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Abstract— This paper is concerned with the H,, controller design
for robust stabilization of networked control systems with the
network-induced delay, data packet dropout and norm-bounded
parameter uncertainties. In order to obtain less conservative results,
a new augmented Lyapunov-Krasovskii functional is used and novel
free-weighting matrices are employed to make some extra degree of
freedom in the H, design conditions. The feedback gain of a
memoryless controller, maximum allowable delay bound and
minimum disturbance attenuation level can be derived by solving a
set of linear matrix inequalities (LMIs). The advantages of the
proposed method are demonstrated by numerical example.
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L INTRODUCTION

A networked control system (NCS) is a feedback control
configuration wherein the sensors, controllers and actuators
exchange data via a communication network. In NCS the
communication network is included in control loops to achieve
low cost, simple installation, easy maintenance and high
flexibility. However, the presence of communication link brings
hard to solve problems compared with traditional point-to-point
control approaches. The Data packet dropout and latency in the
communication channels are the main issues in the analysis and
design of NCSs.

Robust H,, stabilization for uncertain linear systems with the
assumption that the controller is continuous time has been
investigated already in the literature [1], [2]. However, in NCSs,
a continuous-time system often is controlled by a discrete-time
controller. This issue motivated a lot of researches in the
stabilization [3-4] and H,, stabilization [5-6] of NCSs during the
recent years.

The common method to investigate stability analysis and
controller gain synthesis is based utilizing different Lyapunov-
Krasovskii functional including double-integral terms [3-6]. [3]
surveyed the problem of stability and controller design according
to using Lyapunov-Krasovskii functional, and the results of [3]
were improved in [4] by utilizing new Lyapunov-Krasovskii
functional. For the first time, augmented Lyapunov-Krasovskii
functional to obtain sufficient conditions for designing robust H,,
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controller gain to satisfy robust stability for NCSs was
introduced in [6] and this paper [6] also improved the results of
the proposed approach in [3]. Further improvement for
investigating robust stability for NCSs was achieved in [7] by
introducing new weighting matrices to enhance the degree of
freedom considerably. [8] and [9] investigated the robust
stability problem for NCSs with considering the closed-loop
system as discrete time model with binary random delay and
Markovian jumping parameters, respectively.

In this paper, an approach is proposed to design H,, static state
feedback controller for NCSs based on a new augmented
Lyapunov-Krasovskii functional, including tripe-integral terms.
The continuous-time plant is controlled by discrete-time
controller; hence the closed loop system has the sample and hold
devices.

This paper is organized as follows: In section II, a continuous
time model for NCSs is described. Sufficient conditions for the
H,, stability analysis and state feedback control design of NCSs
are introduced in section III. In section IV, numerical benchmark
example is presented to illustrate the efficiency of the proposed
approach. Section V concludes the paper.

Notation: In this paper, * denotes block in the symmetric matrix.
I is identity matrix of appropriate dimension. The notation P > 0
(respectivelyP = 0) means that P is real symmetric and positive
define (respectively, positive semi definite). The superscript T
stands for matrix transposition.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

The controlled system is described as follows:

x(t) = Ax(t) + Bu(t) + Ew(t),
Z(t) = Cx(t) + Du(t) (1
A=Ay +AA(t), B=B,+AB(t)

where x(t)eR™, u(t)eR™, w(t)eR™ and Z(t)eR? are the state
vector, control input vector, disturbance vector and controlled
output, respectively; A4y, By, E, CandD are known system
matrices with appropriate dimensions. It is assumed that the pair
(A,B) is completely controllable. AA(t) and AB(t) denotes the
norm-bounded parameter uncertainties in plant satisfying :
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[AA(t) AB(D)] =JA(D)[H, H] 2

where J, H; and H, are known constant matrices with appropriate
dimensions and A(t) is unknown time-varying matrix satisfying
AT(®)A() <I1. Without loss of generality, we mention the
following assumption:

Assumption: we suppose A and E are matrices with same
dimensions. The system (1) is controlled through the network.
The considered NCS structure is shown in Fig.1, where the
controller and actuator are event-driven and sampler is clock-
driven. The sampling period is assumed to be h, where h is a
positive constant. The transmission delay may not be necessarily
integer multiplies of the sampling period, so zero order hold
(Z.0.H) device's information may be updated between sampling
instants.

w(t)

Sampler

State Controller

Figure 1. Networked Control System

Since the controller is a constant gain, the feedback and forward
delays are combined together at each sampling time. The
updating instant of Z.O.H are ¢, and the successfully transmitted
signals from the sampler to the controller and from the controller
to Z.0O.H at the instant t; experience signal transmission delay
N, Where m =g, +1cq, (Mse, and n,,, are delays from the
sampler to the controller and from the controller to the Z.O.H at
the updating instant t,, respectively). Therefore, the state
feedback with considering the behavior of the Z.0.H takes the
following form:

u(ty) = Kx(te — M) b =t <tpyq 3)
in which t,,, is next updating state after t, . The network-
induced delay 1, is bounded as the following inequality:

N < N S My 4)

where 71, and 7n,, are the lower and upper bounds of the
network-induced delay, respectively. Then, the closed-loop
system in Fig. 1 is described by:

x(t) = Ax(t) + BKx(t;, — n) + Ew(t)
Z(t) = Cx(t) + DKx(t;, — Ny) te <t < tpsq 3)

which is the form of sampled-data system. Moreover, at the
updating instant ¢;, the number of accumulated data packet
dropout since the last updating instant ¢,_, is denoted by 7,

where 0 < 7, < 15,. Combining the above-mentioned facts yields
to:
tetr = b = Migr — M + (Tppr + DR (6)

Now, let n(t) =t —t, +n; is replaced in (5), then the following
continuous time model is obtained for the closed-loop NCS in
Fig. 1:

x(t) = Ax(t) + BKx(t —n(t)) + Ew(t)
Z(t) = Cx(t) + DKx(t —n(t)) (7)

in which,

Mm <n() <7 (3)

with n =ny + (7 + Dh. It's evident that n is related to the
maximum number of accumulated data packet dropouts 7,,, the
upper bound of network-induced delay 7, and the sampling
period h of the sampler device.

H,, Control Problem: System (7) is said robustly asymptotically

stable with H,, norm bound y > 0 if the following conditions are

satisfied:

1) The closed-loop system (7) is asymptotically stable when
w(t) = 0 for all uncertainties AA(t) and AB(t).

2) Under the zero conditions, the controlled output Z(t)
satisfies ||Z(t)||, < yllw(®)]|, for all nonzero w(t)eL,[0, ).

Before proceeding further, the following lemma is introduced to
handle the norm-bounded parameter uncertainties:

Lemma: Given real matrices ¥, X; and X, with appropriate
dimensions, with 27 = %, then

2+ 50002 +2TAT(6)2T <0 9

holds if and only if for all AT(¢)A(t) <1 and some € >0 the
following inequality holds ¥ + €X,XT + 71275, <0 which can
be modified by Schur complement to the following matrix
inequality:

5 3T es,
5, —e 0 |<o (10)
e 0 —el
I1I. MAIN RESULTS

In this section, a new delay-dependent H,, stability condition
is proposed in Theorem 1 to ensure robust stability of the closed-
loop system (7) for all delays satisfying (8). Then, controller
synthesis condition is derived in Theorem 2.

Theorem 1: For given n,,, n, J, Hy, H, and K, the closed-loop
system (7) is robustly asymptotically stable with the H,, norm
bound y if there exist matrices N,, L,(z=0,1,2), M, R, S, F,

matrices P = [Pii]s><s' Q.= [Qlij]zxz >0, Q2=

symmetric
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[inf]m >0, T, = [Tlij]2X2 >0, T, =Ty, | >0, z>02;,>0,
U Uy V=[] =01 X X, X, wo=|w,]|

,(z=0,1) with appropriate dimensions and scalar €, satisfying
(11-17).

P R S
*x U T[>0 (11)
* * U,
pX 2‘1T €X,
x —el 0 [<0 (12)
* *  —€l
Vo Lo+ 0
* T, T,+X|=>0 (13)
* * lez
Vi L+, Ny
* T, T,tXi[>0 (14)
* * T222
Vi Li+y, N,
* T, T,tX(>0 (15)
* * T222
Wo Lo+ ¢
TSRS
Wy Li+¢,
[ . 7, ] >0 (17)

A — 1
where ) =1 =1y, =2 (M —17)
2
z =n1+n2i+n§i+n3n+n§n+nmvo+ﬁvl+"7"'wo+ﬁwl,

m, =[Ny +mlo+HL; —Nyg+N;, —N, 0 0 0 —N; +N, 0],
A11 A12 A13 A14

1Ln 12 Ayy Doz Do

= , Y= ,
T [ * (2!2) ( ) * * A33 A34
* * * Ny

Ay =Py~ Ry + Pl — R +Qy, + 0Ty, +0 T, +Xo+CTC,
App=—Pyy +Ps+R =5 +P2T4_R2TvA13 =—Pis+5 +P3T4_R§
» Mo =Py tnpR +15; +0Q1, + T, +7A]T2127

_SZT _Q111 +an -
Xo+ X1, Ny3=—-Pys+S,—PL, +PL+RI—5ST

A3y =Pl +pR3 + 155

Ayy = =Py + Pys + Ry — S, — PJ, + Pjs + R}

Az =P1T2 +MmRy +1 S,
Azz = —P35 + S5 _P3Ts +53T_QZM_X2,

N nz, _
Ngy = Q,, + Ty, + 1713, +7Z1 + 12,

Py, Py3 CTDK 0
(1,2) = Py —Qq, 02, Py3 0 0
' Pl P33 — Qa,, 0 0 [
L 0 0 0 o0
(—Q1,, T Q2,, 0 0 0 1
(2 2) = * _QZZZ 0 0 I
* *  —X,+X,+K'D'DK 0 J
L * * * —yzl

= [—J"M], ="M}, =" ML, —]"M],—]" ML, -] "M, —]TM7T,T
—J™T], £, =[H, 0 0 0 0 0 Hy,K 0],
ms,=[-MA, 0 0 M 0 0 —MB,K —ME],

[ =Py +R] [ —Pu;s+RE
Py — Pfs — R} +S7 Pys — Pss — RS + 5S¢
Pis — S{ Pss — S5
Yo =|—Pra— MRy —1Si |, W, =|—Pis— nmRs =153 |,
=Py —Pys
D —Ps5
0 0
L 0 . L 0
[ =Ry + Uy ] r =S, +F
—R,—Rs—U, +FT S, —Ss—F+U,
Rs —FT Ss — U,
0o =| ~Ri —1mls —AF" | and 0, = —=S; = NpF — U, i
—R, =5,
—R; —S3
0 0
L 0 ] L 0

Proof : Define a Lyapunov-Krasovskii functional as follows:

V(xe) = Vi(xe) + Vo) + Va(xe) + Vo (xe) (18)
P R S
Vix) =&" () [+ Uy F &) 19)
*  x U,
V0 = f_, T (@Qr(@da+ [T (@Qt(a)da  (20)
Vi) = [ 0 | | (@ x(a)dadp
—N 4B
+ f__;?"' f;ﬁ T (@) T,7(a)dadB 21
0 0 ,t
3 . .
Va(xe) = f—nm-f;f -Lex (@)Z1x(a)dadbdp
+ f_‘,;"m fﬁ“ [}, X7 (@) Zy3(a)dadfdp 22)
wherein, &(t) = col[x(t), x(t—1nm), x(t-—1n), ftt_nm x(a)da,
Jomx(@da,  ex@® = [2x(@da, (0= n)x(e) -

ftt__nnmx(a)da, 7(a) = col[x(a) x(a)]. Now consider the

following equation:

Jow = Iy 127 (©)2(t) —y? 0" (Hw(D)]dt (23)

under zero-initial conditions, we have V(x,) = 0 and V (x,) = 0
, 50 (22) can be rewritten to the following inequality;

o= | [ ©2(0) - v ©w® + Vx)]dt - V(xa) <
0

Iy 127 (©)2(8) — y2 T (Do(t) +V (x,)]dt (24)

So the closed-loop system (7) is robustly asymptotically stable
with disturbance attenuation level y if and only if satisfying (24):

2T (0)z(t) — y20T®w(t) + V(x) <0 (25)
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The time derivative of V(x;) along the trajectories of (7) is
obtained as follows:

) P R S )
Vilx) = 28" ()| Uy F|E(D) (26)
* * U,
Vz (xp) = 7 ®)Q7(t) - 7 (t = 1) Q17(t — 1)
ATt =) Q2" (=) =T (E=MQet (t—71)  (27)
¢
Va(xe) = 7 () (1 Ty + AT T(E) — (@) r(a)da —
t=Nm
ft 2T ()T, (a)da — ft 7 T (a)T,t(a)da 28)

£=n(t)
v4(xt)—xT(t)< zl+nzz)x(t) f f i (0)Z,3(a) dadp

"
f f xT (@) Zyx(a)dadp — f f xT (@) Z,x(a)dadp
n(e) Jesp t+B

(29)
For any matrices Ny, Ny,N,,M,L, , L, and L, and symmetric
matrices Vg, V3, Wy, Wy, X, X;, and X, with appropriate
dimensions, the following equalities hold:

&1 (8) = 28T (ONo (x(8) = x(t = 1) = f;_, *(@da)=0  (30)
t="m
& () = 20" (N, (x(t — ) — x(t = 1) — f % (a)da) =0
t-n(t)
(31)
t-7(t)
&5() = 24T (DN, (x(t —n() —x(t—n) - f »‘c(a)da) =0
.
! (32)
e, (t) = 207 (OM (x(t) — Ax(t) — BKx(t —n(t)) — Ew(t)) =0
(33)
t
£5(0) = 2T O - [ x(@da
t="m
=, Jip* (@dadB =0 (34)
t=Nm t-n(t)
() =27 OLLG-nx© - [ x@da- [ x(@da
~ . t-n(t) t-n
- f_;"m Jyup¥(@)dadf] = (35)
&7() = 8" OV (D) = [i_, T (VoS (D)da = (36)
ea(t) = (0 =) (OIS = [T @Vi{(Dda =0 (37)
&(t) = 3T (OWog(0) - [°, [, ST OW(D)dadf =0 (38)
-
g0(t) = U 77m) ———= " (WL () — f {TOWL{(t)dadB = 0
- e

(39)
&11(t) = xT (1) Xox(t) — xT (t = D) Xox(t — 1) —

2 ff_n xT(@)Xpx(a)da = 0 (40)

e12(t) = xT(t = M) X1 (t — 1) — xT(t - W(t))X1x(t -n(t)) —

2 n’@) T (@)X, x(a)da = (41)
£13(t) = xT(t — () Xox(t —n(8)) —xT(t — ) Xx(t — 1) —
2 "“) T (@) X,x(@)da = (42)

Where {(t) = col[ X(t). x(t=nm), x(E—mn), x(0), x(t—1m)
,x(t —n), x(t —n(t)), w(t)]. Now based on (26-29) and combining
(30-42), 2" (t)z(t) — y2wT (H)w(t) + V(x,) can be stated as follows:

2T (0)z() =y " (o) + V(x,)
= V3 () + Vo (o) + Va () + Vo () + l Pea@®+
+(Cx(t) + DKx(t — n(e)T (Cx(t) + DKx(t - n(t)) 20T (H)w(t)
(43)
The V + Z7Z — y?w" w in (45) can be rewritten as

V(x) + 2" (0z(t) — y? o Ow(t) = {T(6) md(t) + T2 2;(6) (44)

2
where 7 = 1y + 1, + ] + w5 + 1] + Vo + AV + W, + W,

(O Vo Lo+twe  No 1[2(®)
O ==, [x@ T, T, +Xo|[x(a)|da,
EIC) * Ty, |lx@
(O] i L+ Ny 40
20 =~ [0 [x(@) Ty Top t X1 |x2(a)| da,
i(a) * Ty, ||%(@
(W Livvs N, [
058 = = [ |x(@) T To, + Xa||x(a) | da,
i(a) * To, |li(@
RN
— O Wr Ly +9][¢®
Q50 =~ " f\p () [ ! 122"’1] x(a)]dadﬁ.
Provided w <0, and £, >0(i=1,..,5), the Lyapunov-

Krasovskii theorem ensures that the system (7) is asymptotically
stable. m

The sufficient conditions derived for the H,, stability of the
closed-loop system (7) in Theorem 1 are in the form of nonlinear
matrix inequalities. For a given controller K, this Theorem can be
used to determine the maximum value of allowable delay n and
minimum disturbance attenuation level y which retain the robust
stability of the controlled system. In the Theorem 2, utilizing
changing variable technique, the nonlinear conditions in
Theorem 1 is modified to obtain equivalent linear matrix
inequalities (LMIs) which are computationally more tractable to
obtain controller gain.

Theorem 2: For given constants 1,,,n and y and scalars p;(i =
2,...,8), the closed-loop system (7) is robustly asymptotically
stable for H,, level y with the control gain K = YX ™7 if there exist
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nonsingular ~ matrix X, matrices N, L, (z=0,12),

R, §, F, Y and symmetric matrices P = [ﬁij]SXS’ Q=

[Ql”]zxz >0, Q= [Qz”]zxz >0, = [Tlij]zxz >0, =

[To,] >0 Zi>0, Z,>0, O, U, V,=[7)] . W=
ijlyxo Ylgxsg

WZU] , X, (z=0,1,2) with appropriate dimensions and scalar
8x8
€ > 0 such that the following LMIs hold (45-51):

PR S
« U, F|>o0 (45)
* % [72
[ z I eX, 0 0y
I 5 —e 0 0 0|
€27 0 —e 0 0]|<0O (46)
T 0o 0 -1 0
oL 0 0 0 I
-‘70 Z0_+ 11[)0 _ NO _ ]
* T111 T112 +Xo|=0 7
* * lez
‘71 Z1_4— 11[_)1 Nl
* T211 T212 +Xi[=0 (48)
* * ’I_‘Zzz
‘71 Z1_4— 11[)1 _ NZ _
Ty, Tp,+X(>20 (49)
* * ’I_‘Zzz
* Z
* Z,

= — — 2 __ —
5 =ﬁ1+ﬁ2+ﬁ2T+ﬁ30+ﬁ§0+nmvo+ﬁvl+"7mwo+ﬁwl,

2:
[No +mlo +fL, —Ng+N; =N, 0 0 0 —N,+N, 0],

Ay, =1314_E1+F1T4_E1T+é111+77mT111+ﬁT211+X07

[ P Pis 0 0 1|
a2 = Py —Qq,, +Q2, Py3 0 0 |
P, Pi3=Q,, 0 0 J
L 0 0 0 0
-_lez + szz 9 0 O-I
22) = * Q2 0 0f
* X+ X, OJ
L * * * 0

2—“_2 = [_]T! _pZ.IT! _P3]T, _p4]T! _pS.IT! _pEJT! _p7]T! _pSI]T:
T =[HXT 0 0 0 0 0 Hyy 0],

T3, =

[ —AXT 0 0 X" 0 o0 —ByY —EXT ]
—p2AX" 0 X' 0 0 —pBY —pEXT
—p3AXT o 0 P X" 0 0 —psBY —pEXT
—pshoX’ 0 pX" 0 0 —pBY —pEXT
—psAoXT o 0 px” O 0 _ppy —pEXTT
—pAoX” 0 0 peX" 0 0 —peBoY —peE X"
—p7AcX" 0 0 px" 0 0 —pByY —pEXT
[—psAoX” 0 0 psX" 0 0  —pgByY —pgEXT]
O,=[cx" 0 0 0 0 0 pr 0]".and

62=[0 00 0 0 0O )/XT]T
and the rest of the elements (A;,..,Az) is
A1z, Mgy

equivalent to

Proof : By Schur complement (12) is equivalent to

[£ 2] e 0O O,
[, —et 0 0 0 I
€22 0 —el 0 0|<0 (52)
ol 0 0 -I 0
of 0 0 0 I
where
2
5= +m, +n2T+n3n+n§n+nmvo+ﬁvl+n7mwo+ﬁwl,
I [211 A1y A1z A14]
o R e el
* (22) * ¥ Azz Asg
* * x Ayl
Ayy =Py~ Ry + P, — R + Q1,, +11mT1,, +ﬁT211 + Xo,
[ Py, Py3 0 0]
@: 1"'22_01;24'0212 Py3 0 0 )
Py P33 —Qa,, 0 0
L 0 0 0 0
[—Q1,, + Q2,, 0 0 0
22) = * 0z, 0 0
* * =X, +X, 0
* * * 0
o,=[C 0 0 0 0 0 pKk 0]7,and
o,=[0 00 0 0 0 0 I
Let M=[MF MY MI MI MI MI MI ME]T. Replace
My = My, My = p, Mo, M3 = p3My, My = pyMy, M5 =psMy, Mg =

peMy, M; = p; My, Mg = pgM,, Feasibility of inequality (52)
implies that M, become nonsingular. Let X = My?! then pre and
post multiply simultaneously the two side of (52) with diag
X X X X X X X X I I | 1] (13-15) with diag

X X X X X X X X X X], (16-17) with diag
X X X X X X X X X] and (11) with diag
[X X X X X X X] and its transpose, respectively.

Therefore the inequalities (11-17) leads to inequalities (45-51)
withY = KXT. m
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Iv. ILLUSTRATIVE EXAMPLE

An illustrative example is presented to verify the effectiveness
of the proposed approach compared to previous results in the
literature. The YALMIP Toolbox is utilized to solve the LMI
feasibility problems [12].

Example: Consider the following system with norm-bounded
uncertainty controlled over a network [6]:

-1 0 —-0.5 0 1
x(t) = [1 -0.5 0 |+AAQ@) |x(@)+|0fu®) + 1| w(t)
0 0 0.5 1 1
Z(t)=1[1 0 1]x(t)+0.1u(t) (53)

where ||AA(t)]] <0.01. Choose J=0.11 , H,=0.1I, H, =0,
py = 0.01, ps = 0.01, p, = 144, ps = 0.01, pg = 0.01, p, = 0.01
andpg = 0.1.

In Table 1, the minimum disturbance attenuation level
corresponding to the rival design methods are compared for
different values of n,, and 1. As seen in the similar situation,
larger attenuation level is achieved with the proposed scheme.

TABLE I: Minimum disturbance attenuation level corresponding to the different
design methods for different values of n,,, and 7.

Nm n 14 obtained K
[6] [7] Proposed
Method
01 | 05 | 1.843 | 1.714 1.531 —[0.8006 0.00204 1.7832]
03 | 0.7 | 2.642 | 2.455 2.260 —[0.3814 0.0010 1.2941]
05 | 1.0 | 5.829 | 4.415 3.381 —[0.1723 0.0 1.0162]

Fig. 2 shows the simulation results of system (53) with state
feedback  controller K = —[0.8006 0.0204 1.7832] and
0.1 < n(t) < 0.5. The initial values of the states are x,(0) = 0.1,
x,(0) = 0.1 and x3(0) = 0.8 and the disturbance signal w(t) is as
follows:

w(t)_{O.Z, 2<t<6 (54)
0, otherwise
08 T T T T T T T T
--------- x1
08} X2
07k it
l
06} |
|
05h J
e
% 04H B
s h
03t g
1
02t 4
\
018\, 1
o
01 s L L L L L L L L L
0 5 10 15 20 25 30 E3 10 5 50

Time(Sec)

Figure 2. Simulation Results

V. CONCLUSION

This paper proposed a new approach to synthesize robust H,,
state feedback controller for the linear time invariant system
which is controlled via communication network with considering
interval time delay, data packet dropout, disturbance input and
parameter uncertainties effects. A set of linear matrix inequalities
(LMIs) are developed to design controller gain. A novel
augmented Lyapunov-Krasovskii functional and free-weighting
matrices method are introduced to achieve less conservative
results. An illustrative example demonstrates the superiority of
the proposed method.
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