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Abstract

Background: Multiple therapies exist for patients with metastatic castration-resistant prostate cancer (mCRPC).
However, their improvement on progression-free survival (PFS) remains modest, potentially explained by tumor
molecular heterogeneity. Several prognostic molecular biomarkers have been identified for mCRPC that may have
predictive potential to guide treatment selection and prolong PFS. We designed a platform trial to test this hypothesis.

Methods: The Prostate-Biomarker (ProBio) study is a multi-center, outcome-adaptive, multi-arm, biomarker-driven
platform trial for tailoring treatment decisions for men with mCRPC. Treatment decisions in the experimental arms are
based on biomarker signatures defined as mutations in certain genes/pathways suggested in the scientific literature to
be important for treatment response in mCRPC. The biomarker signatures are determined by targeted sequencing of
circulating tumor and germline DNA using a panel specifically designed for mCRPC.

Discussion: Patients are stratified based on the sequencing results and randomized to either current clinical practice
(control), where the treating physician decides treatment, or to molecularly driven treatment selection based on the
biomarker profile. Outcome-adaptive randomization is implemented to early identify promising treatments for a
biomarker signature. Biomarker signature-treatment combinations graduate from the platform when they demonstrate
85% probability of improving PFS compared to the control arm. Graduated combinations are further evaluated in a
seamless confirmatory trial with fixed randomization. The platform design allows for new drugs and biomarkers to be
introduced in the study.

Conclusions: The ProBio design allows promising treatment-biomarker combinations to quickly graduate from the
platform and be confirmed for rapid implementation in clinical care.

Trial registration: ClinicalTrials.gov Identifier NCT03903835. Date of registration: April 4, 2019. Status: Recruiting.
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Introduction
Despite multiple therapeutic avenues for metastatic
castration-resistant prostate (mCRPC), their impact on
prolonging survival remains modest [1]. The wide range
of clinical outcomes and the plethora of potential resist-
ance mechanisms for each treatment suggest that an ideal
therapeutic approach requires accurate patient selection
taking tumor biology into account [2, 3]. At present, no
clear guidelines exist on how to choose the right treat-
ment for the right patient at the right time. With multiple
alternative therapies and a number of new therapies ex-
pected to be approved for patients with mCRPC, it is im-
perative to optimize the treatment selection and identify
the optimal sequencing of available therapies [1].
Here, we describe the design of the ProBio study, a pro-

spective multi-center platform trial for tailoring treatment
decision-making for men with mCRPC. ProBio is an out-
come adaptive, multi-arm, biomarker-driven platform trial
with the aim of prospectively identifying and validating
predictive molecular biomarkers. Specifically, we will test
whether somatic and germline alterations can predict if a
patient is more likely to benefit from receiving a particular
therapy [4, 5]. The adaptive design is particularly suitable
for addressing multiple questions at once and allows for
promising treatment-biomarker signatures to quickly
graduate from the trial and to be faster implemented in
routine clinical care [6, 7]. Treatment-biomarker combi-
nations may also exit the trial if there is accumulated evi-
dence of them being ineffective. The platform design
allows for new drugs and new biomarkers to be intro-
duced in ProBio, to enrich the options for guiding treat-
ment selection for men with mCRPC.

Background and rationale
Prostate cancer is the most common cancer and the second
leading cause of cancer-related death among men in the
Western world [8]. mCRPC is a lethal form of advanced or
metastatic prostate cancer, characterized by progressive dis-
ease under androgen deprivation [9]. Currently, the most
common systemic standard-of-care (SOC) therapies for
these patients are second-generation hormonal therapy
(abiraterone acetate and enzalutamide), chemotherapy (do-
cetaxel, cabazitaxel), and radionuclide therapy (radium-223)
[10]. Novel targeted agents (e.g., PARP and PD-1 inhibitors)
are expected to soon enrich the landscape of available treat-
ments for mCRPC patients [1, 3].
The number of therapeutic options for mCRPC patients

is increasing, but the response rates in unselected patient
populations remain moderate. This leads to missed oppor-
tunities of immediately selecting optimal therapy, un-
necessary side-effects for the patient, and costs to the
health care systems. Although approved for unselected
mCRPC patients, these SOC agents are likely more benefi-
cial for particular subgroups of the patient population [3].

Biomarker-driven clinical trials for mCRPC have been
hampered by the difficulty of obtaining metastatic tissue
[11]. Also, profiling a single metastatic lesion is not cap-
able of providing the full spectrum of the molecular het-
erogeneity that may exist within the patient [12, 13]. A
liquid biopsy, either in the form of circulating tumor cells
(CTCs) or tumor-derived cell-free DNA (circulating
tumor DNA, ctDNA), is an attractive alternative [14, 15].
Circulating tumor DNA has been shown to be highly con-
cordant to metastatic tissue for detecting somatic varia-
tions and allows for longitudinal monitoring and detection
of acquired resistance [16–19]. The use of molecular bio-
markers has been successful for patient prognostication
and holds the promise to inform treatment selection as
predictive biomarkers for mCRPC [20]. Currently, the
IND.234 trial is applying ctDNA sequencing in second- or
third-line mCRPC to test pre-defined biomarker-
treatment hypothesis for enriched responses that may sub-
sequently be investigated in randomized trials [21].
The multiplicity of available treatments with an evolv-

ing therapeutic landscape and the molecular heterogen-
eity with low prevalence of patients carrying a specific
marker highlights the limitations of current clinical trials
in evaluating the efficacy of comparative treatments and
potentially treatment-predictive biomarkers [3]. A pos-
sible remedy for addressing multiple research questions
within the same clinical trial is the implementation of a
platform design [22–24]. The multi-arm structure of a
platform trial allows to compare alternative therapies
with a common control group. Given the flexibility of a
platform design, it is possible to add or drop experimen-
tal arms and use the accumulated data to change the
course of the trial according to prespecified criteria. The
multiplicity of available therapies under investigation
within a heterogeneous patient population characterized
by biomarkers leads to large number of testable hypoth-
eses in the trial. The outcome-adaptive component of
ProBio can assign more patients to promising arms, thus
allocating the available patients to test the most plausible
hypotheses (conditional on the data collected within the
trial). In addition, it can be argued that it is also more
beneficial for the participants in the study (since patients
on average have higher probability to be assigned to ef-
fective treatments), and that it can reduce costs [6].

The ProBio trial
ProBio is the first biomarker-driven outcome-adaptive
trial for mCRPC, designed to accelerate the implementa-
tion of novel results generated by molecular epidemi-
ology into routine clinical care. ProBio incorporates
several multidisciplinary innovations including prospect-
ive liquid biopsy-based molecular profiling (Fig. 1), novel
features in the clinical study design (Figs. 2 and 3), and
dedicated solutions for logistics and clinical
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implementation. The trial was initiated in Sweden and
will expand internationally during 2020 to hasten re-
cruitment of a large number of patients. ProBio will cre-
ate a learning environment not only to identify
biomarker profiles where therapies are more effective,
but also to answer a multiplicity of prespecified research
questions (e.g., surrogacy role of ctDNA fraction, identi-
fication of new biomarker signatures based on collected
data, comparing RNA analysis from plasma and throm-
bocytes) and new hypotheses that will arise throughout
the study.

Trial design
ProBio is an outcome-adaptive, multi-arm, biomarker-
driven platform trial to determine whether treatment se-
lection based on a liquid biopsy-derived biomarker profile
can prolong progression-free survival (PFS) in men with
mCRPC. The trial will be analyzed within a Bayesian
framework where alternative treatments will be compared
within biomarker signatures in terms of their probability
of superiority, using a common comparator [25].
Patients are stratified based on their ctDNA biomarker

signature and randomized to either one of the experi-
mental arms where treatment decisions (abiraterone,
enzalutamide, carboplatin, docetaxel, or cabazitaxel) are
based on the biomarker signatures or the control group
defined by current clinical practice (Fig. 2). As the thera-
peutic landscape is quickly evolving, new drugs may be
introduced in the active arms, upon protocol amend-
ment. Radium-223 is not included due to the recent
EMA recommendations restricting its use only to
mCRPC patients who already received two treatments.
Carboplatin is included despite the lack of an indication

for prostate cancer since there is accumulating evidence
that platinum-based chemotherapy is effective in tumors
with defects in the DNA repair genes [26]. Several ther-
apies will be available for treatment of patients in a bio-
marker signature, and—conversely—a given as well as
one treatment can be administrated for patients with dif-
ferent biomarker signatures.
The outcome-adaptive randomization is implemented to

assign more patients to biomarker-treatment combinations
with the highest probability of being superior to SOC and
to early identify drugs which are promising in the subpopu-
lation of patients defined by a specific biomarker signature.
As data accumulates and it begins to become evident which
treatments are least effective for certain biomarker signa-
ture, fewer of those patients are randomized to poorly per-
forming therapies. This has the important advantages of
providing patients with a treatment more likely to work for
them, rather than a less effective therapy, but also of using
the finite resources (patients) in a more suitable way:
assigning patients toward the latter stages of the trial only
to the treatments still competing to be the best treatment
for that disease type.
Biomarker-treatment combinations that exit the trial

based on superiority are further evaluated in a seamless
confirmatory trial nested in the ProBio platform using
fixed randomization (Fig. 3). Upon progressive disease,
the patient will re-enter the trial and be re-randomized
one additional time (with a maximum of 2 randomiza-
tions) to another treatment based on their current bio-
marker profile. Patients that have undetectable ctDNA
[27] and do not harbor any relevant gDNA alterations
cannot be randomized and will enter an observation arm
of the study where SOC is administered. Both the re-

Fig. 1 Genomic profiling in the ProBio platform trial. Two 10-ml tubes of blood are drawn from each study participant and plasma is enriched.
Extraction is performed to obtain cell-free DNA from plasma and germline DNA from white blood cells. Targeted sequencing is applied on both
cell-free and germline DNA using the ProBio-panel. The ProBio panel covers mutations in 78 genes, structural variants in 11 genes and allows for
interrogation of genome-wide copy-number alterations, microsatellite instability, and hypermutation. Sequence data is processed using an in-
house developed bioinformatics infrastructure (https://autoseq-docs.readthedocs.io). All variants are manually examined to remove false positive
calls. This information is condensed into a report which contains the biomarker profile for subsequent randomization of the study participants.
Study participants that progress are reanalyzed and re-randomized
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randomization and the observation arm will provide im-
portant insights for selecting an optimal treatment se-
quence for mCRPC patients.

Inclusion/exclusion criteria
ProBio will enroll patients with mCRPC, aged 18 years
and above, with an Eastern Cooperative Oncology Group
(ECOG) performance status of 0–2, histologically con-
firmed prostate adenocarcinoma, and castrate levels (<
50 ng/dl) of serum testosterone, conforming to EAU
guidelines [2]. The patient should have an adequate
health, bone-marrow, hepatic and renal function to re-
ceive all available treatments in the trial. Distant meta-
static disease needs to be documented by positive Tc-99
bone scintigraphy or by computed tomography (CT) or
magnetic resonance imaging (MRI) scans. The ProBio
trial will initially allow to recruit mCRPC patients start-
ing both 1st- or 2nd-line systemic therapy for progres-
sive disease, but will in the near future limit enrollment
to 1st-line patients to infer a better understanding on
treatment sequencing. Patients are not eligible if they

have received more than two of the drugs under investi-
gation in the platform, prior to study inclusion.

Biomarker subgroup combinations and signatures
Molecular characterization of the tumor through a
ctDNA-driven liquid biopsy is a key feature of the ProBio
trial. Multiple molecular perturbations (splice variants,
point mutations, amplifications, and genomic rearrange-
ments) can be associated with treatment outcome and re-
sponse for men with mCRPC [28–30]. In men treated
with enzalutamide or abiraterone, the AR-V7 splice vari-
ant (up to 60% prevalence) has been suggested as a nega-
tive response marker [31, 32]. However, the combination
of TP53 inactivation (occurring in 25–40% of mCRPC pa-
tients) and multiple AR alterations has demonstrated
more promising results [33–35]. Metastatic prostate can-
cer with DNA repair deficiency (DRD), occurring in about
20% of mCRPC cases, has been suggested to have a higher
sensitivity to PARP inhibition [36] and platinum-based
chemotherapy [37, 38]. The FDA approved the anti-PD1
immunomodulator pembrolizumab in patients with any
microsatellite instable (MSI) or mismatch repair deficient

Fig. 2 Study design of the ProBio platform trial. Participants who meet the inclusion criteria and agreed to participate in the study are genotyped
and their biomarker profile is derived. Based on their biomarker subgroup combination they are randomized to either the control group
(standard-of-care) or one of the active arms. Patients are regularly followed through the study. Their outcome data is used to adapt the
randomization probabilities, assigning more patients to more beneficial therapies within a biomarker signature. Upon the first progression in the
study, patients will be re-genotyped and re-randomized to an alternative arm based on their updated biomarker profile
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(dMMR) solid tumor [39, 40]. Approximately 3–4% of
mCRPC are MSI positive [29, 41], with partial or complete
responses to checkpoint inhibition being observed in up
to 50% of these patients [40, 42–44]. Finally, The
TMPRSS2-ERG gene-fusion, occurring in 40–50% of pros-
tate cancer [34, 45], has been suggested to predict re-
sponse to docetaxel [46].
The ProBio trial will initially evaluate four classes

of pre-defined genomic biomarker signatures, which
have been recognized as the major candidates for
guiding prognosis and treatment decision [27, 29,
47]:

1. Mutations and structural rearrangements in AR;
2. Mutations, homozygous deletions, and structural

rearrangements in TP53;
3. DNA-repair deficiency by detection of mutations,

homozygous deletions, and structural
rearrangements in ATR, ATM, BARD1, BRCA1,
BRCA2, BRIP1, CHEK2, FANCA, MRE1, NBN,

PALB2, RAD50, RAD51, RAD51B, RAD51C, and
RAD51D; and

4. TMPRSS2-ERG fusions by structural
rearrangements and deleterious events.

New biomarkers that will be proven relevant for treat-
ment response of mCRPC patients may be prospectively
introduced in ProBio. The combination of these 4 bio-
markers defines the biomarker subgroup combination of a
patient, i.e., the molecular characteristics of the tumor in-
cluding germline DNA alterations (Fig. 3). Randomization
to either the control group or one of the active treatments
occurs conditional on the patient’s biomarker subgroup
combination, where a patient belongs to one and only one
subgroup. Initially, four binary biomarkers will be consid-
ered, which defines 24 = 16 biomarker subgroup combina-
tions. The effect of a treatment within one of these 16
biomarker subgroup combinations is however typically of
limited interest because of the low prevalence of each
combination. However, treatments may be more effective

Fig. 3 Life cycle of the ProBio platform trial. After written informed consent, the biomarker subgroup combination of the patient is determined
and used for randomization to either the control group (standard of care) or one of the experimental arms. Outcome data are updated monthly
throughout the trial and will be used to calculate the probabilities of superiority for the active arms over the control group for each biomarker
signature of interest. Based on the selected threshold, a decision to continue enrollment or to terminate (for futility or superiority) each
treatment-biomarker signature will be made. As treatment-biomarker signatures leave the platform, new treatments can possibly entry in the
study. The outcome data is also used to update the randomization probabilities within the biomarker subgroup combinations. Graduating
treatment-biomarker signatures will enter a confirmatory trial to validate the hypotheses generated from the platform
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in a subpopulation defined by a group of biomarkers, all
harboring alterations in, e.g., the target pathway that a
specific drug aims to block. We refer to such groups as a
biomarker signature [48]. Initially the ProBio trial will test
5 different biomarker signatures (Table 1). Contrary to the
biomarker subgroup combinations, a patient may belong
to more than one biomarker signature (Fig. 3). For ex-
ample, an AR and TP53 wild-type patient belongs both to
the signature “all patients” and “AR− and TP53−”. While
randomization happens at a biomarker subgroup combin-
ation level, therapies are evaluated at the higher level of
biomarker signatures.

Outcome adaptive randomization
The biomarker subgroup combination works as a strati-
fication variable for randomization procedure. Once the
unique patient’s biomarker subgroup combination has
been identified, the patient is randomized to either the
control or one of the active treatments based on prespe-
cified randomization probabilities. The control group re-
flects current clinical practice, i.e., treatment selection
according to national guidelines without the information
on the tumor biology, and consists of a mix of available
treatments. Given the stratified randomization, there will
be a separate control group for all the biomarker sub-
group combinations that will work as comparator for
the active treatments within the biomarker subgroup
combination or the biomarker signatures (Fig. 1).
Fixed randomization within biomarker subgroup combi-

nations will be implemented before accruing a minimum
number of patients across the total of the active arms (n =
50), after which the adaptation starts to be applied.
Thenceforth, experimental therapies will be randomized
proportional to their Bayesian probability of prolonging
PFS compared to the control as a measure of how well a
treatment is working. For each biomarker subgroup com-
bination, we will assure that the control groups receive at
least as many patients as any single drug in the experi-
mental arm (i.e., mimicking 1:1 randomization between
the control and the most promising treatment within the
biomarker subgroup combination). Randomization prob-
abilities will be updated monthly based on the accumu-
lated data throughout the trial. We chose to update
randomization probabilities using the observed PFS times

because time to progression in first-line and all-comer
mCRPC patients can be relatively short [28, 49].

Evaluation of therapies
Therapies will be evaluated in two different stages. In
the first one, all the therapies will be compared to the
respective controls in all the biomarker signatures
(screening stage). Treatments that show evidence of su-
periority in selected biomarker signatures will graduate
from the screening stage and enter the confirmatory
stage, where the therapies will be tested only for the as-
sociated graduating signature. As patients may enter the
trial at different stages of the disease and progress, we
will stratify the analyses by line of treatment from the
development of mCRPC.

Screening stage
Therapies will be evaluated for effectiveness as com-
pared to the control group separately for each biomarker
signature of interest. The main outcome is PFS, where
progression is defined according to Prostate Cancer
Working Group 3 [50]. We will use Bayesian methods
for survival analysis to contrast the distributions of PFS
times across the active arms and within the biomarker
signatures [25]. In particular, we will adopt the two-
parameter Weibull distribution to model the observed
PFS times. We chose the conjugate prior for the
Gamma-Weibull model with hyperparameters alpha = 10
and beta = 80, which correspond approximately to the
information from 10 patients. The conjugate prior facili-
tates Bayesian inference as posterior distributions can be
computed without the need of implementing and tuning
Markov chain Monte Carlo methods. The posterior distri-
butions of the modeled parameters will be used to evalu-
ate the effectiveness of the active arms in the trial by
computing the probabilities of superiority within the bio-
marker signatures, i.e., the probability that each treatment
offers a longer time to progression than the control in
each biomarker signature. After enrolling a minimum
number of 20 patients, an active treatment may graduate
and exit from the platform trial for a specific biomarker
signature if its probability of superiority exceeds a prede-
fined threshold (85%). To avoid the problem of treatments
only graduating in signatures with high prevalence, we

Table 1 Definition of the 5 candidate biomarker signatures and estimated prevalences with included biomarker subgroup
combinations, in the order AR, DRD, TP53, and TEfus (where “+” indicates mutated, “−” wild-type/non-mutated)

Signatures − −−−+ −−+− −−++ −+−− −+−+ −++− −+++ +−−− +−−+ +−+− +−++ ++−− ++−+ +++− Prev

All x x x x x x x x x x x x x x x 1

TP53− and AR− x x x x 0.5

TP53+ x x x x x x x 0.37

DRD+ x x x x x x x 0.19

TEfus+ x x x x x x x 0.32
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also require that the graduating treatment is performing
well in all the biomarker subgroup combinations which
belong to the graduating signature. This is done by com-
puting the probabilities of superiority within the bio-
marker subgroup combinations. If a treatment, instead,
appears to be particularly ineffective (i.e., probability of su-
periority less than 15%), it will exit the trial for that bio-
marker signature. If none of the conditions are met and
the maximum number of patients in the biomarker signa-
ture of interest is not reached (n = 150), randomization to
the treatment under investigation will continue. Decisions
about graduating and dropping treatments within bio-
marker signatures will be made by advice from experts in
the data and safety monitoring board. Once a treatment
graduates for a biomarker signature, it will exit the study
and enter seamlessly in the confirmatory trial which is
nested within the ProBio platform.

Confirmatory trial
The rationale for the ProBio platform study design is to
learn from the data that accumulates in the trial and
quickly generate solid hypotheses in a prospective way.
To generate practice-changing level of evidence, we will
subsequently validate the promising biomarker-therapy
combinations in a confirmatory trial (Fig. 2). When a
treatment graduates from the platform for a biomarker
signature, it will no longer be available in the active arms
of the associated signature and will enter in a side trial
nested within the ProBio platform. The control group
for the biomarker subgroup combinations belonging to
the graduating signature will be divided in two halves
using fixed randomization, the first receiving SOC and
the other the graduating treatment. The only compari-
son will be made between the graduating treatment and
the control group for the confirmatory trial (without
using the controls in the ProBio platform). On the other
hand, the patients in the SOC arm will at this stage also
act as a comparator for the remaining active arms in the
platform study. The confirmatory trial will be analyzed
in a frequentist manner.

Power and sample size considerations
We have selected the threshold values for graduation of a
treatment-biomarker combination or stopping for futility
based on extensive simulation studies, since operating char-
acteristics cannot be easily calculated for complex platform
trials [7]. The calibration of those thresholds has been per-
formed to control the type-I error and assure an adequate
power for graduating treatment-biomarker combinations.
In the simulations, we assumed multiple scenarios ran-

ging from no differences in treatments in any of the bio-
marker combinations to treatments prolonging the
mean PFS by 5 to 10 months. In terms of sample size,
the average number of participants in a treatment-

biomarker signature combination ranged from 70 to 95
to achieve graduation depending on the assumed sce-
nario. The average time in which effective signature-
treatment combinations remained in the trial ranged
from 21 to 30 months. Given the multiplicity of therap-
ies, we controlled the overall type-I error to be lower
than 30% (10% for the individual drugs), with varying
power figures up to 80% for graduating treatment-
biomarker combinations. The choice of an adequate
alpha level in the independent confirmatory trial will en-
sure an overall type-I error below 5% (such as alpha =
15%, overall type-I error = 15%·30% = 4.5%).
A comprehensive description of the simulation study

will be published in a future manuscript, detailing the
statistical aspects of the trial. A summary of the simula-
tions’ results can be found in the protocol. A web inter-
face to the simulations is available at http://alessiocrippa.
com/shiny/probio_dsmb/.

Final and trajectory analysis of the screening stage
The main and final analysis of all the active arms will be
performed at the end of the screening stage of the Pro-
Bio trial. The treatment comparison, regardless if it has
been validated or not, will be based on PFS within a bio-
marker signature. The measure of effectiveness will be
the probability of superiority over the control group
computed using parametric models within a Bayesian
framework. Additional endpoints, such as response rates,
overall survival, quality-of-life measures, toxicity, and
health economy, are also of interest. Depending on the
nature of the secondary endpoint, we will contrast their
distributions in the active treatments versus the control
using relevant Bayesian models.
The aim of ProBio is to assess treatment allocation

based on molecular profiling compared to SOC. That is,
we want to test whether molecular profiling leads to better
treatment selection than if the treating physicians make
the choices. This means that the control group is a mix of
treatments (some present also in the active arms). As a
secondary aim of ProBio, we will also compare the “effi-
cacy” of different treatments within specific signatures.
This aim addresses whether a given treatment works bet-
ter in specific signatures than other treatments.
In the analysis of the sequences of treatments, we will

contrast the patients’ trajectories in terms of their overall
time since randomization in ProBio, given by the sum of
the PFS times under the two possible consecutive ran-
domizations. The comparison will be performed using
Bayesian mixed-effects model with an interaction between
time and treatment arm (active versus control), to test dif-
ferences in the progression of the disease. The dependence
between repeated observations will be taken into account
by the random-effects in the hierarchical model.
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Patients’ pathways
ProBio patients can follow different pathways within the
trial depending not only on their biomarker subgroup
combinations, but also from their clinical features and
different timing of randomizations among others. We
have provided an overview of the most relevant path-
ways for a ProBio patient in Supplementary Figure 1.
New patients may end up in an observational arm if

their biomarker subgroup combination cannot be in-
ferred (undetectable ctDNA, technical failure, or micro-
satellite instability). Otherwise, patients will be
randomized either to the control group (SOC) or one of
the active treatments. After progressive disease, patients
may be rerandomized to another active treatment, but
patients in the control group and in the observational
arm will remain in their arm upon progression and will
keep receiving SOC. As patients might be unfit or un-
willing to continue the trial, both the patient and treat-
ing physician might choose to discontinue the patient
and exit the trial. In the later stage of the trial, if the bio-
marker subgroup combination of a new patient belongs
to one of the graduating biomarker signatures, the pa-
tient will enter the confirmatory trial with fixed
randomization to the control (SOC) or the graduating
active treatment. Finally, upon progressive disease after
the second randomization, all patients will discontinue
and exit the ProBio trial.

Current status of the ProBio trial
The ProBio trial is currently opening up at multiple
healthcare centers across Sweden (5 sites were opened
during the Spring of 2019 and an additional 6 sites will
open during 2020) with an expansion to other Scandi-
navian countries and Belgium planned for 2020. So far,
53 patients have been enrolled in the study, and the ac-
crual rate is currently reaching about seven patients per
month. Biomarker signatures could be inferred in 37/58
enrolled patients with a median turnaround time of 15
days (from blood collection to reporting randomization
results). In 5 cases, the ctDNA fraction was below 1%,
resulting in an incomplete assessment of the somatic
biomarker signature status. These patients entered an
observational standard-of-care arm of the study and
hence a potential randomization for their subsequent
line of therapy.
The ProBio investigators are currently seeking to ex-

pand the described trial design toward earlier stages of the
disease. This will be increasingly important in the context
of the changing treatment landscape of metastatic
hormone-sensitive prostate cancer, where the introduction
of chemohormonal therapy (GETUG-15, CHAARTED,
STAMPEDE), upfront association of abiraterone (LATI-
TUDE, STAMPEDE), enzalutamide (ENZAMET), or apa-
lutamide (TITAN) with standard ADT with or without

local therapy of the prostate in case of de novo M1 disease
(STAMPEDE), will demand a similar model for improving
treatment selection for patients with advanced cancer.

Discussion
ProBio is an innovative platform design for enhancing
treatment selection for mCRPC patients. Its design im-
plements several innovations compared to standard clin-
ical trials, including a flexible structure for adding or
dropping treatments and/or biomarker signatures,
adapting randomization probabilities based on the ac-
crual data, addressing multiple hypotheses within the
same study design, and validating promising therapies
seamlessly to quickly change standard-of-care.
Adaptive platform trials have been advocated as an

ideal solution for addressing multiple scientific questions
at once [7], such as evaluating multiple treatments in a
heterogeneous population. Outcome-adaptive
randomization, which is a common feature of adaptive
trials and employed in ProBio, has been criticized for
bringing modest-to-no benefits to the operating charac-
teristics of a trial [51, 52] and for being unethical [53]
(Buyse et al. 2016). Multiple simulation studies have
shown, however, that multi-arm designs employing
adaptive outcome-randomization strategies that protect
control allocation over time, such as the one used in
ProBio, proved to be superior to designs using fixed
randomization probabilities, including multi-arm multi-
stage designs [54–56]. Lastly, while a discussion of the
ethical objections to outcome-adaptive randomization is
outside the scope of this paper, we note that strong
counterarguments to those objections have been put for-
ward [57, 58].
In conclusion, this platform design has the potential to

quickly corroborate hypotheses and generate new evi-
dence which would not have been otherwise possible in
a conventional randomized trial. In addition, the ProBio
trial may dramatically reduce the years and the costs as-
sociated with changing current clinical practice. Treat-
ments that will graduate from the platform but fail in
the confirmatory trial may still be valuable for refining
biomarker signatures and inform treatment selection for
patients outside the study. By allowing patient accrual
and re-randomization throughout different lines of sys-
temic therapy for mCRPC, ProBio will allow us to im-
prove treatment selection that will maximize health
outcomes for the patient, and will provide essential in-
sights into optimal treatment sequencing regimen.

Trial status
The trial protocol, version number 3.0, was approved in
April 2019 and is ongoing. The recruitment of patients
was started February 1, 2019, and will continue for at
least 3 years.
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Additional file 1: Supplementary Figure 1. Patients pathway. Patients
in ProBio may end up in an observational arm where standard-of-care
(SOC) is administered. This may have been the result of low or undetect-
able ctDNA (Pathway 1, 10 & 14), technical failure during liquid biopsy
profiling (Pathway 2, 11 & 15) or identification of the MSI or hypermutator
(Pathway 3). When biomarker signature can be inferred, the trajectory of
the new patient depends whether particular biomarker signature-
treatments combinations have graduated. If none are available, the pa-
tient will be randomized either to the control group (SOC) or one of the
active treatments (Pathway 4 & 5). Upon first randomisation and progres-
sive disease, the allocated patients remain in their respective arm for re-
randomisation (Pathway 8 & 12). However, as patients might be unfit or
unwilling to continue the trial after their first randomisation, both patient
and treating physician might chose to discontinue the patient and exit
the trial (Pathway 9 & 13). If a newly entered patient has a biomarker sig-
nature for which a graduated biomarker signature-therapy combination is
available, the patient will enter a confirmatory trial pathway, which uses
fixed randomisation between control and graduating treatment (Pathway
6-7). Finally, upon progressive disease after the second randomisation
(Pathway 16 & 17), or after randomisation within the confirmatory trial
testing the graduated biomarker signature-therapy combination (Pathway
18), all patients will discontinue and exit the ProBio trial.
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