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Abstract: This study presents a novel measurement-based method for modelling harmonic current injections of low-voltage
power electronics equipment. The aim of the developed methodology is to accurately represent harmonic current phase angle in
response to the applied harmonic background voltage at the terminals of modelled device. In this method, the harmonic angles
are analysed with the techniques of circular statistics. The performed study proves the adequacy of representing phase angles
as sets of directional data rather than linear. After graphical and quantitative analysis, the regression models with underlying von
Mises distribution are derived in the form of algebraic equation. This algebraic equation features sine and cosine terms and
explains relationship between independent variable – voltage harmonic angle and dependent variable – current harmonic angle.
The subsequent analysis of the residuals allows to conclude that models developed by applying this technique can be used in
commercial simulation packages and allow to account on any value of background harmonic voltage angle.

1 Introduction
Voltage and current harmonic distortions are taking nowadays
place among power quality issues with rising amount of complaints
by customers. Increasing number of devices are being
interconnected with the grid through power conditioning
equipment. Recent detailed studies confirm that harmonics causing
such well-known issues as overloading of power system
components with tremendous thermal impact accompanied by poor
power factor and additional power loss require multilateral
research [1, 2].

Accurate models of harmonic producing sources are essential
for studying their impact on voltage distortion levels. The
challenge in developing a model suitable for harmonic propagation
studies in the distribution networks is to accurately represent the
impact of background voltage distortion on harmonic current
emission of certain device. This challenge is governed by a trade-
off between the complexity of a model and its level of details.
Moreover, not only the modelling approach itself is important but
also the convenience of applicability of developed model in the
commercially available simulation packages.

The current modelling practice encompasses several approaches
but among the most efficient is Norton-coupled frequency
admittance matrices (FCM). This modelling method accounts on
the sensitivity of the harmonic currents to the angle of background
voltage distortion. Additionally, it allows to consider harmonic
interaction between voltages and currents of different harmonic
orders. A thorough attention to this method was given in [3] where
coupled capacitor-smoothed bridge rectifiers were modelled as
coupled admittances. The authors of this study proved that
harmonic current is influenced significantly by applied harmonic
voltage amplitudes and phase angles. Moreover, complex
deviations of model output vector from the measurements were
used to evaluate accuracy of the investigated models. The results
showed 10–20% average deviations for 50% quantiles of data.

In [4], the authors emphasised the importance of metrological
requirements to the measurement system used for obtaining initial
data for Norton models. They demonstrated that derivation of FCM
depends strongly on the accuracy of such a system.

The properties of admittance elements with respect to the
topologies of power electronics equipment (PE) have been studied
in [5, 6]. The Fourier descriptors were proposed for estimating and

analysing FCM. It was found out that depending on the topology of
power electronic device, specifically on the type of power factor
correction (PFC) some equipment types can indicate wide linear
range in the coupled Norton approach – a brilliant observation
leading to the prediction of harmonic behaviour of certain devices.
Based on the measured values, the authors of these papers
proposed the quantification of linearity – a non-linearity harmonic
current response index.

To conclude, the Norton frequency-coupled matrices is a
powerful modelling approach, which de facto requires significant
amount of accurate measurement sets and ample mathematical
derivations. Its implementation in commercial simulation packages
can be somewhat limited since an iterative harmonic load flow
would require a large number of admittance matrices comprised in
advance in order to take into consideration all scenarios of interest.

As an alternative to Norton FCM, a component-based
modelling of harmonic loads is capable of reproducing the
instantaneous input current waveform of each individual power
electronic device. Such models require the fundamental knowledge
about topology of studied devices and numerical values of the
components. In [7], a method for modelling residential aggregate
loads for harmonic analysis was presented. Generic models based
on the equivalent circuits of the power electronics-driven
equipment have been developed. Based on the results, authors of
this paper concluded that proposed aggregate models were suitable
for preserving full information on the electrical characteristics of
the modelled load mix. This approach was further developed in [8].
The main contribution of this work is a combination of detailed
component-based modelling approach with the Markov-chain
Monte Carlo routine allowing to account on user-load interaction.
The case study involved modelling of groups of compact
fluorescent lighting (CFLs) and important observation concerned
diversity factors to quantify harmonic cancellation effects between
different groups.

A rigorous component-based modelling of modern switched-
mode power supply, photovoltaic (PV) inverter and electric vehicle
charger has been shown in [9]. In this work, authors also
introduced an influence of changing power operating mode on
resulting harmonic emission levels as well as gave an important
remark to test modern PE in presence of non-sinusoidal supply
voltage waveform. This modelling approach in combination with
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probabilistic methods was also applied in [10] for studies of the
commercial load sector.

As it can be deduced from these works, the component-based
models introduce high level of details and associated complexity
into the simulation scenario but they, nevertheless, require
knowledge on generic underlying equipment topologies, type of the
control system and values of the base components. Being able to
accurately reproduce harmonic content of a certain device or a
group of individual devices, they are bound to be used within
specialised simulation software, for instance EMTP.

Finally, deterministic modelling methods are complemented by
harmonic fingerprints. This modelling process was firstly described
in [11] where harmonic current injections were comprised in look-
up table according to the applied individual voltage background
harmonics. The phase and magnitude of each individual harmonic
voltage were changed stepwise providing at the end of procedure
full harmonic current spectrum of equipment under study. The
measurement approach is quite similar to the one used for FCM
models, yet the post-processing part does not require complex
mathematical equations. The idea was further developed in [12] for
aggregate models of PV inverters.

Next, stochastic aggregate harmonic load models form a distinct
family of methods focusing on application in stochastic harmonic
propagation studies. Among research works involving development
of such probabilistic models are [13, 14]. These methods are best
suited for simulating an impact of large bulk of aggregate low-
voltage load on medium-voltage networks with both composition
and participation factor of loads usually modelled as random
variables. As it was shown in these works, the accuracy of such
models relies on the extent of measurement campaign typically
lasting weeks at one particular location. On the other hand, the
uncertainty of probabilistic models can be large if part of the
measured data is substituted with historical or typical values.

As it can be seen, a large variety of modelling methods is
currently available. Nevertheless, harmonic models described by
certain deterministic function derived from the reasonable amount
of field measurements are still widely sought. Evidently,
development of such models suggest specific data-fitting
procedures. A strong advantage of the algebraic equation
representing behaviour of the harmonic source is its ease of
application in simulation environment and reckoning on a large
amount of simulation scenarios.

Some work has been done in order to apply data-fitting routines
to the measured sets of data. In [15], authors presented a method
based on a linear least-square (LLS) estimator performed on the
decoupled Norton admittances matrices of CFL. Due to the
numerical instability of the algorithm it was not possible to obtain
either accurate estimates of full Norton model or coupled
admittance model. The results of this particular case study
demonstrated reasonably good accuracy of the derived model in
terms of current magnitudes but omitted angle derivation. The
underlying reason in disregarding angle of harmonic is the nature
of LLS, which requires modifications in order to resolve phase
information.

In [16], an excellent method for modelling background
harmonic voltage source has been presented. A non-linear least-
square (NLSF) was applied to the sets of field data after statiscal
processing which involved smoothing and filtering the data with
Gaussian distribution. While the output of this algorithm in the
form of normal distribution deemed to be appropriate for
representing current magnitudes of combined operation of many
harmonic sources, a different approach is required to model a
response of the certain harmonic load.

To conclude, despite the research aiming to derive algebraic
equations associated with harmonic sources, there is currently a
lack of harmonic models of that type.

In this paper, we propose a novel method for modelling
individual harmonic producing sources based on the foundations of
circular statistics. A measurement procedure attributed to the
harmonic fingerprinting [11] is used for obtaining the initial sets of
data for three modern PE devices: PV inverter, battery charger and
a group of CFLs. After that, coefficients of the models are
estimated with the application of circular regression algorithm. The

output of the modelling process is compared with the measured
data to check for satisfactory performance.

The novelty of the proposed method lies in the procedure of
deriving the relationships between applied harmonic background
voltage angle and the phase angle response of the harmonic current
emission of the device. The described modelling process brings an
improvement over the fingerpint method [11]. Further, on contrary
to another high-level details models, the proposed procedure is
characterised by reduced level of complexity, yet providing stable
output with regard to any input harmonic background voltage.

The expected accuracy of the models is in line with the most
accurate state-of-the-art harmonic models available, e.g. as shown
in [10, 17, 18]. The main advantage of the proposed approach is the
possibility to reduce the model to an analytic dependency on the
supplied voltage, which leads to the improvement of the iteration
process in load-flow based solvers for harmonic analysis, as it
avoids additional iterations in the simulations. This will allow to
exclude possible convergence problems with the algorithm in case
of large system studies with a significant number of sources
present.

As it will be shown in this paper, an accurate modelling of
harmonic angles cannot be performed on the basis of Gaussian
distribution of linear data but rather needs to be tackled by
approach of circular (directional) statistics. Naturally, circular
statistics methods lay a foundation for explaining relationships
between dependent and independent angular variables.

This paper is structured as follows. Section 2 gives fundamental
information about directional statistics, Section 3 describes the
analysis process of measured data and proves suitability of chosen
methods, Section 4 provides knowledge about used circular
regression model, Section 5 is focused on the obtained modelling
results. Some additional implications about modelling process are
given in Section 6 and summary of the research is presented in
Section 7.

2 Circular statistics for the analysis of harmonic
phase angles
Owing its origins to medicine and astronomy and later finding
applications in biology, geology and meteorology, circular or
directional statistic methods have been mostly untouched by power
system engineers and researchers. In the latter, the basic electrical
parameters – currents and voltages are represented fundamentally
by magnitudes and angles, making the linear approximations in
analysis of such data possible, but not sufficient for routine data
processing.

Approximate linearity may serve its purpose in large variety of
power system analysis cases, but specific fields – for instance,
analysis of harmonic distortions would require different approach.
This is merely due to the fact that harmonic-producing sources
exhibit non-linear behaviour and harmonic phase angles therefore
can be analysed as two-dimensional orientations on a unit plane.
The following subsections provide basic theoretical knowledge
with respect to directional statistics and are mainly based on [19].

2.1 Fundamental parameters

The fundamental step in analysing directional sets of data is
identifying whether or not measured set contains certain modal
(directional) group or, perhaps, several modes (multimodal data).
One of the most important quantities is a mean direction of circular
data given as

cos θ̄ = C /R, sin θ̄ = S/R (1)

where

C = ∑
i = 1

n
cos θi, S = ∑

i = 1

n
sin θi, R2 = C2 + S2 (2)
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and θi is individual angle measurement. Furthermore, the next
descriptive quantity associated with the mean direction θ̄ is the
mean resultant length R̄ given by

R̄ = R/n (3)

where n is a number of samples and R is a sum of variables of
representative dataset defined on a cyclic interval [0, 2π]. Thus, the
mean resultant length is the outcome of vectorial summation but
not arithmetic. Its value lies in range (0,1) and R̄ = 0 can
potentially but not necessarily imply uniform distribution of
samples around the circle. On the other hand, values close to R̄ = 1
indicate rather large concentration of data points. In other words, R̄
is an estimator measuring the concentration.

These two quantities form angular and amplitude components
of the first trigonometric moment

m1′ = C̄ + iS̄ = R̄eiθ̄ (4)

and trigonometric moment m1′ is a basic population characteristic
describing the underlying probability distribution function.

2.2 Probability distribution on the circle

From Section 2.1 it follows that circular data cannot be described
by normal Gaussian distribution since all basic statistical
parameters are presented in vectorial rather than scalar form. The
most often used model is von Mises symmetric unimodal
distribution for which dispersion equals to a concentration
parameter k on contrary to the normal distribution, where
dispersion is represented by the variance σ2. It is worth noting that
increasing k value indicates rising concentration around reference
direction and typically if k ⩾ 2 it is reasonable to fit measured data
to von Mises distribution and apply corresponding statistical
methods.

The probability density function is given as

f (θ) = [2πI0(k)]−1exp[kcos(θ − μ)]
0 ⩽ θ < 2π, 0 ⩽ k < ∞ (5)

where k is a concentration parameter and μ is a mean direction and

I0(k) = (2π)−1∫
0

2π
exp[kcos(ϕ − μ)]dϕ (6)

is the Bessel function. Finally, the distribution function of von
Mises distribution is represented by

F(θ) = [2πI0(k)]−1∫
0

θ
exp[kcos(ϕ − μ)]dϕ (7)

If k approaches 0, the distribution converges to the uniform
distribution whilst if k = 1, the distribution tends to the point
distribution concentrated in the direction μ.

The evaluation of these functions is complex and is best done
by means of commercial software packages. In this paper, we use
R software for analysing circular data.

It is worth of noting that in some cases the von Mises
distribution can be closely approximated by wrapped normal
distribution which can be obtained by wrapping normal distribution
around the circle [19].

2.3 Statistical tests

In order to decide whether or not the particular set of angular data
can be fit to unimodal distribution, a number of tests must be
performed. Test of uniformness against a unimodal alternative or
Rayleigh test is a suitable formal tool for that purpose. The
Rayleigh test statistic is then given as

R0
¯ = R̄cos(θ̄ − μ0) (8)

where R̄ is a mean resultant length, θ is a mean direction and μ0 is
the mean direction of the alternative unimodal model. It is typical
to reject the null hypothesis of uniformity if R0

¯  is large and exceeds
the significance probability of R0

¯  calculated as

P0 = 1 − pz + f z[(3Z0 − Z0
3)/(16n)

+(15Z0 + 305Z0
3 − 125Z0

5 + 9Z0
7)/(4608n2)]

(9)

where Z0 = (2n)
1
2 R0

¯ , n is a number of samples and pz = Φ(Z0) is
table values which define percentiles of the normal distribution.

Other tests exist to verify specific alternative assumptions, for
instance Watson test aiming to check null hypothesis of
randomness against von Mises distribution.

3 Analysis of the measured data
In this paper, three distinct types of low-voltage PE are present,
namely 1 kW single-phase PV inverter, Li-ion battery charger with
rated input current of 16 A and a group of CFL lamps comprised of
36 pieces of different brands.

The measurements were performed according to [11] for every
equipment type. Firstly, a harmonic source is connected to the
undistorted voltage supply and the emission level at this condition
is measured. Further, individual harmonics with magnitudes
between 0.5 and 5% depending on the harmonic order are added
one by one. Next, within each level of harmonic voltage
magnitude, a phase shift is being varied between 0 and 360° with
standard step of 30° and the harmonic current response of
equipment under test is recorded. Finally, all the obtained data are
organised into convenient look-up tables.

In order to investigate the shape of distributions of measured
values, the harmonic currents were split into the magnitude and
phase angle components. After that, harmonic phase angles were
organised on a unit circle pane. Fig. 1 presents measured harmonic
current angles of PV inverter in response to voltage background
angles varied as 0, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270
°, 300° and 330°. The composition of these plots is typical for
representing angular data by means of circular statistics. On the
shown unit panes every black dot corresponds to the one specific
value of an angle of emitted harmonic current. Whenever the phase
of harmonic current falls within the same sector multiple times, the
dots are plotted on a ‘stacked’ manner. At the later stages this
technique allows to assess the modes of distribution. The
magnitude of voltages was kept at the same level. Furthermore, the

Fig. 1  Fingerprint of measured current angles of PV inverter
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recorded data were analysed with circular statistics methods as
described in Sections 3.1 and 3.2.

3.1 Exploratory analysis

At this stage, the purpose of the initial graphical analysis is to
merely assess the fundamental harmonic behaviour of equipment
under test and to conclude if there are certain patterns in angle
distribution. The black filled circles in Fig. 1 designate directions
of harmonic phase angles. The prevailing direction is clearly
visible for fifth harmonic, where points falling under the same
group are drawn in a stacked manner. Furthermore, the spread of
angles is increased for 7th and 9th harmonic and becomes nearly
evenly distributed for 13th harmonic component.

For visual evaluation of the presence of certain directional
modes, another non-parametric statistical instrument is applied.
Fig. 2 shows kernel density estimates of the measured data. In
general, the influence of each data point is stretched over
reasonably small arc containing this data point. Next, the final
density estimate for prevailing direction is then represented as the
sum of all the contributions of smoothed points. The unimodal
groups falling between 0 and 75° are clearly observable in Figs.
2a–c. Some irregularities in the form of additional bumps can be
visible in Fig. 2d corresponding to 13th harmonic order.

Based on this initial analysis, it can be concluded there is an
evidence of prevailing directions of harmonic phase angles as
consequence of changing background voltage distortion angle.

Furthermore, once the presence of unimodal groups in
measured data is established, a graphical assessment of goodness-
of-fit for the von Mises model is performed. One way to check
whether samples of data belong to a specified distribution is
quantile-quantile (Q-Q) plots. Along the y-axis the input data is
plotted versus the x-axis which is a collection of theoretical values
of expected distribution. In case when the resulting plot shows
signs of linearity it can be concluded that the data sample comes
from the sought distribution. Fig. 3 demonstrates that studied
circular distribution model is suitable for the representing
measured set of data. There is little evidence of the departure from
the model for 5th (Fig. 3a) and 13th (Fig. 3d) harmonic orders,
however, Q-Q plots can be fluctuating and therefore formal
statistical tests are required.

The exploratory phase of analysis was performed in a similar
fashion for the other two equipment types and results are shown in
Figs. 4–7. It is interesting to note the spread of harmonic current
angles of battery charger ( Fig. 4). From these directional plots it is
observable that for seventh and ninth harmonic the angles are
distributed visually evenly, and this is confirmed by Figs. 5b and d.
The latter kernel density estimate graphs demonstrate the presence
of several modes of distribution. This in theory can point to the
lesser goodness-of-fit, however, at this stage the data samples
cannot be discarded based only on the visual analysis. It will be
shown in Section 3.2 that formal mathematical tests identify the
presence of one large mode. Moreover, the effect of even spread of
the majority of current harmonic angles can possibly be referred to
the notion of linearity studied in [5, 20] and can be attributed to the

Fig. 2  Kernel density estimate of PV inverter current angles
(a) Fifth harmonic, (b) Seventh harmonic, (c) Ninth harmonic, (d) Thirteenth harmonic

 

Fig. 3  von Mises Q-Q plot for the PV inverter harmonic angles
(a) Fifth harmonic, (b) Seventh harmonic, (c) Ninth harmonic, (d) Thirteenth harmonic

 

Fig. 4  Fingerprint of measured current angles of battery charger
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underlying topology of power electronic equipment, to be more
specific to the type of PFC.

On the other hand, a group of CFLs demonstrates highly non-
linear behaviour with angles being concentrated strictly in certain
quadrants (Fig. 6). As it was mentioned before, a current angle
response belonging to the same sector is being stacked on the
response of previous test scenarios of changing voltage background
angle with a step of 30°. The fact is confirmed by kernel density
plots (Fig. 7) showing quite narrow modal groups for selective
harmonics.

3.2 Formal tests

Having concluded graphical analysis of measured angular data, it is
reasonable to calculate all fundamental statistic values and perform
tests of null hypothesis. In this section, the statistic quantities are
calculated as it is explained in Section 2.1 and Rayleigh tests are

performed as per Section 2.3. The results for every studied device
are summarised in Table 1. 

The calculated statistical quantities are in a good agreement
with theoretical information of Section 2.1 stating that mean
resultant vector length R̄ close to 0 does not necessarily imply
uniform distribution of phase angles. Looking at the rows related to
battery charger in Table 1, it is visible that mean resultant lengths
equal to 0.11 and 0.13 for 7th and 13th harmonic orders,
respectively, correspond to large values of Rayleigh statistics.
Moreover, the outcome of the Rayleigh test shows that significant
probability values P0 are exceeded by R0

¯  by several orders of
magnitudes for these harmonics. It can be concluded therefore that
unimodal directional groups are indeed present in the measured set
of data, however, initial graphical analysis can be insufficient for
drawing this conclusion.

On the other hand, R̄ = 0.11 of 13th harmonic PV current angles
corresponds to R0

¯  = 0.18 and is less than calculated significance
probability P0 = 0.29. This confirms the visual analysis presented in
Fig. 2d and can indicate ambiguity in determining prevailing phase
angle directions.

Finally, the results presented for a group of CFL in Table 1
implicate high level of data concentration in relation to prevailing
directions for every harmonic order.

4 Circular regression model
The analysis of measured data which was carried out in Section 3
proves that current harmonic angles measured with fingerprint
approach can be used as the input for circular modelling process. In
fact, one of the advantages of treating data as a sample of von
Mises distribution is the possibility to model a circular response
variable with respect to the explanatory variable. In the case of
harmonic modelling it means that within fixed background voltage
magnitude level there will be a distinct response of equipment
current angle to the change of applied voltage angle. In other
words, a circular regression model can be derived which explains
the systematic variability of harmonic current angles. This means
that the response of estimated model for any input value of
background voltage angle can be predicted.

A fundamental assumption in the modelling process is that all
data points have been taken from von Mises distribution with
specified prevailing mean direction. The general purpose of the
model therefore is to estimate the mean direction with relation to

Fig. 5  Kernel density estimate of battery charger current angles
(a) Fifth harmonic, (b) Seventh harmonic, (c) Ninth harmonic, (d) Thirteenth harmonic

 

Fig. 6  Fingerprint of measured current angles of CFLs
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the explanatory variables. In essence, the mean direction can be
calculated as

μi = μ + g(β′Xi) = μ + g(β1X1 + ⋯βkXk) (10)

where Xi is the explanatory variable, β = (β1, …βk) is the vector of
coefficients to be estimated and g is the link function, subject to
selection in advance. This model explains the behaviour of
response variable when explanatory variables are in the form of
linear covariates.

Given the case when both response and independent variables,
u and ν, are circular, the general regression model was modified by
Jammalamadaka and Sarma [21]. The following model was
proposed:

E(eiν u) = ρ(u)eiμ(u) = g1(u) + ig2(u) (11)

with eiν = cosν + isinν being the conditional expectation of
estimated mean direction, μ(u) is the conditional mean direction of
ν with respect to u and ρ(u) is the conditional concentration
parameter for periodic functions g1(u) and g2(u). It is interesting to

note that model proposed in [21] estimates not only mean direction
but also the concentration parameter.

The predicted value of mean direction is derived as

μ(u) = ν^ = tan−1 g2(u)
g1(u)

=
tan−1 g2(u)

g1(u) , if g1(u) > 0

π + tan−1 g2(u)
g1(u) , if g1(u) ≤ 0

undefined, if g1(u) = g2(u) = 0

(12)

The trigonometric polynominals are then utilised as the
approximations of g1(u) and g2(u)

g1(u) ≃ ∑
k = 0

m
(Akcos ku + Bksin ku)

g2(u) ≃ ∑
k = 0

m
(Ckcos ku + Dksin ku)

(13)

where k is the trigonometric order and Ak, Bk, Ck, Dk are the
parameters to be estimated.

Finally, the generalised least squares estimation algorithm is
used for estimating parameters of (13). If ε = (ε1, ε2) is the vector of
random errors, then the following is in order:

cos ν = g1(u) + ε1

sin ν = g2(u) + ε2
(14)

As it can be deduced from (14), the final circular regression
model is represented by both cosine and sine terms. According to
(12), the estimated mean direction is given as

ν^ = tan−1 sin ν
cos ν (15)

This model is conveniently integrated in the ‘Circular’ package
of R software and is used in this paper. The proposed algorithm is
summarised in the flow chart of Fig. 8. 

5 Modelling results
This section presents the outcome of the modelling process
described in details in Section 4. Only selected harmonics are
discussed in the subsequent subsections. Refer Appendix for the
complete tables of model coefficients.

5.1 PV inverter model

Fig. 9 shows the results of deriving circular regression model from
the measured sets of data for selective harmonics produced by PV
inverter. The presented scatter plots provide convenient way of
visualising the dependence of one variable on another, i.e. the
response of harmonic current angle to the changes of background
voltage phase angle. In Fig. 9, the measured values (designated
with coloured bullet ∙) are plotted together with fitted data
(designated with coloured plus +).

The regression models are estimated separately for different
levels of magnitudes of voltage background distortion. It can be
seen that harmonic injection patterns are significantly different for
every studied frequency. Additionally, at fifth harmonic, the
magnitude of the applied background voltage impacts to the great
extent the pattern of harmonic current angle evolution.

On the other hand, nearly linear trend is observable for 13th
harmonic, with all points being quite close to each other regardless
of the magnitude of voltage.

All in all, the fitted model demonstrates good agreement with
measured data. Moreover, in certain cases of manifested linearity
(13th harmonic) the estimated harmonic angles overlap the
measured ones.

Fig. 7  Kernel density estimate of CFLs current angles
(a) Fifth harmonic, (b) Seventh harmonic, (c) Ninth harmonic, (d) Thirteenth harmonic

 
Table 1 Calculated statistical quantities
Equipment
type

Harmonic
order

R̄ θ̄ R0
¯ P0

Battery
charger

5 0.29 52.37 0.91 0.078

7 0.11 173.09 3.02 0.3
9 0.35 12.01 0.21 0.04
13 0.13 134.55 2.35 0.26

PV inverter 5 0.94 35.1 0.61 0
7 0.54 24.1 0.42 0.0036
9 0.67 14.6 0.25 0.0002
13 0.11 10.24 0.18 0.29

CFLs 5 0.99 134.16 2.34 0
7 0.98 32.93 0.57 0
9 0.98 -21 5.91 0
13 0.50 123.02 2.15 0.0057

R̄ – mean resultant length, θ̄ – mean direction (deg), R̄0 – Rayleigh
statistic, P0 – significance probability of R̄0

 

IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 18, pp. 3826-3836
© The Institution of Engineering and Technology 2020

3831

Authorized licensed use limited to: University of Gent. Downloaded on October 03,2020 at 09:11:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10 shows the residual analysis corresponding to the derived
regression models, where fitted data are plotted against estimated
residuals. Fifth harmonic plot (Fig. 10a) suggests there are some
outlying points corresponding to −40 and 40°, but the majority of
residuals is enclosed between −10 and 10°. A similar behaviour is
observed for seventh ( Fig. 10b) and ninth (Fig. 10c) harmonics.
Fig. 10d, on contrary, is characterised by the residuals mostly
concentrated between −3 and 3° indicating good performance of
the regression model.

5.2 Battery charger model

Figs. 11 and 12 demonstrate the fitted data together with measured
values and model residuals for the battery charger. It is observable
that for every plotted harmonic order the linear trends are explicit,
with the exception of ninth harmonic. Furthermore some outlier
points are clearly present in the 13th harmonic. Once again, the
nearly linear behaviour of harmonic current angle response is in
agreement with the analysis presented in Section 3.1.

The spread of residuals is mostly enclosed between −10 and 10
° with some outlier points visible in Fig. 10d (13th harmonic).

5.3 CFL model

The studied group of energy-efficient lights is characterised by
strong non-linear and asymmetric harmonic patterns. Fig. 13
allows to conclude that for 5th and 7th harmonic order the current
angle response alternates drastically under the influence of
different harmonic voltage magnitudes. On the other hand, this is
not the case for 9th and 13th harmonic components. For the former
it can be observed that all data points are roughly concentrated
within one prevailing direction regardless of the magnitude of
applied voltage. Furthermore, in agreement with Fig. 7d the
dispersion of the current angles for 13th harmonic order is larger
than for other frequencies, nevertheless, different voltage
magnitudes levels do not influence significantly the response of
harmonic current phase angles.

An analysis of the residuals presented in Fig. 14 shows that
most of the points lie between −2.5 and 2.5° suggesting that
measured set of data is represented well by derived circular
regression model. An exception to this is however, 13th harmonic
with its residuals being enclosed between −10 and 10°.

6 Discussion
One of the fundamental assumptions allowing to make progress in
modelling method described in this paper is that all measured
values fit to the underlying von Mises distribution for circular data.
While this distribution is a natural choice for many theoretical
problems, it can be difficult to use in practice, in particular when
concentration parameter k associated with measured data set is less
or approaching the value of 2 (see Section 2.2 for the details about
von Mises distribution). However, since circular statistics includes
vast varieties of methods and analysis capabilities, it can be
reasonable to estimate confidence intervals associated with
estimated prevailing direction of current harmonic angles and
uncertainty of concentration parameter. For the specific case
studied in this paper, i.e. when the amount of samples in every
dataset is small, the so-called parametric bootstrap method is in
order.

The aforementioned is closely related to the explicit
symmetrical patterns visible on some of the residual plots, for
instance, in Figs. 10b–d and 14d. This indicates that underlying
von Mises distribution and consequently the chosen regression
model does not fully describe the behaviour of measured set of
data. Besides improving the model, one of the ways to increase
accuracy of the modelling method is an application of outlier
filtering technique. Calculating confidence intervals, improving the
model and analysing the outlier problem is left for a future work.

Furthermore, since proposed modelling method concerns
derivation of algebraic equations with respect to the harmonic
phase angles, a distinct procedure for handling harmonic current
magnitudes must be applied. An influence of circular variable
(voltage phase angle) on a linear variable (current magnitude)

Fig. 8  Modelling algorithm
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presents a separate class of a problem not falling under directional
statistics methods. Based on the observations of authors, this
relationship for the most of cases demonstrates periodic trends.
This allows to approximate current magnitude as a function of
background voltage by simply applying interpolation or
appropriate curve-fitting procedure. As an example, Fig. 15 shows
an evolution of fifth harmonic current magnitude with respect to
the voltage angle as measured at the terminals of battery charger. 

Moreover, system studies which analyse large networks often
require the use of a relatively large number of harmonic source
models. Power-flow based calculation engines use iterations to
reach a solution, which can be further complicated, and have their
convergence jeopardised, in case of additional iterations of each
source model due to e.g. frequency coupling [4]. For this reason, an
analytic relation between the supplied voltage and the injected
harmonic current is a very useful simplification to use in studies on
large networks. This paper proposes one solution to this problem,
with an approach to develop a source model for any type of load
which meets specific preconditions described in this paper. Another
example conveying the idea of modelling simplification while

retaining high accuracy of non-linear model was recently reported
by Laurano et al. [22].

7 Conclusion
In this paper, a new method for modelling harmonic producing
sources is proposed. Three distinct power electronics devices have
been modelled: single-phase PV inverter, battery charger and CFL.
For this method harmonic fingerprint measurements are used for
characterising current emission of modelled equipment as a
function of applied harmonic background voltage.

The measured sets of data are separated into magnitude and
phase angle components. The current phase components are then
analysed with the methods of circular statistics, proving that they
can be described by prevailing angle directions when the full range
of background voltage angles has been applied at the terminals of
equipment.

Theoretically, angular datasets characterised by prevailing angle
directions cannot be analysed using linear distribution functions,
for instance Gaussian distribution. Therefore, a unique von Mises

Fig. 9  PV Inverter model –
(∙) Measured data, (+) Fitted data

 

Fig. 10  Model residuals of PV inverter
(a) Fifth harmonic, (b) Seventh harmonic, (c) Ninth harmonic, (b) Thirteenth harmonic
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probability distribution for circular data is proposed as underlying
model. The regression technique based on von Mises distribution
provided algebraic relationship between explanatory variable –
voltage phase angle and response variable – harmonic current
angle. This relationship is valid within certain level of harmonic
voltage magnitude to which regression technique is applied.

The performance of the circular regression models was checked
against the measured values in Figs. 9, 11 and 13. The graphs show
satisfactory matching with the experimental data, despite the low
number of parameters required by the model. Based on the
available scientific works, e.g. models shown in [3–10], it can be
concluded that the reduction of model complexity does not lead to
poor performance in comparison with the state-of-the-art models
used in the literature, as long as the devices in question satisfy the
given assumptions of angle distributions.

Generally, the accuracy of these models depends on how well
theoretical von Mises distribution fits to the measured data. In most
of the cases this is attributed to the underlying equipment topology
which in turn affects harmonic behaviour. The results of this work
demonstrated that derived models are characterised by fair

performance with residuals falling between −2.5 and 2.5° in best
case and between −10 and 10° for the worst situation. The
implications about improving the quality of the models were
briefly discussed together with a method for handling harmonic
current magnitude during modelling process.
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Fig. 11  Battery charger model –
(∙) Measured data, (+) Fitted data

 

Fig. 12  Model residuals of battery charger
(a) Fifth harmonic, (b) Seventh harmonic, (c) Ninth harmonic, (b) Thirteenth harmonic
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10 Appendix
 
The coefficients of the models are summarised in Tables 2, 3 and 4. 
Information on how to interpet model coeffcients is given in
Section 4, in particular in (13) and (15).

Table 2 PV inverter model coefficients
Harmonic orders 3 5 7 9 11 13
Vh/V1 cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν
1% cos u −0.0686 0.0080 −0.2548 0.3794 −0.2171 0.8327 — — 0.0650 0.9762 0.1857 0.9715

sin u −0.0851 0.0107 −0.0995 0.0867 −0.6072 −0.0750 — — −0.9686 0.0738 −0.9692 0.1841
intercept 0.1196 0.9897 0.7657 0.5394 0.4865 0.2226 — — 0.1525 0.0410 0.1077 0.0185

2% cos u −0.1267 0.0153 −0.3785 0.7504 −0.1750 0.9417 −0.0470 0.9867 0.0705 0.9899 0.1868 0.9781
sin u −0.172 0.0189 −0.4470 −0.1074 −0.9223 −0.1473 −0.9516 −0.0331 −0.9938 0.0719 −0.9811 0.1866

intercept 0.1106 0.9821 0.5315 0.3389 0.2074 0.1084 0.1558 0.0659 0.0713 0.0215 0.0512 0.0089
3% cos u −0.1820 0.0240 −0.3363 0.8560 −0.1681 0.9619 — — 0.0733 0.9929 0.1899 0.9791

sin u −0.2579 0.0230 −0.7879 −0.2537 −0.9641 −0.1628 — — −0.9973 0.0756 −0.9817 0.1919
intercept 0.0992 0.9688 0.2958 0.2077 0.1334 0.0713 — — 0.0423 0.0157 0.0335 0.0076

0.5% cos u — — — — — — −0.1712 0.8086 — — — —
sin u — — — — — — −0.3850 0.0114 — — — —

intercept — — — — — — 0.6504 0.1740 — — — —
1.5% cos u — — — — — — −0.0490 0.9490 — — — —

sin u — — — — — — −0.9103 −0.020 — — — —
intercept — — — — — — 0.2496 0.0909 — — — —
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Table 3 Battery charger model coefficients
Harmonic orders 3 5 7 9 11 13
Vh/V1 cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν
1% cos u 0.7792 −0.3614 0.6787 −0.5663 0.7225 −0.6845 — — 0.6484 −0.3456 0.5974 0.4963

sin u 0.5443 0.5853 0.5902 0.7162 0.6001 0.7416 — – 0.3193 0.9113 −0.3125 0.9069
intercept −0.2005 0.3897 0.1960 0.2350 −0.1093 0.0150 — — 0.3522 0.0704 −0.0919 0.0952

2% cos u 0.8941 −0.5316 0.7248 −0.6686 0.6926 −0.7120 −0.0470 0.9867 0.7230 −0.5340 0.7419 0.4691
sin u 0.5011 0.7366 0.6915 0.7109 0.7154 0.6826 −0.9516 −0.0331 0.4441 0.8912 −0.2289 0.8744

intercept −0.0777 0.1558 0.1213 0.0669 −0.0142 0.0487 0.1558 0.0659 0.1621 −0.0888 −0.1304 0.0400
3% cos u 0.7019 −0.4296 0.6634 −0.7471 0.6670 −0.6409 — — 0.7865 −0.5363 0.8284 0.4093

sin u 0.4589 0.8344 0.6529 0.7082 0.7461 0.7185 — — 0.5360 0.8805 −0.3524 0.9161
intercept −0.1303 0.1699 0.0820 0.0200 −0.0411 0.0203 — — 0.0688 −0.0419 −0.0311 0.0291

0.5% cos u — — — — — — 0.6484 −0.3456 — — — —
sin u — — — — — — 0.3193 0.9113 — — — —

intercept — — — — — — 0.3522 0.0704 — — — —
1.5% cos u — — — — — — 0.7230 −0.5340 — — — —

sin u — — — — — — 0.4441 0.8912 — — — —
intercept — — — — — — 0.1621 −0.0888 — — — —

 

Table 4 CFL model coefficients
Harmonic orders 3 5 7 9 11 13
Vh/V1 cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν cos ν sin ν
1% cos u 0.0928 0.0907 0.0928 0.0907 −0.0749 0.1230 — — −0.0056 0.1218 0.5612 0.6162

sin u −0.0489 −0.0454 −0.0489 −0.0454 −0.1262 0.1874 — — −0.5067 0.4771 −0.6031 0.3292
intercept −0.7040 0.7028 −0.7040 0.7028 0.8124 0.5511 — — −0.5802 −0.6146 −0.3113 0.4117

3% cos u 0.2824 0.2718 0.2824 0.2718 −0.0640 0.3696 −0.0470 0.9867 0.3185 0.9148 0.6143 0.7541
sin u −0.1589 −0.1167 −0.1589 −0.1167 −0.4527 0.4792 −0.9516 −0.0331 −0.9519 0.2422 −0.7579 0.6181

intercept −0.6445 0.6862 −0.6445 0.6862 0.6406 0.4791 0.1558 0.0659 −0.0354 −0.1216 −0.0873 0.1348
5% cos u 0.4629 0.4822 0.4629 0.4822 0.3058 0.7389 — — — — — —

sin u −0.2150 −0.0872 −0.2150 −0.0872 −0.7969 0.4230 — — — — — —
intercept −0.5845 0.6321 −0.5845 0.6321 0.3219 0.2285 — — — — — —

0.5% cos u — — — — — — 0.0828 0.1954 — — — —
sin u — — — — — — 0.0442 0.1258 — — — —

intercept — — — — — — 0.9144 −0.3615 — — — —
1.5% cos u — — — — — — 0.3583 0.6647 — — — —

sin u — — — — — — −0.0345 0.2432 — — — —
intercept — — — — — — 0.7329 −0.3360 — — — —
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