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     Abstract— This paper is concerned with the 푯  controller design 
for robust stabilization of networked control systems with the 
network-induced delay, data packet dropout and norm-bounded 
parameter uncertainties. In order to obtain less conservative results, 
a new augmented Lyapunov-Krasovskii functional is used and novel 
free-weighting matrices are employed to make some extra degree of 
freedom in the 푯  design conditions. The feedback gain of a 
memoryless controller, maximum allowable delay bound and 
minimum disturbance attenuation level can be derived by solving a 
set of linear matrix inequalities (LMIs). The advantages of the 
proposed method are demonstrated by numerical example.                                                                       

    Keywords-Networked Control Systems; Robust Control; 
Stabilization; Lyapunov-Krasovskii Theorem; Linear Matrix 
Inequality (LMI); Minimum attenuation level; Parameter 
uncertainties. 

I. INTRODUCTION 
    A networked control system (NCS) is a feedback control 
configuration wherein the sensors, controllers and actuators 
exchange data via a communication network. In NCS the 
communication network is included in control loops to achieve 
low cost, simple installation, easy maintenance and high 
flexibility. However, the presence of communication link brings 
hard to solve problems compared with traditional point-to-point 
control approaches. The Data packet dropout and latency in the 
communication channels are the main issues in the analysis and 
design of NCSs. 
   Robust 퐻  stabilization for uncertain linear systems with the 
assumption that the controller is continuous time has been 
investigated already in the literature [1], [2]. However, in NCSs, 
a continuous-time system often is controlled by a discrete-time 
controller. This issue motivated a lot of researches in the 
stabilization [3-4] and 퐻  stabilization [5-6] of NCSs during the 
recent years. 
  The common method to investigate stability analysis and 
controller gain synthesis is based utilizing different Lyapunov-
Krasovskii functional including double-integral terms [3-6]. [3] 
surveyed the problem of stability and controller design according 
to using Lyapunov-Krasovskii functional, and the results of [3] 
were improved in [4] by utilizing new Lyapunov-Krasovskii 
functional. For the first time, augmented Lyapunov-Krasovskii 
functional to obtain sufficient conditions for designing robust 퐻  

controller gain to satisfy robust stability for NCSs was 
introduced in [6] and this paper [6] also improved the results of 
the proposed approach in [3]. Further improvement for 
investigating robust stability for NCSs was achieved in [7] by 
introducing new weighting matrices to enhance the degree of 
freedom considerably. [8] and [9] investigated the robust 
stability problem for NCSs with considering the closed-loop 
system as discrete time model with binary random delay and 
Markovian jumping parameters, respectively.  
   In this paper, an approach is proposed to design 퐻  static state 
feedback controller for NCSs based on a new augmented 
Lyapunov-Krasovskii functional, including tripe-integral terms. 
The continuous-time plant is controlled by discrete-time 
controller; hence the closed loop system has the sample and hold 
devices. 
   This paper is organized as follows: In section II, a continuous 
time model for NCSs is described. Sufficient conditions for the 
퐻  stability analysis and state feedback control design of NCSs 
are introduced in section III. In section IV, numerical benchmark 
example is presented to illustrate the efficiency of the proposed 
approach. Section V concludes the paper. 
 
Notation: In this paper, * denotes block in the symmetric matrix. 
I is identity matrix of appropriate dimension. The notation 푃 > 0 
(respectively푃 ≥ 0) means that 푃 is real symmetric and positive 
define (respectively, positive semi definite). The superscript T 
stands for matrix transposition. 

II. SYSTEM DESCRIPTION AND PRELIMINARIES 
  The controlled system is described as follows: 

푥̇(푡) = 퐴푥(푡) + 퐵푢(푡) + 퐸휔(푡), 
푍(푡) = 퐶푥(푡) + 퐷푢(푡)                                  (1) 

퐴 = 퐴 + ∆퐴(푡),				퐵 = 퐵 + ∆퐵(푡) 

where  푥(푡)휖푅 ,   푢(푡)휖푅 ,  휔(푡)휖푅   and  푍(푡)휖푅   are   the   state  
vector, control  input  vector,  disturbance  vector  and controlled  
output, respectively; 퐴 , 퐵 , 퐸, 퐶	and	퐷 are known system 
matrices with appropriate dimensions. It is assumed that the pair 
(A,B)   is  completely  controllable.  ∆퐴(푡)  and  ∆퐵(푡) denotes the  
norm-bounded parameter uncertainties in plant satisfying : 
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[∆퐴(푡) ∆퐵(푡)] = 퐽∆(푡)[퐻 퐻 ]                         (2) 

where 퐽,퐻 	and	퐻  are known constant matrices with appropriate 
dimensions and ∆(푡) is unknown time-varying matrix satisfying 
∆ (푡)∆(푡) ≤ 퐼. Without loss of generality, we mention the 
following assumption: 

Assumption: we suppose A and E are matrices with same 
dimensions. The system (1) is controlled through the network. 
The considered NCS structure is shown in Fig.1, where the 
controller and actuator are event-driven and sampler is clock-
driven. The sampling period is assumed to be ℎ, where	ℎ is a 
positive constant. The transmission delay may not be necessarily 
integer multiplies of the sampling period, so zero order hold 
(Z.O.H)   device's information may be updated between sampling 
instants. 

 

Figure 1. Networked Control System 

Since the controller is a constant gain, the feedback and forward 
delays are combined together at each sampling time. The 
updating instant of Z.O.H are 푡  and the successfully transmitted 
signals from the sampler to the controller and from the controller 
to Z.O.H at the instant 푡  experience signal transmission delay 
휂 , where 휂 = 휂 + 휂  (휂  and 휂푐푎  are delays from the 
sampler to the controller and from the controller to the Z.O.H at 
the updating instant 푡 , respectively). Therefore, the state 
feedback with considering the behavior of the Z.O.H takes the 
following form: 

푢(푡 ) = 퐾푥(푡 − 휂 )        푡 ≤ 푡 < 푡                        (3) 

in which 푡  is next updating state after 푡  . The network-
induced delay 휂  is bounded as the following inequality: 

휂 ≤ 휂 ≤ 휂                                           (4) 

where 휂  and 휂  are the lower and upper bounds of the 
network-induced delay, respectively. Then, the closed-loop 
system in Fig. 1 is described by: 

푥̇(푡) = 퐴푥(푡) + 퐵퐾푥(푡 − 휂 ) + 퐸휔(푡) 

푍(푡) = 퐶푥(푡) + 퐷퐾푥(푡 − 휂 )          푡 ≤ 푡 < 푡             (5)                              

which is the form of  sampled-data system. Moreover, at the 
updating instant 푡 , the number of accumulated data packet 
dropout since the last updating instant 푡  is denoted by 휏 , 

where 0 ≤ 휏 ≤ 휏 . Combining the above-mentioned facts yields 
to: 

푡 − 푡 = 휂 − 휂 + (휏 + 1)ℎ                   (6) 

Now, let 휂(푡) = 푡 − 푡 + 휂  is replaced in (5), then the following 
continuous time model is obtained for the closed-loop NCS in 
Fig. 1: 

푥̇(푡) = 퐴푥(푡) + 퐵퐾푥 푡 − 휂(푡) + 퐸휔(푡) 
푍(푡) = 퐶푥(푡) + 퐷퐾푥(푡 − 휂(푡))                         (7) 

in which, 

휂 ≤ 휂(푡) ≤ 휂	                                     (8) 

with 휂 = 휂 + (휏 + 1)ℎ. It's evident that 휂 is related to the 
maximum number of accumulated data packet dropouts 휏 , the 
upper bound of network-induced delay 휂  and the sampling 
period ℎ of the sampler device. 

퐇  Control Problem: System (7) is said robustly asymptotically 
stable with 퐻  norm bound 훾 > 0 if the following conditions are 
satisfied: 
1) The closed-loop system (7) is asymptotically stable when 

휔(푡) = 0 for all uncertainties ∆퐴(푡) and ∆퐵(푡). 
2) Under the zero conditions, the controlled output 푍(푡) 

satisfies ‖푍(푡)‖ ≤ 훾‖휔(푡)‖  for all nonzero 휔(푡)휖퐿 [0,∞). 

Before proceeding further, the following lemma is introduced to 
handle the norm-bounded parameter uncertainties: 

Lemma: Given real matrices 훴	, 훴  and 훴  with appropriate 
dimensions, with 훴	 = 훴	, then 

훴	 +훴 ∆(푡)훴 + 훴 ∆	 (푡)훴 < 0                        (9) 

holds if and only if for all ∆ (푡)∆(푡) ≤ 퐼 and some 휖 > 0 the 
following inequality holds 훴	 + 휖훴 훴 + 휖 훴 훴 < 0   which can 
be modified by Schur complement to the following matrix 
inequality: 
 

훴	 훴 휖훴	
훴	 −휖I 0
휖훴 0 −휖I

< 0                            (10) 

III. MAIN RESULTS 

    In this section, a new delay-dependent 퐻  stability condition 
is proposed in Theorem 1 to ensure robust stability of the closed-
loop system (7) for all delays satisfying (8). Then, controller 
synthesis condition is de푟ived in Theorem 2. 

Theorem 1: For given 휂 , 	휂, 	퐽, 	퐻 , 퐻  and 퐾, the closed-loop 
system (7) is robustly asymptotically stable with the 퐻  norm 
bound 훾 if there exist matrices 푁 , 퐿 (푧 = 0,1,2), M, 푅, 푆, 퐹, 
symmetric matrices 푃 = 푃

×
, 		푄 = 푄

×
> 0,					푄 =

1234



푄
×
> 0, 		푇 = 푇

×
> 0, 푇 = 푇 > 0, 		푍 > 0, 	푍 > 0	,

	푈 , 				푈 , 			푉 = 푉
×
(푧 = 0,1),					푋 , 			푋 , 			푋 	, 				푊 = 푊

×
 

, (푧 = 0,1)  with appropriate dimensions and scalar 휖, satisfying 
(11-17). 

푃 푅 푆
∗ 푈 푇
∗ ∗ 푈

> 0                                  (11) 

훴 훴 휖훴
∗ −휖퐼 0
∗ ∗ −휖퐼

< 0                                   (12)                                                                    

푉 퐿 +휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

≥ 0                      (13) 

푉 퐿 + 휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

≥ 0			                    (14) 

푉 퐿 + 휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

≥ 0                      (15) 

푊 퐿 +휑
∗ 푍 ≥ 0                                (16) 

푊 퐿 + 휑
∗ 푍 ≥ 0																			               (17) 

where 휂̂ = 휂 − 휂 , 휂̅ = (휂 − 휂 ) , 

훴	 = 휋 + 휋 + 휋 + 휋 + 휋 + 휂 푉 + 휂̂	푉 + 푊 + 휂̅	푊 	, 
휋 	 = [푁 + 휂 퐿 + 휂̂	퐿 			− 푁 + 푁 			− 푁 		0			0			0		 − 푁 +푁 		0],	  

휋 = (1,1) (1,2)
∗ (2,2) ,					(1,1) =

Ʌ Ʌ Ʌ Ʌ
∗ Ʌ Ʌ Ʌ
∗
∗

∗
∗

Ʌ
∗

Ʌ
Ʌ

, 

Ʌ = 푃 − 푅 + 푃 − 푅 +푄 +	휂 푇 + 휂̂	푇 + 푋 + 퐶 퐶, 

Ʌ = −푃 + 푃 + 푅 − 푆 + 푃 − 푅 ,Ʌ = −푃 + 푆 + 푃 − 푅  

,			Ʌ = 푃 + 휂 푅 + 휂̂	푆 + 푄 + 휂 푇 + 휂̂	푇 , 

Ʌ = −푃 + 푃 + 푅 − 푆 − 푃 + 푃 + 푅 − 푆 −푄 +푄 −

푋 +푋 ,				Ʌ = −푃 + 푆 − 푃 + 푃 + 푅 − 푆      

Ʌ = 푃 + 휂 푅 + 휂̂	푆 ,					Ʌ = 푃 + 휂 푅 + 휂̂	푆  

Ʌ = −푃 + 푆 − 푃 + 푆 − 푄 − 푋 ,	 

Ʌ = 푄 + 휂 푇 + 휂̂	푇 + 푍 + 휂̅푍 , 

(1,2) =

푃 푃 퐶 퐷퐾 0						
푃 − 푄 +푄 푃 0 			0

푃
0

푃 − 푄
0

0
0			

0
0

, 

(2,2) =

⎣
⎢
⎢
⎡
−푄 +푄 0 	 		 	 0																											0

∗ −푄 	 		 	 0																											0
∗
∗

∗
∗

−푋 + 푋 +퐾 퐷 퐷퐾
∗

	0
−훾 퐼⎦

⎥
⎥
⎤
, 

 
훴 = [−퐽 푀 ,−퐽 푀 ,−퐽 푀 ,−퐽 푀 ,−퐽 푀 ,−퐽 푀 ,−퐽 푀 ,  
−퐽 푀 ],						훴 = [퐻 						0						0						0						0						0						퐻 퐾					0], 
휋 = [−푀	퐴 0 0 푀 0 0 −푀퐵 퐾 −푀퐸], 

	

휓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −푃 + 푅
푃 − 푃 − 푅 + 푆

푃 − 푆
−푃 − 휂 푅 − 휂̂푆

−푃
−푃
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,			휓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −푃 + 푅
푃 − 푃 − 푅 + 푆

푃 − 푆
−푃 − 휂 푅 − 휂̂푆

−푃
−푃
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 	

	휑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−푅 + 푈
−푅 −푅 −푈 + 퐹

푅 − 퐹
−푅 − 휂 푈 − 휂̂퐹

−푅
−푅
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

		and		휑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−푆 + 퐹
푆 − 푆 − 퐹 +푈

푆 −푈
−푆 − 휂 퐹 − 휂̂푈

−푆
−푆
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

Proof : Define a Lyapunov-Krasovskii functional as follows: 

푉(푥 ) = 푉 (푥 ) + 푉 (푥 ) + 푉 (푥 ) + 푉 (푥 )                     (18) 

푉 (푥 ) = 휉 (푡)
푃 푅 푆
∗ 푈 퐹
∗ ∗ 푈

휉(푡)                              (19) 

푉 (푥 ) = ∫ 휏 (훼)푄 휏(훼)푑훼 + ∫ 휏 (훼)푄 휏(훼)푑훼       (20) 

푉 (푥 ) = 휏 (훼)푇 휏(훼)푑훼푑훽 

+∫ ∫ 휏 (훼)푇 휏(훼)푑훼푑훽                          (21) 

푉 (푥 ) = 푥̇ (훼)푍 푥̇(훼)푑훼푑휃푑훽 

+∫ ∫ ∫ 푥̇ (훼)푍 푥̇(훼)푑훼푑휃푑훽                      (22) 

wherein,				휉(푡) = 푐표푙[푥(푡),					푥(푡 − 휂 ),					푥(푡 − 휂),				∫ 푥(훼)푑훼,    

∫ 푥(훼)푑훼,											휂 푥(푡) − ∫ 푥(훼)푑훼,													(휂 − 휂 )푥(푡) −

∫ 푥(훼)푑훼, 휏(훼) = 푐표푙[푥(훼) 푥̇(훼)]. Now consider the 
following equation: 

푗 = ∫ [푧 (푡)푧(푡) − 훾 휔 (푡)휔(푡)]푑푡                      (23)   

under zero-initial conditions, we have 푉(푥 ) = 0 and	푉(푥 ) ≥ 0 
, so (22) can be rewritten to the following inequality; 

푗 = 푧 (푡)푧(푡) − 훾 휔 (푡)휔(푡) + 푉̇(푥 ) 푑푡 − 푉(푥 ) ≤ 

∫ [푧 (푡)푧(푡) − 훾 휔 (푡)휔(푡) + 푉̇(푥 )]dt																							(24) 

So the closed-loop system (7) is robustly asymptotically stable 
with disturbance attenuation level 훾 if and only if satisfying (24): 
 

푧 (푡)푧(푡) − 훾 휔 (푡)휔(푡) + 푉̇(푥 ) < 0                     (25) 
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The time derivative of 푉(푥 ) along the trajectories of (7) is 
obtained as follows: 

푉̇ (푥 ) = 2휉 (푡)
푃 푅 푆
∗ 푈 퐹
∗ ∗ 푈

휉	̇ (푡)                         (26) 

푉̇ (푥 ) = 휏 (푡)푄 휏(푡) − 휏 (푡 − 휂 )푄 휏(푡 − 휂 ) 
+휏 (푡 − 휂 )푄 휏 (푡 − 휂 ) − 휏 (푡 − 휂)푄 휏	(푡 − 휂)         (27) 

 

푉̇ (푥 ) = 휏 (푡)(휂 푇 + 휂̂푇 )휏(푡) − 휏 (훼)푇 휏(훼)푑훼 − 

∫ 휏 (훼)푇 휏	(훼)푑훼 − ∫ 휏 (훼)푇 휏(훼)푑훼( )
( )              (28) 

푉̇ (푥 ) = 푥̇ (푡)
휂
2 푍 + 휂̅푍 푥̇(푡) − 푥̇ (훼)푍 푥̇(훼)푑훼푑훽 

− 푥̇ (훼)푍 푥̇(훼)푑훼푑훽 − 푥̇ (훼)푍 푥̇(훼)푑훼푑훽
( )

( )
 

(29) 
  For any matrices 푁 ,푁 ,푁 ,푀, 퐿  , 퐿  and 퐿  and symmetric 
matrices 푉 , 	푉 , , 	푊 , 	푊 , 	푋 , 푋 ,	 and 푋  with appropriate 
dimensions, the following equalities hold: 
 
휀 (푡) = 2휁 (푡)푁 (푥(푡) − 푥(푡 − 휂 ) − ∫ 푥̇(훼)푑훼) = 0          (30) 

휀 (푡) = 2휁 (푡)푁 푥(푡 − 휂 ) − 푥(푡 − 휂(푡)) − 푥̇
( )

(훼)푑훼 = 0 

(31) 

휀 (푡) = 2휁 (푡)푁 푥 푡 − 휂(푡) − 푥(푡 − 휂) − 푥̇(훼)푑훼
( )

= 0 

(32) 
휀 (푡) = 2휁 (푡)푀 푥̇(푡) − 퐴푥(푡) − 퐵퐾푥 푡 − 휂(푡) − 퐸휔(푡) = 0		 

(33) 

휀 (푡) = 2휁 (푡)퐿 (휂 푥(푡) − 푥(훼)푑훼 

−∫ ∫ 푥̇ (훼)푑훼푑훽 = 0                                (34) 

휀 (푡) = 2휁 (푡)퐿 [	(휂 − 휂 )푥(푡) − 푥(훼)푑훼
( )

− 푥(훼)푑훼
( )

 

−∫ ∫ 푥̇(훼)푑훼푑훽	] = 0                             (35) 

 
휀 (푡) = 휂 휁 (푡)푉 휁(푡) − ∫ 휁 (푡)푉 휁(푡)푑훼 = 0              (36) 

 
휀 (푡) = (휂 − 휂 )휁 (푡)푉 휁(푡) − ∫ 휁 (푡)푉 휁(푡)푑훼 = 0       (37)         

휀 (푡) = 휁 (푡)푊 휁(푡) − ∫ ∫ 휁 (푡)푊 휁(푡)푑훼푑훽 = 0			   (38) 

휀 (푡) =
(휂 − 휂 )

2 휁 (푡)푊 휁(푡) − 휁 (푡)푊 휁(푡)푑훼푑훽 = 0 

                       (39) 
휀 (푡) = 푥 (푡)푋 푥(푡) − 푥 (푡 − 휂 )푋 푥(푡 − 휂 ) − 

2∫ 푥̇ (훼)푋 푥(훼)푑훼 = 0                              (40) 

 
휀 (푡) = 푥 (푡 − 휂 )푋 푥 	(푡 − 휂 ) − 푥 푡 − 휂(푡) 푋 푥(푡 − 휂(푡)) − 

2∫ 푥̇ (훼)푋 푥(훼)푑훼 = 0( )                              (41) 

휀 (푡) = 푥 (푡 − 휂(푡))푋 푥(푡 − 휂(푡)) − 푥 (푡 − 휂)푋 푥(푡 − 휂) − 

2∫ 푥̇ (훼)푋 푥(훼)푑훼 = 0( )                             (42) 

Where		휁(푡) = 	푐표푙[		푥(푡),				푥(푡 − 휂 ),				푥(푡 − 휂),				푥̇(푡),			푥̇(푡 − 휂 )		 
, 푥̇(푡 − 휂), 푥(푡 − 휂(푡)),휔(푡)]. Now based on (26-29) and combining 
(30-42), 푧 (푡)푧(푡) − 훾 휔 (푡)휔(푡) + 푉̇(푥 ) can be stated as follows: 

푧 (푡)푧(푡) − 훾 휔 (푡)휔(푡) + 푉̇(푥 ) 
= 푉̇ (푥 ) + 푉̇ (푥 ) + 푉̇ (푥 ) + 푉̇ (푥 ) + ∑ 휀 (푡)+ 

+(퐶푥(푡) + 퐷퐾푥(푡 − 휂(푡)) (퐶푥(푡) + 퐷퐾푥 푡 − 휂(푡) − 훾 휔 (푡)휔(푡) 
(43) 

The 푉̇ + 푍 푍 − 훾 휔 휔 in (45) can be rewritten as 

푉̇(푥 ) + 푧 (푡)푧(푡) − 훾 휔 (푡)휔(푡) = 휁 (푡)	휋휁(푡) + ∑ 훺 (푡)	(44)                 

where 휋 = 휋 + 휋 + 휋 + 휋
	
	 + 휋

	
+ 휂 푉 + 휂̂푉 + 푊 + 휂̅푊  

훺 (푡) = −∫
휁(푡)
푥(훼)
푥̇(훼)

푉 퐿 + 휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

휁(푡)
푥(훼)
푥̇(훼)

푑훼, 

훺 (푡) = −∫
휁(푡)
푥(훼)
푥̇(훼)

푉 퐿 + 휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

( )

휁(푡)
푥(훼)
푥̇(훼)

푑훼, 

훺 (푡) = −∫
휁(푡)
푥(훼)
푥̇(훼)

푉 퐿 + 휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

( )
휁(푡)
푥(훼)
푥̇(훼)

푑훼, 

훺 (푡) = −∫ ∫
휁(푡)
푥̇(훼)

푊 퐿 +휑
∗ 푍

휁(푡)
푥̇(훼) 푑훼푑훽, and 

훺 (푡) = −∫ ∫
휁(푡)
푥̇(훼)

푊 퐿 +휑
∗ 푍

휁(푡)
푥̇(훼) 푑훼푑훽. 

 
Provided 휋 < 0, and 훺 ≥ 0	(푖 = 1,… ,5), the Lyapunov-
Krasovskii theorem ensures that the system (7) is asymptotically 
stable. ■ 
    The sufficient conditions derived for the 퐻  stability of the 
closed-loop system (7) in Theorem 1 are in the form of nonlinear 
matrix inequalities. For a given controller 퐾, this Theorem can be 
used to determine the maximum value of allowable delay 휂 and 
minimum disturbance attenuation level 훾 which retain the robust 
stability of the controlled system. In the Theorem 2, utilizing 
changing variable technique, the nonlinear conditions in 
Theorem 1 is modified to obtain equivalent linear matrix 
inequalities (LMIs) which are computationally more tractable to 
obtain controller gain. 

Theorem 2: For given constants 휂 , 휂 and 훾 and scalars 휌 (푖 =
2,… ,8), the closed-loop system (7) is robustly asymptotically 
stable for 퐻  level 훾 with the control gain 퐾 = 푌푋  if there exist 
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nonsingular matrix 푋, matrices							푁푧,						퐿푧			(푧 = 0,1,2), 
	푅	,				푆	̅,				퐹,				푌 and symmetric matrices 푃 = 푃

×
,																		푄 =

푄
×
> 0,   푄 = 푄

×
> 0, 									푇 = 푇

×
> 0,     푇 =

푇
×
	> 0,					푍̅ > 0,					푍̅ > 0,					푈 ,					푈 , 푉 = 푉

×
, 푊 =

푊
×

, 푋 			(푧 = 0,1,2) with appropriate dimensions  and scalar 
휖 > 0 such that the following LMIs hold (45-51): 

푃 푅 푆̅
∗ 푈 퐹
∗ ∗ 푈

> 0																					                 (45) 

⎣
⎢
⎢
⎢
⎢
⎡ 훴	 훴 휖훴 	 Ʊ 		Ʊ
훴 −휖퐼 		0 						0 					0
휖훴
Ʊ
Ʊ

0
0
0

−휖퐼
0
0
		

0				
−퐼				
0			

0
0
퐼⎦
⎥
⎥
⎥
⎥
⎤

< 0                    (46) 

푉 퐿 +휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

≥ 0                      (47) 

푉 퐿 + 휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

≥ 0                      (48) 

푉 퐿 + 휓 푁
∗ 푇 푇 + 푋
∗ ∗ 푇

≥ 0                      (49) 

푊 퐿 +휑
∗ 푍̅

≥ 0                                (50) 

푊 퐿 +휑
∗ 푍̅

≥ 0                                 (51) 

where 
훴	 = 휋 + 휋 + 휋 + 휋 + 휋 + 휂 푉 + 휂̂	푉 + 푊 + 휂̅	푊 	,       
휋 =
[푁 + 휂 퐿 + 휂̂	퐿 −푁 + 푁 −푁 0 0 0 −푁 +푁 0],                                                     

휋 = (1,1) (1,2)
∗ (2,2)

,													 (1,1) =

⎣
⎢
⎢
⎢
⎡Ʌ Ʌ Ʌ Ʌ
∗ Ʌ Ʌ Ʌ
∗
∗

∗
∗

Ʌ
∗

Ʌ
Ʌ ⎦

⎥
⎥
⎥
⎤
, 

Ʌ = 푃 − 푅 + 푃 − 푅 +푄 + 휂 푇 + 휂̂	푇 + 푋 , 

(1,2) =

⎣
⎢
⎢
⎢
⎡ 푃 푃 				0 			0				
푃 − 푄 +푄 푃 0 			0

푃
0

푃 − 푄
0

0
0			

0
0 ⎦

⎥
⎥
⎥
⎤
, 

(2,2) =

⎣
⎢
⎢
⎢
⎡−푄 +푄 0 	 				0 	 										0

∗ −푄 	 				0	 	 									0
∗
∗

∗
∗

−푋 + 푋
				∗

									0	0⎦
⎥
⎥
⎥
⎤
, 

훴 = [−퐽 ,−휌 퐽 ,−휌 퐽 ,−휌 퐽 ,−휌 퐽 ,−휌 퐽 ,−휌 퐽 ,−휌 퐽] , 

훴 = [퐻 푋 0 0 0 0 0 퐻 푌 0], 

휋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −퐴 푋
−휌 퐴 푋
−휌 퐴 푋
−휌 퐴 푋
−휌 퐴 푋
−휌 퐴 푋
−휌 퐴 푋
−휌 퐴 푋

			0 		

	

0	 	
	

0	 	
	

0	 	
	

0	
0	
0	
0		

0
0
0
0
0
0
0
0

푋
휌 푋
휌 푋
휌 푋
휌 푋
휌 푋
휌 푋
휌 푋

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

−퐵 푌	 					−퐸	푋
−휌 퐵 푌 −휌 퐸	푋
−휌 퐵 푌 −휌 퐸	푋
−휌 퐵 푌 −휌 퐸	푋
−휌 퐵 푌 −휌 퐸	푋
−휌 퐵 푌 −휌 퐸	푋
−휌 퐵 푌 −휌 퐸	푋
−휌 퐵 푌 −휌 퐸	푋

	
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

Ʊ = [퐶푋 0 0 0 0 0 퐷푌 0] , and 

Ʊ = [0 0 0 0 0 0 0 훾푋 ]  
and the rest of the elements (Ʌ ,… , Ʌ ) is equivalent to 
Ʌ ,… , Ʌ .  

Proof : By Schur complement (12) is equivalent to  

⎣
⎢
⎢
⎢
⎢
⎡ 훴	 훴 휖훴 	 		Ʊ 		Ʊ
훴 −휖퐼 		0 					0 					0
휖훴
Ʊ
Ʊ

0
0
0

−휖퐼
0
0
		

0				
−퐼				
0			

0
0
퐼 ⎦
⎥
⎥
⎥
⎥
⎤

< 0											                (52) 

where 

훴	 = 휋 + 휋 + 휋 + 휋 + 휋 + 휂 푉 + 휂̂	푉 +
휂
2 푊 + 휂̅	푊 	, 

휋 = (1,1) (1,2)
∗ (2,2)

,			(1,1) =

⎣
⎢
⎢
⎡Ʌ Ʌ Ʌ Ʌ
∗ Ʌ Ʌ Ʌ
∗
∗

∗
∗

Ʌ
∗

Ʌ
Ʌ ⎦

⎥
⎥
⎤
, 

Ʌ = 푃 − 푅 + 푃 − 푅 +푄 + 휂 푇 + 휂̂	푇 + 푋 , 

(1,2) =

푃 푃 				0 			0				
푃 − 푄 +푄 푃 0 			0

푃
0

푃 − 푄
0

0
0			

0
0

, 

(2,2) =

−푄 +푄 0 	 	0 	 				0
∗ −푄 	 0 	 				0
∗
∗

∗
∗

−푋 + 푋
∗

	0
	0

, 

Ʊ = [퐶 0 0 0 0 0 퐷퐾 0] , and 
Ʊ = [0 0 0 0 0 0 0 훾퐼] . 

Let 푀 = [푀 푀 푀 푀 푀 푀 푀 푀 ] . Replace 
푀 = 푀 , 	푀 = 휌 푀 ,푀 = 휌 푀 ,			푀 = 휌 푀 , 		푀 = 휌 푀 ,				푀 =
휌 푀 , 	푀 = 휌 푀 ,푀 = 휌 푀  . Feasibility of inequality (52) 
implies that 푀  become nonsingular. Let 푋 = 푀  then pre and 
post multiply simultaneously the two side of (52) with diag 
[푋 푋 푋 푋 푋 푋 푋 푋 퐼 퐼 퐼 퐼]    (13-15)   with   diag 
[푋 푋 푋 푋 푋 푋 푋 푋 푋 푋] ,       (16-17)     with     diag 
[푋 푋 푋 푋 푋 푋 푋 푋 푋]        and     (11)         with 					diag 
[푋 푋 푋 푋 푋 푋 푋] and its transpose, respectively. 
Therefore the inequalities (11-17) leads to inequalities (45-51) 
with 푌 = 퐾푋 . ■ 
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IV. ILLUSTRATIVE EXAMPLE 
  An illustrative example is presented to verify the effectiveness 
of the proposed approach compared to previous results in the 
literature. The YALMIP Toolbox is utilized to solve the LMI 
feasibility problems [12]. 

Example: Consider the following system with norm-bounded 
uncertainty controlled over a network [6]: 

푥̇(푡) =
−1 0 −0.5
1 −0.5 0
0 0 0.5

+ ∆퐴(푡) 푥(푡) +
0
0
1
푢(푡) +

1
1
1
휔(푡) 

푍(푡) = [1 0 1]푥(푡) + 0.1푢(푡)                         (53) 
 

where ‖∆퐴(푡)‖ ≤ 0.01. Choose 퐽 = 0.1퐼 ,			퐻 = 0.1퐼, 퐻 = 0, 
휌 = 0.01, 휌 = 0.01, 휌 = 144,			휌 = 0.01,			휌 = 0.01,				휌 = 0.01 
and 휌 = 0.1 . 

   In Table 1, the minimum disturbance attenuation level 
corresponding to the rival design methods are compared for 
different values of 휂  and 휂. As seen in the similar situation, 
larger attenuation level is achieved with the proposed scheme. 

TABLE I:  Minimum disturbance attenuation level corresponding to the different 
design methods for different values of 휂  and 휂. 

휂  휂 훾 obtained 퐾 
[6] [7] Proposed 

Method  
0.1 0.5 1.843 1.714 1.531 −[0.8006 0.00204 1.7832] 

0.3 0.7 2.642 2.455 2.260 −[0.3814 0.0010 1.2941] 

0.5 1.0 5.829 4.415 3.381 −[0.1723 0.0 1.0162] 

 

Fig. 2 shows the simulation results of system (53) with state 
feedback controller 퐾 = −[0.8006 0.0204 1.7832] and  
0.1 ≤ 휂(푡) ≤ 0.5. The initial values of the states are 푥 (0) = 0.1,
푥 (0) = 0.1 and 푥 (0) = 0.8 and the disturbance signal 휔(푡) is as 
follows:   

휔(푡) = 0.2,				 2 ≤ 푡 ≤ 6		
		0, 							표푡ℎ푒푟푤푖푠푒                            (54) 

 

Figure 2. Simulation Results 

V. CONCLUSION 
   This paper proposed a new approach to synthesize robust 퐻∞ 
state feedback controller for the linear time invariant system 
which is controlled via communication network with considering 
interval time delay, data packet dropout, disturbance input and 
parameter uncertainties effects. A set of linear matrix inequalities 
(LMIs) are developed to design controller gain. A novel 
augmented Lyapunov-Krasovskii functional and free-weighting 
matrices method are introduced to achieve less conservative 
results. An illustrative example demonstrates the superiority of 
the proposed method.  
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