of a couple of microns, but they are reversible using simple linear

functions:

𝑓(𝑥, 𝑦) = (
∆𝑜𝑑

∆𝑥
(𝑥− 𝑥1) + 𝑜𝑑1,

∆𝑜𝑑

∆𝑦
(𝑦 − 𝑦1) + 𝑜𝑑1) (4.14)

where od is the optical delay, x is the position on the x-axis and y is the position

at the y-axis.

Since the scans capture the surrounding quartz/air interface around the sam-

ple, points at the top-left and bottom-right are chosen. The optical delay positions

of the maximum peaks are compared to each other and aligned by applying Equa-

tion 4.14 to each time-domain waveform.

An example is shown in Figure 4-13, which represents a B-Scan through a

skin sample which was mis-aligned on purpose to show the data before and after

applying the two linear functions from Equation 4.15. This simple procedure has

the advantage that it preserves relative shifts of the waveforms and phase shifts

(by 180 degrees).
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4.3.2 Skin segmentation and air-gap filtering

Segmentation is a semi-automated process of dividing an image into regions of

interest. We use binary segmentation to divide the data into “skin” and “everything

else”. This is not only useful to extract the skin sample from the surrounding air

but also to detect and remove possible air-gaps and other artefacts.

Segmentation is a process of separating the sample from the rest of the collected

data (i.e., the metal sample rig and air). We use a semi-automated segmentation

approach in which one waveform of the sample is selected as a kind of reference

waveform. Using a similarity function, the algorithm compares all other waveforms

to the one chosen. If the compared waveform has a similarity above a certain

threshold, it belongs to the sample; otherwise it will be discarded.

All waveforms are compared with a pre-chosen waveform of the skin using

a cross-correlation algorithm. A fixed threshold is determined by the 𝑅2 value.

Good results were achieved using an 𝑅2 value of 0.85.

The mean (�̄�) of a waveform is defined as the sum of all values x of the waveform

divided by the number of values (n):

�̄� =
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 (4.15)

The covariance of two waveforms (x,y) with equal lengths (n) describes the

variance between those two and is defined as follows:

𝑐𝑜𝑣 =
1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦) (4.16)

The correlation coefficient (𝜌) between two waveforms is then calculated as

follows:

𝜌 =
𝑐𝑜𝑣(𝑥, 𝑦)√︀

𝑐𝑜𝑣(𝑥, 𝑥)𝑐𝑜𝑣(𝑦, 𝑦)
(4.17)

81



The r-square (𝑅2) value is then simply

𝑅2 = 𝜌2 (4.18)

The 𝑅2 value is used as a measure of fit throughout this analysis. Figures

4-14 and 4-15 show the segmentation and air-gaps filtering on Sample 2 and the

resulting bitmask. To further exclude noise that may appear around the edges of

the air-gaps, further edge detection has been applied which enlarges the air-gap

area as shown in Figure 4-15 (right).

4.3.3 Image registration of visual image

To register the visual image, a segmentation process similar to that described in

the previous Chapter is applied. As the first step, the visual sample is divided into

the skin sample and the background part (data not shown), leaving only the skin

sample for further processing. To compare the visual images with the terahertz

data, the images need to be altered to fit on the terahertz images by scaling them

down and translating them on top of the terahertz images, which is also known

as registering the visual image on the terahertz image.

Image registration is an important step in image processing in which two (or

more) images of the same scene are brought in relation with each other. Image

registration typically requires one of the image to be the reference image—that

is, the image onto which the other data should be mapped. It is also referred to

as a fixed image, as operations are performed on the other image (moving image)

to map those on top of each other, as shown in Figure 4-16

For the comparison of a visual image with the terahertz image, the terahertz

maximum-energy feature was chosen as the fixed, reference image, as the terahertz

data is in 3D and is typically of lower resolution than the visual image. Also, by
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Figure 4-14: Terahertz segmentation of human skin sample 2. Maximum energy
peak image in false colour (left), false colour 𝑅2 value (>0.85) compared with an
arbitrary point of the skin. The colourbar represents the 𝑅2 value.

Figure 4-15: Bitmask after segmentation of sample 2 with visible air gaps (left),
bitmask of sample 2 with edges expanded to further reduce noise (right).
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Figure 4-16: Phantom of a microneedle holder as grayscaled visual image (left)
and its corresponding Terahertz maximum energy peak image (right).

distorting an image, one typically needs to interpolate intensity values from neigh-

bouring pixels, which in the 3D terahertz waveform would not be advantageous,

as it would increase the data space without adding relevant information to the

data.

The operations performed on the visual image are translation, rotation, skew-

ing and shearing. Before image registration is performed on the visual image,

the visual image is pre-processed, which means that it has been transformed into

intensity values (colour information is lost) and the background has been cut.

To demonstrate the image registration procedure, a microneedle holder was

scanned in terahertz and a picture with an ordinary camera was made, as is de-

tailed in Figure 4-16. Because the images do not have comparable intensity values,

an automatic approach was not chosen; instead, an extrinsic controlpoint proce-

dure was used. The control-point procedure works by selecting similar points,

or points of interest, like sharp edges, on both images. A minimum of four or

more points is required. In data obtained from skin, 10 to 15 points are typically

chosen. Since the phantom (the microneedle holder) has a geometry suitable to

demonstrate the procedure, 11 points were chosen on the edges of the microneedle,

as indicated in Figure 4-17.
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Figure 4-17: Image registration of the microneedle holder to create a similarity
matrix of the visible intensity image (left) and terahertz image maximum peak
image (right)

Figure 4-18: False colour image registration after mapping (left) and mapping
plus translation (right) of the visual (purple) and the terahertz image (green).

While the visual image can be slightly distorted depending on the angle of the

camera to the sample, the visual image gets mapped on top of the terahertz images

by using a projective algorithm that utilises translation, rotation and scaling.

To show the successful procedure and to provide visual validation, both images

are then mapped onto each other (using a false colour overlay, Figure 4-18). Un-

wanted distortions would attract attention at the edges of the microneedle holder,

and the procedure with different or more control points would need to be repeated.
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Figure 4-19: Original visual image (left) and segmented images of the extra-visual
region (centre) and inter-visual region (right)

4.3.4 Skin segmentation into ‘intra-visual region’ and ‘extra-

visual region’

The image data from the visuals is now in the same size and rotation / trans-

formation as the 3D terahertz data. In this step, a second segmentation is used

to divide the visual and the terahertz data into the classes labelled ‘intra-visual

region (IVR) and ‘extra-visual region (EVR)’. For this purpose, an arbitrary point

(pixel) in the visual image is selected that is inside the pigmented lesion (i.e., for

an intensity-based image the darker area of the skin, as shown in Figure 4-19. The

segmentation is then performed based on a threshold of the intensity (typically,

0.2 was used). With this procedure, the created region of IVR and EVR is then

applied to the terahertz waveforms.

4.4 Study on the time window for skin tissue ex-

periments

Processed chicken was obtained from a local butcher. The chicken skin was de-

tached from the rest of the tissue and divided into three parts of roughly the same

size (1 cm). Sample 1 was placed in saline solution for twenty minutes. Sample

2 was not altered, and Sample 3 was wiped with wad of cotton wool prior to the
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start of the experiment.

All three samples were placed on the sample holder and put on the gantry.

Scans of all samples were performed four times at an interval of 30 minutes.

While a full scan takes approximately 15 minutes, the samples, and the sample

holder (etc.) were not moved from their original positions. This ensured that

sample positions remained roughly the same throughout the experiment.

4.4.1 Statistical Analysis

From each sample, a centerfield of 10x10 pixels (which corresponds to 2x2mm)

was taken. To evaluate statistical data, the variability and standard deviation

of each sample were measured. Furthermore, a cross-correlation comparing each

scan with the first scan was performed to determine how much the data has in

common after a certain time has passed, as the primary aim of this study is to

evaluate the differences from the original scan with the scans taken at a later

point in time. Using this procedure, we compared the three samples over time,

thus finding changes that appear over time.

4.4.2 Results

The frequency-dependant refractive index was also calculated to evaluate the de-

hydration. Because the refractive index of water is relatively high (around 2) and

the refractive index of air is 1, we expect the experiment to reflect the dehydration

by a degrading refractive index.

The first thing to notice after the scans are completed is that wet tissue has a

larger border than tissue which was previously wiped. This is due to the afflicted

water that surrounds the tissue of Sample 1 (kept in saline) and Sample 2 (not

processed), as can be seen from Figure 4-20. Figure 4-20 shows the sample’s max-

imum energy peak normalised to the maximum energy peak of all scans (0.1960,
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Figure 4-20: Samples 1-3 repeated scan after 0 minutes (top left), 30 minutes (top
right), 60 minutes (bottom left) and 90 minutes (bottom right), where sample 1
kept in saline (left sample), unaltered sample 2 (middle sample) and sample 3
wiped sample (right sample).

which is the top value of the colourbar). The left sample (Sample 1) has been kept

in saline while the sample in the centre (Sample 2) has not been altered and the

right sample (Sample 3) has been wiped. Furthermore, changes in the variability

of the maximum peak can be observed from samples 1 and 2 when comparing

scan1 (0 minutes) with the second scan taken after 30 minutes (compare Figure

4-20 a and b). The variability and the maximum energy seems to be lower and

more constant at scans 3 and 4, as can be seen from Figure 4-20 c and d). The

colourbar shows the maximum energy peak.

Because water is highly absorptive in the terahertz regime, we expect the

samples’ maximum energy peak to rise over time because, due to dehydration,

more energy is reflected back from the quartz sample interface. Over all samples,

comparing scans 1 to 4, we find that the maximum values do indeed decrease, as

does the minimum peak value, as shown in Table 4.3.
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Table 4.3: Maximum and minimum energy peaks over time of all samples

Scan Maximum Energy peak (a.u.) Minimum Energy peak (a.u.)
1 0.1930 -0.3817
2 0.1942 -0.3804
3 0.1944 -0.3796
4 0.1960 -0.3998

Table 4.4: Degradation over time and sample showing the variability, standard
deviation and R and R-square values (compared to the first scan) over time

Scan Time / min. Type Variance Standard Deviation R R2

1 0 Normal 3.72E-04 0.0193 1.0000 1.0000
2 30 Normal 3.79E-04 0.0195 0.7020 0.4928
3 60 Normal 4.35E-04 0.0209 0.6736 0.4537
4 90 Normal 4.22E-04 0.0205 0.5898 0.3479
1 0 Saline 1.30E-03 0.0365 1.0000 1.0000
2 30 Saline 1.30E-03 0.0359 0.9746 0.9498
3 60 Saline 1.20E-03 0.0343 0.6093 0.3712
4 90 Saline 1.20E-03 0.0347 0.6058 0.3670
1 0 Wiped 6.26E-04 0.0250 1.0000 1.0000
2 30 Wiped 4.86E-04 0.0220 0.7977 0.6363
3 60 Wiped 4.56E-04 0.0214 0.6275 0.3938
4 90 Wiped 5.11E-04 0.0226 0.6084 0.3702

Comparing each sample over time reveals a rising standard deviation. To

compare the samples over time with each other, the cross-correlation function

with regards to the first scan was calculated. After 30 minutes, the correlation

drops significantly for the sample that has not been altered and the wiped sample,

while the sample kept in saline still shows a strong correlation, as can be seen from

Figure 4-21. After 60 minutes, the correlation drops down to between 0.4 and 0.5

for all samples.

This leads the conclusion that a sample kept in saline (though it does dry out)

does not significantly change the results over the first 30 minutes, while the other
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Figure 4-21: 𝑅2 comparison of samples over time.

samples degrade faster.

4.4.3 Conclusion

Applying these results to human skin (which is thicker than chicken skin), we

conclude that the time-dependant window for future experiments should not ex-

ceed 30 minutes, as samples are kept in saline during transport. We also conclude

that, though the absorbance of water is very strong, it is best to keep samples in

saline before the experiment, as it is important to not destroy the sample due to

dehydration, as the human samples need to be returned to histopathology. This

trade-off might lower our expectations for future experiments .

In this Chapter, the data collection and transformation has been discussed.

Furthermore, a noise reduction technique using wavelets on chicken skin has been

evaluated and the time window for the collection of human skin data has been

set. In the next Chapter, we aim to give a descriptive analysis of the sample data

collected and provide information from the dermatologist.
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Chapter 5

Sample Collection and Descriptive

Analysis

In this chapter, a descriptive analysis of the collected samples is given to provide

information about the principle structure of the gathered data and to offer a

comparison with histopathologists’ findings. The results agree with those of the

principle dermatologists and the field of histopathology. Since the data comes from

different patients with different malignancies, it is worth describing the differences

and similarities of the excised samples. Therefore, a brief description of each

sample is given which includes dermatology findings and images of the visual and

dermoscopy images in comparison with the TD THz maximum energy peak image.

5.1 Sample collection and preparation

Samples were collected closely after excision and held in saline for transporta-

tion form the LRI to the university laboratory. The project was granted and

meets research-ethics standards according to the university’s standard operating

procedures for tissue handling, the East Midlands Research Ethics Committee

(13/EM/0365) and the Universities Hospital of Leicester (UHL 11280). Patient
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information sheets and consent forms were given to and signed by the patients.

Data was collected in an anonymised form, and there is no direct link between the

patients’ personal information and the data gathered for this study. After data

collection, the samples were placed in formalin to fix the proteins. They were then

transported back to the LRI so that standard histopathology procedures could be

performed on them. To avoid degradation of the proteins, no sample was scanned

for longer than 30 minutes.

With the exception of Patient 1 (samples 1.1, 1.2 and 1.3), all samples contain

a form of cutaneous melanoma and were excised in accordance with standard

procedures, leaving a safety margin between the lesion and the skin of a couple of

mm, as melanoma might have developed in the underlying regions of the skin that

is not visible to the naked eye nor the dermascope. Confirmation of the success

of the full removal of the lesion was reported after histopathology analysis.

5.1.1 Results: Visual descriptive analysis of THz maximum

peak images in comparison with visuals

Before quantitative analysis occurs, it is good to have a visual and descriptive

analysis of the terahertz maximum peak images compared to the visual images

per patient. This will help us discuss features seen in the images and might

facilitate the discovery of explanations for histopathologists.

Patient 1

Patient 1 presented with benign nevi. Five lesions from various sides of the

body were removed due to cosmetic surgery. Three of them were large enough to

be included in this study. The samples contain only moles and no surrounding

skin, as this would be seen as an unnecessary excision. The images of Patient 1

show samples 1, 2 and 3 of the maximum energy peak of the terahertz waveforms

and images taken from a visual camera where the black bar represents 5mm. Some
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Figure 5-1: Three samples from patient 1 with their representation in the Tera-
hertz time domain using the maximum energy peak (left) and the visual taken
from a conventional digital camera (right). The black bar on the visuals represents
5mm.

structures are visible in both the terahertz and the visual image but appear mainly

in the centre of the terahertz image.

Patient 2

Patient 2 presented with superficial spreading melanoma with some tendencies

towards nodular melanoma on the west side of the sample. Irregular borders and

ulceration with change in colour are visible on the dermascopic image (Figure 5-1

(top)). Figure 5-1 (centre) shows the freshly excised sample taken from under
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Figure 5-2: Images obtained from patient 2, in-vivo image taken with dermascope
(top left), flattened, freshly excised sample on sample holder ex-vivo (top right)
and corresponding Terahertz maximum peak image with lesion border (bottom)

the sample holder. There is a clear loss in pattern and colour visibility between

the dermascopic image and the visual image; however, irregular borders are still

visible. The terahertz maximum peak-energy image shows features around the

border of the lesion that are evident on the visual images as well. Furthermore,

a higher maximum energy (around 0.25, yellow) in Figure 5-1 (bottom) shows a

higher reflectivity in patterns inside the lesion.

Patient 3

Patient 3 (female) presented with a neoplasm on the right lateral chest. Unfor-

tunately, due to age-related changes in the connective tissue, which have caused

declining elasticity and are accompanied by wrinkling of the skin, Sample 3 could

not be further analysed and was removed from further investigations. The wrin-
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Figure 5-3: Terahertz maximum peak (left) and visual image (left) of patient 3

kling effects of the dermis result in a terahertz image for which the algorithms for

image registration fail. Furthermore, the wrinkling created a large number of air

gaps between the sample and the sample holder so that the sample could not be

further analysed.

Patient 4

Patient 4 (male) presented with a form of nodular melanoma on the top right

shoulder. Asymmetric, irregular borders are visible towards the south of the main

lesion, which shows a slight form of superficial spreading melanoma. The main

lesion is dark-brown to black and elevated. The terahertz image shows a strong

decrease in reflected energy in the centre of the nodular lesion; around the lesion, a

kind of “halo” is seen with a higher reflection peak (around 0.28 to 0.32). The grey

/ white hair visible on Figure 5-4 (right) is not visible on the terahertz regime,

but the saline-water surrounding the hair is visible.

Patient 5

Like Patient 4, Patient 5 (female) presented with a nodular melanoma featur-

ing irregular borders and asymmetric behaviour with slight appearance of super-

ficial spreading MM, which suggests that the RGP was relatively short before it

devolved into the VGP. The specimen was taken from the back and is smaller

than the other samples collected. For comparison with histopathology, a suture is

present on the south of the surface of the sample that is not visible in the terahertz
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Figure 5-4: Visual of the lesion before excision (top left) and through a dermascope
(top right) of Patient 4. Terahertz maximum energy peak (bottom left) and
excised visual image (bottom right)
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Figure 5-5: Patient 5 Terahertz maximum energy peak (left) and visual image
(right)

Figure 5-6: Patent 6 Terahertz maximum peak image (left) and corresponding
visual image (right)

regime.

Patient 6

Patient 6 presented with a form of nodular melanoma. The main lesion is

uniform in colour and symmetry, and no ulceration is visible. Towards the west of

the main lesion is a form of superficial spreading MM, which is difficult to catch

in the terahertz image.

While the data collected from Patient 6 is used throughout this thesis, it

was found that the specimen acts and reacts unlike all other samples chosen for

evaluation, which makes it more difficult to describe than the other ones.

Patient 7

Patient seven (male, aged 84) presented with a form of nodular melanoma
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Figure 5-7: Images from patient 7 taken before excision (top left), with a dermas-
cope (top right), the resulting Terahertz maximum energy image (bottom left) and
visual taken with a conventional camera from the bottom of the quartz interface
(bottom right)

from the left anterior. In contrast to the other lesions, this melanoma presents an

elevated nevi with irregular border structure and colours ranging towards the red

region (in contrast to other samples, where the colour goes towards brown/ black /

bluish like lesions). Due to the colour of the neoplasm, the segmentation algorithm

dividing the sample into the IVR and EVR failed and was performed manually.

The excised sample of Patient 7 was pressed on the sample holder using a gantry

created at the university specifically for this experiment. A suture is present at

the medial edge. The suture is for later comparison with histopathology results

and is situated at the south of the lesion. Pressing down the sample results in

a difficult-to-obtain terahertz image, as the inner liquid is pressed out, which is

clearly visible on Figure 5-7 (bottom images) due to the presence of blood around

the neoplasm.

Patient 8
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Figure 5-8: Terahertz maximum peak image of sample from patient 8 (left) and
the corresponding visual image (right)

Patient 8, a male aged 78 years, shows superficial spreading MM. The specimen

was removed from the right shoulder and shows strong irregular borders. A suture

has been stained on the top of the sample. Sample 8 was pressed down on the

quartz using the gantry, which has created strong water effects around the sample

that are strongly visible on the terahertz image.

Patient 9

Patient 9 is a 67-year-old female who presented with a lesion on the right lower

leg. Figure 5-9 (top left) shows the lesion prior to excision. The image was taken

with a normal camera in-vivo. The top-right image shows the lesion taken through

the dermascope (in-vivo). The neoplasm shows two kind of melanoma. The

western region shows superficial spreading melanoma with irregular borders, while

the east (and south – east) regions show light ulceration and darker colouring. The

sample was pressed using the gantry. A visual image and the terahertz image were

taken. Like the results on Sample 2, there seems to be a higher reflectivity on

the border of the lesion (marked black on the terahertz image of Figure 5-9). The

suture is located on the south of the sample. High reflectivity appears red on the

top to top-left border of the sample There seem to be correlations between the

reflectivity and the structure of the skin.
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Figure 5-9: Images of patient 9 taken before excision (top left), with a dermascope
(top right), the resulting Terahertz maximum energy peak (bottom left) and the
corresponding visual taken with a conventional camera (bottom right)

5.2 Conclusion

The figures shown in this section were presented to histopathologists. Confir-

mation was given regarding the malignancy of the samples, and features were

discussed with the following conclusions:

� The samples which are presented with a superficial spreading MM often show

border interfaces between the IVR and EVR, which is especially strong on

samples 2 and 9. Because SSMM has a long RGP, it might be that these

areas consist of fibroblasts, which are produced when MM infiltrates the

surrounding tissue. While further studies would be required to corroborate

this hypothesis, if true, THz reflectometry could be potentially beneficial for

dermatologists who would identify active borders of the lesion that are not

visible to the naked eye prior to surgery. This could be potentially useful

for preventing secondary surgery after histopathology if the malignancy has
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Table 5.1: Overview of patient information collected.

Sample Gender Age
Position
on body

Type of MM

Sample 2 male 78 right leg superficial
Sample 3 female 72 lateral chest n/a
Sample 4 male 69 right shoulder nodular
Sample 5 female 77 back nodular
Sample 6 female 62 left shoulder nodular & superficial
Sample 7 male 84 left anterior superficial
Sample 8 male 78 right shoulder superficial
Sample 9 female 67 lower leg superficial

infiltrated tissue not caught by the first excision.

� The samples presented with nodular MM are clearly visible on both the

visual and the terahertz maximum energy images (samples 4 and 5). Since

these samples have a short RGP but a rapidly evolving VGP, they show

strong regular borders which allow for clear differentiation of the EVR and

IVR. While secondary peaks in the waveforms were not visible (data not

shown), it can be assumed that terahertz is not able to penetrate deeply

enough into the skin to determine the thickness of the infiltrated lesion

Patient information obtained from the dermatologist is presented in Table 5.1.

All patients are in the age range of 67 to 84 and collected data contains mostly

superficial spreading melanoma but also nodular melanoma.

Table 5.2 shows the number of data collected classified into IVR and EVR and

the corresponding percentage. Sample 2 contains the largest amount of infiltrated

tissue with 36%, whereas Sample 4 only contains roughly 7% of the IVR.

To the best of the author’s knowledge, eight terahertz images were obtained

for the first time from freshly excised human malignant melanoma, three from

moles prior to histopathology analysis. For descriptive analysis, images of the

terahertz maximum peaks of each sample were presented to dermatologists and
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Table 5.2: Overview of sample collection and classification in EVR and IVR.

Sample
Overall data
waveforms

Classified
as EVR

Classified
as IVR

EVR in % IVR in%

Sample 2 2549 1626 923 63.79 36.21
Sample 4 2523 2349 174 93.10 6.90
Sample 5 935 775 160 82.89 17.11
Sample 6 2310 2072 238 89.70 10.30
Sample 7 2196 1793 403 81.65 18.35
Sample 8 2493 1926 567 77.26 22.74
Sample 9 1931 1353 578 70.07 29.93

histopathologists with the conclusion that nodular melanoma which shows clear,

strong borders is completely visible on the terahertz images. Samples containing

SSMM showed a more complex structure, and it is believed that these structures

could be produced by fibroblasts during the RGP because, during the infiltration

of the healthy tissue with the malignance, fibroblasts are present as a side product

during the transformation. This result should encourage further investigation of

the behaviour of SSMM using terahertz reflectometry, as this procedure could help

dermatologists determine the region to be excised more precisely.

In this chapter, samples collected from the UHL have been discussed. A visual

comparison of the maximum energy peak terahertz images with the images taken

prior scanning and dermatology images - where available- were provided. Based on

the segmentation each sample has been divided into the corresponding intra-visual

and extra-visual region based on the colour of the visual images.

The collected data will be analysed in the next chapter in comparison to the

visual IVR and EVR. Various supervised predictive modelling techniques will be

used to determine the number of positive classifications of the EVR and the IVR

when compared to the visual images.

102



Chapter 6

Multivariate Analysis For The

Diagnosis of Melanoma

In the last chapter, a comparison of the visual images and the maximum energy

peak of the terahertz images was evaluated. A single-variable analysis for the dis-

tinction of IVR and EVR was conducted, but it showed no significant difference.

Due to the majority of features extracted, there is a chance that a combination of

them could help to distinguish between the IVR and EVR; furthermore, it is good

practise to evaluate the data in terms of its goodness and to find relationships be-

tween the features taken. For this reason, a multi-feature analysis is anticipated

with the aim of assessing the quality of the input data and investigating the un-

derlying structure of the data collected. To achieve these goals, experiments were

performed based on the full-feature set, and on subsets using the ReliefF algo-

rithm, and also using linear-combinations based on principle component analysis

(PCA). These features serve as input to various predictive modelling techniques,

which might help to explain the inner layout of the data. With increasing complex-

ity, a number of methods—from linear discriminant analysis to artificial neural

networks—have been chosen as prediction models to differentiate between the IVR
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and EVR regions; since these regions are based on segmentation and are known,

the whole process in this chapter is called “informed” or supervised. To validate

the results from the predictive models, we performed 10-fold cross-validation to

estimate the general fitness of the model, as some of them are known to overfit.

This chapter reports on experiments performed based on the data obtained

from each sample individually so as to explore the feasibility of distinguishing

between the IVR and the EVR. Predictive modelling techniques are applied to

the raw waveforms, the first 75 components of the PCA, the components of the

PCA discovered to be of importance by the ReliefF algorithm and manually chosen

variables obtained from the raw waveforms.

Furthermore we apply the same modelling techniques on the full dataset to

predict if there is a general rule to distinguish the IVR from the EVR.

6.1 Methods for feature extraction

Based on the division of the patient sample data into the IVR and the EVR,

various predictive modelling techniques with increasing complexity have been ap-

plied to the raw waveforms. The waveforms were normalised by subtracting each

sample waveform with an average of 10 surrounding air waveforms. Using a PCA,

we can significantly reduce the number of dimensions in feature space by using

linear combinations of such. The PCA needs only to use the feature-space and

is uninformed, as it does not take the segmentation between IVR and EVR into

account but performs a noise reduction or reduction of the feature space by cal-

culating the importance of each feature space. In addition, the ReliefF algorithm

(which is an informed algorithm) was applied to the PCA to further reduce the

number of variables in the feature set, whereas the ReliefF algorithm tries to find

the features best correlated with the variables by importance (score) to determine

104



which features best predict the classification outcome.

This study was conducted using 𝑀𝑎𝑡𝑙𝑎𝑏2014 with self-written scripts utilising

the Statistics Toolbox.

6.2 Feature extraction

6.2.1 Raw Dataset

The raw dataset contains all of the waveforms of the skin per sample classified

into the IVR and EVR. The data was normalised by using a simple subtraction

of the baseline, which is a waveform with the vicinity of the sample.

The gathered terahertz 3D data has been transformed into a 2D waterfall im-

ages to visually analyse the data and find regions of interest as well as presumably

false positives, e.g. regions that may appear as secondary reflection. The colour-

bar represents the terahertz energy field and has been set to low maximum and

minimum values (-0.07 to 0.7). This is to visualise data otherwise hidden features

due to the presence of the maximum and minimum energy peaks. A resulting

waterfall image is shown in Figure 6-1 showing the skin data at the top and sur-

rounding air at the bottom. A reflection is visible at around 35ps but cannot

account for a secondary peak from the skin, as it appears in the air-values as

well (see Appendix B). Similar peaks have been found at the end of all samples

(see Appendix B) which is most likely an internal reflection from the silicon lens.

None of the samples show a clear secondary peak outside of the main energy wave

and we conclude that most of the information is most likely to be found between

approximately 12ps and 35ps. Furthermore, because of the high water absorption

from inside the skin it is not feasible to detect any reflection further away from

the main incidence beam than 10ps. Therefore, the data chosen has been limited

to a range between 10ps and 30ps as indicated by 6-1.
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Figure 6-1: False colour waterfall diagram from patient 2 of the sample (top) and
air (bottom) waveforms transformed into 2D.

To correctly subtract the waveforms, they were normalised on the optical de-

lay with the maximum peak position, which has been set to a constant 19 ps.

The surrounding air waveforms were normalised using their negative peak to 19

ps as well. To avoid false positives, the full waveforms were cut to an optical

delay between 13 and 40 ps. To visualise the data collected, false-colour waterfall

diagrams were created for each sample, which can be found in Appendix B.

6.2.2 Principle component analysis (PCA)

Principle component analysis has frequently been used in the past on bio-medical

terahertz data to reduce the dimension of the collected features [21,187,188]. The

aim of the PCA is to project the original multidimensional data (features) into

a lower-dimension space while maintaining most of the variability of the data.

This is achieved by restructuring the original variables to maximise the variance

using linear transformations. The newly found variables are orthogonal and are

therefore uncorrelated relative to each other.

The orthogonals are shifted and rotated such that the first orthogonal is placed
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where the most variance of the dataset can be found. Thus, the first component

always has the largest amount of information, thereby suggesting that the largest

variance would contain the highest amount of information, which is able to ex-

plain the dataset. Each of the following components have the highest amount of

information left from the further found components and lie at an angle of 90∘ to

the orthogonals.

To perform a dimension reduction, the first 20 components of each item of

sample data was used, as no change in the information gain per component from

all samples could be identified anymore. Also, the ReliefF algorithm was applied

to each sample individually, as it further reduces the number of variables and may

help improve the prediction of the EVR and IVR.

6.2.3 ReliefF-Algorithm

The ReliefF algorithm is a multivariate feature extraction algorithm often used

in environments where the results are expected to be correlated non-linearly. In

contrast to the PCA, it takes the expected result into account and is therefore

informed. The algorithm weights the features of the training set by calculating

the Euclidean distance to all other features. The nearest features that belong to

the same class are called the nearest hit and get rewarded, while the training data

that belongs to the second class, called the nearest-miss, gets penalized. Since a

“good” feature is evaluated by the ability to separate the two classes, the distances

to the nearest-hit class should be small while the distance to the nearest-miss class

should be large. The weights are calculated and adjusted iteratively by using the

following equation:

𝑊𝑖 = 𝑊𝑖 − (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝐻𝑖𝑡𝑖)
2 + (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝑀𝑖𝑠𝑠𝑖)

2 (6.1)
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The ReliefF algorithm is typically applied after the model prediction has been

evaluated, and it gives information about which features have the highest impact

on the decision-making process. Once these “important” features have been eval-

uated, one may run the predictive model on a subset of the features again and

thereby gain a feature reduction.

6.2.4 Manual chosen variables

The manual chosen dataset form out of the raw waveforms is one way to create

feature extraction and selection. 30 variables were manually extracted from each

waveform. These variables might be able to show a better prediction and/or offer

an explanation of the waveforms, as they take the full-width-at-half-maximum

(FWHM) and the area-under-the-curve (AUC) and secondary peaks found behind

the primary energy peak into account.

The feature extraction uses significant positions in the waveform and its trans-

formations to reduce the number of dimensions. All feature are normalised to there

corresponding baseline values. The first 14 variables describe the main pulse. As

this is were most of the energy is reflected back from the skin, it can be assumed

that most information lies within this pulse. Next to the maximum and mini-

mum energy peaks, the Full-Width-At-Half-Maximum (FWHM) of the positive

and the neagtive waves are collected as well as the Area-Under-the-Curve (AUC).

The AUC contains the behaviour of the slope after the maximum energy peak, as

a faster gradient towards the intercept accounts a stronger absorption. Further-

more, since the intensity waveforms are computed using the Hilbert transform

from the original energy waveforms, one can expect a strong coupling between

these variables. A visual representation of the extracted variables for all samples

can be found in Appendix D. The features collected from a terahertz time-domain

waveform are as shown in Table 6.1. Secondary peaks are collected to determine
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Table 6.1: Extracted features from a Terahertz waveform

1 Maximum Energy peak
2 Maximum Energy peak position (in ps)
3 Minimum Energy peak
4 Minimum Energy peak position (in ps)
5 Maximum / Minimum Energy peak
6 Maximum - Minimum Energy peak
7 Maximum Intensity
8 Maximum Intensity position (in ps)
9 FWHM of positive energy wave
10 FWHM of negative energy wave
11 FWHM of intensity wave
12 AUC – positive energy wave
13 AUC – negative energy wave
14 AUC – intensity wave

15-20 First 5 highest secondary peaks after main peak
21-25 First 5 highest secondary peak positions (in ps) after main peak
26 Mean peak height of the 5 secondary peaks
27 Total number of secondary peaks found

if an internal reflection from inside the skin due to a change of the refractive

properties of the medium appears. Secondary peaks are difficult to detect as they

could be incorporated within the maximum-energy waveform and when they are

too close together, they might not be detectable or they might be visible as a

shoulder within the maximum energy peak, which is likewise not detected as a

secondary peak, as is shown in Figure 6-2.

6.2.5 Evaluation of predictive models (objective function)

As is normal for medical investigations, we use introduce the terms specificity,

sensitivity and accuracy here. These terms describe the “goodness ” of the under-

lying predictive model. The model creates some kind of classifier using training

data and then tests the classifier against previously unseen data. Each test data

presented to the model has one of the following four outcomes compared to the
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Figure 6-2: Three exemplary shown waveforms from sample 2 showing no sec-
ondary peaks (left), secondary peaks with a non-detected shoulder (centre) and 9
secondary detected peaks (right).

Figure 6-3: Relationship of “true class” versus “predicted class” outcome.

true class: “true positive (TP)” means that the algorithm correctly classified the

data as “healthy”, and “true negative (TN)” is correctly classified as “infiltrated”.

On the opposite end, where the model predicted wrongly, the outcome false into

the “false positive (FP)” class meaning data classified as “infiltrated” has been

wrongly identified as “healthy” and “false negative (FN)”, data that has been clas-

sified as “healthy” has been wrongly predicted to be “infiltrated”. The relationship

between the classes are illustrated in Figure 6-3.

The sensitivity is then described as the ability of the algorithm to identify the

“healthy” class correctly and is calculated as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒− 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(6.2)
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Similarly, the specificity is a value that describes how good the algorithm has put

data labelled as infiltrated into the correct infiltrated class. It is calculated by the

number of true negatives divided by number of false positive plus the number of

true negatives.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒− 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(6.3)

Furthermore, we describe the outcome with the term accuracy, which de-

scribes the algorithms’ overall precision on correct classification. It is defined

as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(6.4)

The objective function to evaluate the goodness of the predictive modelling

would be to simultaneously maximise both the sensitivity and the specificity.

The accuracy variable could have been used as the objective function but is only

rational if the binary classes contain data of roughly the same size, as the accuracy

would otherwise be in favour of the class that contains more sample data. Another

possibility is to use the area-under-the-curve (AUC) of the receiver-operator chart

(ROC). Though mostly used for regression, the ROC is simply a plot of the

specificity over 1 – sensitivity. The AUC of the ROC then gives a number between

0.5 and 1, where 0.5 means complete randomness and 1 is fully predicted. Since

the AUC takes both sensitivity and specificity into account, this variable was

chosen as the objective function for the predictive modelling techniques used.

Two tests were performed on the data itself. The first uses the full-data set

for the predictive modelling to investigate the general ability to depict the data.

This procedure is known as resubstitution. Since some modelling techniques are
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known to overfit and it is also important to find out how the model would react

to previously unseen data, 10-fold cross-validation was also performed for each

experiment on a single sample. For the whole dataset, Leave-One-Out-Cross-

Correlation is used. In this case the test data contains all samples except one,

which is the training data.

6.3 Predictive modelling methods

Predictive modelling techniques are discussed in this chapter. Each model has

been tested on each individual sample (patient) to gain an overview of the good-

ness of the data and to determine which predictive model might be used (i.e.,

which is in good correlation with the IVR and EVR) for further analysis. The

objective function is to minimize the misclassification rate, which equals a max-

imisation of the accuracy.

6.3.1 Linear and Quadratic Discriminate Analysis (LDA /

QDA)

Linear Discriminate Analysis tries to separate the features (𝑥1 to 𝑥𝑛) by using a

Linear-weighted combination as the discriminator of the features in the form of

𝐷 = 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛 (6.5)

The task is to estimate the discriminant coefficients 𝛽1 to 𝛽𝑛 by the given

test data (X). The discriminator is estimated by calculating the between-group

covariance matrix (B) and the within-group covariance matrix (W). Described as

Fishers problem, the task is now to maximize 𝛽 in the form
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𝜆 =
𝐵𝑑

𝑊𝑑

=
𝛽′𝐵𝛽

𝛽′𝑊𝛽
→ max 𝑓𝑓𝑜𝑟𝛽 (6.6)

The solution to Equation 6.5 is found by optimizing its eigenvalue of W-1B,

which is a linear discriminant. To classify a new sample u, the mean value of both

classes x1 and x2 are calculated. The sample is then classified using the following:

|𝛽′(𝑢− 𝑥1)| − |𝛽′(𝑢− 𝑥2)|

⎧⎪⎨⎪⎩ < 0 𝑔𝑟𝑜𝑢𝑝1

≥ 0 𝑔𝑟𝑜𝑢𝑝2
(6.7)

which means that, if the projection of the sample is closer to the mean of class

x1 than to x2 (the equation gives <0) then it belongs to Class 1. Otherwise it

belongs to Class 2. The LDA works properly only if the variables can be linearly

separated and do not correlate very well with each other [189].

While LDA assumes the same covariance of all classes, QDA computes a differ-

ent covariance for each class. Essentially, LDA computes a separate the samples

for each class (using training points that belonged to it), but the covariance is

computed using the entire training data. LDA uses a covariance matrix using the

entire training data to compute the correspondence to each class, whereas QDA

computes a separate covariance and mean for each possible output class.

6.3.2 Support-vector machines (SVM)

A support-vector machine is a classifier that tries to divide the training data into

two classes using a hyperplane. The best hyperplane is the one that has the

largest margin between the two classes. Margin means the maximal width of the

slab parallel to the hyperplane that has no interior data points. The support

vectors are the data points that are closest to the separating hyperplane.

The hyperplane is calculated as a decision-function and is given by the normal
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vector (w) and the bias (b). The objective is put in a class based on the sign of the

decision function. Thus, if the decision function returns a positive sign, the object

xi is above the hyperplane; otherwise it is under the hyperplane. Objects that

lie directly on the hyperplane are not separable. Furthermore, a slack-variable 𝜁

is introduced to improve cases for which the test data is not linearly separable,

which creates the optimisation problem of

1

2
||𝑤||22 + 𝐶

𝑚∑︁
𝑖=1

𝜁𝑖 (6.8)

6.3.3 K-nearest Neighbours (KNN)

The k-nearest-neighbour classification is a simple instance-based learning algo-

rithm in which a new “data-object” is put in the class that is closest to its neigh-

bour object (or class) based on maximum-likelihood.

During the training of the KNN algorithm, the data gets partitioned into the

(so-called) Voronoi-partitioning, which creates regions divided by hyperplanes.

Choosing a suitable size for K is crucial to the algorithm, as a small value creates

a larger sensitivity against outliers, and a K that is too high might misclassify the

data because too many neighbouring clusters (or classes) are used in the process.

Therefore, before testing the KNN algorithm, the size K is evaluated over all

patients. As a rule of thumb, k should be around the size of the square-root of

the feature dimension.

6.3.4 Decision Trees (DT)

Decision trees (DTs) are among the most favoured of machine-learning algorithms

for clinical diagnosis and prediction modelling [190]. In contrast to methods like

the ANN, which acts like a black box to the outer world, DTs have the ability to

clearly explain the final decision and the process of making that decision.
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Decision trees, also known as classification trees, create a binary tree-like struc-

ture for the separation by using a division criterion for each node starting from a

rootnode in a tree-like structure. Internal nodes describe one question or one fea-

ture either in an inequality or equality way and build more internal nodes starting

from the root node. In each node only one variable is considered for the decision

making also known as attribute test condition , until a leaf node (a final node with

no descendants) is reached. The leaf node contains the classification (or result)

outcome, which in the case of binary classification is either 0 or 1. The training

data is used to construct the tree using certain criteria to prevent over and/or un-

der fitting. Constructing (binary) decision trees with a large number of features

that may contain heavy noise can be difficult, as a DT might over fit, which could

lead to a DT in which a node only has one feature of one training set; therefore

in addition to describing a “split criterion” to create a node, it is also important

to describe a “stop-split” criterion to prevent overfitting and reduce the influence

of noise [190, 191]. A typical split criterion is built on an impurity function (or

information gain) on a feature chosen by its information gain, which is defined as

𝐼(𝑦) = 𝑓(𝑃 (𝑋|𝑦1), 𝑃 (𝑋|𝑦2)) (6.9)

where f is an arbitrary function and P(X|y) is the probability that the observa-

tion X containing the features belongs to a class y with the indices 1,2 for binary

classification. A typical function f for the impurity is the entropy H function is

given by,

𝐻(𝑦) = −
∑︁
𝑦

𝑃 (𝑋|𝑦) log2 𝑃 (𝑋|𝑦) (6.10)

where P is the probability that the observation X belongs to class y and the

sum over all classes y [191]. Using the information-gain function above on all
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Figure 6-4: Classical structure of a perceptron with input weights and activation
function

features, one can now select the feature with the highest information gain with

respect to the resulting class Y.

6.3.5 Artificial Neural Networks (ANNs)

Artificial Neural Networks are inspired by the concept of neurons found in biology.

A neuron (or a perceptron) is fired when it receives several stimulations from

various, weighted neurons on a previous layer that surpass (are higher) than a

certain threshold (activation function). The activation function is often a rectangle

(binary) function that fires when the sum of the weights of the connected fired

neurons are over the threshold. Otherwise a sigmoid function is commonly used as

an activation function. Because each input is weighted and the sum of these inputs

cause activation only when a certain threshold is exceeded, a single perceptron

acts exactly as the LDA. It is a linearly separable classifier, depicted in 6-4.

By creating a layer of perceptrons, all of which are connected, and by weighting

them with respect to all input variables, it is possible to create a more complex

classifier. As for pattern recognition, one hidden layer is sufficient ; this neural
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Figure 6-5: Principle construct of an ANN with one hidden layer and one output
neuron for binary classification

network acts as a multi-linear classifier.

By putting multiple neurons in layers, the network can be trained (adjusted,

supervised learning etc.). For classification problems with a given test-set pattern,

recognition ANNs are chosen when the sigmoid “fire rule” of the neuron is adjusted

to the outcome of the test-data presented to the NN . The task is to minimize the

error between rightly and wrongly predicted classes. Because training patterns

with known results are needed, this structure is a ‘classical’ supervised learning

algorithm. The sigmoid-activation function is defined as

𝑓(𝑥) =
1

1 + 𝑒−𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠 𝑥)
(6.11)

For neural networks, the data has to be divided into three sets: namely, the

training set, the test set and a validation set, which is used to prevent the ANN

from overfitting. For the purpose for pattern recognition, which includes classi-

fication problems, a feed-forward neural network with error backpropagation is

used. When initialising the network, the gain of the sigmoid-activation functions
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and the weights are set randomly. The first data from the training set is presented

to the ANN and is forwarded through the hidden layer into the output layer. At

the output layer, a comparison of the actual and the desired outcomes is made

before adjusting the internal weights and gains of each neuron backwards through

the network (backpropagation).

The feed forward net input function is defined as follows:

𝑛𝑒𝑡𝑗 = Θ𝑗

𝑛∑︁
𝑖

𝑥𝑖𝑤𝑖 (6.12)

where 𝑛𝑒𝑡𝑗 is the input net, Θ𝑗 is the threshold, 𝑥𝑖 is the output of the neurons

from the previous layer and 𝑤𝑖 is the weight from the previous neuron of the

previous layer. In the hidden layer, the output of the neurons is calculated using

the activation function from Equation 6.11

𝑜𝑗 = 𝑓(𝑛𝑒𝑡𝑗) (6.13)

For the output layer, it is simply this:

𝑜𝑗 = 𝑛𝑒𝑡𝑗 (6.14)

Once data has been passed through all layers, the root mean square error is

determined by:

𝑅𝑀𝑆𝐸 = Θ𝑗

𝑛∑︁
𝑖=1

(𝑑𝑖 − 𝑎𝑖)
2

2
(6.15)

where 𝑑𝑖 is the desired output, 𝑎𝑖 is the actual, calculated output and n is the

number of observations presented as training sets.

The RMSE gives an overall performance estimate for the ANN. To determine

the error of the weights of the neurons connected with each other, before adjusting
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the weights, one uses the so -called delta rule for error determination [192]. For

the output layer, the delta rule is defined as follows:

𝛿𝑜𝑢𝑡,𝑗 = (𝑎𝑗𝑑𝑖)𝑓
′(𝑑𝑖) (6.16)

It is then defined backwards through the hidden layers as follows:

𝛿𝑘 = 𝑓 ′(𝑛𝑒𝑡𝑖)𝛿𝑗𝑤𝑘𝑗 (6.17)

where 𝛿𝑘 is the error of the neuron of layer k, 𝛿𝑗 is the error of the neurons

of the previous layer and 𝑤𝑘𝑗 is the weight of the connection between neurons of

k and j. To finally adjust the weight at position ij, a typical gradient descent

algorithm is used which introduces a learning rate (alpha) to adjust the weights.

To further improve the speed of the algorithm, a conjugate gradient-descent algo-

rithm is used which also introduces a momentum (y). The learning rate is adjusted

automatically according to the RMSE. A small RMSE decreases the learning rate

and a high RMSE increases the learning rate. This is in a way similar to the added

momentum, which converges faster on plateaus (where the error rate is close to

constant) and slower at higher error rates.

The change of the weight of a connection between a neuron at layer i and a

neuron at layer 𝑘(∆𝑤𝑖𝑗) is calculated by

∆𝑤𝑖𝑗 = 𝛼 (𝛿𝑗𝑑𝑗) + 𝛾 ∆𝑤𝑖𝑗(𝑛) (6.18)

where 𝛼 is the learning rate and 𝛾 is the momentum.
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6.4 Results: Single Sample

Each sample has been applied to the predictive modelling techniques as, a) a

full training set and b) a 10-fold cross-validated set. The accuracy, sensitivity,

specificity and the AUC have been recorded. Furthermore, the average and the

standard deviation have been calculated.

6.4.1 Raw data

Applying the predictive algorithm techniques to the raw waveforms shows a good

determination of the specificity (between 0.94 and 0.98) and a lower, yet still

significant sensitivity (between 0.65 and 0.82) on the whole training set. The

values are lowered when using 10-fold CC and vary for sensitivities between 0.57

and 0.74 and specificities between 0.91 and 0.94. Especially the results of the

LDA, the KNN and the NN show a correlation between the raw input data and the

classification parameters, whereas all of them have a high specificity (0.94 (LDA),

0.95 (KNN) and 0.96 (NN)) and a significant lower sensitivity of 0.76 (LDA), 0.74

(KNN) and 0.77 (NN). As can be seen from Tables 6.2 to 6.7, all classification

algorithms are good at classifying EVR samples as such but fail to identify the

IVR correctly, as is summarised in Figure 6-6 and Figure 6-7 respectively. Also,

while the SVM performs well with the whole training set, it fails to determine the

specificity and sensitivity of the 10-fold CC, which gives raise to the assumption

that the SVM overfits. Even though the KNN shows high specificity and moderate

sensitivity it would not be the favour of choice, as the standard deviation is higher

than from the ANN and the LDA.

To further investigate which of the raw waveforms variables are useful for the

classification process, the ReliefF algorithm has been applied to each sample. It

shows that both the data behind the maximum energy peak and the data before
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Table 6.2: Results of the LDA applied to raw waveforms
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.89 0.82 0.92 0.87 0.86 0.79 0.89 0.84
4 0.96 0.69 0.98 0.79 0.95 0.64 0.98 0.81
5 0.95 0.75 0.99 0.87 0.91 0.66 0.97 0.81
6 0.96 0.72 0.99 0.85 0.95 0.66 0.98 0.82
7 0.91 0.78 0.94 0.86 0.89 0.72 0.93 0.82
8 0.87 0.72 0.92 0.82 0.84 0.64 0.90 0.77
9 0.91 0.86 0.93 0.90 0.89 0.83 0.92 0.87

Avg 0.92 0.76 0.95 0.85 0.90 0.71 0.94 0.82
Std 0.03 0.06 0.03 0.03 0.04 0.07 0.03 0.03

Table 6.3: Results of the QDA applied to raw waveforms
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.74 0.63 0.95 0.79 0.74 0.63 0.95 0.79
4 0.55 0.52 0.93 0.72 0.55 0.52 0.93 0.72
5 0.78 0.75 0.96 0.85 0.79 0.75 0.96 0.85
6 0.68 0.64 0.90 0.77 0.68 0.64 0.90 0.77
7 0.80 0.77 0.94 0.85 0.80 0.77 0.94 0.85
8 0.70 0.63 0.96 0.80 0.70 0.63 0.96 0.79
9 0.72 0.62 0.93 0.78 0.71 0.62 0.93 0.78

Avg 0.71 0.65 0.94 0.80 0.71 0.65 0.94 0.79
Std 0.08 0.08 0.02 0.04 0.08 0.08 0.02 0.04

Table 6.4: Results of the SVM applied to raw waveforms
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.93 0.88 0.96 0.92 0.89 0.81 0.93 0.87
4 0.97 0.63 1.00 0.81 0.96 0.47 1.00 0.73
5 0.97 0.86 1.00 0.93 0.93 0.68 0.99 0.83
6 0.98 0.78 1.00 0.89 0.96 0.67 1.00 0.83
7 0.94 0.84 0.97 0.90 0.78 0.50 0.87 0.68
8 0.92 0.84 0.94 0.89 0.86 0.69 0.91 0.80
9 0.93 0.85 0.96 0.91 0.87 0.74 0.92 0.83

Avg 0.95 0.81 0.98 0.89 0.89 0.65 0.94 0.80
Std 0.02 0.08 0.02 0.04 0.06 0.12 0.05 0.06
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Table 6.5: Results of the KNN (n=10) applied to raw waveforms
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.92 0.91 0.92 0.92 0.88 0.83 0.91 0.87
4 0.97 0.60 1.00 0.80 0.96 0.48 1.00 0.74
5 0.95 0.83 0.98 0.90 0.93 0.70 0.98 0.84
6 0.97 0.78 1.00 0.89 0.96 0.68 0.99 0.84
7 0.92 0.80 0.94 0.87 0.90 0.67 0.95 0.81
8 0.88 0.89 0.88 0.89 0.84 0.77 0.86 0.82
9 0.89 0.86 0.91 0.88 0.87 0.80 0.90 0.85

Avg 0.93 0.81 0.95 0.88 0.91 0.71 0.94 0.82
Std 0.03 0.10 0.04 0.04 0.04 0.11 0.05 0.04

Table 6.6: Results of the ANN (20 neurons) applied to raw waveforms
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.83 0.93 0.94 0.94 0.87 0.81 0.93 0.87
4 0.97 0.70 0.99 0.85 0.97 0.63 0.99 0.81
5 0.94 0.80 0.95 0.88 0.95 0.79 0.95 0.87
6 0.95 0.73 0.98 0.85 0.97 0.75 0.99 0.87
7 0.88 0.72 0.94 0.83 0.91 0.70 0.96 0.83
8 0.85 0.81 0.93 0.87 0.87 0.73 0.91 0.82
9 0.84 0.73 0.90 0.82 0.88 0.77 0.93 0.85

Avg 0.89 0.77 0.95 0.86 0.92 0.74 0.95 0.85
Std 0.05 0.07 0.03 0.04 0.04 0.06 0.03 0.02

Table 6.7: Results of the DT (minimum leaf size 20 samples) applied to raw
waveforms

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.93 0.88 0.96 0.92 0.79 0.70 0.84 0.77
4 0.97 0.64 0.99 0.82 0.94 0.45 0.97 0.71
5 0.95 0.84 0.98 0.91 0.87 0.61 0.92 0.77
6 0.96 0.80 0.98 0.89 0.92 0.53 0.96 0.74
7 0.95 0.86 0.96 0.91 0.85 0.55 0.92 0.73
8 0.94 0.84 0.97 0.90 0.78 0.50 0.87 0.68
9 0.91 0.84 0.94 0.89 0.80 0.68 0.86 0.77

Avg 0.94 0.82 0.97 0.89 0.85 0.57 0.91 0.74
Std 0.02 0.08 0.01 0.03 0.06 0.08 0.05 0.03

122



Figure 6-6: Sensitivity and specificity with corresponding standard deviation of
the average values from predictive modelling methods on the whole training set
using raw waveforms

Figure 6-7: Sensitivity and specificity with corresponding standard deviation of
the average values from predictive modelling methods on 10-fold cross validation
using raw waveforms
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Figure 6-8: Results of the ReliefF predictor importance weights accumulated over
all samples (top), arbitrary sample waveform from sample 2 (bottom).

the main energy peak are especially important. Figure 6-8 shows the accumulated

predictor importance weight over the optical delay. Results of the ReliefF of each

sample can be found in Appendix B. It is interesting to note that the predictor

importance weight is low around the maximum peak, which could be because

of the normalisation of that peak or because the incident (main) peak conceals

underlying information due to its intensity. But it can be said that the main

information for the classification of IVR and EVR lies in a range between 16ps

and 29ps.
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Table 6.8: Percentage explained principal component per sample.
Component Sample 2 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

1 48.70 32.45 49.03 46.67 51.49 63.89 48.70
2 23.14 28.23 30.51 22.80 16.81 12.37 23.14
3 11.71 7.40 5.20 11.07 11.45 7.88 11.71
4 3.47 4.96 4.21 4.74 8.35 3.27 3.47
5 2.97 2.51 1.75 2.42 2.04 2.44 2.97
6 1.49 1.94 1.52 2.33 1.76 1.46 1.49
7 1.18 1.42 0.92 1.31 1.19 1.12 1.18
8 0.66 1.34 0.66 0.78 0.96 0.92 0.66
9 0.49 1.21 0.49 0.63 0.54 0.70 0.49
10 0.42 1.16 0.39 0.47 0.35 0.56 0.42
11 0.31 1.08 0.28 0.36 0.28 0.41 0.31
12 0.29 1.06 0.24 0.32 0.23 0.30 0.29
13 0.22 0.99 0.22 0.26 0.19 0.24 0.22
14 0.20 0.88 0.19 0.23 0.18 0.21 0.20
15 0.19 0.79 0.18 0.21 0.16 0.19 0.19
16 0.17 0.70 0.17 0.19 0.15 0.16 0.17
17 0.16 0.68 0.17 0.19 0.14 0.16 0.16
18 0.15 0.65 0.17 0.18 0.13 0.14 0.15
19 0.15 0.63 0.16 0.18 0.13 0.14 0.15
20 0.15 0.57 0.16 0.18 0.13 0.13 0.15
Sum 95.52 90.65 96.64 95.51 96.64 96.68 96.23

6.4.2 PCA (first 20 PCs)

The first 20 PCs of the PCA have been chosen as the information gain sinks

down to 0.5 (Sample 4) to 0.1 at around the 20th component but also the total

information is at around 95%, except for sample 4, which is around 90%, indicated

in Table 6.8. Also visible from Table 6.8 is that the first components do not explain

the variance in the data very well, as the values are only between 32% and 64%

of the first PC, which indicates a large amount of noise and many differences in

the data itself. A graphical representation of the first three components of each

sample can be found in Appendix C.

The results of the PCA (first 20 components) show a slight decrease in sensi-

tivity and specificity compared to the raw data, which is most likely due to the

reduction of variables from 800 (raw waveforms) down to 20 (components). Like

the raw waveforms, the PCA manages to detect specificity well (0.80 to 0.98), but

it does not show a good agreement for sensitivity (0.66 to 0.76). The NN performs

125



Table 6.9: Results of the LDA applied to the first 20 components of the PCA
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.85 0.77 0.89 0.83 0.85 0.77 0.89 0.83
4 0.96 0.69 0.99 0.73 0.95 0.64 0.99 0.82
5 0.93 0.69 0.98 0.84 0.93 0.68 0.98 0.83
6 0.94 0.53 0.99 0.76 0.94 0.51 0.99 0.75
7 0.89 0.71 0.93 0.82 0.88 0.68 0.92 0.80
8 0.85 0.65 0.91 0.78 0.84 0.63 0.90 0.77
9 0.87 0.81 0.90 0.85 0.87 0.81 0.89 0.85

Avg 0.90 0.69 0.94 0.80 0.89 0.68 0.94 0.81
Std 0.04 0.08 0.04 0.04 0.04 0.09 0.04 0.03

Table 6.10: Results of the QDA applied to the first 20 components of the PCA
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.77 0.81 0.69 0.75 0.76 0.81 0.69 0.75
4 0.92 0.61 0.83 0.72 0.91 0.60 0.83 0.72
5 0.91 0.54 0.89 0.71 0.90 0.51 0.89 0.70
6 0.95 0.80 0.88 0.84 0.95 0.78 0.88 0.83
7 0.88 0.65 0.80 0.73 0.87 0.63 0.80 0.72
8 0.80 0.79 0.77 0.78 0.80 0.79 0.77 0.78
9 0.78 0.76 0.75 0.76 0.78 0.76 0.75 0.75

Avg 0.86 0.71 0.80 0.76 0.85 0.70 0.80 0.75
Std 0.07 0.10 0.07 0.04 0.07 0.11 0.07 0.04

best with an AUC of 0.85 (specificity of 0.94 and sensitivity of 0.76). As with the

raw waveform data, the SVM and the DT seem to overfit due to the significant

fall of sensitivity between the training set and the 10-fold CC, as indicated by

Figure 6-9 and Figure 6-10.

6.4.3 PCA with Relieff-Algorithm

Applying the ReliefF-algorithm to the PCA further reduces the number of cho-

sen components between 4 and 16 summarised in Table 6.15. However, further

reducing the number of variables results in a reduced accuracy with a sensitivity

between 0.54 and 0.76 as well as in specificity between 0.84 and 0.94. Similar to

the previous shown results, the KNN and the ANN perform best with a an AUC
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Table 6.11: Results of the SVM applied to the first 75 components of the PCA
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.95 0.91 0.97 0.94 0.90 0.82 0.94 0.88
4 0.98 0.70 1.00 0.85 0.96 0.45 1.00 0.72
5 0.98 0.88 1.00 0.94 0.93 0.64 0.99 0.81
6 0.99 0.87 1.00 0.93 0.96 0.66 1.00 0.83
7 0.91 0.80 0.94 0.87 0.82 0.57 0.89 0.73
8 0.93 0.86 0.96 0.91 0.86 0.67 0.92 0.79
9 0.94 0.90 0.96 0.93 0.90 0.78 0.95 0.86

Avg 0.95 0.84 0.98 0.91 0.90 0.66 0.95 0.80
Std 0.03 0.07 0.02 0.03 0.05 0.11 0.04 0.06

Table 6.12: Results of the KNN (with n=10) applied to the first 20 components
of the PCA

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.92 0.92 0.92 0.92 0.90 0.85 0.92 0.89
4 0.97 0.58 1.00 0.79 0.96 0.50 1.00 0.75
5 0.95 0.84 0.98 0.91 0.93 0.74 0.97 0.86
6 0.97 0.76 0.99 0.88 0.96 0.65 0.99 0.82
7 0.92 0.80 0.94 0.87 0.89 0.64 0.95 0.79
8 0.88 0.85 0.89 0.87 0.85 0.76 0.87 0.82
9 0.89 0.86 0.91 0.88 0.86 0.79 0.89 0.84

Avg 0.93 0.80 0.95 0.87 0.91 0.71 0.94 0.82
Std 0.03 0.10 0.04 0.04 0.04 0.11 0.05 0.04

Table 6.13: Results of the ANN (with 20 neurons) applied to the first 20 compo-
nents of the PCA

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.83 0.93 0.94 0.94 0.83 0.76 0.93 0.85
4 0.97 0.70 0.99 0.85 0.96 0.62 0.99 0.81
5 0.94 0.71 0.98 0.85 0.96 0.83 0.95 0.89
6 0.98 0.82 1.00 0.91 0.96 0.80 0.99 0.89
7 0.90 0.78 0.95 0.86 0.90 0.78 0.95 0.86
8 0.86 0.81 0.92 0.87 0.83 0.68 0.92 0.80
9 0.89 0.82 0.91 0.87 0.87 0.87 0.88 0.87

Avg 0.91 0.80 0.96 0.88 0.90 0.76 0.94 0.85
Std 0.05 0.07 0.03 0.03 0.05 0.08 0.04 0.03
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Table 6.14: Results of the DT (minimum leaf size of 20 samples) applied to the
first 20 components of the PCA

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.92 0.87 0.95 0.91 0.85 0.78 0.88 0.83
4 0.97 0.68 0.99 0.84 0.95 0.52 0.98 0.75
5 0.96 0.88 0.98 0.93 0.90 0.70 0.94 0.82
6 0.96 0.76 0.98 0.87 0.93 0.64 0.96 0.80
7 0.94 0.82 0.97 0.89 0.87 0.61 0.93 0.77
8 0.91 0.80 0.94 0.87 0.82 0.57 0.89 0.73
9 0.91 0.84 0.94 0.89 0.82 0.73 0.86 0.80

Avg 0.94 0.81 0.97 0.89 0.88 0.65 0.92 0.79
Std 0.02 0.06 0.02 0.03 0.05 0.09 0.04 0.03

Figure 6-9: Sensitivity and specificity with corresponding standard deviation of
the average values from predictive modelling methods on the whole training set
using the first 20 components of the PCA

Figure 6-10: Sensitivity and specificity with corresponding standard deviation
of the average values from predictive modelling methods on the 10 fold cross
validated set using the first 20 components of the PCA
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Table 6.15: Number of components chosen by the ReliefF algorithm per sample.
No. Components

Sample 2 4
Sample 4 10
Sample 5 16
Sample 6 14
Sample 7 8
Sample 8 5
Sample 9 9

Table 6.16: Results of the LDA applied to the the PCA with ReliefF-algorithm
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.74 0.57 0.83 0.70 0.74 0.58 0.83 0.70
4 0.95 0.69 0.99 0.67 0.95 0.64 0.99 0.82
5 0.90 0.59 0.96 0.78 0.90 0.59 0.97 0.78
6 0.93 0.45 0.99 0.72 0.93 0.44 0.99 0.72
7 0.87 0.60 0.93 0.77 0.87 0.60 0.93 0.77
8 0.76 0.04 0.97 0.50 0.75 0.04 0.97 0.50
9 0.87 0.81 0.90 0.85 0.87 0.81 0.89 0.85

Avg 0.86 0.54 0.94 0.71 0.86 0.53 0.94 0.73
Std 0.08 0.23 0.05 0.10 0.08 0.22 0.06 0.11

value of 0.77 and a specificity of up to 0.94 and sensitivity of around 0.6 in the

10-fold cv data.

6.4.4 Manual chosen variables

The manually-chosen-variables set performs worse in comparison to all previously

chosen datasets with a maximum specificity of 0.96 (SVM) and a maximum sen-

sitivity of 0.76 (QDA). The neural network performs best with an AUC of 0.79

(sensitivity=0.65 and specificty of 0.94), as shown in Table 6.26 and Figure 6-14.

To further investigate the significant variables of the manually-chosen-dataset,

the ReliefF algorithm was applied to the dataset to determine which variables are

significant to the determination of the EVR and the IVR. These are summarised in

Figure 6-15. The results show little significance using the variables 𝐸𝑚𝑎𝑥−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

129



Table 6.17: Results of the QDA applied to the the PCA with ReliefF-algorithm
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.75 0.61 0.66 0.78 0.74 0.60 0.66 0.78
4 0.94 0.38 0.98 0.68 0.94 0.38 0.98 0.68
5 0.89 0.49 0.97 0.73 0.88 0.48 0.97 0.72
6 0.94 0.60 0.98 0.79 0.94 0.58 0.98 0.78
7 0.86 0.68 0.91 0.79 0.86 0.67 0.91 0.79
8 0.70 0.63 0.66 0.74 0.70 0.62 0.66 0.74
9 0.78 0.66 0.75 0.81 0.78 0.65 0.75 0.80

Avg 0.84 0.58 0.84 0.76 0.84 0.57 0.84 0.76
Std 0.09 0.10 0.14 0.04 0.09 0.10 0.14 0.04

Table 6.18: Results of the SVM applied to the the PCA with ReliefF-algorithm
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.88 0.86 0.90 0.88 0.80 0.72 0.84 0.78
4 0.96 0.48 1.00 0.74 0.96 0.41 1.00 0.71
5 0.95 0.75 0.99 0.87 0.91 0.58 0.98 0.78
6 0.97 0.72 1.00 0.86 0.96 0.63 0.99 0.81
7 0.88 0.66 0.94 0.80 0.77 0.47 0.86 0.66
8 0.86 0.58 0.94 0.76 0.81 0.44 0.92 0.68
9 0.94 0.90 0.96 0.93 0.90 0.78 0.95 0.86

Avg 0.92 0.71 0.96 0.83 0.87 0.58 0.93 0.75
Std 0.04 0.14 0.03 0.06 0.07 0.13 0.06 0.07

Table 6.19: Results of the KNN (with n=10) applied to the the PCA with ReliefF-
algorithm

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.83 0.87 0.81 0.84 0.79 0.73 0.82 0.77
4 0.97 0.56 1.00 0.78 0.96 0.41 1.00 0.70
5 0.93 0.78 0.96 0.87 0.91 0.68 0.96 0.82
6 0.96 0.66 0.99 0.83 0.95 0.57 0.99 0.78
7 0.91 0.74 0.94 0.84 0.88 0.61 0.94 0.77
8 0.83 0.69 0.87 0.78 0.79 0.53 0.87 0.70
9 0.89 0.86 0.91 0.88 0.86 0.79 0.89 0.84

Avg 0.90 0.74 0.93 0.83 0.88 0.62 0.92 0.77
Std 0.05 0.10 0.06 0.04 0.06 0.12 0.06 0.05
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Table 6.20: Results of the ANN (with 20 neurons) applied to the the PCA with
ReliefF-algorithm

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.78 0.93 0.94 0.94 0.78 0.70 0.93 0.81
4 0.97 0.70 0.99 0.85 0.94 0.41 0.99 0.70
5 0.94 0.72 0.98 0.85 0.89 0.65 0.95 0.80
6 0.95 0.65 0.99 0.82 0.94 0.59 0.98 0.79
7 0.89 0.72 0.94 0.83 0.88 0.62 0.94 0.78
8 0.82 0.81 0.94 0.88 0.77 0.32 0.93 0.62
9 0.89 0.82 0.91 0.87 0.87 0.87 0.88 0.87

Avg 0.89 0.76 0.96 0.86 0.87 0.59 0.94 0.77
Std 0.07 0.09 0.03 0.04 0.06 0.17 0.04 0.08

Table 6.21: Results of the DT (with minimum leaf size of 20 samples) applied to
the the PCA with ReliefF-algorithm

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.87 0.82 0.89 0.86 0.76 0.68 0.81 0.75
4 0.97 0.70 0.99 0.84 0.95 0.56 0.98 0.77
5 0.94 0.79 0.98 0.88 0.89 0.63 0.94 0.78
6 0.96 0.73 0.98 0.85 0.93 0.59 0.97 0.78
7 0.92 0.71 0.97 0.84 0.87 0.60 0.94 0.77
8 0.88 0.66 0.94 0.80 0.77 0.47 0.86 0.66
9 0.91 0.84 0.94 0.89 0.82 0.73 0.86 0.80

Avg 0.92 0.75 0.96 0.85 0.86 0.61 0.91 0.76
Std 0.04 0.06 0.03 0.03 0.07 0.08 0.06 0.04

Figure 6-11: Sensitivity and specificity with corresponding standard deviation of
the average values from predictive modelling methods on the whole training set
using the components of the PCA extracted from the ReliefF-algorithm
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Figure 6-12: Sensitivity and specificity with corresponding standard deviation of
the average values from predictive modelling methods on the 10 fold cross vali-
dated set using the components of the PCA extracted from the ReliefF-algorithm

Table 6.22: Results of the LDA applied to manual chosen variables
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.83 0.71 0.89 0.80 0.82 0.76 0.86 0.81
4 0.95 0.41 0.99 0.70 0.95 0.41 0.99 0.70
5 0.93 0.64 0.99 0.81 0.92 0.61 0.99 0.80
6 0.93 0.50 0.98 0.74 0.93 0.47 0.98 0.73
7 0.85 0.53 0.93 0.73 0.85 0.58 0.91 0.75
8 0.79 0.23 0.96 0.59 0.79 0.26 0.94 0.60
9 0.87 0.79 0.90 0.85 0.86 0.77 0.90 0.84

Avg 0.88 0.55 0.95 0.75 0.87 0.55 0.94 0.75
Std 0.06 0.18 0.04 0.08 0.06 0.17 0.05 0.07

Table 6.23: Results of the QDA applied to manual chosen variables
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.71 0.93 0.59 0.76 0.71 0.94 0.59 0.77
4 0.88 0.61 0.90 0.76 0.88 0.57 0.90 0.74
5 0.89 0.68 0.93 0.80 0.89 0.67 0.93 0.80
6 0.88 0.66 0.90 0.78 0.87 0.65 0.90 0.78
7 0.79 0.84 0.78 0.81 0.79 0.84 0.78 0.81
8 0.67 0.81 0.63 0.72 0.67 0.81 0.62 0.72
9 0.69 0.86 0.62 0.74 0.69 0.85 0.62 0.74

Avg 0.79 0.77 0.77 0.77 0.79 0.76 0.76 0.76
Std 0.09 0.11 0.14 0.03 0.09 0.12 0.14 0.03
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Table 6.24: Results of the SVM applied to manual chosen variables
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.94 0.91 0.95 0.93 0.87 0.79 0.91 0.85
4 0.97 0.56 1.00 0.78 0.96 0.42 1.00 0.71
5 0.95 0.74 1.00 0.87 0.91 0.54 0.99 0.77
6 0.97 0.74 1.00 0.87 0.95 0.54 1.00 0.77
7 0.93 0.70 0.98 0.84 0.88 0.56 0.95 0.75
8 0.85 0.50 0.96 0.73 0.81 0.40 0.92 0.66
9 0.93 0.88 0.95 0.92 0.87 0.77 0.92 0.85

Avg 0.94 0.72 0.98 0.85 0.89 0.58 0.95 0.77
Std 0.04 0.14 0.02 0.07 0.05 0.14 0.04 0.06

Table 6.25: Results of the KNN (n=10) applied to manual chosen variables
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.80 0.65 0.88 0.77 0.69 0.47 0.81 0.64
4 0.94 0.20 1.00 0.60 0.94 0.15 1.00 0.57
5 0.87 0.28 1.00 0.64 0.86 0.18 1.00 0.59
6 0.91 0.15 1.00 0.57 0.90 0.09 1.00 0.54
7 0.85 0.40 0.95 0.67 0.81 0.17 0.96 0.56
8 0.80 0.49 0.88 0.69 0.74 0.32 0.87 0.59
9 0.78 0.62 0.84 0.73 0.72 0.48 0.82 0.65

Avg 0.85 0.40 0.94 0.67 0.81 0.27 0.92 0.59
Std 0.06 0.19 0.06 0.06 0.09 0.15 0.08 0.04

Table 6.26: Results of the NN (n=16) applied to manual chosen variables
Training Set 10-fold cross validation

Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
2 0.86 0.80 0.90 0.94 0.84 0.79 0.87 0.83
4 0.94 0.44 0.99 0.94 0.96 0.49 0.99 0.74
5 0.86 0.55 0.92 0.93 0.93 0.68 0.98 0.83
6 0.93 0.62 0.98 0.95 0.96 0.73 0.99 0.86
7 0.87 0.54 0.95 0.92 0.88 0.59 0.95 0.77
8 0.75 0.30 0.91 0.83 0.81 0.44 0.92 0.68
9 0.90 0.81 0.94 0.95 0.88 0.80 0.92 0.86

Avg 0.87 0.58 0.94 0.92 0.89 0.65 0.94 0.79
Std 0.06 0.17 0.03 0.04 0.05 0.13 0.04 0.06
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Table 6.27: Results of the DT (minimum leaf size = 20) applied to manual chosen
variables

Training Set 10-fold cross validation
Sample Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

2 0.87 0.79 0.92 0.85 0.81 0.69 0.88 0.78
4 0.96 0.49 1.00 0.74 0.95 0.42 0.98 0.70
5 0.94 0.75 0.98 0.87 0.89 0.65 0.94 0.79
6 0.96 0.76 0.98 0.87 0.93 0.54 0.97 0.76
7 0.92 0.76 0.95 0.86 0.85 0.52 0.92 0.72
8 0.89 0.71 0.95 0.83 0.78 0.48 0.87 0.67
9 0.90 0.84 0.93 0.89 0.81 0.69 0.86 0.77

Avg 0.92 0.73 0.96 0.84 0.86 0.57 0.92 0.74
Std 0.03 0.11 0.03 0.04 0.06 0.10 0.05 0.04

Figure 6-13: Sensitivity and specificity with corresponding standard deviation of
the average values from predictive modelling methods on the whole training set
using manual chosen variables.

Figure 6-14: Sensitivity and specificity with corresponding standard deviation
of the average values from predictive modelling methods on the 10 fold cross
validated set using using manual chosen variables.
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Figure 6-15: Importance weights of the ReliefF algorithm applied to manual-
chosen-dataset, stacked per sample

as well as the positions of the secondary peaks. The largest importance is shown

on the area-under-the-curve of the 𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚 and the 𝐸𝑚𝑖𝑛𝑖𝑚𝑢𝑚 as indicated in

Figure 6-15. For samples 5 and 8 further significance is shown in the secondary

peaks heights of the 3rd, 4th and 5th peaks, whereas Sample 4 gives biggest

significance to the FWHM of the 𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚. The behaviour of Sample 4 may be

explained by the fact that the first secondary peak might be very close to the first

maximum and therefore stretches the initial waveform early enough to be caught

by the FWHM value. Furthermore, the AUC of the maximum energy wave which

contains the largest significance may be accounted for by multiple reflections from

within the sample that are not separated into distinct secondary waves but are

rather incorporated into the maximum energy wave.
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6.5 Results: Raw data of all-sample-set

In this section, the predictive modelling techniques have been applied on the full

sample normalised raw data. Using Leave-One-Out-Sample-Cross-Validation the

intention is to find out if a model trained on seven of the eight samples can predict

the IVR and the EVR of the excluded sample.

Applying the full data set of the raw normalised waveforms does not show

good results. In the majority of cases, the prediction of the previously unseen

sample fails. In many cases the 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒− 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 or 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒−

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 are zero, which leads to a division by zero problem and thus the

accuracy, sensitivity or specificity cannot be determined. Furthermore due to the

size of the dataset, the neural network and the decision tree have been dropped

due to computational limitations.

Table 6.28: Results on the LDA performed on the whole raw dataset
Sample Left Out Accuracy Sensitivity Specificity AUC

9 0.70 0.70 NaN 0.69
8 NaN 0.77 NaN NaN
7 NaN 0.82 NaN NaN
6 0.90 0.90 0.01 0.43
5 NaN NaN 0.17 NaN
4 0.37 1.00 0.10 0.49
2 0.65 0.65 0.01 0.46

Table 6.29: Results on the QDA performed on the whole raw dataset
Sample Left Out Accuracy Sensitivity Specificity AUC

9 NaN 0.70 NaN NaN
8 NaN 0.77 NaN NaN
7 NaN 0.82 NaN NaN
6 NaN 0.90 NaN NaN
5 NaN 0.83 NaN NaN
4 0.77 0.92 0.03 0.48
2 NaN 0.65 NaN NaN
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Table 6.30: Results on the SVM performed on the whole raw dataset
Sample Left Out Accuracy Sensitivity Specificity AUC

9 0.72 0.72 0.71 0.54
8 NaN 0.77 NaN NaN
7 NaN 0.82 NaN NaN
6 0.88 0.90 0.21 0.51
5 0.80 0.87 0.41 0.63
4 0.93 0.93 0.17 0.50
2 0.69 0.69 0.68 0.58

Table 6.31: Results on the KNN performed on the whole raw dataset
Sample Left Out Accuracy Sensitivity Specificity AUC

9 0.65 0.73 0.39 0.91
8 NaN 0.77 NaN NaN
7 NaN 0.82 NaN NaN
6 NaN NaN 0.10 NaN
5 0.83 0.83 1.00 0.91
4 NaN 0.93 NaN NaN
2 0.65 0.65 0.75 0.89

6.6 Conclusion and discussion

Values obtained from the above experiments using the full feature set, the PCA

and the ReliefF algorithm yield a couple statements that can be given regarding

the data itself and the layout of the data:

The quality of the input data seems to be mixed, which can be seen because

of the large differences between the best- and worst-fitted sample. In most cases,

Sample 4 performs worse over all models which is most liekly due to the small

sample size of the IVR.

To differentiate between the IVR and EVR, a linear modelling system performs

well on the full raw dataset with a sensitivity 0.72 of and a specificity of 0.94,

which shows that there is a linear separable dependency in the data. The results

can be improved slightly by using a neural network which acts as a multi-linear

classifier with a sensitivity of 0.79 and a specificity of 0.96. Using the ReliefF

algorithm to determine the variables that show a positive prediction shows that
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almost all variables that contain the positive or negative energy waves are positive

prediction values. Since the early negative wave shows a positive prediction value

as well, which is reflected at the main interfaces between the sample holder and

the skin, this could mean that the malignancy is indeed already visible at the

stratum corneum and further into the epidermis. Also, the slack behind the

positive energy peak, which must be inside the tissue, shows positive prediction

values, which could mean that different absorption rates are present between the

IVR and EVR.

A quadratic, ring or rectangular modelling system does not seem to be the

best choice, as the systems quality with respect to the AUC is low (or modest) or

the prediction model seems to overfit dramatically one the raw dataset as well as

the PCA.

By reducing the number of variables using the PCA and cutting after 20 com-

ponents, the sensitivity and specificity decreases, which may be explained due to

the high amount of noise in the data. However, it is interesting to see that the

specificity always stays high (>90%) using the LDA on all datasets.

By using manually chosen variables a modest trade off can be found using the

QDA on the, with a sensitivity of 0.76 and a specificity of 0.96. Using the ReliefF

algorithm on the the results shows that the most important variables are AUC

of 𝐸𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and 𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚 and the average peak heights chosen from secondary

peaks. However, the AUC of the maximum energy peak mostly contains the

secondary peaks, and these can be seen as overtones on the waveform. While it

is difficult to detect secondary peaks in the data, the ReliefF analysis shows that

some samples, especially samples 5 and 2, seem to show a positive prediction,

which could be an internal reflection from the epidermis.

Applying the full dataset of all samples to the prediction methods and using

a Leave-One-Sample-Out-Cross-Validation to inspect if a system can detect a
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previously unseen cutaneous liaison does not show a positive result. This could

be because of the simple normalisation with the baseline. The sample data seems

to be too different to be comparable with each other. Furthermore, the positive

predictor weights from the ReliafF algorithm applied to each sample show different

areas of interest, making it difficult to find similarities in the data, however positive

predictors can be found just before the positive incident beam as well as far behind

the first incident which could indicate that the malignancy is already close to the

epidermis. If and to what extend the positive predictor weights correlate with

the depth of the lesions is beyond the scope of this study and requires further

information from the histopathologists.

In this chapter, various models have been trained to determine if the IVR and

the EVR are distinguishable by a) taking each sample separately and b) taking

the whole dataset to determine if the IVR of one sample could be predicted by

the other samples. In the next chapter, an investigation of the refractive index of

the malicious lesions taken out and compared to non-melanoma samples.
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Chapter 7

Investigation of the Refractive

Index of MM Samples

The last chapters examined the use of predictive models on features extracted

mostly from raw data. To try to explain these results and to give a more physical-

theory based background, this chapter converts the waveforms to refractive indices

spectra in the terahertz regime which allows us to investigate the cancerous sam-

ples with the samples taken from cosmetic surgery and compare the technique

used to other techniques.

7.1 Conformation study on the determination of

the complex refractive index using solid mate-

rials

Based on the theoretical foundations of the Fresnel equations for the determination

of the refractive index in the frequency domain, a validation is anticipated using

quartz slides with one and two interfaces. Thus, this experiment divides into

two steps. First, we measure each quartz slide separately from the bottom (air-
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Table 7.1: Substrates taken for the experiments. The refractive index was taken
transmission mode measurements between 0.1 and 1.1 THz plus standard devia-
tion apart from BK7 3mm which was taken between 0.1 and 0.7 THz.

Glass Sample Thickness / mm Refractive Index StdDev
SiO2 -Quartz 2.10 2.08 0.00
Fused Silica 1.08 1.97 0.01
Fused Silica 1.65 1.94 0.01

Pyrex 1.69 2.10 0.01
Pyrex 3.29 2.10 0.02
BK7 1.01 2.52 0.03
BK7 3.00 2.56 0.10

quartz interface) and compare our results with values previously obtained from

transmission mode shown in . Second, we put the solid materials on top of the

quartz sample holder and measure the interface between them.

It has also been found that, in the literature, the simplified Fresnel equations

are often used to calculate the refractive index and the absorption coefficient. A

theoretical comparison of the full and simplified Fresnel equations is needed to

show the impact of the equations for calculation of the refractive index.

7.1.1 Windows slides materials

Three different types of window slides, fused silica, Pyrex and BK7 with different

thicknesses were obtained from ESCO Products (New Jersey, NY, USA), and the

sample holder, a C-axis parallel quartz crystalline window (SKU: Q-W-38-2) was

obtained from ISP-Optics. The refractive indices are measured in transmission

and in reflection mode; the properties of the substrates are given in Table 7.1

and Figure 7-1 shows the frequency dependant refractive index from transmission

mode.

To measure differences of substrates with known refractive index and known

thickness, the terahertz machine was set-up in reflection mode using an incidence
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Figure 7-1: Quartz substrates taken from transmission mode measurements

angle of 30° and elliptical, gold-plated mirrors. The underlying chamber was filled

with nitrogen to remove artefacts from air, including especially the water content

within the air.

Prior to measurements of the glass slides, the sample position was adjusted

with a focusing screw by placing a gold reflector on the sample position and

focusing on the maximum reflected energy peak; thus, measurements were taken

using the bottom of a probe as the focus.

Measurements in reflectance mode were taken within a scan range (bandwidth)

of 29 ps (4V) and a wave resolution of 2,048 points. 29 ps were chosen to capture

only the desired reflection of the quartz and the quartz-quartz interface, thereby

surpassing any further secondary reflections (also called Fabry-Perrot effects) that

would interfere with the results [193].

The time-domain waveform was obtained directly from the machine and a
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Figure 7-2: Schematic of the geometry of an electromagnetic wave travelling
through a medium

reference was taken using a gold-plated mirror. The mirror must be positioned

exactly at the same spot as the samples, as minimal misalignments (in the range of

microns) create differences in the phase which significantly alters the results [194].

7.1.2 Theoretical description of single interface Fresnel equa-

tions and determination of the refractive index

For Method 1, the focus of the terahertz beam has been aligned to the bottom

substrate, measuring 𝐸𝑅1 as shown in Figure 7-2. Because the measurement of the

incidence wave 𝐸𝐼 is not applicable in reflection geometry, a gold plated mirror was

used as reference, the reflection of which was almost 100%. In theory, 𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 can

be equated with the incident time-domain beam (𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒). After transforming

the time-domain data into frequency space using the Fast Fourier Transformation

(FFT), the following equations are applied to the sample reflection:

𝑟𝑠 =
𝐸𝑠𝑎𝑚𝑝𝑙𝑒

𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

=
𝑛1 cos(𝛼) − 𝑛2 cos(𝛽)

𝑛1 cos(𝛼) + 𝑛2 cos(𝛽)
(7.1)
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𝑟𝑝 =
𝐸𝑠𝑎𝑚𝑝𝑙𝑒

𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

=
𝑛2 cos(𝛼) − 𝑛1 cos(𝛽)

𝑛2 cos(𝛼) + 𝑛1 cos(𝛽)
(7.2)

The refractive index of a medium is defined by its material dependent speed

of light divided by the speed of light in vacuum, resulting in

𝑛𝑚𝑒𝑑𝑖𝑢𝑚 =
𝑐𝑚𝑒𝑑𝑖𝑢𝑚

𝑐𝑣𝑎𝑐𝑢𝑜
(7.3)

Together with the Snell’s law, which describes the change of direction of (any)

wave going from one medium to another, defined as:

sin(𝛼)

sin(𝛽)
=

𝑛1

𝑛2

≡ 𝛽 = sin−1(sin(𝛼)
𝑛1

𝑛2

) (7.4)

Method 1a In Method 1a, the raw data is used without any manipulation.

The obtained (raw) time-domain data is transformed into the Fourier space using

the fast Fourier transform, and the equations 7.1 to 7.4 are applied.

Method 1b In Method 1b, the maximum energy position of the samples

(the optical delay at the maximum peak of the energy time-domain waveform) is

compared with that of the reference (mirror) one. Since small fluctuations cannot

be avoided, we shift the sample waveform on the reference waveform so that their

maximum peaks have the same optical delay position.

7.1.3 Theoretical description of double interface Fresnel equa-

tions and determination of the refractive index

In Method 2, the quartz substrates were put on top of the sample holder and

the beam was focussed between the two interfaces, as shown in Figure 7-3C. The

substrates were clamped together with the sample holder to reduce the effects of

air gaps which could alter the stability of the refractive index. Since the reflected
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beam transmits through the sample holder and reflects back from the interface

between the sample holder and the substrate, the equations for the determination

of the refractive index become more complicated. We use the following:

𝐸𝑠𝑎𝑚𝑝𝑙𝑒

𝐸𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒

=
𝑡
‖
1,2 𝑡

‖
2,1 𝑟

‖
2,3 + 𝑡⊥1,2 𝑡

⊥
2,1 𝑟

⊥
2,3

𝑡
‖
1,2 𝑡

‖
2,1 + 𝑡⊥1,2 𝑡

⊥
2,1

(7.5)

where t stands for transmittance and r for reflectance. The symbol ‖ indicates

the parallel and ⊥ indicates the perpendicular part of the resulting wave. The

subscripts 1,2 represent the air-sample holder interface; 2,1 is the sample holder-

air interface and 2,3 is the sample holder and substrate interface. The equations

for the transmittance and reflectance part the parallel and perpendicular parts

are as follows:

𝑟⊥𝑖,𝑗 =
�̂�𝑖 cos(Θ𝑖) − �̂�𝑗 cos(Θ𝑗)

�̂�𝑖 cos(Θ𝑖) + �̂�𝑗 cos(Θ𝑗)
(7.6)

𝑟
‖
𝑖,𝑗 =

�̂�𝑗 cos(Θ𝑖) − �̂�𝑖 cos(Θ𝑗)

�̂�𝑗 cos(Θ𝑖) + �̂�𝑖 cos(Θ𝑗)
(7.7)

𝑡⊥𝑖,𝑗 =
2�̂�𝑖 cos(Θ𝑖)

�̂�𝑖 cos(Θ𝑖) + �̂�𝑗 cos(Θ𝑗)
(7.8)

𝑡
‖
𝑖,𝑗 =

2�̂�𝑖 cos(Θ𝑖)

�̂�𝑗 cos(Θ𝑖) + �̂�𝑖 cos(Θ𝑗)
(7.9)

Equations 7.6 to 7.9 are inserted into equation 7.5 and solved numerically due

to the complexity of the resulting equation. As explained regarding Method 1,

we also apply Snell’s law to Equation 7.5 to eliminate the second unknown angle

of the material, thus leaving only the refractive index of the substrate as the

unknown variable. For a detailed description of the Fresnel equation, we refer the

reader to [132].

Method 2a) quartz-quartz interface using gold plated mirror as ref-

erence

Using the quartz as sample holder, the terahertz beam was aligned to be
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Figure 7-3: Measuring modes for substrates on a sample holder

focused on the centre between Medium 1 (sample holder) and Medium 2 (quartz

substrate). The incidence (𝐸𝑖) beam was calculated from a mirror reflection on

top of the quartz, which had been measured independently before the substrate

measurements.

Method 2b), quartz-quartz interface using air as reference The refer-

ence waveform may be calculated using any material with known refractive index

and absorption coefficient. In this case, we use the sample holder in contact with

air. Since the substrate lies on top of the sample holder, we measure the air (also

known as baseline) by focussing on top of the quartz sample holder, as shown in

Figure 7-3B, and by assuming a constant refractive index of 1 and a negligible

absorbance for air.

Method 2b has the advantage that, when one is measuring biological tissue

as a 2D image, one (almost) always encounters surrounding air interfaces as well,

thereby reducing the need to gather additional reflection data from the mirror.

Practically, this is also useful, as the conditions for the second (reflection) measure-

ment may change, and tiny changes may lead to large differences when converting

to the refractive index.

7.1.4 Results

Solid materials have been scanned. Figure 7-4 shows the time-domain results

of the scan, including the mirror reference. Due to a reflection phase change of

180 degrees, what would have been the maximum peak of the incidence beam
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Figure 7-4: Original quartz substrates (left) and adjusted to the minimum peak
of the reference (right)

Table 7.2: Maximum peak shifts of the Terahertz Time Domain waveform to align
to the maximum peak of the reference waveform.

SiO2 Silica Silica BK7 BK7 Pyrex Pyrex
1mm 1.7mm 1mm 3mm 1.7mm 3mm

Shift in pixels 6 -5 4 -3 1 1 5
Shift in ps 0.0814 -0.0678 0.0542 -0.0407 0.0135 0.0135 0.0678

now becomes a negative (minimum) peak. As can be seen in Figure 7-4 (left), the

peak positions are not uniform and have been adjusted (Figure 7-4 (right)). These

shifts are most likely due to tiny misalignments and are of a practical nature, as

the shifts are within a couple of femto seconds, as shown in Table 7.2.

Before applying the Fresnel equations to the raw terahertz data, the fast

Fourier transform was applied to the data, thereby converting the signals from

the time domain into frequency space. In a range up to approximately 1.3 tera-

hertz, the reflection data of unique materials with different heights overlay each

other. Silica shows the smallest magnitude, followed by Pyrex and BK7, as shown

in Figure 7-4.

Applying the Fresnel equations from the equations set in Section 7.1.4, the
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Figure 7-5: Refractive index of SiO2 using Method 1a) raw data and Method 1b)
adjusted data

reflectance optic system configured with parabolic mirrors creates an incidence

beam with an angle of 30 degrees. Since Snell’s Law is applicable here, the reflected

angle from the samples needs to be 30 degrees as well.

Comparison of Method 1a and 1b:

On Method 1b, the maximum peak of the SiO2 quartz sample shifted by 0.0679

ps (6 pixels). The result of Methods 1a and 1b changes dramatically, as the

smallest misalignments between the sample and the reference lead to significant

phase differences between them, which causes an unstable refractive index. This

is demonstrated in Figure 7-5.

The same methodology was applied to all samples and a constant refractive

index was retrieved which is comparable to the values obtained from prior taken

transmission mode measurements. To quantify our results, the mean and the

standard deviation from a frequency range between 0.3 and 1.3 THz was calculated

as this seems to be the regime where the refractive index stays constant. Our

results are in good agreement with the values obtained in transmission mode and

shows an absolute error of under 1%, as summarised in Table 7.3.

In conclusion, we have demonstrated the need for the maximum peak align-
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Figure 7-6: Adjusted refractive indices (Method 1b) of single substrates

Table 7.3: Comparison of mean refractive index from reflection and transmission
mode measurements including the relative and absolute error (in %).

RIreflection StdDev RItransmission rel. Error abs. Error / %
SiO2 2.07 0.01 2.07 0.00 0.0

Silica 1mm 1.97 0.01 1.97 0.00 0.0
Silica 1.7mm 1.96 0.01 1.94 0.02 1.0
BK7 1mm 2.49 0.02 2.51 0.02 0.8
BK7 3mm 2.51 0.02 2.52 0.01 0.4

Pyrex 1.7mm 2.09 0.01 2.10 0.01 0.5
Pyrex 3mm 2.10 0.01 2.10 0.00 0.0

149



ment to improve the accuracy of the refractive index of single solid materials

measured in terahertz reflection mode.

Method 2: Investigation of substrate in contact with the sample

holder - Comparison of Method 2a and 2b

OnMethod 2a, the mirror was used as the reference, whereas on Method 2b, we

use the baseline and calculate the reference from there. As can be seen from Figure

7-7, though the resulting waveforms are almost identical with an 𝐸𝑚𝑎𝑥 of 1.08

and 1.06, the position of the mirror reference and the calculated reference differ

greatly, by 0.12ps (equivalent to 10px). Not taking this shift into account results

in unstable refractive materials of the substrates under investigation (compare 7-8

(left)), whereas taking the air as reference results in a relatively stable and constant

refractive index in a frequency range up to approximately 1.3 THz (Figure 7-8

(right)). By calculating the refractive index of air from the reference taken from

air, the refractive index has to be exactly 1 (Figure 7-8) with a standard deviation

0 (compare Table 7.4 and Table 7.5).

To further quantify the results, the average of the refractive index between

0.3 and 1.3 THz was calculated and the standard deviation was taken. The mean

values have been compared with the transmission ones including their relative and

absolute errors between them. The results of Method 2a are shown in Table 7.4

and the results of Method 2b are shown in Table 7.5.

While from Method 2b, the minimum error is above 2% and the maximum

error is around 13% compared to the values obtained from transmission mode

measurements. Using the air as a reference medium results in a low error compared

to the literature (Table 7.5) and a constant refractive index (Figure 7-8)). We

therefore prefer this Method when dealing with more complex materials.
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Figure 7-7: Real quartz-mirror reflection and calculated reference taken from a
measurement of quartz in contact with air.

Figure 7-8: Comparison of Method 2a refractive index calculated with the mirror
as reference (left) and 2b, refractive index calculated with air as reference (right).
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Table 7.4: Comparison of the mean refractive index obtained from Method 2a
with the transmission values.

RIreflection StdDev RItransmission rel. Error abs. Error / %
Air 1.07 0.05 1 0.07 7.0

Silica 1mm 1.99 0.12 1.95 0.04 2.1
Silica 1.7mm 2.01 0.13 1.94 0.07 3.6
BK7 1mm 2.15 0.14 2.51 0.36 14.3
BK7 3mm 2.72 0.23 2.52 0.20 7.9

Pyrex 1.7mm 1.91 0.02 2.10 0.19 9.0
Pyrex 3mm 2.19 0.17 2.10 0.09 4.3

Table 7.5: Comparison of the mean refractive index obtained from Method 2b
with the transmission values.

RIreflection StdDev RItransmission rel. Error abs. Error / %
Air 1.00 0.05 1 0.00 0.0

Silica 1mm 1.96 0.12 1.95 0.01 0.5
Silica 1.7mm 1.97 0.13 1.94 0.03 1.5
BK7 1mm 2.47 0.14 2.51 0.04 1.6
BK7 3mm 2.55 0.23 2.52 0.03 1.2

Pyrex 1.7mm 2.10 0.02 2.10 0.00 0.0
Pyrex 3mm 2.09 0.17 2.10 0.01 0.5
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7.1.5 Conclusion

In conclusion, we have compared the use of the mirror and the use of an air mea-

surement as references to calculate the frequency-dependant, complex refractive

index of solid quartz materials. It has been shown that use of an air measurement

as reference leads to more feasible and accurate results. We assume that this is

due to surface roughness between two solid materials and inescapable influences

of practical misalignments in the micro-meter regime.

For solid materials that have a negligible absorption coefficient, it would be

feasible to align the waveforms with the reference maximum peak to account for

misalignments, as demonstrated with Method 1; however, when working towards

the scanning of a 3D image of biological tissue, we assume that those shifts might

contain valuable information of the sample under investigation. Shifts in the

waveform compared to the reference waveform are expected especially when the

sample has a high absorption.

Furthermore, this technique is practical for terahertz imaging techniques of

liquids and biological tissues. This is true for two reasons. First, it can be assumed

that liquids and non-rigid materials will not create a gap due to surface roughness

between the sample holder and the substrates. Furthermore, by scanning excised

biological tissue on top the sample holder using step-motors to create an image,

the surrounding air interface can be used as a reference, thereby reducing the

need for a second (mirror) measurement to be taken, which might influence the

outcome due to baseline minimal shifts, as demonstrated with Method 1 in this

article.

While other methods exist with which to obtain the refractive index—such

as [195], which obtains the refractive index of aqueous alcohol and sugar solutions

on a quartz sample holder—they have the problem that they need to take the

bottom of the quartz into account, which lowers the possible bandwidth of the
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Figure 7-9: Measured refractive index of de-ionised water using the calculated
baseline

material under investigation.

7.1.6 Validating data of de-ionised water

Using the corrected baseline, we investigate a more complex material: de-ionised

water, which changes the index of refraction over time and has a high absorbance

in the terahertz regime [196]. Distilled water was chosen for validation of our

methodology, as we are working towards building an understanding of water in

interaction with other materials. Figure 7-9 shows the frequency dependent re-

fractive index of the sample measurements.

De-ionised water has been very well investigated in recent years, which allows

a good verification with the literature values obtained from [24,197,198].
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Figure 7-10: Averaged frequency dependant refractive index of sample 2 (N=3178)
including IVR and EVR with standard deviation from 0.l to 1.2 THz.

7.2 Results: Refractive Index Analysis of Image

Data from melanoma patients

Having established the methodology to obtain the refractive index from samples

on top of the sample holder, we apply these findings to the skin data. The re-

fractive index is evaluated on all samples from a frequency between 0.2 and 1.2

THz has a higher frequency increases the noise up to an unmeasurable amount.

Furthermore, a frequency lower than 0.2 Terahertz is unreliable with Terahertz

rays. The averaged frequency dependent RI of Sample 2 shows a lower refractive

index of the extra-visual region compared to the intra-visual region, which could

indicate that the EVR is less hydrated then the IVR, however, the data shows no

statistical significance due to a high standard deviation, which increases on lower

frequencies, shown as error bars in Figure 7-10. In principle, it can be said that a

lower frequency comprises a bigger difference in the RI but also a higher standard

deviation. At higher frequencies the differences between IVR and EVR becoming

increasingly indistinguishable, which could be an indication of a lower penetration

depth at higher frequencies however has been found to be comparable to other

155



Figure 7-11: Averaged frequency dependant refractive index of sample 4 (N=2966)
including IVR and EVR with standard deviation from 0.l to 1.2 THz.

Figure 7-12: Averaged frequency dependant refractive index of sample 5 (N=1102)
including IVR and EVR with standard deviation from 0.l to 1.2 THz.

studies found in the literature. Peak differences and shoulders on frequencies close

to each other are most likely noise due to the calculation of the RI requiring a

previously measured baseline (or reference). Similar results are observed on all

other samples and are shown in figures 7-10 to 7-16.

7.3 Refractive Index fitting

The refractive index curves discussed in the last section lead to the problem, that

even though in some cases the IVR is higher than the EVR at very low frequen-
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Figure 7-13: Averaged frequency dependant refractive index of sample 6 (N=2591)
including IVR and EVR with standard deviation from 0.l to 2 THz.

Figure 7-14: Averaged frequency dependant refractive index of sample 7 (N=2507)
including IVR and EVR with standard deviation from 0.l to 1.2 THz.

Figure 7-15: Averaged frequency dependant refractive index of sample 8 (N=2757)
including IVR and EVR with standard deviation from 0.l to 1.2 THz.
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Figure 7-16: Averaged frequency dependant refractive index of sample 9 pressed
onto the sample holder (N=2197) including IVR and EVR with standard deviation
from 0.l to 1.2 THz

cies, the data does not show a statistical significant differences between the two

regions. Furthermore, noise in the lower frequency regime leads to a certain in-

stability in the curves, especially when other works found in the literature are

consulted (compare [199]). To reduce these effects, fitting is introduced, which

may be used not just to filter out noise but also gives (crisp) numbers to describe

the frequency-dependent function. In recent years, fitting has been proposed by

utilizing the Debye and Double-Debye models, which describe the dielectric re-

laxation for intermolecular and intramolecular reactions over a wide frequency

spectrum and have been intensively used to find those reactions in deionised wa-

ter [169,200] and in non-melanoma human skin cancers [201,202]. Unfortunately,

due to the amount of noise and the relatively low resolution in the frequency spec-

tra plus assumptions regarding unknown variables that need to be made for the

Double-Debye model, it was found to be inapplicable to the data collected (data

not shown). Thus, other, simpler models are studied to describe the waveforms

in the range of 0.2 to 1.3 THz, which are evaluated by the 𝑅2-values. In most

cases a power fit in the form of 𝑓(𝑥) = 𝑎𝑥𝑏 has been found to be the most suitable

function as it yields the highest 𝑅2-value of 0.94, as indicated in Table 7.6.
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Table 7.6: Comparison of fitting function of sample 2 with their respective coeffi-
cients and 𝑅2-values.

function a b c R2

exponential 2.33 -0.21 0.90
linear -0.08 2.65 0.56

logarithmic -0.47 1.82 0.79
polynomial (2nd order) 1.76 -3.03 3.16 0.76

power 1.92 -0.12 0.94

Table 7.7: Power function fitting of benign and malign (IVR) parts of the samples
including a and b coefficients as wells as the RMSE and 𝑅2-value with standard
deviations.
Sample Type a StdDev. a b stdev b R2 RMSE StdDev R2

1.1 benign 1.92 0.02 -0.12 0.01 0.03 0.94 0.02
1.2 benign 1.97 0.03 -0.11 0.01 0.03 0.94 0.02
1.3 benign 1.91 0.02 -0.14 0.01 0.02 0.96 0.01
2 malign 2.14 0.43 -0.07 0.20 0.06 0.75 0.18
4 malign 2.10 0.08 -0.10 0.02 0.04 0.85 0.10
5 malign 1.97 0.05 -0.13 0.03 0.03 0.91 0.08
7 malign 1.82 0.08 -0.15 0.02 0.10 0.64 0.08
8 malign 1.89 0.11 -0.11 0.02 0.05 0.78 0.05
9 malign 1.93 0.06 -0.08 0.03 0.03 0.84 0.12

The power function is evaluated over all waveforms of each sample but also

divided into the IVR and EVR. In this case, it is anticipated to compare the

IVR of the malign samples together with the first three benign samples, with the

results that the standard deviation of the 𝑅2-values, the coefficients a and b of

the benign samples are significant smaller than the malign samples, as shown in

Figure 7-17 with data from Table 7.7. This gives rise to the assumption that the

variation of the sample containing malignancies is higher than of the benign ones.

7.4 Conlusion

In this chapter, we have evaluated different methods for the determination of the

frequency dependant refractive index using different quartz slides with known,
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Figure 7-17: Mean R-square values of the samples with standard deviation.

constant refractive indices. We have compared the results to measurements previ-

ously taken in transmission mode and established a methodology to calculate the

refractive index, which is close to the ones found in the literature. This Method

has been applied to the skin sample data and the IVR and EVR were evaluated.

At lower frequencies the refractive index on all samples is higher than on higher

frequencies. In this region, the IVR is slightly then the EVR but not of statistical

importance. To cancel out noise various fitting functions have been applied to the

refractive indices with the result that a power-function is mostly to reflect the RI

correctly with an 𝑅2-value of 0.94. This fitting function has been applied to the

benign samples (1.1 - 1.3) and IVR of the malign samples. The results show a

lower 𝑅2-value at the benign samples. However, since the sample size of the be-

nign lesions is very low and originates from the same person which was also much

younger (30) it cannot said for certain if this is due to differences in the benign

and malign lesions. It could as well beage difference or the size of the sample that

causes the changes in the standard deviation of the 𝑅2-values.
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Chapter 8

Conclusion and discussion

In this pilot study, a primary investigation of the potential of terahertz imaging

in reflection geometry for the early diagnosis of human cutaneous melanoma was

carried out using eight samples of MM and three of healthy tissue (moles) ex-vivo.

By comparing the samples containing melanoma with histopathology findings,

there is potential that THz might show regions not visible by the naked eye or with

the dermascope where the tumour is active in infiltrating surrounding tissue and

creating fibroblasts around the lesion as a side-product. While this analysis would

require further confirmation, it can be said that the terahertz images obtained

show similarities with the visual taken with a digital camera.

To further investigate these similarities, a quantitative analysis of the EVR and

IVR was performed with different datasets on a per sample basis. The raw dataset

per sample shows a positive prediction between the EVR and the IVR using a

linear classifier or a neural network, which makes this method comparable to

similar research performed with NIR-machines. To ensure that the data obtained

from the reflected terahertz beams is not purely random with respect to the layout

of the data obtained, predictive modelling techniques were applied to the data

using resubstitution and 10-fold cross-validation.

161



The results showed that the linear discriminant analysis and the neural network

performed well over all samples with a specificity of up to 79% and a sensitivity

of 96%, which has been shown to be in good agreement over all samples, as the

cross-validation showed few outliers. Therefore, we conclude, that malignancy

is encoded within the terahertz. Furthermore, due to the high sensitivity, the

models are good in identifying healthy skin as such. By using the ReliefF, it was

found that almost all variables that contain the area-under-the-curve are positive

prediction values and furthermore evidence to secondary peaks as cause of the

malignancy. Interestingly, the main maximum peak is not a high predictor, which

may be due to normalisation but is most likely because the energy wave conceals

a secondary signal, if present. The initial negative peak is also found to be a

positive predictor, which could mean that the malignancy is already detectable

at the very front of the skin, i.e., at the stratum corneum. The high predictors

behind the maximum wave are different regarding there position of the optical

delay from sample to sample and may indicate different depths of the tumours.

However, to investigate the depth of a malignancy, further histological data would

be required that could shows a correlation of the histological found tumour depth

and the positive prediction values obtained from the ReliefF on the raw waveforms.

Unfortunately, for this study, depth information from the histologists could not

be retrieved due to regulations and privacy concerns.

Further analysis utilising the PCA and manually chosen variables did not show

a better result than those obtained from the raw datasets, which indicates that

the information for the differentiation is manifold and that a dimension reduction

cannot be performed using the PCA.

While it was anticipated that we would find a predictive modelling technique

suitable for all samples which did not show any good results, an investigation

of the samples on the complex refractive index was carried out. An exponential
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fitting function was applied to the frequency-dependant refractive indices on all

samples between 0.3 and 1.3 THz to further quantify the results. It was found that

all samples have different refractive indices, which is most likely due to different

thickness and water absorption and position on the body of the excised lesion. A

comparison of the moles with the infiltrated tissue (IVR) showed that the standard

deviation of the fit, the noise, is much lower on the healthy tissue than on the

infiltrated tissue. However, this should be investigated further, as the sample size

of the healthy tissue was low, as it contained three moles from different sides of

the body of the same patient.

One of the biggest limitations of this study is that all samples have been put in

saline for transportation to prevent the sample from drying out before undergoing

standard histology procedure. Due to the high content of surrounding saline it is

most likely that the sample cells saturate which may account for a higher amount

of noise but also for a higher absorption rate, which makes it difficult to find

relevant data behind the maximum energy wave, if present. The same limitation

of sample collection accounts for the relatively small time window in which samples

were scanned. To make sure that samples would not degrade before arriving at the

histologist, the sample acquisition time has been set to a maximum of 30 minutes.

Therefore, we had to make sure that a complete scan of the sample was taken

out in around 20 minutes. Without this limitation, one could scan a sample point

multiple times and take the average value to reduce noise during the scanning

process.

The analysis carried out in this thesis shows that terahertz imaging in reflection

geometry indeed has the potential to be beneficial for the diagnosis of melanoma;

however, further research need to be performed in this field.

With the new development of external probes for terahertz emission and de-

tection, it would be interesting to collect data from patients before excision by
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scanning healthy skin close to the potential lesion and using it as a baseline before

scanning the actual lesion. Furthermore, by cutting the excised lesion, a B-scan

could be performed which then could be compared to histology findings more

precisely than in this study to further investigate the infiltration of surrounding

tissue during the RGP.
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Appendix A

TNM Staging system after AJCC
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Figure A-1: TNM Staging System after AJCC
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Appendix B

Waterfall images and results of the

ReliefF algorithm on the raw

terahertz data per sample
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Figure B-1: False colour waterfall diagram from patient 2 of the sample (top) and
air (bottom) waveforms transformed into 2D.

Figure B-2: Mean waveform of patient 2 skin data (top) and corresponding pre-
dictor importance weight of the ReliefF algorithm (bottom).
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Figure B-3: False colour waterfall diagram from patient 4 of the sample (top) and
air (bottom) waveforms transformed into 2D.

Figure B-4: Mean waveform of patient 4 skin data (top) and corresponding pre-
dictor importance weight of the ReliefF algorithm (bottom).
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Figure B-5: False colour waterfall diagram from patient 5 of the sample (top) and
air (bottom) waveforms transformed into 2D.

Figure B-6: Mean waveform of patient 5 skin data (top) and corresponding pre-
dictor importance weight of the ReliefF algorithm (bottom).
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Figure B-7: False colour waterfall diagram from patient 6 of the sample (top) and
air (bottom) waveforms transformed into 2D.

Figure B-8: Mean waveform of patient 6 skin data (top) and corresponding pre-
dictor importance weight of the ReliefF algorithm (bottom).
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Figure B-9: False colour waterfall diagram from patient 7 of the sample (top) and
air (bottom) waveforms transformed into 2D.

Figure B-10: Mean waveform of patient 7 skin data (top) and corresponding
predictor importance weight of the ReliefF algorithm (bottom).
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Figure B-11: False colour waterfall diagram from patient 8 of the sample (top)
and air (bottom) waveforms transformed into 2D.

Figure B-12: Mean waveform of patient 8 skin data (top) and corresponding
predictor importance weight of the ReliefF algorithm (bottom).
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Figure B-13: False colour waterfall diagram from patient 9 of the sample (top)
and air (bottom) waveforms transformed into 2D.

Figure B-14: Mean waveform of patient 9 skin data (top) and corresponding
predictor importance weight of the ReliefF algorithm (bottom).
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Appendix C

First three principle components

from sample data

Figure C-1: Principle components coefficients of the first three components of
patient 2.
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Figure C-2: Principle components coefficients of the first three components of
patient 4.

Figure C-3: Principle components coefficients of the first three components of
patient 5.

Figure C-4: Principle components coefficients of the first three components of
patient 6.
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Figure C-5: Principle components coefficients of the first three components of
patient 7.

Figure C-6: Principle components coefficients of the first three components of
patient 8.

Figure C-7: Principle components coefficients of the first three components of
patient 9.
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Appendix D

2D images of manual extracted

features from the samples terahertz

data

The images shown in this appendix show all 27 extracted variables from the tera-

hertz time domain waveform data per sample. The data is structured so that the

first values are from the EVR whereas the latter ones are from the IVR shown in

Table D.1.

Table D.1: Overview of sample collection and classification in EVR and IVR.

Sample Overall data waveforms Classified as EVR Classified as IVR
Sample 2 2549 1626 923
Sample 4 2523 2349 174
Sample 5 935 775 160
Sample 6 2310 2072 238
Sample 7 2196 1793 403
Sample 8 2493 1926 567
Sample 9 1931 1353 578
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Figure D-1: Manually extracted features from sample 2.
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Figure D-2: Manually extracted features from sample 4.
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Figure D-3: Manually extracted features from sample 5.
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Figure D-4: Manually extracted features from sample 6.
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Figure D-5: Manually extracted features from sample 7.
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Figure D-6: Manually extracted features from sample 8.
184



Figure D-7: Manually extracted features from sample 9.
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