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Since the development of the cowpox (Vaccinia) vaccine by Jenner in 1796, 

vaccination has been able to protect both humans and animals against several diseases 

and even to eliminate some pathogens. The majority of the vaccines in use today are 

against systemic pathogens or toxins, despite the fact that intestinal infections are still 

a major cause of disease in both humans and animals. Protection against intestinal 

pathogens is obtained by the induction of pathogen-specific secretory IgA (sIgA) in 

the mucosae. While the parenteral route of vaccination is effective in the development 

of systemic immunity, it generally does not extend to the mucosal surfaces. In 

addition, the secretion of antigen-specific sIgA in the mucosae is maximal near the 

induction site. Therefore, the development of systems for vaccination via the oral 

route is an essential prerequisite for the stimulation of protective immunity against the 

majority of enteric pathogens of both man and animals.  

Despite the need for oral vaccine technology, progress in this area has been 

rather slow. Indeed, inactivated vaccines are in some cases not effective, attenuated 

live vaccines could potentially be dangerous and oral delivery of non-replicating 

antigens deals with physiological and immunological obstacles. Indeed, most antigens 

that are taken up orally are digested due to the low gastric pH and the presence of 

proteases. As a consequence, effective oral immunization usually requires the 

repeated administration of very large quantities of antigen. Oral administration of 

large doses of non-replicating antigens can sometimes induce a short-lived mucosal 

IgA immune response, but often develops a systemic state of immunological 

hyporesponsiveness, called oral tolerance. On the other hand, receptor-mediated 

uptake of orally administered antigens mostly induces an antigen-specific mucosal 

immune response. Therefore, these mucosa-binding antigens can serve as mucosal 

carriers, inducing a mucosal immune response against coupled heterologous antigens 

following oral administration of antigen-carrier complexes. 

It has been demonstrated that oral administration of newly weaned piglets with 

purified F4 fimbriae induced a receptor-mediated F4-specific antibody response, 

protecting these piglets against a subsequent F4+ ETEC challenge. However, F4 

fimbriae have no mucosal adjuvant effect to co-administered antigens, in contrast to 
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Escherichia coli produced heat-labile enterotoxine (LT) and Vibrio cholerae produced 

cholera toxin (CT).  

It is interesting to analyse the potential of both virulence factors of F4+ ETEC, 

F4 fimbriae and LT enterotoxin (or the related CT), in the simultaneous induction of 

an immune response against coupled or co-administered heterologous antigens and 

against F4+ ETEC infections in pigs. To determine the potential of F4 fimbriae or 

recombinant produced F4 fimbrial adhesin FaeG as mucosal carrier to coupled 

heterologous antigens, knowledge on the F4 fimbrial biogenesis and the use of 

fimbriae as carrier is needed. In addition, to study if CT can act synergistically with 

F4 or FaeG as mucosal carrier to induce an immune response against the coupled 

antigen following oral administration, knowledge on the uptake and 

immunomodulating effects of CT is necessary. Therefore, Part I of this thesis 

represents the present knowledge on the use of fimbriae as carrier (Chapter 1), the F4 

fimbrial biosynthesis (Chapter 2), and the toxic and immunomodulatory effects of LT 

and CT (Chapter 3).  
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1.1. Introduction
The role of Escherichia coli as a pathogen has been well known for many

years and many strains of E. coli have an inherent capacity to cause disease (Table 1).

The most frequent infection caused in humans by E. coli is that of the urinary tract
(Wullt, 2003). Enteropathogenic and enterotoxigenic strains of E. coli cause

gastroenteritis, especially in developing countries (Presterl et al., 2003;

Ratchtrachenchai et al., 2004), and are responsible for many cases of traveler’s
diarrhoea (Clarke, 2001). In animals, enterotoxigenic and verotoxigenic E. coli are

known to cause severe diarrhoea and oedema disease in young animals.
The ability of many pathogenic bacteria to adhere to specific host tissues is a

factor of primary importance in causing disease. Specific adherence allows bacteria to

resist and circumvent the flushing and cleaning mechanisms that protect many
epithelial surfaces in humans and animals. In addition, adhesion determines the site of

microbial infection. However, the pathogenic potential of an E. coli strain also
depends on other determinants such as its ability to produce toxins.

Fimbriae and pili are long proteinaceous surface appendages that allow

adhesion of pathogenic bacteria to their specific receptor. Pili (e.g. P, type 1, F6) are
more rigid structures with a diameter of about 7-8 nm and have an axial hole, whereas

fimbriae (e.g. F4, F5, F18) are thin and flexible structures with a diameter of about 2-

4 nm without axial hole (Fig. 1) (De Graaf and Mooi, 1986). They are composed of
repeating major subunits and some additional minor subunits. In most fimbriae (e.g.

F17, F18) and pili (e.g. P, type 1), a minor subunit, mostly located at the tip, mediates
adhesion (Lund et al., 1987; Krogfelt et al., 1990; Smeds et al., 2001; Buts et al.,

2003a). However, in F4 and F5 fimbriae, the major subunit functions as the adhesin

(De Graaf et al., 1980; Bakker et al., 1992a).
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Infection with fimbriae-expressing ETEC induces fimbriae-specific antibodies 

(Evans et al., 1978; Verdonck et al., 2002). Moreover, these antibodies were shown to 

provide protection against a subsequent homologous ETEC infection by inhibiting 

attachment of the bacteria to the host cells (Nagy et al., 1978; Levine et al., 1984; 

Cravioto et al., 1990). Therefore, the ability of purified fimbriae to induce protective 

fimbriae-specific antibodies is of significant importance for the development of 

vaccines. 

 

1.2. Parenteral immunization with fimbriae  
Parenteral immunization of mice with purified P pili induces pili-specific 

antibodies in the urinary tract, which provide protection against a homologous 

challenge infection (O’Hanley, 1990; Roberts et al., 1994). However, the sequence 

variability in the major subunit of both P and type 1 pili leads to variation in 

antigenicity among clinical isolates (Abraham et al., 1988; Vandemaele et al., 2003a 

and 2003b). In addition, the predominant immune response is directed against the 

major subunit that composes more than 99% of the total protein mass of the pilus 

structure (Lund et al., 1988; Langermann et al., 1997). The low level of antibodies 

against the minor subunit and adhesin cannot protect against a subsequent 

P Type 1 F4 F5 

Figure 1 : Schematic representation of type 1 pili, P pili, F4 fimbriae 
and F5 fimbriae. Major subunit (white), minor subunit (shaded) 



Chapter 1 : Fimbriae as immunogen and carrier molecules 
 

7  

heterologous challenge infection (Lund et al., 1988; Langermann et al., 1997). In 

contrast, immunization with recombinant type 1 adhesin subunit FimH (Langermann 

et al., 1997, 2000 and  2001; Palaszynski et al., 1998), the recombinant FimH 

receptor-binding domain (Thankavel et al., 1997) or complexes of FimH with its 

chaperone FimC (Meiland et al., 2004) induce a protective antibody response in mice 

and monkeys. However, the role of type 1 fimbriae in E. coli-induced pathogenesis 

seems to differ between animal species. Recent studies with denatured recombinant 

FimH and the bioactive FimH156 lectin domain reported the induction of FimH-

specific antibodies following vaccination of chickens, but they could not protect the 

chickens against a homologous E. coli infection (Kariyawasam et al., 2004; 

Vandemaele F., unpublished data). This is consistent with the observation that a fimH 

deletion mutant of an avian pathogenic E. coli colonized the chicken trachea better 

than did the wild type strain (Arné et al., 2000), suggesting that type 1 pili are not 

necessary for APEC-induced pathogenesis. On the other hand, recombinant PapG-

induced antibodies provided protection to chickens against subsequent homologous 

and heterologous APEC challenge (Kariyawasam et al., 2004). Moreover, the 

conservation of the adhesin among P pili of different clinical isolates supports its 

application as subunit vaccine against P pilus expressing E. coli (Vandemaele et al., 

2003b).  

In agreement, parenteral immunization of pigs with F4 fimbriae induces a 

fimbriae-specific systemic antibody response, which is mainly directed against the 

adhesin since the major F4 fimbrial subunit FaeG also constitutes the adhesin 

(Bianchi et al., 1996; Van der Stede et al., 2002b). Moreover, the induced antibodies 

block the fimbriae-receptor interaction (Yokoyama et al., 1992; Van den Broeck et al., 

1999c; Sun et al., 2000). As a consequence, vaccination of dams with F4 fimbriae 

produces fimbriae-specific antibodies in colostrum and milk which subsequently 

protects their suckling piglets from F4+ ETEC-induced neonatal diarrhoea (Rutter and 

Jones 1973; Rutter et al., 1976; Logan and Meneely, 1981; Nagy et al., 1985; Moon 

and Bunn, 1993; Osek et al., 1995; Barman and Sarma, 1999). Identical results are 

obtained with F5 fimbriae, as their major subunit FanC also constitutes the fimbrial 

adhesin (Morgan et al., 1978; Nagy et al., 1978 and 1980; Acres et al., 1979; Jacobs et 

al., 1987). Alternatively, fimbriae-specific antibodies produced by intramuscular 

immunization of chickens, extracted from egg yolk and then used to passively 

immunize pigs were shown to result in protection against a subsequent challenge 
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infection with pathogenic E. coli expressing homologous fimbriae (Yokoyama et al., 

1992; Imberechts et al., 1997b; Zuniga et al., 1997; Jin et al., 1998; Marquardt et al., 

1999; Hennig-Pauka et al., 2003; Kariyawasam et al., 2004).  

Despite the induction of systemic F4-specific antibody responses following 

parenteral immunization, no fimbriae-specific antibody secreting cells appear in the 

mucosa (Bianchi et al., 1996; Van der Stede et al., 2003). Bianchi et al. (1996) even 

observed that parenteral immunization of pigs with F4 fimbriae induced F4-specific 

suppression. However, parenteral immunization of pigs with purified F4 in the 

presence of adjuvants that modulate a systemically induced immune response towards 

a mucosal immune response, reduces the faecal F4+ E. coli excretion following 

challenge (Van der Stede et al, 2002b and 2003). This suggests that parenteral 

immunization under the right circumstances may have applications for the induction 

of a mucosal immune response. 

 

1.3. Mucosal immunization with fimbriae 
Protection against a mucosal infection can be achieved by the induction of a 

mucosal antigen-specific IgA response. The importance of IgA in mucosal secretions 

consists of its ability to agglutinate bacteria and neutralize antigens (Kilian et al., 

1988; Wold et al., 1990). The ability of IgA to block the adherence of bacteria to host 

mucosal epithelial cells has been demonstrated (Wold et al., 1990; McGhee et al., 

1992). In addition, IgA antibodies are more effective in inhibiting bacterial adherence 

than IgG of the same affinity as a result of its charge, extensive glycosylation and 

resistance to proteolysis (Magnusson et al., 1982; McGhee et al., 1992). 

Migration of B cells induced in nasal-associated lymphoid tissue and 

bronchus-associated lymphoid tissue to the gut lamina propria is negligible and results 

in a negligible level of intestinal IgA antibodies. This is in contrast with B cells 

induced in the gut-associated lymphoid tissue (Brandtzaeg et al., 1999; Ogra et al., 

2001). Thus, to induce mucosal fimbriae-specific antibodies preventing ETEC-

adhesion in the small intestine, oral immunizations are supposed to be most 

successful. However, it is known that oral immunization may alter the 

immunogenicity of antigens by effects of the acid environment of the stomach, 

presence of proteases and the flushing action of the intestines. Furthermore, the 

intestinal mucosal immune system only induces an immune response against 
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pathogenic antigens, whereas harmless antigens tend to induce oral tolerance (Stokes 

and Bailey, 2000; Garside and Mowat, 2001). 

Oral immunizations with intact or encapsulated CFA fimbriae induce poor 

mucosal IgA antibody responses. This has been suggested to be in part due to the 

alteration of CFA fimbrial antigens upon exposure to low pH in the gastro-intestinal 

tract (Evans et al., 1984; Schmidt et al., 1985; Edelman et al., 1993; Guillobel et al., 

2000; Byrd and Cassels, 2003). In contrast, F4 and F5 fimbriae are stable in the 

presence of proteolytic enzymes and although F5 dissociates at pH 2.5, the subunits 

are still able to bind their receptor (Gabor et al., 1997; Snoeck et al., 2004a). In 

agreement, oral immunization of F4R+ piglets with purified F4 fimbriae induces 

mucosal F4-specific antibodies, able to protect against a subsequent F4+ ETEC 

challenge (Van den Broeck et al., 1999a and 1999b). The presence of the F4 receptor 

is necessary since oral F4 immunization of F4R- piglets does not result in the 

induction of an F4-specific mucosal immune response (Van den Broeck et al, 1999b). 

Nevertheless, a secondary systemic F4-specific antibody response appears in F4R- 

piglets following oral and subsequent intramuscular immunization with purified F4 

(Van den Broeck et al., 2002). Van den Broeck et al. (2002) suggest that purified F4 

fimbriae act as normal food antigen in the absence of the F4R since identical 

immunization with a same low dose of OVA induces a similar secondary antigen-

specific antibody profile. However, the F4-specific antibody-response appears earlier 

than the OVA-specific response, which is likely due to a better intrinsic 

immunogenicity of the polymeric F4 antigen compared to monomer OVA. Oral co-

administration of OVA and F4 did not enhance an OVA-specific antibody response, 

suggesting that F4 has no adjuvant function (Van den Broeck, unpublished data). 

In contrast to F4 fimbriae, oral immunization of piglets with purified F18 

fimbriae does not induce a protective antibody response, even when using a 30-times 

higher dose of F18 fimbriae (Verdonck et al., unpublished data) or following 

incorporation of F18 fimbriae in microparticles (Felder et al., 2000). The fact that the 

minor subunit FedF functions as the adhesin of F18 fimbriae (Smeds et al., 2001 and 

2003) may at least partly explain the observed difference with F4 immunizations. 

1.4. Use of fimbriae as carrier molecules 
Fimbriae are attractive structures to use as carriers in vaccine design due to 

their polymeric character, their ability to adhere to specific receptors on mucosal 
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surfaces, their presence on the surface of bacteria and the possibility to prepare them 

in large amounts. 

A first approach to use fimbrial subunits as carrier molecules includes 

insertion of heterologous epitopes. This is mostly performed by insertion of epitopes 

in known hypervariable domains (Thiry et al., 1989; Bakker et al., 1990; van Die et 

al., 1990; Bousquet et al., 1994) or predicted surface-exposed domains of fimbrial 

proteins (Hedegaard and Klemm 1989; Pedersen et al., 1991; Steidler et al., 1993; 

Stentebjerg-Olesen et al., 1997; Yakhchali and Manning, 1997; Gao et al., 2001). 

However, random linker insertion mutagenesis can be used to identify new insertion 

sites in fimbrial subunits (Rani et al., 1999).  
The peptides that have been inserted in fimbrial subunits of E. coli are mainly 

immunogenic virulence antigens (Table 1). However, none of these chimeric fimbriae 

has been purified and subsequently analysed on its ability to induce a protective 

antibody response against a subsequent challenge infection. In addition to E. coli 

fimbrial subunits, fimbrial subunits of Bacteroides nodosus (Jennings et al., 1989), 

Pseudomonas aeruginosa (Hertle et al, 2001) and Salmonella (McEwen et al., 1992; 

White et al., 1999; Luna et al., 2000) as well as the flagellin subunit of flagella 

(Westerlund-Wikström, 2000) have been used as carriers for heterologous epitopes. 
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Table 1 : Overview of heterologous peptides inserted in fimbrial subunits of E. coli. 

Fimbrial 
subunit 

Heterologous 
epitope 

Length 
epitope 

Expression 
fimbriae 

Adhesion Induction 
antibodies 

Reference 

FimA 
(Type 1) 

HBsAg 9 + + - Hedegaard and 
Klemm, 1989 

 HBsAg 20 - - - Hedegaard and 
Klemm, 1989 

 VP1 (FMDV) 19 + + + Hedegaard and 
Klemm, 1989 

 VP1 (polio) 11 + + + Hedegaard and 
Klemm, 1989 

 CT-B 34 + + + Stentebjerg-Olesen 
et al., 1997 

FimH  HbsAg 56 + + + Pallesen et al., 1995 
(Type 1) CT-B 34 + + + Pallesen et al., 1995 

ClpG 
(CS31A) 

TGEV-S 9 + ND + Bousquet et al., 
1994 

 TGEV-S 10 + ND + Bousquet et al., 
1994 

 TGEV-S363-371 
TGEV-S522-531 

tandems 

up to 51 + ND ND Méchin et al., 1996 

 TGEV-S363-371 
TGEV-S522-531 

25 + ND + Der Vartanian et al., 
1997 

CstH(CS3) ST 15  + ND ND Yakhchali and 
Manning, 1997 

 LT-B 20 + ND ND Yakhchali and 
Manning, 1997 

 VP1 (FMDV) 12 + ND + Gao et al., 2001 
 c-Myc 10 + ND + Gao et al., 2001 

PapA (P) FMDV 9 + ND + van Die et al., 1988 
 SPA 58 + ND  Steidler et al., 1993 
 GnRH 10 + ND + van der Zee et al., 

1995 
FaeG (F4) IP 1 12 + ND ± Thiry et al., 1989 

 IP 2 7 + ND ND Thiry et al., 1989 
 SH 14 + ND ND Thiry et al., 1989 
 GP 11 + ND ND Bakker et al., 1990 
 VP1 (FMDV) 11 + ND + Bakker et al., 1990 
 HIV-1 11 + ND + Bakker et al., 1990 

FasA (F6) HSV-1 gD 9 + + + Rani et al., 1999 
 HSV-1 gD 8 + + ND Rani et al., 1999 
 TGEV-S 10 + + + Rani et al., 1999 

 
ND, not determined; VP1 capsid protein of type 1 polio-virus; FMDV, foot-and-mouth disease virus; 
HBsAg, hepatitis B surface antigen; IP, peptide derived from influenza; GP, peptide derived from a 
pilin subunit of Neisseria gonorrhoeae; HSV 1, human immunodeficiency virus type 1; SH, 
somatostatin hormone; TGEV, transmissible gastroenteritis virus; GnRH, gonadotropin releasing 
hormone; ST, heat-stable enterotoxins; LT-B, heat-labile enterotoxins subunit B; CT-B, cholera toxin 
subunit B; SPA, Staphylococcus aureus protein A 
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The length of the inserted heterologous epitopes is limited as the folding and 

stability of fimbrial subunits may not be disturbed. Therefore, a second approach to 

use fimbriae as carriers for heterologous epitopes is to conjugate them. For instance, 

F5 has been chemically coupled to 6-methylprednisolone (Bernkop-Schnurch et al., 

1997) and both F5 and F6 have been chemically linked to dinitrophenyl and bovine 

serum albumin (BSA) (Russell-Jones, 2001). Feeding fimbriae-BSA complexes to 

mice generates an anti-BSA antibody response. However, the ratio of fimbrial carrier 

for heterologous antigen and the chemical coupling both influence the immune 

response against both carrier and heterologous antigen (Kirkley et al., 2001; Russell-

Jones, 2001). Therefore, recent approaches consists of constructing genetic fusions 

between fimbrial adhesins and heterologous antigens (Batisson et al., 2000a and 

2000b; Zavialov et al., 2001). 

 

1.5. Conclusion 
 F4 fimbriae are highly immunogenic molecules when administered parenteral 

or mucosal. Moreover, oral F4 immunization of pigs results in a protective FaeG-

specific immune response. Therefore, it would be worthwhile to determine the 

potential of F4 fimbriae or its adhesin FaeG to function as a mucosal carrier molecule, 

inducing antibodies against a coupled or fused heterologous antigen or peptide. 

 



 

 

 

 

 

Chapter 2 

 

Expression and assembly of F4 fimbriae by Escherichia 

coli, a molecular overview1 
 

 

                                                 
1 Based on : Verdonck F, Cox E and Goddeeris BM. 2004. F4 (K88) fimbriae expressed by porcine 
enterotoxigenic Escherichia coli, an example of an eccentric fimbrial system ? J.  Mol. Microbiol. 
Biotechnol., accepted. 
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2.1. Introduction 

Enterotoxigenic Escherichia coli (ETEC) strains that express F4 fimbriae are 

an important cause of diarrhoea in newborn and weaned piglets (Gyles, 1994). The 

fimbriae mediate adhesion of bacteria to F4-receptors on porcine small intestinal 

epithelial cells, the initial step in colonization and disease (Jones and Rutter, 1972). 

 

2.2. Genetic organisation of the F4 operon  
Fimbriae are encoded by operons or gene clusters that are either located on a 

plasmid or on the bacterial chromosome. The F4 operon is located on a plasmid with a 

ranging molecular weight of 50 to 177 MDa (Shipley et al., 1978; de Graaf, 1990; 

Wasteson and Olsvik, 1991; Bertin, 1992; Mainil et al., 1998). The smaller plasmids 

were nonconjugative, whereas larger F4-containing plasmids were conjugative 

(Shipley et al., 1978). Therefore, F4 expression by E. coli can be spontaneously lost 

(∅rskov and ∅rskov, 1966). Mainil et al. (1998) found that F4 operon containing 

plasmids are mainly mono- or bireplicon plasmids. It is interesting to note that the 

genes encoding fimbriae and toxins of ETEC are often located on the same plasmids 

(Tschäpe et al., 1987; de Graaf, 1990; Mainil et al., 1992 and 1998; Gyles, 1994; 

Smyth et al., 1994). In addition, this plasmid also encodes the enzyme that enables 

bacteria to utilize raffinose (Raf) as energy source (∅rskov and ∅rskov, 1966; 

Shipley et al, 1978). The F4 and Raf genes are not closely linked, but separated by 30 

kbp (Mooi et al., 1979). The association of F4 and Raf genes might endow porcine 

ETEC with a selective advantage, which could explain the tendency of F4+ ETEC 

strains to dominate the E. coli flora in the porcine intestinal flora (Hinton et al., 1985).  

The F4 operon (Fig. 1) contains genes encoding the regulatory proteins FaeA 

and FaeB, the usher FaeD, the chaperone FaeE, the minor subunits FaeC, FaeF, FaeH, 

FaeI and the major subunit FaeG that constitutes also the adhesin (Van den Broeck et 

al., 2000). It is not clear whether FaeJ is expressed at all (Bakker et al., 1992b).  
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Figure 1 : Comparison of the gene clusters encoding the biogenesis of P pili, type 1 pili, F4, 
F5, F17 and F18 fimbriae. The boxes present genes. The function of the genes is indicated by 
the shading of the boxes. The letters below the boxes are symbols used for the genes. 

 

 

Fimbrial operons share more or less the same genetic organisation (Fig. 1). 

However, the organisation of the F4 operon shows some differences in comparison 

with other fimbrial operons. First, the location of faeC in the F4 operon corresponds 

with the location of the major subunit gene in F5, F6, P, S and type 1 fimbrial systems 

(Mol and Oudega, 1996). In addition, FaeC is the only protein of the fae gene locus 

that shows the characteristics that are common to major subunits of other fimbrial 

systems. Indeed, FaeC is about 16 kDa, shows homology at the N- and C-terminal 

ends with other major fimbrial subunits (e.g. the major subunits FanC (Roosendaal et 

al., 1984), FimA (Klemm, 1984), and PapA (Baga et al., 1984)) and is the only 

protein encoded by the F4 operon that contains the conserved cysteine residues. It 

seems likely that FaeC used to be the major subunit of F4 fimbriae, but that during 

evolution this role has been taken over by the adhesin FaeG (Oudega et al., 1989). 
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Second, the faeG gene encoding the major subunit of F4 fimbriae is located 

upstream of the gene encoding the usher, in contrast to most gene clusters analysed to 

date (Pap, Type 1, S, F5, F17, F18, F6, CFA-I) (Imberechts et al., 1992; Mol and 

Oudega, 1996; Buts et al., 2003a). Only the operons encoding the F4-related F41 and 

CS31A fimbriae have an organization similar to that of F4 (Moseley et al., 1986; 

Casey et al., 1990; Girardeau et al., 1991; Martin, 1996).  

Third, the major fimbrial subunit FaeG and the minor subunits FaeH and FaeI 

are much larger than the corresponding subunits of most other fimbrial subunits.  

 

2.3. Regulation of F4 expression 

The biosynthesis of fimbriae is influenced by growth rate (Jacobs et al., 1985; 

Van Verseveld et al., 1985; Van der Woude et al., 1990; Blomberg et al., 1991 and 

1993a; Payne et al., 1993) and environmental conditions such as carbon source 

(Shipley et al., 1978; Blomberg et al., 1991; White-Ziegler et al., 2000), temperature 

(Mooi et al., 1979 and 1985; Göransson, 1984; Klemm, 1985; Göransson et al., 1990; 

Schmoll et al., 1990; White-Ziegler et al., 1990, 1992, 2000 and 2002; Gally et al., 

1993; Huisman et al., 1994;), pH (Van Verseveld et al., 1985; White-Ziegler et al., 

2000; Schwan et al., 2002), osmolarity (Spears et al., 1986; Göransson et al., 1990; 

White-Ziegler et al., 2000; Schwan et al., 2002), oxygen levels (White-Ziegler et al., 

2000) and presence of alanine or leucine (Girardeau et al., 1982b; De Graaf and Mooi, 

1986; Martin et al., 1991; Braaten et al., 1992; Gally et al., 1993). Indeed, pathogenic 

bacteria only fully express virulence factors like fimbriae when the conditions are 

appropriate for adherence and subsequent colonization (Pourbakhsh et al., 1997; Zhao 

et al., 1997; Struve and Krogfelt, 1999). To this end, the bacteria have regulatory 

systems at their disposal that enable them to recognize the environmental 

circumstances and to adapt fimbriae biosynthesis according to these conditions. In the 

case of F4 fimbriae, expression is optimal at a temperature of 37°C, a pH ranging 

from 6.5 to 8.0, reflecting the intestinal conditions, and at the end of the exponential 

growth (Jacobs et al., 1985; Mooi and de Graaf 1985; Van Verseveld et al., 1985; 

Blomberg, 1991; Payne et al., 1993). This regulation of fimbrial expression is 

mediated by several factors like global regulators, local regulators, crosstalk between 

fimbriae and posttranscriptional mechanisms. 
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2.3.1. Global regulators 

Global regulators control the expression of a variety of operons. The global 

regulators that affect fimbriae biosynthesis are leucine-responsive regulatory protein 

(Lrp) (Braaten et al., 1991 and 1992; Huisman et al., 1994 and 1995; van der Woude 

et al., 1994 and 1995; Nou et al., 1995), the DNA methylating enzyme 

deoxyadenosine methylase (Dam) (Blyn et al., 1990; Göransson et al., 1990; Braaten 

et al., 1991 and 1994; van der Woude and Low, 1994; Huisman and de Graaf, 1995), 

the histone-like protein (Göransson et al., 1990; Jordi et al., 1992, Olsen et al., 1994; 

Atlung et al., 1997; Olsen et al., 1998; White-Ziegler et al., 1998 and 2000), 

integration host factor (Dorman et al., 1987; Eisenstein et al., 1987) and catabolite 

gene activator protein (Baga et al., 1985; Göransson et al., 1989; Forsman et al., 

1992). However, little is known about the exact influence of these global regulators on 

F4 expression. 

2.3.2. Local regulators 

Local regulators are encoded by a fimbrial operon of which they subsequently 

regulate the expression. The local regulators of the F4 operon are FaeA and FaeB. 

Two IS1 insertion sequences (IS1(A) and IS1(B)) are found between faeA and faeB, 

which are independently inserted in the regulatory region of the F4 operon (Fig. 2). In 

the fas operon encoding the genes for the biogenesis of 987P fimbriae, insertions of 

IS1 were found to turn on adjacent genes, thereby permitting a cryptic promoter 

sequence to function (Klaasen et al., 1990). However, the IS1(A) insertion in the F4 

operon was shown to only have a very limited effect on the level of faeA transcription 

(Huisman et al., 1994). Indeed, the putative original faeA promoter is suggested to be 

separated from the FaeA coding region by IS1(A), whereafter transcription of faeA 

became directed from the IS1(A) sequence upstream of the gene. Upstream of faeB, a 

putative promoter region is detected, with –35 and –10 regions resembling a typical 

σ70 promoter (Bakker et al., 1991b). The activity of the faeB promoter determines not 

only the FaeB expression, but also the level of F4 fimbriae expression since no 

significant promoter activity was observed in the non-coding regions between other 

fae genes downstream of faeB (Mooi et al., 1981 and 1986; Huisman et al., 1994, 

Verdonck, unpublished data).  
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Figure 2 : The regulation of F4 expression is regulated by competition between Dam and Lrp, 
FaeA or Lrp/FaeA to bind to GATC631 (symbol III). Binding of Dam results in methylation of 
GATC631 and subsequent expression of the F4 fimbrial subunits, whereas binding of Lrp, 
FaeA or Lrp/FaeA inhibits transcription of the F4 open reading frame. A more detailed 
explanation can be found in the text.   

 

The expression of faeA is positively controlled by an autoregulation 

mechanism of FaeA, whereas this protein represses F4 expression from the faeB 

promoter (Fig. 2) (Huisman et al., 1994). On the other hand, mutations in faeB had no 

effect on F4 fimbriae production (Huisman et al., 1994 and 1995). Since the FaeB 

homologue of P pili preferentially binds sequences upstream of the promoter of the 

FaeA homologue in P pili and stimulates transcription of the latter (Forsman et al., 

1989; Göransson et al., 1989), Huisman et al. (1995) suggest that the effect of FaeB is 

probably absent because of the disruption of the original faeA promoter region by the 

two IS1 insertion sequences. 

The fae operon contains two conserved GATC-sites (GATC497 and GATC600) 

between the regulatory faeA and faeB genes (Huisman et al., 1994; Bakker et al., 
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1991b). GATC-sites has been shown to play an essential role in the regulation of 

several fimbrial operons, for instance those encoding P, F1845, CS31A and S 

fimbriae (Blyn et al., 1990; Bilge et al., 1993; Morschhäuser et al., 1993; Martin, 

1996; Hale et al., 1998). GATC-sites are important target sites of methylation by 

Dam, influencing DNA transcription. The region containing the GATC497 (symbol I 

in Fig. 2) in vivo is always methylated, whereas GATC600 (symbol II in Fig. 2) is non-

methylated and this independent of the presence of FaeA (Huisman and de Graaf, 

1995). In contrast to other fimbrial operons, an additional third GATC site (GATC631; 

symbol III in Fig. 2) is present in the F4 operon (Huisman et al., 1994). GATC631 

methylation is variable in vivo. When this site is methylated, Lrp, FaeA or, most 

likely, Lrp/FaeA cannot bind to the region encompassing this site, resulting in F4 

biosynthesis (Fig. 2). On the other hand, when it is not methylated, Lrp, FaeA or 

Lrp/FaeA can bind, resulting in a subsequent reduction of fimbriae production. 

Therefore, F4 expression in E. coli is carefully balanced mainly by the methylation 

status of GATC631 (Huisman et al., 1994 and 1995). Perhaps, the methylation status of 

GATC631 is regulated by competition between Dam and Lrp, FaeA or Lrp/FaeA to 

bind this site since competition between Dam and Lrp to bind a GATC site in the P 

pilus regulatory region is reported to influence P pilus expression (Hale et al., 1998), 

but further experiments are needed to confirm or deny this hypothesis. 

Some additional differences are reported in the regulation of F4 fimbriae in 

comparison with other fimbrial systems. First, the expression of F4 fimbriae is not 

regulated by phase variation, a process by which individual cells switch between 

expression (phase ON) and non-expression (phase OFF) states (Blomfield, 2001). 

This is even in contrast to the F4-related CS31A fimbriae  (Crost et al., 2003). 

Second, FaeA interacts with Lrp to suppress the F4 fimbriae production, whereas the 

FaeA homologue of P pili, S and F1845 fimbriae bind with Lrp to induce fimbriae 

expression (Baga et al., 1985; Van der Woude et al., 1992 and 1994; Braaten et al., 

1994; Huisman and de Graaf, 1995). The opposite activity of these regulators is likely 

the result of the binding of these regulators at different locations in the respective 

operons (Huisman et al., 1994 and 1995; Kaltenbach et al., 1995; Nou et al., 1995; 

van der Woude et al., 1995).  
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2.3.3. Regulatory crosstalk between fimbriae 

A third mechanism that controls fimbrial expression is crosstalk between 

fimbrial operons. For instance, when faeA is inserted in the F5 operon, FaeA functions 

as a repressor on F5 fimbrial biosynthesis (Bakker et al., 1991b). In contrast, FaeB has 

no influence on type 1 phase switching (Holden et al., 2001). Probably, type 1 

fimbriae and F4 fimbriae are non-communicating fimbrial systems as they are 

expressed under different environmental conditions (Huisman et al., 1994; Roesch et 

al., 1998). There is no information on crosstalk between F4 fimbriae and other 

fimbriae. 

2.3.4. Post-transcriptional regulation 

Only a low percentage of the surface located fimbrial proteins are minor 

proteins. The relative concentration of each subunit type in the periplasm is shown to 

be an important factor in fimbriae assembly (Jacob-Dubuisson et al., 1993), which fits 

with the observation that the major subunits of fimbriae are produced in much larger 

amounts than the minor subunits (Schembri et al., 2002).  

(Post)-transcriptional regulation is supposed to determine the level of 

expression of the different F4 fimbrial proteins, since it is thought that only one 

polycistronic mRNA from faeB to faeJ is produced (Rosenberg et al., 1979). In 

several other fimbrial systems, gene expression is controlled by processing and 

differential degradation of mRNA (Baga et al., 1988; Bilge et al., 1993; Jordi et al., 

1993; Morschhäuser er al., 1993; Hacker and Morschhäuser, 1994; Bricker and 

Belasco, 1999; Schembri et al., 2002). Most fimbrial transcripts terminate directly 

downstream from the major subunit genes (Baga et al., 1987; Morschhäuser et al., 

1993) but the localization of faeG in the F4 operon suggests that this is not likely in 

the F4 operon (Fig. 1). 
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2.4. Biogenesis of F4 fimbriae 
 

The assembly of F4 fimbriae can be divided into three distinct stages : 

translocation of the fimbrial subunits across the inner membrane, interaction of the 

fimbrial subunits with the chaperone in the periplasm and translocation of the fimbrial 

subunits across the outer membrane by the outer membrane usher. 

2.4.1. Translocation of fimbrial subunits across the inner 
membrane 
 

The N-termini of fimbrial subunits that take part in the fimbrial biogenesis 

harbour characteristic features of signal sequences that mediate translocation across 

the cytoplasmic membrane (Nielsen et al., 1997; Pugsley et al., 1997). Highly 

conserved signal sequences are present in the subunits of F4 fimbriae and the related 

CS31A and F41 fimbriae (Girardeau et al., 1991). A serine(Ser)-flanked cryptic 

consensus sequence forming an alpha-helical conformation in the hydrophobic region 

of the signal sequence, mediates the accessibility of the cleavage site to signal 

peptidase I (Der Vartanian et al., 1994; Pugsley et al., 1997) (Fig. 3).  

 

FaeC      6 LACVFFLTGGGVSHA 20 
 

FaeD        23 VMSAVLGSASVIA 35 
 

FaeE     22 TLALMMTCQSAMA 34 
 

FaeF          10 LVLSALSIQSALA 22 
 

FaeG  6 IALAIAASAASGMAHA 21 
 

FaeH           12 SAIISVALFYSAA 24 
 

FaeI           8 LFAASLLPSCVLA 20 
 
 

Figure 3 : Part of the signal sequences of the F4 fimbrial proteins containing 
the serine(S)-flanked consensus sequence (underlined) and the processing 
site (arrow). The number represents the amino acid residue position. 
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Once Fae subunits are translocated by the general secretory pathway into the 

periplasmic space (Dodd and Eisenstein, 1984; Pugsley et al., 1997), they probably 

interact with the F4 fimbrial chaperone FaeE. Indeed, FaeE seems capable to interact 

with the signal sequences of F4-fimbrial subunits as well as with their native form. 

The signal sequences of the F4 fimbrial minor and major subunits, except FaeC, 

contain a Ser-flanked segment near the peptide cleavage site (Fig. 3). In contrast, 

there is no Ser-flanked region in the chaperone FaeE signal sequence. This suggests 

that FaeE can be involved in the Ser-flanked sequence recognition and subsequently 

ameliorate the accessibility of the cleavage site to signal peptidase I. This is in 

agreement with the P pilus chaperone PapD that aids in the release of the pilin 

subunits from the inner membrane (Hultgren et al., 1989). Indeed, 80% of P pili 

subunits remained anchored to the inner membrane in the absence of their chaperone 

(Jones et al., 1997).  

The C-terminal sequences of the fimbrial subunits are extremely hydrophobic 

(Klemm, 1981; Kuehn et al., 1993; Hung et al., 1996) and may insert into the 

cytoplasmic membrane. Alternatively, the C-terminus may be part of an edge strand 

of a β-sheet that lies on top of the membrane, inserting the hydrophobic side chains of 

its amino acid residues into the membrane. As a result, the C-terminus cannot interact 

with the chaperone. It is suggested that the P-pilus chaperone PapD recognizes a 

binding site on the P pilus subunit PapG separate from the C-terminus (Xu et al., 

1995), triggering a conformational change in the subunit that results in exposure of its 

C-terminus to the chaperone (Hung et al., 1999b). This mechanism of interaction, 

suggests that subunits change their membrane-associated state directly to a chaperone-

associated state in the periplasm (Soto et al., 1998; Thanassi and Hultgren, 2000b). 

2.4.2. Interaction of fimbrial subunits with their chaperone 
FaeE in the periplasm 

2.4.2.1. Donor strand complementation 

The interaction between fimbrial subunits and their specific chaperone has 

been most intensively studied in the P- and type 1 pilus systems. Crystallography of 

the P pilus chaperone PapD revealed two globular domains with an 

immunoglobulin(Ig)-like fold (Holmgren and Bränden, 1992). These domains are 

oriented towards one another in a way that gives the molecule the overall shape of a 
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boomerang (Kuehn et al., 1993). The crystal structure of the PapD-PapK chaperone-

subunit complex indicated that the PapK subunit had an incomplete Ig-like fold, 

lacking the C-terminal seventh β-strand G (Sauer et al., 1999). In the PapD-PapK 

complex, the chaperone donates its G1β-strand to complete the Ig-fold of the PapK 

subunit (Fig. 4). This mechanism is called ‘donor strand complementation’. However, 

an atypical Ig fold is produced as the donated strand runs parallel to the C-terminal 

strand F of PapK rather than anti-parallel in a typical Ig fold. The interaction of the 

type 1 FimC-FimH chaperone-adhesin complex was found to be identical to that of 

the PapD-PapK complex (Choudhury et al., 1999). 

 

 
 

Figure 4 : Model for the molecular interactions between subunit and chaperone 
(donor strand complementation) or between two subunits (donor strand exchange). 
The C- and N-termini of the subunits are indicated, as well as the names of the β-
strands. The names of the strands are according to the P-pilus subunits (according 
to Justice et al., 2003). 

Donor strand 
complementation 

Donor strand 
exchange 
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The crystal structure of the F4 fimbrial chaperone FaeE has not been 

elucidated to this moment. However, sequence alignment reveals that the functional 

important amino acid residues Arg8, Thr53, Arg68, Glu83, Lys112, Arg116, Gly167, 

Met172 and Asp196 of PapD are conserved in FaeE (Slonim et al., 1992; Kuehn et 

al., 1993; Hung et al., 1999a). Alternating hydrophobic amino acid residues were 

found in FaeE (Ile99, Val101 and Leu103) at the same position as alternating 

hydrophobic residues found in the G1β-strand of PapD (Leu103, Ile105 and Leu107). 

The presence of these conserved amino acid residues in FaeE suggests that a donor 

strand complementation mechanism may also be involved in F4 biogenesis. 

During donor strand complementation, the alternating hydrophobic amino acid 

residues of the PapD G1β-strand bind to a region composed of alternating 

hydrophobic amino acid residues at the C-terminus of each P-pilus subunit (Hultgren 

et al., 1989, Kuehn et al., 1993; Sauer et al., 1998 and 2000). In line with this typical 

mechanism of donor strand complementation, most Fae subunits constitute such 

conserved C-terminus flanked by a glycine at position –14 from the C-terminus and a 

penultimate tyrosine, which may allow their interaction with FaeE (Soto et al., 1998). 

However, two Fae subunits, FaeF and FaeC, do not interact with FaeE. The carboxyl-

terminal structure of FaeF does not match with the consensus sequence for chaperone 

binding (Fig. 5), which perhaps may explain the lack of interaction between FaeE and 

FaeF (Mol et al., 2001). The C-terminus of FaeC is in reasonable agreement with the 

consensus sequence, but some specific differences are apparent. The alanine at 

position –9 is specific for FaeC and differs from the residues in the other subunits. In  

 

FaeC : GEYSGALTFVVTYQ 
 

FaeF :   SYRGNLQIALQVED 
 

FaeG : TQWSAPLNVAITYY 
 

FaeH : ARWQAGLNVTVTVQ 
 

FaeI :     ERWRVSLPVSIEYQ  
   

FaeJ : KRWQGNLTPVVVYF 

 

Figure 5 : The C-termini of the F4 fimbrial subunits. The conserved 
alternating hydrophobic amino acid residues are indicated (bold symbols). 
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addition, the negatively charged glutamic acid residue at position –13 and the 

positively charged lysine residue at –16 are quite unique at these positions. These 

changes may possibly explain the absence of interaction with FaeE (Mol et al., 2001).  

A second site of interaction between PapD and PapK during donor strand 

complementation was found at the 310C-helix in the center of PapK (Sauer et al., 

1999). A similar region was also found in the center of the F4 fimbrial adhesin FaeG 

and probably serves to interact with the chaperone FaeE (Gaastra et al., 1983; 

Verdonck et al., 2004c). 

It is noteworthy that all fimbrial operons express their own chaperone, 

suggesting that the fimbrial chaperones bind their subunits in a sequence dependent 

manner (Kuehn et al., 1993; Bonci et al., 1997). In agreement with this, FaeE cannot 

replace the F5 fimbrial chaperone FanE in F5 fimbrial biosynthesis and vice versa 

(Bakker et al., 1991a). 

2.4.2.2. FaeE functions as dimer 

Gel filtration experiments combined with protein cross-linking analysis and a 

biophysical approach in which the rotation diffusion coefficient of purified FaeE was 

determined, indicate that FaeE functions as a homodimer (Mol et al., 1994 and 

1996b). Indeed, heterotrimeric complexes, consisting of two subunits of FaeE on the 

one hand and one subunit of FaeG, FaeH or FaeI on the other hand, are present in the 

periplasm (Mooi et al., 1983; Mol et al., 1994 and 1995). This characteristic of FaeE 

is unique to all fimbrial chaperones. Although, PapD and the S fimbrial chaperone 

SfaE were also found as dimers, albeit only transiently when they are not engaged in 

binding to subunits (Hung et al., 1999b; Knight et al., 2002), Walse et al. (1997) could 

not detect PapD dimers or higher aggregates in solution, indicating that the dimer 

observed in the crystal was an artefact caused by crystal packing. Studies using 

hybrids of FaeE and the K99 chaperone FanE revealed that the N-terminal domain of 

FaeE determines the dimerization of the protein (Bakker et al., 1991a). Indeed, 

although FaeE has 9 amino acids more in comparison to PapD and 18 to 19 amino 

acid residues in comparison with several other fimbrial chaperones (Holmgren et al., 

1992), truncation of the 19 C-terminal amino acid residues of FaeE did not influence 

FaeE dimerization or F4 biogenesis (Mol et al., 1996a).  
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2.4.2.3. Chaperone-subunit complexes are folded native-like and 
prevent subunit degradation and premature polymerisation 

The fimbrial subunits exist in a native-like folded state in the chaperone-

subunit complex. For instance, the periplasmic complex of FaeG and FaeE is able to 

agglutinate erythrocytes (Mol et al., 2001) and is recognised by monoclonal 

antibodies directed against conformational epitopes of F4 fimbriae (Bakker et al., 

1991a). This observation is in agreement with other fimbrial systems of which 

chaperone-adhesin complexes bind to their receptor (Kuehn et al., 1991; Mahmood et 

al., 2000; Zhou et al., 2001). However, expression of most fimbrial subunits also 

needs the periplasmic disulfide isomerase DsbA that catalyses disulfide bound 

formation (Jacob-Dubuisson et al., 1994a; Hung and Hultgren, 1998), but FaeG does 

not have cysteine residues (Klemm, 1981). 

The highly folded chaperone-subunit complexes prevent degradation of the 

fimbrial subunit. Indeed, faeE deletion mutants do not contain FaeG subunits, whereas 

the FaeG precursor is not affected (Mooi et al., 1982). Also type 1 and P pilus 

subunits are misfolded and unstable in the absence of their chaperone or the missing 

strand and collapse into off-pathway aggregates that are proteolytically degraded 

(Tewari et al., 1993; Bullitt et al., 1996; Barnhart et al., 2000). It is reported that the 

presence of unfolded PapG subunits stimulates transcription of the periplasmic 

protease DegP by activating the Cpx, σE and BaeSR modulator pathways (Jones et al., 

1997; Hung et al., 2001; Raffia and Ravioli, 2002). In agreement, DegP degrades 

FaeG subunits in the absence of its chaperone FaeE (Bakker et al., 1991a). In the case 

of the P-pilus subunit PapA, the conserved C-terminal strand is exposed to the solvent 

in the absence of the chaperone and activates the DegP protease, although it is not a 

cleavable substrate for DegP. The preferential cleavage sites occur between paired 

hydrophobic amino acids in three separate regions of PapA (Jones et al., 2002). 

Another function attributed to the FaeE chaperone is to prevent polymerisation 

of the F4 fimbrial subunits in the periplasm (Mooi et al., 1983), which is in 

accordance with observations made in other fimbrial systems (Kuehn et al., 1993, 

Bullitt et al., 1996; Thanassi and Hultgren, 2000a). Indeed, Bakker et al. (1991a) 

reported the presence of FaeG multimers containing conformational epitopes in 

degP/faeE double deletion mutants. On the other hand, the P pilus chaperone PapD is 

necessary to assemble adhesive P-pili in vivo because less than 10% of the P pilus 
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PapG subunits recovered from periplasmic extracts of a degP/PapD double mutant 

strain bind to their receptor (Jones et al., 1997; Sauer et al., 2002). 

2.4.3. Translocation of fimbrial subunits across the outer 
membrane 

2.4.3.1. The F4 fimbrial usher FaeD 

 During assembly of F4 fimbriae, the chaperone-subunit complexes are 

targeted to the outer membrane usher FaeD (Van Doorn et al., 1982). This protein has 

a high content of glycine and serine residues, in agreement with the ushers of type 1 

pili, P pili and several other fimbrial systems (Kuehn et al., 1994). In addition, FaeD 

contains four conserved cysteine residues, two at the N-terminus and two at the C-

terminus of the proteins (Schifferli and Alrutz, 1994).  

Two folding models propose an amino-terminal periplasmic domain of 126 

(Harms et al., 1999) or 133 (Valent et al., 1995) amino acid residues for FaeD 

respectively. Deletion mutations in this domain did not alter the localization or 

stability of the usher, but inhibited fimbriae biosynthesis. The central domain contains 

22 (Harms et al., 1999) to 24 (Valent et al., 1995) membrane spanning β-strands. The 

carboxyl-terminal periplasmic domain is predicted to contain 167 (Valent et al., 1995) 

or 255 (Harms et al., 1999) amino acid residues and is proposed to be important for 

the structural organisation of the protein as well as for its functioning in fimbriae 

biosynthesis (Harms et al., 1999). 

2.4.3.2. Formation of the initiation complex 

FaeD is involved in the translocation of the fimbrial subunits across the outer 

membrane and for the anchoring of the fimbrial structure to the outer membrane 

(Mooi et al., 1983; de Graaf and Mooi, 1986) (Fig. 6). It is not clear how the ordered 

assembly of F4 fimbrial subunits is accomplished, but difference in the relative 

affinities of the various subunits towards FaeD probably play an important role in this 

process. A direct interaction of FaeC with the 215 amino-terminal amino acid residues 

of FaeD has been shown to occur which is not the case for other F4 fimbrial subunits 

(Mol et al., 2001). It is therefore likely that FaeC is the first protein that interacts with 

FaeD in the process of fimbriae biosynthesis, especially since this subunit is present at 

the tip of the fimbriae (Oudega et al., 1989). In type 1 and P pili, the relative affinity 

of each chaperone-subunit complex for the usher correlates with the final position of 
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the respective subunit in the pilus (Dodson et al., 1993; Jacob-Dubuisson et al., 1993; 

Saulino et al., 1998). In addition, it is discovered that the information necessary for 

targeting the chaperone-subunit complex to the usher resides mainly in the subunit 

protein (Barnhart et al., 2003; Nishiyama et al., 2003).  

 

 
 

Figure 6 : Expression of the F4 fimbrial subunits and subsequent assembly of F4 fimbriae. 
The chaperone FaeE transports the subunits, except FaeC and FaeF, to the outer membrane 
usher FaeD where they are incorporated in the growing fimbriae. Thereafter, the chaperone 
FaeE recycles in the cytoplasm to transport another subunit. A more detailed explanation on 
the F4 fimbrial assembly can be found in the text. (Based on Van den Broeck et al., 2000) 

 

 

 

 

In the P pilus, binding of the PapD-PapG chaperone-adhesin complex to the 

PapC usher alters the conformation of the latter and stabilizes it in an assembly-

competent structure allowing initiation of pilus assembly (Saulino et al., 1998). 
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Probably, this also happens with the F4 fimbrial usher FaeD as the protease sensitivity 

of FaeD alters in the presence or absence of F4 fimbrial subunits (Valent et al., 1995). 

After binding of the F4 fimbrial tip subunit FaeC, FaeF binds the FaeD-FaeC 

complexes, resulting in the formation of the initiation FaeD-FaeC-FaeF complexes 

(Fig. 6) (Mol et al., 2001). FaeF functions as adaptor molecule, coupling the major 

subunit FaeG to the tip subunit FaeC. At regular intervals, the minor subunits FaeF, 

FaeH and probably also FaeI are incorporated in the F4 fimbrial structure (Bakker et 

al., 1992b). 

2.4.3.3. Subunit-subunit interaction 

In several fimbrial systems, the mechanism of interaction between subunits 

relies on the highly conserved N-terminus of the subunits. This N-terminal amino acid 

sequence contains an alternating hydrophobic amino acid residue motif that is 

analogous to the “G” β-strand of the chaperone and is exposed in chaperone-subunit 

complexes (Soto et al., 1998; Choudhury et al., 1999; Sauer et al., 1999; Zavialov et 

al., 2002). Such alternating hydrophobic amino acid residues are also present in the F4 

fimbrial subunits. Moreover, the N-terminus of FaeG is very conserved between the 

three F4 antigenic variants (Gaastra et al., 1983; Verdonck et al., 2004c). Therefore, 

like for several fimbrial systems, the subunit-subunit interactions between F4 fimbriae 

are also supposed to rely on the mechanism of donor strand exchange (Barnhart et al., 

2000; Knight et al., 2000). This mechanism is best characterized in P pili and type 1 

fimbriae of E. coli and in F1 fimbriae of Yersinia pestis (Soto et al., 1998; Barnhart et 

al., 2003; Zavialov et al., 2003a and 2003b) (Fig. 4). During assembly of these 

fimbriae, the “G” β-strand of the chaperone is exchanged for an N-terminal extension 

from the subunit of an incoming chaperone-subunit complex. The incoming N-

terminus during donor strand exchange runs anti-parallel to the subunit “F” β-strand, 

in contrast to the “G” β-strand of the chaperone. So, the subunit undergoes a 

topological transition from a non-canonical to a canonical Ig fold, resulting in more 

closed conformation of the groove and driving subunit assembly into a fiber (Sauer et 

al., 2002; Barnhart et al., 2003; Zavialov et al., 2003b). These energetically favourable 

conformational changes during pilus assembly are very important since the mode of 

action of fimbrial chaperones is independent of cellular energy (Jacob-Dubuisson et 

al., 1994b). 
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2.4.3.4. Translocation of subunits across the outer membrane 

The mechanism of translocation of F4 fimbrial subunits across the outer 

membrane is not determined. Thanassi et al. (1998) showed that the P-pilus usher 

PapC forms an oligomeric channel. This channel, probably a hexamer, has a diameter 

of approximately 2 nm and is large enough to accommodate a pilus subunit or the 

linear form of the pilus (Saulino et al., 2000). Similarly, in type IV pilus biogenesis, 

large oligomeric structures are found that consist of 10-12 monomers with a large 

central diameter of approximately 5.3 nm (Bitter et al., 1998). However, Harms et al. 

(1999) did not detect oligomeric FaeD complexes. Possibly, the putative quaternary 

structure of FaeD in the outer membrane is less stable or FaeD is different from the 

other molecular ushers studied so far in that it does not function as an oligomer. 

Indeed, the estimated copy number of FaeD per cell equals the number of fimbriae per 

cell (Mooi et al., 1981) and does not support a model in which the functional FaeD 

unit in the outer membrane contains 6 or 10-12 FaeD subunits.  

2.5. The major subunit FaeG mediates F4-receptor 
binding 

Although the adhesin of most fimbriae is a minor subunit located at the tip, the 

adhesin of F4 fimbriae is the major subunit FaeG. The receptor-binding site of FaeG 

has not been exactly characterised at the moment. The three F4 antigenic variants 

F4ab, F4ac and F4ad show small differences in the amino acid sequence of their 

adhesin FaeG (Guinée and Jansen, 1979; Mooi et al., 1979; Bakker et al., 1992a). The 

epitopes a1 to a7 are common epitopes and are present on two or on all three antigenic 

different FaeG subunits, whereas each of the three antigenic different FaeG subunits 

has a variant-specific “b”, “c” or “d” epitope (van Zijderveld et al., 1990). Although 

conserved common regions in FaeG are suggested to be involved in F4 receptor 

binding, the variant-specific epitopes mediate, at least partly, the binding of the three 

F4 antigenic variants to different receptors (Wilson and Hohmann, 1974; Jacobs et al., 

1987; Bakker et al., 1992a; Jin and Zhao, 2000; Sun et al., 2000). Indeed, six different 

porcine F4-receptor phenotypes can be distinguished based on the variability of the 

three F4 antigenic variants to adhere to porcine intestinal brush borders (Bijlsma et 

al., 1982; Baker et al., 1997). 
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In F4 fimbriae, the major subunit FaeG functions as adhesin and presents 

receptor-binding sites at different places along the fimbriae (Bakker et al., 1992a; Van 

den Broeck et al., 1999c). In contrast, the adhesins of P pili, type 1 pili and F17 are 

minor subunits that are only present at the tip. Moreover, these tip located adhesins 

have twice the molecular weight of the other fimbrial subunits as they are composed 

of an N-terminal lectin domain that mediates the receptor binding and a C-terminal 

pilin domain that couples the adhesin to the fimbrial shaft during assembly (Hultgren 

et al., 1989; Thankavel et al., 1997; Schembri et al., 2000; Dodson et al., 2001; 

Tanskanen et al., 2001; Hung et al., 2002; Buts et al., 2003a and 2003b; Merckel et 

al., 2003). The presence of a single adhesin subunit located at the tip of these fimbriae 

agrees with the lack of an N-terminal extension in the lectin domain and its resulting 

inability to mediate donor strand exchange with a preceding subunit (Hahn et al., 

2002). The molecular weight of FaeG is not twice that of the other F4 fimbrial 

subunits and it is not clear to this time if FaeG is composed of two domains (Méchin 

et al., 1995). 

2.6. Conclusion 
 In addition to characteristics that were identical to other E. coli fimbriae or 

pili, several unique mechanisms are discussed that are only present in F4 fimbrial 

induction, expression or assembly. Importantly, in contrast to the adhesins of most 

fimbrial systems, the F4 major fimbrial subunit FaeG also constitutes the adhesin. 

Therefore, the F4 fimbrial system could offer an opportunity to study the 

immunogenic potential of  monomeric and multimeric adhesins.  
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3.1. Introduction 
Enterotoxigenic Escherichia coli (ETEC) colonize the small intestine, release 

their heat-labile (LT) and/or heat-stable (ST) enterotoxins and induce diarrhoea. 

Similarly, colonization of the small intestine by Vibrio cholerae and secretion of 

cholera toxin (CT) results in diarrhoea. Besides functioning as a toxin, both LT and 

CT function as mucosal adjuvants. 

There are two major antigenic variants of LT, LT-I and LT-II, which do not 

cross-react immunologically (Nataro and Kaper, 1998). LT-I is highly similar to CT, 

whereas LT-II differs in amino acid sequence and carbohydrate binding specificities 

(Jobling and Holmes, 1991). The human (hLT-I) and porcine (pLT-I) variants of LT-I 

differ only by four amino acids (Domenighini et al., 1995) and in their binding to 

paragloboside (Karlsson et al., 1996). LT-I is further referred as LT. LT-II is not 

discussed in this review since its role in disease has not been established. 

 

3.2. Toxin structure 
The amino acid sequences of LT and CT are approximately 80% identical, 

resulting in similar three-dimensional structures (Fig. 1) (Dallas and Falkow, 1980; 

Sixma et al., 1991 and 1993; Zhang et al., 1995a and 1995b). The receptor-binding 

part is comprised of five identical B subunits that noncovalently associate into a 

highly stable pentameric ring (Cheesman et al., 2004). Each B-subunit (10.5 kDa) has 

a receptor-binding place but pentamerization improves receptor-binding (De Wolf et 

al., 1981a and 1981b; Iida et al., 1989; Streatfield et al., 1992; Jobling and Holmes, 

2002). The A-subunit (27 kDa) is a single polypeptide comprised of two major 

domains (A1 and A2) that are linked by a surface exposed loop which contains a site 

for proteolytic cleavage and a single disulfide bond which bridges the cleavage site 

(Sixma et al., 1991; Spangler 1992; Zhang et al., 1995a and 1995b). The A1-peptide 

contains an ADP-ribosyltransferase active pocket that binds NAD and catalyses ADP 

ribosylation of Gsα (Gill and King, 1975) and the A2-peptide non-covalently anchors 

the A subunit to the central cavity of the B pentamer (Sixma et al, 1991; Tinker et al., 

2003). The C-terminal motif of A2 protrudes from the pentameric B-subunit on the 

side that binds the cell surface (Zhang et al., 1995a and 1995b). 
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Figure 1 :  Crystal structures of cholera toxin (CT) and Escherichia coli heat-labile 
enterotoxins (LT). The A1- and A2-chains are linked by a flexible loop (not 
resolved in the crystal structure) that contains a proteolytic cleavage site subtended 
by a disulphide bond. Arrows mark the site of the loop and proteolytic cleavage. 
The K(R)DEL motif is indicated by an asterisk. (Figure obtained from W.I. Lencer 
and W. Hol). 

  

  

3.3. Toxin expression and assembly 
Chromosomal genes of V. cholerae encode CT (Vasil et al., 1975; Mekalanos 

et al., 1983; Miller and Mekalanos, 1984), whereas the genes encoding LT in E. coli 

are plasmid borne (So et al., 1978; Dallas et al., 1979). They both belong to the family 

of the AB5 toxins, characterized by an enzymatically active A subunit and five 

receptor binding B subunits (Fig. 1) (Merrit and Hol, 1995). The genes for the A and 

the B subunits are transcribed in a single mRNA (Dallas et al., 1979; Spicer et al., 

1981; Finkelstein And LoSpalluto, 1987) and expression of excess B over A subunits 

is the result of a more efficient ribosome-binding site of the B subunit (Mekalanos et 

al., 1983).  

The A and B subunits are synthesized in the cytoplasm and co-translationally 

transported to the periplasm, where assembly of the AB5 holotoxin takes place 

(Holmes and Twiddy, 1983; Hirst and Holmgren 1987a; Hardy et al., 1988; 

Streatfield et al., 1992). In contrast to CT (Finkelstein et al., 1970; Richardson 

andNoftle, 1970), LT is not secreted but remains in the periplasm or is located on the 

surface of LT-producing bacteria (Wensink et al., 1978; Kunkel and Robertson, 1979; 

Hirst et al., 1984; Horstman and Kuehn, 2000 and 2002; Tauschek et al., 2002). 
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CT 
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LT 

 A2-chain
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Furthermore, the A subunit of CT (CT-A) is activated by a V. cholerae-encoded 

protease (Booth et al., 1984), whereas the A subunit of LT (LT-A) is nicked by 

proteases in the intestinal lumen (Clements and Finkelstein, 1979). 

 

3.4. Toxin receptors 
Receptor binding is critical for the biological effects of CT and LT. The main 

receptor for both LT-B and CT-B is GM1-ganglioside [Gal(β1-3)GalNAc(β1-

4)(NeuAc(α2-3))Gal(β1-4)Glc(β1-1)ceramide], a glycosphingolipid found 

ubiquitously on the surface of mammalian cells (Lencer et al., 1992). Hydrogen bond 

interactions within each of five pockets formed by the B-subunit pentamer allow CT-

B and LT-B to cross-link GM1 with extremely high affinity for GM1 (dissociation 

constants of 7.3 x 10-10 and 5.7 x 10-10 for LT-B and CT-B, respectively) (Kuziemko 

et al., 1996; Turnbull et al., 2004). In addition, both toxins interact with ganglioside-

GD1b and LT-B also binds with lower affinity to polyglycosylceramides, asialo-

GM1, GM2 and polylactosamine-containing glycoproteins (Holmgren et al., 1982; 

Fukuta et al., 1988). After toxin binding to intact cells, there is a lag time of 15 to 60 

min before adenylate cyclase is activated (Gill and King, 1975). The lag time is 

necessary to allow the A1 peptide to translocate through the membrane and to come 

into contact with the Gs protein. 

 

3.5. Mechanism of toxin action 
LT and CT bind with their B subunits to GM1 at the cell surface, resulting in 

the association of toxin with specialized membrane microdomains rich in cholesterol 

and glycosphingolipids, known as lipid rafts (Orlandi, 1993 and 1998; Wolf et al., 

1998 and 2002; Shogomori and Futerman, 2001a and 2001b). The toxin is 

endocytosed by invagination of the plasma membrane, forming pits that can be non-

coated or coated with clathrin on their cytosolic surface (Shogomori and Futerman, 

2001a and 2001b; Parton et al., 1994a and 1994b; Schnitzer et al., 1995; Nichols et 

al., 2001; Le and Nabi, 2003; Singh et al., 2003). The pits invaginate into the cell and 

pinch off to form (clathrin-coated) vesicles. Following internalisation, the vesicles 

shed their coat (if present) and are able to fuse with early endosomes. Then, the toxin 

moves via early and recycling endosomes into the trans-Golgi (Tran et al., 1987; 

Parton et al., 1994; Schnitzer et al., 1996; Henley et al., 1998) (Fig. 2). After 
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subsequent dissociation of the A and the B subunit (Fig. 2), the A subunit undergoes 

retrograde transport to the endoplasmic reticulum (ER), while the B subunit recycles 

from the Golgi compartment to late endosomes and lysosomes (Cosson and 

Letourneur, 1994; Bastiaens et al., 1996; Majoul et al., 1996 and 1998; Orci et al., 

1997; Aoe et al., 1998; Richards et al., 2002; Chen et al., 2002a). The movement of 

the A-subunit from the Golgi to the ER is facilitated by a short, four-amin acid ER-

sorting signal (KDEL in CT-A, RDEL in LT-A; Fig. 1), present at the C-terminus of 

the A-subunit (Cieplak et al., 1995b; Lencer et al., 1995b; Bastiaens et al., 1996; 

Majoul et al., 1996; Sandvig et al., 1996; Henley et al., 1998). In the Golgi network 

the specific membrane-bound receptor ERD2 binds to the ER-sorting signal, resulting 

in package of the A-subunit into special transport vesicles that are transferred to the 

ER (Pelham, 1991). In the ER, disulphide isomerase reduces the disulphide bond 

between the A1- and A2-fragments (Majoul et al., 1997; Orlandi, 1997). 

Subsequently, the A1-peptide behaves as a misfolded protein that exits the ER via 

reverse translocation through the sec61p complex and reaches the cytosol (Hazes and 

Read, 1997; Schmitz et al., 2000; Teter et al., 2002; Winkeler et al., 2003).  

 

 
 

Figure 2 : Schematic representation of LT and CT internalisation 
(left) and induction of cAMP production (right). ER, endoplasmic 
reticulum. 
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Alternatively, Lencer et al. (2001) support the view that the B subunit would 

be the transport vesicle for the A subunit and that the A and B subunits of the 

holotoxin only dissociate when they have reached the ER (Fig. 2) (Tsai et al., 2001; 

Fujinaga et al., 2003). In this alternative model, the B subunit is not unfolded, remains 

membrane associated and moves to the basolateral membrane by traffic back out the 

secretory pathway by anterograde vesicles (Lencer et al., 1995b). 

The events following A1-peptide translocation to the cytosol that lead to 

binding of the A1-peptide to the basolateral located Gsαβγ complex, remain 

incompletely defined. A first possible mechanism (Fig. 2) is that the A1-peptide 

diffuses through the cytosol and escapes from degradation by the proteasome due to 

the absence or near absence of lysines in the toxic peptide, together with its ability to 

rapidly refold (Rodighiero et al., 2002). Lysine residues are targets for covalent 

addition of ubiquitin, a peptide typically required for proteasome-dependent 

degradation. It is however not clear how the A1-peptide is subsequently targeted to 

the Gs/adenylate cyclase complex. A second potential mechanism (Fig. 2) is that the 

A1-peptide remains associated to the cytosolic side of the ER membrane following 

sec61p-mediated translocation and reaches the cytoplasmic surface of the basolateral 

membrane by membrane traffic back out the secretory pathway. In support of this 

mechanism, the A1-peptide binds in vitro with the family of GTP-binding ADP-

ribosylating factors (ARF) that are involved in vesicular trafficking (Tsai et al., 1988; 

Stevens et al., 1999; Jobling and Holmes, 2000; Zhu et al., 2001a and 2001b). Indeed, 

initiation of vesicle formation occurs when a membrane protein interacts with the 

ARF-GDP complex and catalyses the release of GDP and the binding of GTP. The 

ARF-GTP form mediates the assembly of cytosolic coat proteins (coatomers) to 

membranes, inducing budding of the transport vesicles (Donaldson and Klausner, 

1994; Boman and Kahn, 1995; Moss and Vaughan, 1995). Fusion of basolaterally-

targeted vesicles with the plasma membrane delivers the translocated A1-peptide to a 

site near the Gs/adenylate cyclase complex on the cytosolic surface of the basolateral 

membrane.  

The A1-peptide catalyses the transfer of the ADP-ribose moiety of NAD to a 

specific arginine residue of the basolaterally located G protein Gsα. The Gsα protein 

also contains a GTP binding site and an intrinsic GTPase activity (Hepler and Gilman, 

1992). Binding of GTP to the Gsα leads to dissociation of Gsα from the Gsβγ dimer 
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(Kahn and Gilman, 1984) and subsequent increased affinity of Gsα for adenylate 

cyclase. The resulting activation of adenylate cyclase continues until the intrinsic 

GTPase activity hydrolyzes GTP to GDP, thereby inactivating Gsα and adenylate 

cyclase. However, ADP-ribosylation of Gsα by the A1-peptide inhibits the hydrolysis 

of GTP to GDP, thus leaving the adenylate cyclase constitutively activated and 

causing an increase in cAMP (Cassel and Selinger, 1977). Increased cAMP activates 

cAMP-dependent protein kinase A, which in turns phosphorylates the regulatory 

domain of cystic fibrosis transmembrane conductance regulator (CFTR) located in the 

apical epithelial cell membranes (Barrett and Keely, 2000). This CFTR is the major 

chloride channel activated by LT and CT (Sears and Kaper, 1996; Thiagarajah et al., 

2004). The net result is stimulation of Cl- secretion from secretory crypt cells and 

inhibition of NaCl absorption by villous tip cells (Field et al., 1972). The net 

movement of electrolytes into the lumen results in a transepithelial osmotic gradient 

that causes water secretion into the lumen. The massive volume of water overwhelms 

the absorptive capacity of the intestine, resulting in diarrhoea. 

The activation of adenylate cyclase leading to increased cAMP and subsequent 

altered ion transport is the most reported mode of action of CT. However, data from 

several research groups suggest that the increased levels of cAMP and subsequent A 

kinase activation may not explain all of the secretory effects of CT. There is evidence 

that prostaglandins (Bennett, 1971; Beubler et al., 1989; Bearcroft et al., 1996; Rocha 

et al., 2003), secretion of mucin from goblet cells (Forstner et al., 1981; Jarry et al., 

1994; Flach et al., 2004) and the enteric nervous system (Cassuto et al., 1981; 

Lundgren, 1988; Banks et al., 2004) are also involved in the response to CT.  

 

3.6. LT and CT immunomodulating effects 
CT as well as LT are potent immunogens and induce antigen-specific sIgA 

and serum IgG antibody responses (Elson and Ealding 1984a and 1984b; Spangler, 

1992; Nakagawa et al., 1996; Takahashi et al., 1996). Moreover, both toxins can act 

as adjuvants for the enhancement of mucosal and serum antibody responses to 

mucosal co-administered protein antigen (Clements et al., 1988; Holmgren et al., 

1993; Di Tommaso et al., 1996; Okahashi et al., 1996; Takahashi et al., 1996; 

Yamamoto et al., 1997; Yamamoto et al., 1998; Namikoshi et al., 2003; Imai et al., 

2004). Indeed, LT and CT were found to induce long-term memory to itself and to co-
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administered protein antigens (Lycke et al., 1986 and1991; Vajdy and Lycke, 1992; 

Kamiya et al., 2001). Although high levels of toxin-specific IgA at the inductive site 

reduce the adjuvant effect, they do not inhibit the mucosal adjuvanticity of LT or CT 

in a subsequent immunization (Tamura et al., 1989 and 1997; Wu and Russel 1994). 

However, it has been shown that CT must be administered by the same route and at 

the same time for induction of immunity against the target antigen (Elson and 

Ealding, 1984). The induced mucosal immune response is best at the mucosal site 

directly exposed to the antigen and the adjuvant (Pierce and Cray, 1982). Homing of 

lymphocytes to the mucosal site of activation is probably enhanced by CT-B since a 

recent study reports that CT-B increased expression of the mucosal addressin cell 

adhesion molecule 1 (MAdCAM-1) on endothelial cells in cultured human gastric 

explants (Lindholm et al., 2004). Binding of MAdCAM-1 to its exclusive ligand, 

integrin α4β7, on lymphocytes represents a tissue-specific homing mechanism for the 

intestine and gut-associated lymphoid tissue (Briskin et al., 1997). 

An important strategy for utilizing the immune-stimulatory properties of LT 

and CT has been the use of the non-toxic B subunits. The results obtained with LT-B 

and CT-B alone as mucosal adjuvant are highly inconsistent. Studies have shown that 

neither LT-B nor CT-B enhances immune responses to mucosally co-administered 

protein antigens (Douce et al., 1995; Rappuoli et al., 1999; Yamamoto et al., 1999; 

Hirai et al., 2000), whereas some other reports have suggested that LT-B and CT-B 

display mucosal adjuvant activity when (large doses) given with proteins by the nasal 

route (Hazama et al., 1993; Douce et al., 1997; de Haan et al., 1998a and 1998b; 

Rappuoli et al., 1999; Rask et al., 2000; Larsson et al., 2004) or when LT-B or CT-B 

is directly conjugated to the antigen itself (Rappouli et al., 1999; Rask et al., 2000; 

Larsson et al., 2004). However, it is interesting to note that the holotoxin stimulates 

stronger responses on a dose for dose basis following intranasal delivery compared to 

the B subunit (Douce et al., 1997; Kang et al., 2003). On the other hand, there are 

studies that report the use of recombinant LT-B and CT-B subunits to induce 

tolerance following oral delivery, but only in the complete absence of holotoxin 

(Williams et al., 1999). Hereto, the B-subunits need to be directly coupled to the 

antigen so that it can function as a carrier. Following GM1-receptor-mediated uptake, 

the antigen reaches immature antigen presenting cells, resulting in the induction of 

TGF-β-secreting regulatory T cells (Sun et al., 2000b).  
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Despite the fact that LT and CT are of the most potent mucosal adjuvants, 

exactly how these toxins exert their immunomodulatory effect is poorly characterized. 

Following intestinal administration of LT and CT, both toxins bind intestinal 

epithelial cells, which subsequently secrete IL-1, IL-6, IL-10 and IL-1Rα (Hansson et 

al., 1984; Bromander et al., 1993; McGee et al., 1993; Vervelde et al., 1998; Soriani 

et al., 2002). Although this may be of significance for the observed adjuvant effect, 

further experiments are necessary to define the exact influence of intestinal epithelial 

cells in enterotoxin adjuvanticity. In addition with the interaction with intestinal 

epithelial cells, interaction of LT and CT with different leukocytes is thought to be of 

major importance for mediating the adjuvant effect. LT and CT have been shown to 

be present within monomorphonuclear cells in the lamina propria and both toxins are 

transported by M cells into Peyer’s patches following oral application (Hansson et al., 

1984; Kraehenbuhl and Neutra, 2000). The influence of both toxins on different 

leukocytes will be discussed below and schematically presented in Figure 3. 

 

3.6.1. Influence on dendritic cells (DCs) 
There is emerging evidence that DCs are one of the principal cell types that 

mediate the adjuvant effect of both LT and CT in vivo (Fig. 3). These toxins induce 

phenotypic and functional maturation of DCs, promoting upregulated expression of 

MHCII, B7.1 and B7.2 costimulatory molecules, downregulation of CD40 and 

ICAM-1 expression and increased secretion of IL-1β (Gagliardi et al., 2000; Bagley et 

al., 2002; Martin et al., 2002; Jang et al., 2003; Eriksson et al., 2003; Lavelle et al., 

2003 and 2004; Petrovska et al., 2003). Recent observations indicate that luminal CT 

attracts DCs to the intestinal epithelial layer, where DCs seem to take up luminal 

antigens (Rescigno et al., 2001; Lycke, 2004). LT-treated DCs also have an improved 

ability to present protein antigen (Petrovska et al., 2003). In addition, CT induces a 

cAMP-dependent upregulation of the chemokine receptors CXCR4 and CCR7 

(Gagliardi et al., 2000 and 2003), enabling the migration of DCs to lymph nodes to 

interact with naive T cells (Iwasaki and Kelsall, 2000; Salusto et al., 2000; Shreedhar 

et al., 2003). In vitro, CT-maturated DCs are able to prime native CD4+/CD45RA+ T 

cells, driving their polarization towards the Th2 phenotype (Gagliardi et al., 2000). 

The fact that CT-treated DCs inhibit the expression of the Th1-response promoting 

cytokine IL-12 has been implicated as the mechanism by which this toxin mediates 
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the polarization of Th2 cells (Braun et al., 1999; Gagliardi et al., 2000; Bagley et al., 

2002; de Jong et al., 2002; Lavelle et al., 2003). The CT-mediated maturation of DCs 

for priming of a Th2 response requires catalytically active holotoxin, since 

recombinant CT-B or catalytically inactive holotoxin did not cause significant 

maturation of human DCs (Gagliardi et al., 2000; Shreedhar et al., 2003). This is in 

agreement with the mentioned capacity of CT-B to induce oral tolerance against a 

coupled antigen, in contrast to CT.  

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.6.2. Influence on B cells 
Binding of the toxins to B cells leads to the upregulated expression of MHCII, 

B7.1 and B7.2, CD40, ICAM-1 and IL-2Rα (Fig. 3) (Anastassiou et al., 1990; Francis 

et al., 1992; Agren et al., 1997; Nashar et al., 1997 and 2001; Papadimitriou et al., 

1997, Bone et al., 2002; Martin et al., 2002). This activation of B cells enhances their 

role as MHC II-restricted antigen presenting cells and favours the induction of Th2-

dominated responses. In vitro studies indicate that CT facilitates B-cell switching to 

IgA through the action of TGF-β1 and increases the effects of IL-4 and IL-5 on IgG1 

and IgA synthesis in lipopolysaccharide(LPS)-triggered spleen B cells (Lebman et al., 
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Figure 3 : Immunomodulating effects of LT and CT 
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1988; Lycke et al., 1989 and 1990; Kim et al., 1998). Intraduodenal application of CT 

is also shown to enhance isotype switching of Peyer’s patch B cells to secrete IgA and 

IgG (Lebman et al., 1988). This IgA induction is independent of the A subunit (Wu 

and Russell, 1993; Stok et al., 1994; Kim et al., 1998). In contrast to the in vivo 

immunostimulatory effect of LT, in vitro incubation of murine B lymphoma cells 

inhibits their APC function in a cAMP-dependent way by increasing the intracellular 

pH and reducing antigen degradation (Tanaka et al., 1999). 

 

3.6.3. Influence on macrophages 
Treatment of both primary macrophages and macrophage cell lines with CT 

holotoxin suppresses production of TNF-α in response to LPS (Cong et al., 2001; 

Burkart et al., 2002; Chen et al., 2002b). Recent studies have revealed that CT-B may 

also suppress production of other proinflammatory cytokines. The expression of IL-6 

is influenced by altering the MAPK signalling pathways (Chen et al., 2002b) and 

suppression of IL-12 production is due to inhibition of transcription of both the IL-12 

p35 and p40 chains (Braun et al., 1999).  In addition, NO production is also reduced 

by CT treatment since the synthesis of NO requires signalling by TNF-α  (Cong et al., 

2001). These studies demonstrate that CT inhibits innate immunity at the early steps 

of infection. The enzyme and binding activity of LT differentially affect the 

production of pro- and anti-inflammatory cytokines.  The LT mutant LTK63 that is 

devoid of enzymatic activity stimulates IL-12 and TNF-α production by 

macrophages, whereas the LT holotoxin and the LT mutant LTR72, which retains 

partial enzymatic activity, suppressed LPS-induced IL-12 production (Ryan et al., 

2000). These distinct modulatory effects of the receptor binding and enzyme activity 

of LT may be related to their different effects on signaling pathways. The B subunits 

of LT bind to the GM1, leading to the acidic sphingomylinase-mediated activation of 

NF-κB (Ballou et al., 1996; Truitt et al., 1998). NF-κB controls the transcription of a 

number of genes involved in inflammatory responses such as IL-12 (Baeuerle and 

Henkel, 1994). On the other hand, the suppression of IL-12 by enzymatically active 

toxins is likely due to the higher mentioned accumulation of intracellular cAMP, since 

it has been reported that cAMP has inhibitory effects on the production of 

inflammatory cytokines by macrophages (Parry and Mackman, 1997). 
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Similarly to B cells, CT and LT upregulate the expression of B7.2 (B7.1 by 

enzyme inactivated mutant LT) on macrophages that in turn leads to the co-

stimulation of CD4+ T cells activated via the T cell receptor-CD3 complex (Cong et 

al., 1997; Foss et al., 1999b; Yamamoto et al., 1999 and 2000; Ryan et al., 2000; 

Martin et al., 2002). The toxins also induce the secretion of IL-10 by macrophages, 

favouring the induction of Th2 responses (Feng et al., 2000; Ryan et al., 2000). In 

addition to the mentioned reduction of IL-12 secretion by macrophages, CT also 

reduces responsiveness of T cells to the Th1-response promoting IL-12 by inhibiting 

expression of surface receptor chains IL-12Rβ1 and IL-12Rβ2 (Braun et al., 1999). 

Furthermore, CT induces macrophages to produce membrane-associated and secreted 

IL-1, and enhances peptide presentation (Lycke and Strober, 1989; Bromander et al., 

1991; Matousek et al., 1996; Foss et al., 1999b and 1999c). In contrast to these studies 

but in agreement with toxin effect on B cells and DCs, it has been shown that CT and 

LT inhibit antigen processing of soluble native antigen by macrophages (Matousek et 

al., 1998; Damiani and Colombo, 2001). Moreover, in vitro treatment of macrophages 

with CT resulted in a significant increased recycling of the phagosomal compartment 

to the cell membrane (Damiani and Colombo, 2001).  

 

3.6.4. Influence on CD4+ T cells 
The mentioned negative influence of both toxins on antigen processing 

resulted in a hypothesis that both toxins could have a mitogenic effect on Th2 cells 

(Ryan et al., 2000), analogous to the effect of pertussis toxin on Th1 cells (Ryan et al., 

1998). However, the addition of CT and LT to in vitro cultures of Peyer’s patch CD4+ 

T cells that were purified using a magnetic cell sorter system, reduces T cell 

proliferation (Yamamoto et al., 1999 and 2000; Lopes et al., 2000), suggesting that 

the in vivo toxin-induced T cell priming is due to indirect effects.  

Studies with Th1 and Th2 cell lines as well as studies with positively selected 

T cell populations demonstrate that CT significantly enhances IL-10 production and 

selectively inhibits proliferative responses and IFN-γ synthesis of Th1 clones (Munoz 

et al., 1990; Yamamoto et al., 1999; Lavelle et al., 2004; Ozegbe et al., 2004). In 

addition, CT is shown to abrogate IL-12R expression by T cells (Braun et al., 1999). 

Moreover, the initial event induced by CT in CD4+ T cells involves the upregulation 

of IL-4 (Vajdy et al., 1995; Okahashi et al., 1996; Yamamoto et al., 2000). This 
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results in the secretion of IL-5, IL-6 and IL-10, which provide helper signals for the 

induction of antigen-specific sIgA as well as serum IgG1, IgA and IgE antibody 

responses in mouse models (Hornquist and Lycke, 1993; Xu-Amano et al., 1993; 

Marinaro et al., 1995). In contrast, LT induces both Th1- and Th2-responses with 

subsequent mucosal sIgA as well as serum IgG1, IgG2a and IgA antibody responses 

(Takahashi et al., 1996). The LT-induced Th2-response is largely IL-4 independent 

(Yamamoto et al., 2000). This differences in CT and LT holotoxin adjuvanticity is 

suggested to rely on differences in the A subunit (Ryan et al., 1999 and 2000; 

Bowman and Clements, 2001) or the B subunit (Boyaka et al., 2003). 

 

3.6.5. Influence on CD8+ T cells 
Hornquist et al. (1996) reported that CD8+ T cells are not required for the 

mucosal adjuvant effect of CT. Indeed, LT and CT induce apoptosis of CD8+ T cells 

(Fig. 3) (Elson et al., 1995; Nashar et al., 1996; Yankelevich et al., 1996; Truitt et al., 

1998; Kim et al., 2001; Soriani et al., 2001; Salmond et al., 2002 and 2003). However, 

indirect activation of CD8+ cytotoxic T cells has been reported and probably relies on 

the toxin-induced stimulation of B7-1 expression on DCs (Porgador et al., 1998; 

Simmons et al., 1999 and 2001; Jang et al., 2003; Eriksson et al., 2004). 

 

3.6.6. Influence on intestinal permeability to macromolecules 
Besides the influence of LT and CT on leukocytes, Lycke et al. (1991) found 

that CT increases the intestinal permeability to fluorescein-labeled dextran particles of 

3 kDa. This suggests that CT acts on the epithelial layer to increase permeability to 

macromolecules, thereby delivering antigen into the underlying lamina propria and 

generating an immune response. Similar to CT, LT is reported to increase protein 

uptake (Verma et al., 1994 and 1995). Verma and co-workers (1994) suggested a 

change in tight junctional permeability following LT administration, which may be 

due to a change in the cytoskeletal microfilaments. 

However, the influence of LT and CT on intestinal permeability to 

macromolecules is controversial since there are also reports arguing against it. For 

instance, no increased uptake of orally administered hen egg lysozyme into the 

peripheral circulation was found (Nedrud and Sigmund, 1991). Furthermore, no 

polyclonal increase in antibody production was observed in the lamina propria after 
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CT is introduced (Jackson et al., 1993), nor is there any increase in antibody responses 

to food antigens (Nedrud and Sigmund, 1991).  

 
3.7. Conclusion 
 LT and CT are highly similar molecules which both function as virulence 

factor in E. coli and V. cholerae infections respectively and have the capacity to 

function as a mucosal adjuvant to co-administered antigens. Their immunomodulatory 

effects are suggested to be due to an increased antigen uptake of the co-administered 

antigens, a better induction of an antigen-specific immune response and an increased 

homing of antigen-specific effector cells to the original site of activation. However, 

further research will be necessary to elucidate the controversial hypotheses 

concerning the mechanisms of toxin endocytosis and adjuvanticity. 
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Aims of the study 
 

 

Oral immunizations with soluble non-replicating antigens most often result in 

oral tolerance. However, oral immunization of F4-receptor positive (F4R+) pigs with 

F4 fimbriae induces an F4-specific immune response protecting pigs against a 

subsequent challenge with F4+ enterotoxigenic Escherichia coli (Van den Broeck et 

al.,1999b). In F4R- pigs, F4 fimbriae seem to act as a normal food antigen (Van den 

Broeck et al., 2002), indicating that the F4-induced immune response is receptor-

dependent. 

The aim of the present work was to determine the potential of F4 fimbriae or 

its adhesin FaeG to function as a mucosal carrier for inducing antibodies against a 

coupled heterologous antigen or fused heterologous peptide.  

 

For the F4 fimbriae, the following questions were addressed : 

• Are F4 fimbriae conserved among F4+ E. coli field isolates ? In addition, are 

F4-specific antibodies induced by fimbriae isolated from the F4+ ETEC 

reference strain GIS26 able to inhibit binding of F4+ E. coli field isolates to the 

F4 receptor ?  

• Is the great immunogenicity of F4 fimbriae unique or does it also exist for F18 

fimbriae ? 

• Is it possible to screen the multimeric character and receptor-binding capacity 

of F4 fimbriae in a fast, specific and sensitive manner ? 

• Are F4 fimbriae able to induce an antibody response against the coupled 

model antigen human serum albumin, following oral immunization of pigs ? 

Has cholera toxin (CT) the potential to improve the mucosal carrier effect of 

F4 fimbriae following oral co-administration ? 

 

For the FaeG adhesin, the following issues were studied : 

• Is there a correlation between F4 bioactivity and its binding with an FaeG-

specific monoclonal antibody ? 

• Can the F4 fimbrial adhesin FaeG be produced in an E. coli expression 

system, retaining its F4R-binding conformation ? Furthermore, is there a 
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difference in the F4-specific immune response induced following oral 

administration of rFaeG or purified F4 fimbriae ? 

• Has recombinant FaeG the potential to function as a mucosal carrier to a N-

terminally fused heterologous peptide in the presence or absence of CT ?  
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Chapter 4 

 

Conserved regions in the sequence of the F4 fimbrial 

adhesin FaeG, suggest a donor strand mechanism in 

F4 assembly and the usefulness of FaeG in a vaccine 

against F4+ enterotoxigenic Escherichia coli1  
 

                                                 
1 Based on : Verdonck F, Cox E, Schepers E, Imberechts H, Joensuu JJ, Goddeeris 
BM. 2004c. Conserved regions in the sequence of the F4 fimbrial adhesin FaeG 
suggest a donor strand mechanism in F4 assembly. Vet. Microbiol., accepted. 
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Abstract 
To use FaeG subunits in an oral vaccine against F4+ enterotoxigenic E. coli, it 

is necessary to determine the conservation of the adhesin subunit. Hereto, the faeG 

sequence was determined of 21 F4ac+ E. coli field isolates from piglets with diarrhoea 

and subsequently compared with these of the reference strain GIS26 and previously 

reported FaeG sequences. The FaeG amino acid sequence was 96-100% homologue 

within each F4 serotype, but only 92% and 88% when the F4ab and F4ad serotypes 

were compared with the F4ac serotype. The conserved regions of the adhesin suggest 

a donor strand mechanism in F4 fimbriae assembly as reported for type 1 fimbriae and 

P pili. On the other hand, antibodies induced by purified GIS26 F4 fimbriae 

immunization were able to inhibit binding of all 21 isolates. In conclusion, the results 

of the reported experiments support the study of FaeG in an oral subunit vaccine 

against F4+ E. coli infections.  

4.1. Introduction 
F4 fimbriae are frequently detected on enterotoxigenic Escherichia coli 

(ETEC) strains causing neonatal or post-weaning diarrhoea in pigs (Wilson et al., 

1986; Harel et al., 1991). They are long thin proteinaceous appendages radiating from 

the surface of the bacterium to a length of 0.1 – 1 µm (Stirm et al., 1967), 

peritrichously distributed in numbers of 100 to 1000 per bacterium (Ottow, 1975; 

Klemm, 1985). Their flexible structure allows them to adhere to the F4 receptor (F4R) 

on brush borders of small intestinal enterocytes, resulting in colonization of the small 

intestinal mucosa (Jones et al., 1972). Subsequently, the heat-labile enterotoxin (LT), 

heat-stable enterotoxin a and/or b (STa, STb) produced by these strains induce a 

secretory diarrhoea  (Nataro and Kaper, 1998). 

F4 fimbriae are composed of the major subunit FaeG and the minor subunits 

FaeC, FaeF, FaeH and FaeI (Oudega et al., 1989; Bakker et al., 1992b). The major 

subunit is also the adhesin (Bakker et al., 1992a; Van den Broeck et al., 1999c), 

whereas for other E. coli fimbriae a minor subunit is involved in the adhesion (Mol 

and Oudega, 1996). In the latter E. coli fimbrial systems, the adhesins are reported as 

conserved proteins, whereas the major subunits are described as variable (Smeds et 

al., 2003; Vandemaele et al., 2003a and 2003b). 
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Immunization of mice with recombinant subunits of the conserved type 1 

adhesin FimH  was   reported   to   protect   against   a   subsequent   uropathogenic  

E.  coli   infection  

(Langermann et al., 1997). In agreement, oral immunization of newly weaned piglets 

with recombinant FaeG induced an F4-specific mucosal and systemic immune 

response, significantly reducing F4+ E. coli excretion following challenge (Verdonck 

et al., 2004a). However, before using the FaeG subunit as a vaccine, the conservation 

of FaeG has to be determined. Therefore, the faeG sequences of 21 F4+ E. coli isolates 

from piglets with diarrhoea were determined and compared with the faeG sequence of 

the F4+ ETEC reference strain GIS26 and nine reported faeG sequences. 

4.2. Material and methods 

4.2.1. Bacterial strains 
Twenty E. coli strains were isolated from animals that died from a neonatal 

(N) or post-weaning (PW) F4+ ETEC infection. They were collected on nineteen 

different pig farms in Flanders (Table 1). The 5/95 isolate was isolated in Finland and 

obtained from J. Joensuu, whereas strain GIS26 was used as reference strain. All 

strains were cultured on brain heart infusion agar (Oxoid, Basingstoke, Hampshire, 

England) for 18 hours at 37°C, whereafter the expression of F4ac fimbriae was tested 

using the c-epitope specific monoclonal antibody (MAb) CVI F4ac-5 (ID-DLO, 

Lelystad, The Netherlands) (van Zijderveld et al., 1990). 

To isolate F4 fimbriae or to determine the F4R binding, all strains were 

cultured during 18 h in Tryptone Soya Broth (TSB, Oxoid) at 37°C and 85 rpm. The 

bacteria were collected by centrifugation and washed with phosphate-buffered saline 

(PBS) (150mM, pH 7.4). The concentration of the bacteria was determined by 

measuring the optical density of 10-fold dilutions of the bacterial suspension at 

660nm (OD660). An OD660 of 1 equals 109 viable bacteria/ml, as determined by 

counting colony forming units. 

 

4.2.2. Serotyping, haemolysis and antibiotic resistance  
Serotyping was performed by agglutination with specific antisera directed 

against somatic antigens O138, O139, O141, O147 and O149 (Orskov et al, 1977). 
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The β-haemolytic phenotype of the isolated strains was determined by 

growing the bacteria 18 h at 37°C on blood (5% sheep red blood cells) agar plates 

(Difco Laboratories, Becton Dickinson, Le Pont de Claix, France). 

Diffusion sensitivity testing was conducted for the following antibiotics : 

amoxycillin-clavulanic acid (AC), chloramphenicol (CM), tetracycline (TC), 

sulfonamide-trimethoprim (TSU), apramycin (AP), ceftiofur (CF), minocycline (M), 

spectinomycin (SP) and nalidixin acid (NAL). 

 

4.2.3. PCR assays 
Multiplex PCR was performed to detect the presence of LT, STa, STb 

enterotoxin and the verotoxin (VT) coding gene (Bosworth and Casey, 1997). faeG 

was amplified from the isolates by PCR (Fig. 1) using the primers FaeGS1GMF (5’-

GGACTGAGGATTAATCTAGATAGTGATGCAAAACATCCG-3’) and 

FaeGS1GMR (5’-CGTATCAATAATAAATTGGGAGCTCATCACGAC-3’) to 

include the signal sequence. PCR was performed in a PTC-100TM (MJ Research, 

Watertown, USA) using Supertaq (HT Biotechnology Ltd, Cambridge, England) and 

the resulting PCR product was purified using the Qiaquick PCR purification Kit 

(Qiagen, Hilden, Germany) according to the manufacturers instructions. 

 

 

 

 

 

 

 

 

Figure 1 : Position of the primers used to sequence faeG of F4+ E. coli isolates. 

 

4.2.4. Sequencing and DNA analysis 
The nucleotide sequences of faeG genes were determined by the 

dideoxynucleotide chain termination method of Sanger using the ABI PRISM 

BigdyeTM Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, 

Warrington, UK). To sequence the faeG signal sequence of isolates GIS26, IMM 02, 

F4seq1 FaeGacF FaeGacR 

FaeGS1GMR FaeGS1GMF 

faeG 5’ 3’ 

F4seq2 

mature sequence signal 
sequence 
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IMM 03 and IMM 14, purified PCR fragments were used in combination with the 

FaeGS1GMF primer. To identify the sequence coding for the mature FaeG (Fig 1), 

purified PCR fragments were used in combination with the primers FaeGacF (5’-

GACGACGACAAGATTGCACATGCCTGGATGACTGG-3’), FaeGacR (5’-

GAGGAGAAGCCCGGTAATAAATTGGCAGCTCATCACG-3’), F4seq1 (5’-

GCTTCTTTGGTTCGGCCTAAC-3’) and F4seq2 (5’-

CTCTTGTTGACGTCGCAGGTT-3’). The sequencing reaction was performed in a 

PTC-100TM following the manufacturers protocol. The resulting products were 

purified using the Qiagen Dye Ex kit (Qiagen) and sequenced on a Genetic Analyzer 

3100 (Applied Biosystems) according to the manufacturers manual. The 

chromatograms of the sequences were visualized using the CHROMAS 2.0 software 

(Technelysium Ltd., Australia) and the DNA sequences were analysed and 

transformed to amino acid sequences using the DNAMAN version 5.0 (Lynnon 

Biosoft, Vaudreuil, Canada). 

 

4.2.5. In vitro adhesion to the F4R 
The in vitro adhesion of the E. coli isolates to the F4R was determined in 

triplicate using small intestinal villi from three strong F4R+ and one F4R- pig, as 

described by Van den Broeck et al. (1999c). The villi were washed and suspended in 

PBS supplemented with 1% (wt/vol) D-mannose to prevent adhesion of E. coli by 

type 1 pili. Subsequently, 4.108 E. coli were added to an average of 50 villi in a final 

volume of 0.5 ml and incubated for 1 hour while being gently shaken. Villi were 

examined by phase-contrast microscopy at a magnification of 600 and adhesion of 

bacteria was quantified by counting the number of bacteria adhering along a 50 µm 

villous border at 20 different places, after which the mean bacterial adhesion per 250 

µm villous brush border length was calculated. Binding of GIS26 to F4R+ villi (mean 

of 72.5, 73.5 and 84 bacteria per 250 µm for the three used F4R+ villi) was used as 

reference and set at 100 %, whereafter the binding percentage of the isolates was 

calculated in comparison with GIS26 F4R-binding. No binding of the isolates to the 

F4R- villi was observed. 
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4.2.6. Isolation of F4 fimbriae 
The F4 fimbriae were purified as described by Van den Broeck et al. (1999c). 

Briefly, fimbriae were isolated by homogenising the bacterial suspension of E. coli 

using an Ultra Turrax (Janke & Kunkel, IKA Labortechnik, Staufen, Germany), 

followed by a purification using two centrifugation steps and an additional 

precipitation of the supernatans with 40% (wt/vol) ammonium sulphate. Thereafter 

the pellet was dissolved and dialysed overnight against ultra pure H2O. 

 

4.2.7. Multimeric FaeG character of F4 fimbriae 
The presence of FaeG multi- or monomers in purified F4 fimbriae of the 

different isolates, was determined by SDS-PAGE followed by Coomassie staining or 

Western blot using the FaeG-specific MAb IMM01 (Van der Stede et al., 2002b) as 

described by Van den Broeck et al. (1999c). The samples were diluted in 60 mM 

TrisHCl pH 6.8, 2% SDS, 10% glycerol and 0.02% bromophenol blue and loaded on 

SDS-PAGE without heating. 

 

4.2.8. Transmission electron microscopic analysis (TEM) 
E. coli grown in TSB as described above, were examined using a TEM2085 

transmission electron microscope (FEI, Eindhoven, The Netherlands) after rotary 

shadowing or negative staining with 2% uranylacetate as described by Imberechts et 

al. (1996). 

 

4.2.9. MALDI-TOF mass spectrometry (MS) 
To identify the proteins in the 50 kDa and 75 kDa protein bands in heat 

denaturated and non-heat denaturated purified GIS26 F4 fimbriae respectively (Fig. 

4), these protein bands were excised from a SDS-PAGE, incubated with trypsin and 

analysed by MALDI-TOF MS (Bruker Reflex IV). The obtained peptide mass 

fingerprint was then used for identity searching using the BLAST algorithm 

(http://www.ncbi.nlm.nih.gov/blast). The score of the identity match is -10*Log(P), 

where P is the probability that the observed match is a random event. Protein scores 

greater than 56 are significant (P<0.05). 
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4.2.10. Motility assay 
The presence of flagella on E. coli isolates was analysed using a motility assay 

(Schmitt et al., 2001). Motility was assessed by stabbing motility agar (1 % (wt/vol) 

tryptone (Oxoid), 0.5% (wt/vol) NaCl and 0.35% (wt/vol) agar (Oxoid), pH 7.4) with 

the bacterial strain and after incubation at 37°C for 18 h observing the agar for 

migration of bacteria away from the point of inoculation. 

 

4.2.11. Brush-border fragment (BBF) ELISA 
A BBF-ELISA was developed to analyse if the antibodies, induced by oral 

immunization of purified GIS26 F4 fimbriae, were able to inhibit in vitro adhesion of 

other F4ac+ E. coli isolates to the F4R. To obtain BBF, jejunal enterocytes of pigs 

were isolated as described by Verdonck et al. (2004b). The enterocytes were 

homogenized by squeezing them 20 times through an 18G needle. The homogenate 

was centrifuged at 27,000 g for 30 min whereafter the pellet was collected. This 

procedure was repeated twice and finally BBF were stored at –20°C until use in 

ELISA. 

A 96-well microtiter plate (NUNC, Maxisorp, Immuno Plates, Roskilde, 

Denmark) was coated with the FaeG-specific MAb IMM01 at a concentration of 1 

µg/ml in PBS. After 2 h incubation at 37°C, the remaining binding sites were blocked 

overnight at 4°C with PBS supplemented with 0,2% (v/v) Tween®80. Purified F4 

fimbriae were diluted in ELISA dilution buffer (PBS + 0,05% (v/v) Tween®20) to a 

concentration of 50 µg/ml and incubated for 1 h at 37°C. Thereafter, the plates were 

incubated with serum from a pig orally immunized with GIS26 F4 fimbriae (F4-

specific titer 1280) or serum from an F4-seronegative pig (F4-specific titer < 10), 

again for 1 h at 37°C. Subsequently, F4R+ or F4R- BBF were washed three times in 

PBS (400g, 10 min) and diluted to 1 mg/ml in PBS containing 5% (w/v) non-fat dry 

milk, were brought onto the plate for 1 h at 37°C. BBF-specific rabbit serum 

optimally diluted in ELISA dilution buffer was used for 1 h at 37°C. Thereafter, pig 

anti-rabbit HRP-conjugated serum (Dako, Denmark), optimally diluted in ELISA 

dilution buffer, was added. Following 1 h incubation at 37°C, an ABTS solution 

containing H2O2 was added for 1 h incubation at 37°C whereafter the optical density 

was spectrophotometrically measured at 405 nm (OD405). Between each incubation 

step, the plates were washed three times with washing buffer (PBS + 0,2% (v/v) 



Chapter 4 : Conservation of FaeG 

60 

Tween®20), except after incubation with BBF when the plates were washed three 

times with an extra salt-containing buffer (PBS with 0,3 M NaCl + 0,2% (v/v) 

Tween®20). 

 

4.3. Results 

4.3.1. Phenotyping of isolates 
All isolates were β-haemolytic and resistant to one or more antibiotics (Table 1). 

Nineteen of the 22 isolates belonged to the serotype O147, whereas 5/95 and GIS26 

were O149 and isolate IMM 24 was not typable with the used serotype-specific 

antibodies. Furthermore, all isolates except IMM 24 bound the F4R in vitro and 

contained the genes coding for the enterotoxins LT and STb. Indeed, IMM 24 did not 

express F4 fimbriae as no agglutination with F4-specific MAb was observed and no 

F4 fimbriae could be obtained following purification. In addition, IMM 24 contained 

verotoxin instead of enterotoxin coding genes. However, this isolate did contain the 

faeG gene.  
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4.3.2. Analysis of FaeG sequence  
The faeG nucleotide sequence of all the F4ac+ E. coli isolates was determined 

to elucidate the degree of conservation. The nucleotide sequence coding for the FaeG 

signal sequence was identical for all the tested isolates, whereas mutations occurring 

at 29 different positions were detected in the 786 nucleotides coding for the mature 

FaeGac protein. Following deduction of the protein sequences from the obtained 

nucleotide sequences, silent mutations were seen at 4 positions each occurring in only 

one isolate. Most frequent nucleotide substitutions caused replacements by amino 

acids, which changed the hydrophobic, charged or polar character of the side chain.  

As shown in Figure 2, conservation was found in the central (106-134) as well 

as the N- and C-terminal region (1-37 and 236-262, respectively). Furthermore, the 

regions 162-171 and 206-216 were conserved in F4ac+ ETEC strains, but variable 

between the three antigenic variants as observed following comparison with the 

reported FaeG amino acid sequences of F4ab and F4ad strains (Josephsen et al., 1984; 

Dykes et al., 1985; Bakker et al. 1992a). In agreement, analysis of the identity 

between mature FaeG amino acid sequences of the isolates reported in this study and 

the previously reported FaeG sequences, revealed that the FaeG amino acid sequence 

is 96-100% identical within each antigenic variant, but only 92 and 88% when the 

mature FaeG amino acid sequence of F4ab and F4ad antigenic variants are compared 

with that of the F4ac antigenic variant, respectively (Fig. 3). Interesting to note is the 

observation that 12 of the 21 F4ac isolates revealed a deletion of amino acid residue 

105, identical to the FaeG sequence of F4ab and F4ad antigenic variants. Moreover, at 

5 positions amino acid residues differed from earlier reported F4ac isolates, but were 

identical to the corresponding amino acid residue in F4ab and/or F4ad sequences. 
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Figure 3 : Identity tree of the multiple FaeG alignment at protein level from the isolates 
studied here and sequences reported by Dykes et al. (1985), Josephsen et al. (1984), Bakker et 
al. (1992a). The percentages indicate the degree of identity. 
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 4.3.3. Mono- and polymer 
The F4 fimbriae of all isolates except of IMM 24, were purified for 

characterization. SDS-PAGE and Coomassie staining of heat-denaturated F4 fimbriae 

revealed a band of 27 kDa. This 27kDa band was identified as the FaeG monomer 

because it was recognized by the FaeG-specific MAb IMM01 in Western blot. On the 

other hand, a second band of 50 kDa was observed in several isolates, but this band 

was not recognized by the MAb IMM01 (data not shown). The 50 kDa band could 

reach up to 25-40% of the total protein amount in purified GIS26 F4 fimbriae and was 

identified as flagellin following MALDI-TOF MS analysis (score 301). Subsequently, 

the presence of flagella was analysed on all isolates using a motility assay. Seven of 

the 21 isolates appeared to express flagella (Table 1), but the GIS26 was most 

positive. Electron microscopy confirmed the presence of flagella on GIS26. 

The mono- or polymeric nature of FaeG in purified F4 fimbriae was determined 

by SDS-PAGE of native purified fimbriae followed by Coomassie staining or Western 

blot. Only the FaeG monomer band of 27 kDa was detected in the F4 fimbrial sample 

of the 5/95 isolate, whereas a ladder pattern of FaeG multimers was observed for the 

other F4ac+ E. coli isolates (Fig. 4). This ladder pattern indeed consisted of FaeG 

polymers since MALDI-TOF MS analysis confirmed that the 75 kDa band of non-

heat denaturated purified GIS26 F4 fimbriae contained FaeG (score 160). To 

determine whether 5/95 FaeG depolymerised due to SDS-PAGE or whether the FaeG 

monomers were already present following the fimbrial purification, 5/95 F4 fimbriae 

were analysed by TEM. A low number of fimbriae could be detected in between a 

huge amount of protein aggregates for 5/95 fimbriae (Fig. 4). In contrast, EM analysis 

of purified GIS26 F4 fimbriae revealed a lot of fimbriae with only a low amount of 

aggregates. 
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Figure 4 : (A) Coomassie stained SDS-PAGE of non heat-denaturated purified 5/95 (lane 1) 
and GIS26 (lane 2) F4 fimbriae, molecular weight marker : 250, 150, 100, 75, 50, 37, 25, 20, 
15 kDa (lane 3), heat-denaturated purified 5/95 (lane 4) and GIS26 (lane 5) F4 fimbriae. (B) 
Electron micrograph of purified 5/95 F4 fimbriae (same sample as in A). (C) Electron 
micrograph of purified GIS26 F4 fimbriae (same sample as in A).  
 

4.3.4. BBF ELISA 
A BBF-ELISA was developed to analyse if antibodies induced by oral 

immunization of purified GIS26 F4 fimbriae were able to inhibit in vitro adhesion of 

other F4ac+ E. coli isolates to the F4R. Binding of purified F4 from all isolates except 

IMM 24 was observed to BBF isolated of F4R+ villi, whereas only low OD405-signals 

(0.09 to 0.17) were obtained in the presence of F4R- BBF (data not shown). Addition 

of serum from a pig that was orally immunized with purified GIS26 F4 fimbriae, 

reduced the OD405-signals to the level observed with F4R- BBF (Fig. 5). In contrast, 

serum without F4-specific antibodies was not inhibiting the interaction between the 

F4R and the F4 fimbriae. So, it was shown that antibodies induced by purified GIS26 

F4 fimbriae were able to inhibit adhesion of 20 different F4ac+ ETEC isolates to F4R+ 

villi. 
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Figure 5 : The OD405-values obtained following brush border fragment 
(BBF) ELISA, represent binding of purified F4 from all F4+ E. coli 
isolates except IMM 24 to F4R+ BBF, in the presence of serum with 
(positive) or without (negative) F4-specific antibodies. 

 

4.4. Discussion 
 In the present study, the conservation of the F4 fimbrial adhesin FaeG 

sequence was evaluated. Twenty-one different F4+ E. coli were isolated from piglets 

with neonatal or post-weaning diarrhoea. These field strains were haemolytic and 

encoded the enterotoxins LT, STa and STb, in accordance to other reports on 

pathogenic F4+ ETEC isolates (Wilson et al., 1986; Osek, 2000; Frydendahl, 2002). 

The FaeG amino acid sequence of the 21 F4ac+ E. coli field isolates, the 

GIS26 reference strain and the strains reported in literature, were 96% identical. 

Similar high degrees of sequence identity have been reported for the adhesins of F18 

fimbriae (97%; Smeds et al., 2003; Tiels, unpublished results) and type 1 fimbriae 

(98%; Sokurenko et al., 1994; Vandemaele et al., 2003a), whereas the degree of 

sequence identity appeared lower for the F17 fimbrial lectin domain (90%; Buts et al., 

2003a) and the P pilus adhesin (87%; Vandemaele et al., 2003a). However, in contrast 

to F4 fimbriae, the adhesins of all these fimbriae are minor subunits and the degree of 

sequence identity for their respective major subunits is often lower (Garcia et al., 

1992; Vandemaele et al., 2003a). In the case of type 1 fimbriae, six variable regions 

are present in the major subunit, resulting in a 90% degree of sequence identity 

between different isolates (Vandemaele et al., 2003a). Garcia et al. (1992) reported 
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only 46.5% sequence identity between the major subunit PapA of different antigenic 

P pilus variants.  

In comparison with the degree of FaeG sequence identity within F4ac strains, 

lower identity levels were found between FaeG of F4ac strains and of F4ab and F4ad 

strains (92 and 88%, respectively). The amino acid sequence differences between the 

three antigenic variants are mainly located between amino acid residues 162-174 and 

206-216. However, these regions are conserved within the F4ac isolates, indicating a 

possible importance in F4R-binding. Indeed, this region has been reported to be a 

receptor-binding site (Bakker et al., 1992a) and to be the cause of differences in 

receptor binding among the three F4 antigenic variants (Bijlsma et al., 1982). 

In accordance with Gaastra et al. (1983), it was observed that the signal 

sequence, the N- and C-terminal regions (amino acid residue 1-37 and 236-262, 

respectively), as well as a central region of FaeG (106-134) were very conserved for 

the three F4 antigenic variants. These regions are probably very important for the 

structure and the function of the subunit as they are also conserved in subunits of 

other fimbriae such as type 1 fimbriae and P pili (Soto and Hultgren, 1999). The FaeG 

signal sequence has probably a regulatory function in FaeG production. Hultgren et al. 

(1999) reported that release of the mature PapG adhesin from its signal sequence by 

signal peptidase I is enhanced by its interaction with the PapD chaperone. 

Furthermore, the FaeG signal sequence is conserved in F4-related fimbriae F41 and 

CS31A (Girardeau et al., 1991), but different compared to other fimbrial systems. 

The N-terminal region of FaeG contains an alternating hydrophobic sequence. 

Crystal structures of subunits from type 1 and P pili and the lectin domain of the F17 

fimbrial adhesin revealed a folding like an immunoglobulin(Ig)-domain, but lacking 

the C-terminal strand (Choudhury et al., 1999; Sauer et al., 1999; Buts et al., 2003a). 

The missing strand results in a hydrophobic groove along the surface of the subunit. 

However, the Ig-like domain structure of fimbrial subunits is stabilized by a β-strand 

of the chaperone in the periplasm (donor strand complementation) or by the N-

terminal β-strand of a subunit in the fimbria (donor strand exchange). Therefore, 

changing the N-terminal sequence of fimbrial subunits inhibits the polymerisation of 

the subunits into a fimbria (Zavialov et al., 2003b). However, this cannot likely 

explain the observed weak interaction of FaeG subunits in 5/95 fimbriae, since its 

sequence only differs by the presence of a valine residue at position 201 but this 

amino acid has similar properties as the isoleucine found in all other isolates. The 
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weaker interaction between 5/95 FaeG subunits is still unknown, and may be due to a 

combination of certain amino acid residues at specific positions. 

 An alternating hydrophobic amino acid sequence was also observed in the 

FaeG C-terminus, containing a penultimate Tyr. In other fimbrial subunits like type 1 

fimbriae and P pili, the C-terminal alternating hydrophobic sequence is reported to 

interact with the chaperone in the periplasm (Kuehn et al., 1993; Soto et al., 1998). 

The penultimate Tyr is critical for the conformational stability of the protein and for 

its interaction with the chaperone (Simons et al., 1990; Bullitt et al., 1996; Krasan et 

al., 2000; Ogunniyi et al., 2002). However, a serine at position 14 from the carboxyl 

terminal motif is present in FaeG, in contrast to a glycine in most fimbrial subunits 

(Soto and Hultgren, 1999). Nevertheless, we suggest that the donor strand 

complementation system may also work in the F4 fimbrial system. Indeed, the critical 

amino acid residues that are needed for proper functioning of the P-pilus chaperone 

PapD are also present in the F4-fimbrial chaperone FaeE (Bakker et al., 1991; Slonim 

et al., 1992; Holmgren et al., 1992; Kuehn et al., 1993; Hung et al., 1999a). Moreover, 

the C-terminal alternating hydrophobic sequences are present in the F4 fimbrial 

subunits FaeC, FaeG, FaeH and FaeI that interact with the chaperone FaeE (Mol et al., 

2001). 

A third conserved region was determined in the centre of FaeG. This region 

was found to be highly similar to the corresponding region of the P-pilus subunit 

PapK, which is coding for a part of the B β-strand and of the loop between the 310C 

α-helix. This 310C α-helix forms part of a site that interacts with the chaperone PapD 

(Sauer et al., 1999). 

Isolate IMM 24 did not express F4 fimbriae and did not adhere to porcine 

enterocytes although the gene encoding FaeG was present. Probably, this could be due 

to a failure at another location in the F4 operon, like the gene encoding the chaperone 

or the usher. No study was performed on differences in adhesion efficiency among the 

other E. coli isolates or their purified F4 fimbriae to porcine enterocytes, because 

differences in numbers of fimbriae per cell and average lengths of fimbriae could 

occur and have an effect on adhesion. In addition, some isolates were found to express 

flagella and although flagella are not supposed to bind to the apical side of enterocytes 

(Gerwitz et al. 2001a and 2001b), these are known to influence the motility of an 

isolate and can subsequently enhance the likelihood to adhere (Jones et al., 1992; 

Schmitt et al., 2001).  
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The widely spread prevalence of F4+ E. coli isolates (Nagy et al., 1990; Harel 

et al., 1991; Osek and Svennerholm, 1991; Wray et al., 1993; Garabal et al., 1997; 

Van den Broeck et al., 1999d; Frydendahl, 2002) and their increasing ability to resist 

antibiotics (Amezcua et al., 2002; Bischoff et al., 2002; Lanz et al., 2003; Noamani et 

al., 2003), stress the need to develop a vaccine against F4+ ETEC. F4 fimbriae of the 

F4+ ETEC reference strain GIS26 seem to be good vaccine candidates. Indeed, the 

results of the present study indicate that the F4 fimbrial adhesin FaeG is conserved 

and that F4 purified from GIS26 induce FaeG-specific antibodies which were able to 

inhibit F4R-binding of 20 different F4+ E. coli isolates. In addition, the current results 

confirm the multimeric FaeG character of F4. Although the polymeric FaeG character 

of F4 fimbriae could be an advantage to improve the FaeG immunogenicity, FaeG 

monomers may perhaps bind more F4R than F4 fimbriae on a molar base. Therefore, 

further research on the usefulness of FaeG polymers or FaeG monomers in an oral 

vaccine against homologous and heterologous F4+ E. coli infections would be 

worthwhile.  
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Different kinetic of antibody responses following 

infection of newly weaned pigs with an F4 

enterotoxigenic Escherichia coli strain or an F18 

verotoxigenic Escherichia coli strain1 
 

 

                                                 
1 Based on : Verdonck F, Cox E, Van Gog K, Van der Stede Y, Duchateau L, Deprez 
P, Goddeeris BM. 2002. Different kinetic of antibody responses following infection of 
newly weaned pigs with an F4 enterotoxigenic Escherichia coli strain or an F18 
verotoxigenic Escherichia coli strain. Vaccine 20:2995-3004. 
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Abstract 
To develop a vaccine against Escherichia coli (E. coli) induced postweaning 

diarrhoea and oedema disease, insights in the induction of the protective immune 

response following infection with these pathogenic E. coli’s is needed. Therefore, the 

fimbriae-specific antibody response of newly weaned pigs following infection with 

the SLT-IIv producing F18+ verotoxigenic E. coli (VTEC) (strain 107/86) was 

compared with the response following an infection with LT producing F4+ 

enterotoxigenic E. coli (ETEC) (strain GIS26). F4+ ETEC were able to colonize the 

gut very soon after infection since peak excretion of F4+ Escherichia coli (E. coli) 

bacteria was seen 2 days post infection (dpi), but was already disappeared 7 dpi. On 

the other hand, F18+ VTEC infection resulted in a slower colonization of the gut as 

the peak excretion of F18+ E. coli was observed between 3 and 5 dpi, but this 

colonization remained longer as F18+ E. coli were detected till 9 dpi in feces. 

Furthermore, this fast colonization pattern of F4+ ETEC is accompanied with the 

presence of F4-specific antibodies in mucosal tissues and serum from 4 dpi onward, 

with maximal amounts of F4-specific IgA in the jejunal lamina propria and serum 7 

dpi. In contrast, F18-specific IgA was only readily detected in the jejunal lamina 

propria 15 dpi and showed a maximum serum titer 21 dpi. Besides this faster 

induction and higher antibody response, the switch from IgM to IgA and IgG was also 

earlier following the F4+ ETEC infection.  

 
 
5.1. Introduction 
 Intestinal infections with Escherichia coli (E. coli) are an important cause of 

diarrhoea and mortality in humans in developing countries and in domestic animals. 

Especially in pigs, enterotoxigenic E. coli (ETEC) infections immediately after birth 

(neonatal diarrhoea) and ETEC or verotoxigenic E. coli (VTEC) infections after 

weaning (postweaning diarrhoea or oedema disease) are responsible for significant 

economical losses due to diarrhoea, growth retardation and mortality. The infections 

are mainly caused by F4+ or F18+ ETEC or by F18+ VTEC (Nagy et al., 1990; Wittig 

et al., 1995), which have two important virulence factors : fimbriae and toxins. The 

fimbriae allow adhesion to specific receptors on small intestinal villi and consequently 

colonization can occur (Jones and Rutter, 1972; Bertschinger et al., 1990). The F4 

receptor (F4R) and F18R are different, based on comparative in vitro adhesion studies 
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(Nagy et al., 1997) and on the localization on different porcine chromosomes 

(Gibbons et al., 1977; Vögeli et al., 1996). The presence of the F4R and F18R is 

genetically determined by an autosomal dominant gene and their absence makes pigs 

resistant to infection (Rutter et al., 1975; Bertschinger et al., 1993). Following 

colonization, ETEC strains produce heat-labile enterotoxin (LT), heat-stable 

enterotoxin a (STa) and/or STb (Morris and Sojka, 1985) which induce a secretory 

diarrhoea (Nataro and Kaper, 1998). VTEC strains produce the Shiga-like toxin type 

II variant (SLT-IIv) (Marques et al., 1987; MacLeod et al., 1991), a vasotoxin that 

acts on vascular endothelial cells resulting in oedema and subsequent neurological 

signs including ataxia, recumbency and paddling movements, eventually leading to 

death (Clugston et al., 1974).  

F4+ ETEC infections mainly occur the first week after weaning, whereas F18+ 

VTEC infection occurs between a week and two weeks post weaning. Colonization 

begins after adhesion of the bacteria with their fimbriae to the small intestine and 

stops when anti-fimbrial antibodies can be detected in the intestinal lumen of the 

infected pig (Yokoyama et al., 1992; Imberechts et al., 1997b; Zuniga et al., 1997; de 

Geus et al., 1998; Van den Broeck et al., 1999b). To protect weaned pigs, an oral 

vaccine must be developed since parenteral immunization does not induce protective 

immunity at mucosal surfaces (Bianchi et al., 1996). Van den Broeck et al. (1999b) 

reported that oral immunization of weaned pigs with purified F4 fimbriae protects 

them against subsequent F4+ ETEC infection. For F18+ E. coli however, only an 

infection has been reported to induce protective F18-specific antibodies at the small 

intestinal mucosa (Sarrazin and Bertschinger, 1997; Bertschinger et al., 2000). In the 

present study, the kinetics and localization of the immune response following an 

infection with F4+ ETEC or F18+ VTEC were compared. Insights in the mucosal 

immune response following infection with these pathogenic E. coli’s can be helpful in 

the development of an effective vaccine.  

 

5.2. Material and methods 
5.2.1. Pigs  

Conventional bred pigs (Belgian Landrace x Piétrain) were weaned at the age 

of 4 weeks and subsequently housed in isolation units, fed at libitum and treated orally 

with colistine (Promycine pulvis, VMD, Berendonk, Belgium, 150,000 U/kg of body 
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weight/day) to prevent E. coli infections. One week post weaning, eighteen F18-

seronegative and F18-receptor positive (F18R+) pigs were infected with an F18+ 

VTEC strain and twenty F4-seronegative and F4R+ pigs were infected with an F4+ 

ETEC strain.  

 

5.2.2. Bacterial inoculum 
The VTEC strain 107/86 (O139:K12:H1, F18ab+, SLT-IIv+) and the ETEC 

strain GIS26 (O149:K91, F4ac+, LT+ STa+ STb+) were cultured during 18 hours in 

Tryptone Soya Broth at 37°C and 85 rpm. The bacteria were collected by 

centrifugation (2,000 x g, 35 minutes, 4°C) and washed with phosphate-buffered 

saline (PBS, 150 mM, pH 7.4). The concentration of the bacteria was determined by 

measuring the optical 10-fold dilutions of the bacterial suspension at 660 nm (OD660). 

An OD660 of 1 equals 109 bacteria per ml, as determined by counting colony forming 

units. Subsequently, the concentration of the bacteria was adjusted to 1010 bacteria per 

ml. 

 

5.2.3. Purification of F18 fimbriae   
A protocol to purify F18 fimbriae was developed. Bacteria of the E. coli strain 

107/86 were cultured in Tryptone Soya Broth (Oxoid, Basingstoke, Hampshire, 

England) at 37°C and 85 rpm for 18 hours. Subsequently, the bacteria were collected 

by centrifugation (3,000 x g, 35 minutes) and washed in PBS, after which the F18 

fimbriae were isolated by heat shock (60°C for 20 minutes). Larger fragments were 

removed by centrifugation (10,000 x g, 20 minutes) and the supernatant was further 

purified by a subsequent centrifugation (20,000 x g, 40 minutes), both at 4°C. The 

solubilized F18 fimbriae were precipitated with 20% (wt/vol) ammonium sulphate 

and the pellet was dissolved and dialysed overnight against ultra pure H2O.  

 

5.2.4. Purification of F4 fimbriae 
The F4 fimbriae were purified as described by Van den Broeck et al. (1999c). 

Briefly, fimbriae were isolated by homogenising the bacterial suspension of strain E. 

coli GIS26 using an Ultra Turrax (Janke & Kunkel, IKA Labortechnik, Staufen, 

Germany), followed by a purification using two centrifugation steps as for F18, a 



Chapter 5 : Comparison of ETEC and VTEC infection 

77 

precipitation step with 40% (wt/vol) ammonium sulphate. Thereafter the pellet was 

dissolved and dialysed overnight against ultra pure H2O.  

 

5.2.5. PCR of F18R linked FUT1  
In order to select F18R+ pigs, PCR amplification of the F18R linked FUT1 

gene on isolated DNA of blood leukocytes was performed as described by Meijerink 

et al. (1997).  

 

5.2.6. In vitro villous adhesion assay  
The presence of F18R was confirmed and the presence of F4R was determined 

by the in vitro villous adhesion assays previously described (Van den Broeck et al., 

1999c). Briefly, a 15-cm-long intestinal segment was excised of the mid jejunum at 

the moment of slaughter. The segment was washed twice with PBS and once with 

Krebs-Henseleit buffer (160 mM, pH 7.4) containing 1% vol/vol formaldehyde at 

4°C. Subsequently, the villi were scraped from the mucosa and suspended in the same 

solution. Before use, the villi were washed 4 times in Krebs-Henseleit buffer without 

formaldehyde whereafter they were resuspended in PBS supplemented with 1% 

(wt/vol) D-mannose (Fluka, Sigma-Aldrich, Bornem, Belgium) to prevent adhesion 

by type 1 pili. Subsequently 4 x 108 F18+ or F4+ E. coli were added to an average of 

50 villi in 0.5 ml buffer and incubated by room temperature for 1 hour while gently 

shaking. Then, villi were examined by phase-contrast microscopy at a magnification 

of 600 and the adhesion of bacteria was evaluated quantitatively by counting the 

number of bacteria adhering along a 50 µm villous brush border at 20 randomly 

selected places, after which the mean bacterial adhesion was calculated. Adhesion of 

more than 5 bacteria per 250 µm villous length was noted as positive (Cox and 

Houvenaghel, 1993).  

 

5.2.7. Experimental procedure 
5.2.7.1. VTEC experiment       

On 2 consecutive days, the 5-week-old F18R+ pigs (n = 18) were sedated using 

Stresnil (40 mg/ml; Janssen-Cilag, Berchem, Belgium), whereafter the acidic gastric 

pH was neutralized by intragastrical administration of 62 ml NaHCO3 (1.4% (wt/vol) 

in distilled water) using a stomach tube. Fifteen to thirty minutes later, 1011 F18+ 
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VTEC (in 10 ml PBS) were intragastrically inoculated using a stomach tube. Faecal 

excretion of the F18+ E. coli and presence of diarrhoea were determined daily from 2 

till 10 days after the first inoculation (dpi). The kinetics and the localization of the 

antibody response was analysed by enumerating the F18-specific antibody secreting 

cells (ASCs) in peripheral blood, mesenteric lymph nodes, jejunal and ileal Peyer’s 

patches, jejunal lamina propria, mesenteric lymph nodes and spleen 0, 4, 7, 11 and 15 

dpi, from 3, 3, 3, 2 and 2 pigs respectively. Tissues were taken following euthanasia 

of animals by intravenous injection of pentobarbital (24 mg/kg; Nembutal, Sanofi 

Santé Animale, Brussels, Belgium) and subsequent exsanguination. At euthanasia, 

duodenal, jejunal and ileal contents were also sampled for measuring F18-specific 

IgA. Furthermore, F18-specific serum IgM, IgA and IgG were determined 0, 4, 7, 11, 

15, 21 and 25 dpi, from 18, 15, 11, 7, 5, 3 and 3 pigs respectively. Finally, jejunal villi 

were isolated for the in vitro villous adhesion assay. 

 

5.2.7.2. ETEC experiment  
The experimental procedure was similar as for the VTEC experiment with 

minor differences. Firstly, 5-week-old F4R+ pigs (n = 20) were intragastrically 

inoculated on two consecutive days with 1011 F4+ ETEC. Secondly, the faecal 

excretion of the F4+ E. coli was daily determined until day 7 after infection. The 

kinetics and the localization of the antibody response were analysed 0, 4, 7, 11 and 15 

dpi, using 4, 3, 3, 3 and 4 pigs respectively. F4-specific serum IgM, IgA and IgG were 

determined 0, 4, 7, 11, 15, 21 and 25 dpi, from 20, 15, 12, 9, 5, 2 and 2 pigs 

respectively. 

 

5.2.8. Samples 
5.2.8.1. Serum 

Blood was taken form the jugular vein. After 18 hours incubation at room 

temperature, serum was collected, inactivated at 56°C during 30 minutes and 

subsequently treated with kaolin (Sigma, Sigma-Aldrich) to decrease the background 

reading in ELISA (Van den Broeck et al., 1999a). Subsequently, the serum was 

diluted in ELISA dilution buffer (PBS + 0.05% (vol/vol) Tween®20 (Merck, 

Hohenbrunn, Germany) + 3% (wt/vol) bovine serum albumin (BSA; Sigma)) to 

obtain a final serum dilution of 1/10. 
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5.2.8.2. Faeces 
Faecal samples were examined for the presence of F18+ (VTEC experiment) or 

F4+ E. coli (ETEC experiment). Therefore, 1% (wt/vol) suspensions of faecal samples 

in PBS were prepared at 4°C. Of these suspensions, four serial 10-fold dilutions were 

made in PBS and 50 µl drops of each dilution were spread onto plain blood agar 

plates. The plates were incubated at 37°C for 24 hours. F18+ or F4+ E. coli were 

identified using dot blotting as previously described (Van den Broeck et al., 1999b). 

F18 producing E. coli strains were detected using an F18-specific rabbit antiserum 

followed by incubation with a swine anti-rabbit immunoglobulin horseradish 

peroxidase (HRP)-conjugated antiserum (Dako, Denmark), the F4 producing E. coli 

strains were detected using an HRP-conjugated F4-specific Mab (IMM01; Van der 

Stede et al., 2002b). Binding of conjugate was visualized with a 3-amino-9-

ethylcarbazole containing substrate solution. The developed brown-red dots were 

counted and the average within both groups was calculated. Results are presented as 

the mean number ± standard error of the mean (SEM) of excreted E. coli per gram 

feces.   

 

5.2.8.3. Intestinal contents 
Intestinal contents of duodenum, jejunum and ileum were twofold diluted in 

PBS + 20% foetal calf serum (FCS (vol/vol) + penicillin (100 IU/ml) + streptomycin 

(100 µg/ml) + 0.2% (vol/vol) Tween®20 and incubated at 56°C for 30 minutes. 

Afterwards, the samples were centrifugated at 4°C and 9,500 x g. The supernatant was 

centrifugated once again and stored at -70°C until analysis.  

 

5.2.8.4. Peripheral blood monomorphonuclear cells (MC) 
 Peripheral blood MC were isolated as previously described (Van den Broeck 

et al., 1999a). Briefly, peripheral blood MC were isolated by density gradient 

centrifugation and erythrocytes were lysed in ammonium chloride (0.74% [wt/vol]). 

After washing at 4°C, the pelleted cells were resuspended at 107 cells/ml in leukocyte 

medium [RPMI-1640 (GIBCO BRL, Paisley, Scotland) containing FCS (10% 

[vol/vol]) (Seromed, International Medical, Berlin, Germany), 2-mercaptoethanol (5 x 

10-5 M) (GIBCO BRL), non-essential amino acids (GIBCO BRL), Na-pyruvate (100 

µg/ml) (GIBCO BRL), L-glutamine (292 µg/ml) (GIBCO BRL), penicillin (100 
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IU/ml) (GIBCO BRL), streptomycin (100 µg/ml) (GIBCO BRL) and kanamycin (100 

µg/ml) (GIBCO BRL)]. 

 

5.2.8.5. Spleen and mesenteric lymph node MC 
At the moment of slaughter, a part of the spleen and some mesenteric (jejunal 

and ileal) lymph nodes were aseptically dissected. After removing surrounding fat 

from the specimen, the MC were isolated by teasing the tissue apart, followed by lysis 

of erythrocytes in ammonium chloride. After washing, the pelleted cells were 

resuspended at 107 cells/ml in leukocyte medium.  

 

5.2.8.6. Jejunal lamina propria MC 
At the moment of slaughter, an intestinal segment without Peyer’s patches was 

excised of the jejunum and washed with PBS at room temperature. The segment was 

cut in 2-cm-long pieces which were washed with RPMI-1640 (GIBCO BRL) + 10 

mM HEPES (GIBCO BRL) + 5% (vol/vol) FCS. Then, the pieces were washed two 

times with PBS without calcium and magnesium (CMF buffer) at room temperature 

and once with warm (37°C) CMF buffer supplemented with EDTA (3.7% (wt/vol)) 

and 0.94 M dithiotreithol (GIBCO BRL). Subsequently, the 2-cm-long pieces were 

cut in very small pieces and incubated in RPMI-1640  + 10 mM HEPES + 2% 

(vol/vol) FCS + 0.015% (wt/vol) collagenase (SERVA, Polylab, Antwerp, Belgium) + 

0.01% (wt/vol) DNase I (Boehringer Mannheim, Brussels, Belgium) for 30 minutes at 

37°C and 200 rpm. The obtained cell suspension was filtered through cell collectors 

of 200, 150 and 80 mesh (Sigma). The isolated cells were washed and resuspended in 

leukocyte medium at 107 cells/ml. 

 

5.2.8.7. Peyer’s patches MC 
At the moment of slaughter, jejunal and ileal Peyer’s patches were excised 

from the intestine. The isolated tissue was washed at room temperature with PBS and 

CMF buffer and subsequently incubated with CMF buffer supplemented with EDTA 

for 15 minutes at 37°C and 200 rpm as described before. Then, Peyer’s patches MC 

were collected by scraping the Peyer’s patches at room temperature, washing the cells 

and resuspending the cells at 4°C in leukocyte medium at 107 cells/ml. 
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5.2.9. ELISA’s for F18- or F4-specific IgM, IgA and IgG 
An indirect ELISA was developed to detect F18-specific serum IgM, IgA and 

IgG titers in serum and IgA titers in intestinal content. Purified F18 fimbriae were 

coated at a concentration of 1.56 µg/ml in coating buffer (carbonate-bicarbonate 

buffer, 50 mM, pH 9.4) on a 96-well microtiter plate (NUNC, Maxisorp Immuno 

Plates, Roskilde, Denmark). After 2 h incubation at 37°C, the remaining binding sites 

were blocked overnight at 4°C with PBS supplemented with 0.2% (vol/vol) 

Tween®80. The serum or intestinal contents were diluted in ELISA dilution buffer 

(PBS + 0.05% (vol/vol) Tween®20 + 3% (wt/vol) BSA) and series of twofold 

dilutions, starting from 1/10 and 1/2 respectively, were made. The plates were 

incubated for 1 hour at 37°C. Thereafter, optimal dilutions of anti-swine IgM-, IgA- 

or IgG-specific MAb (Van Zaane and Hulst, 1987) were added to the wells for 1 h at 

37°C. Subsequently, rabbit anti-mouse HRP-conjugated serum (Dako, Denmark) 

optimally diluted in the ELISA dilution buffer and supplemented with 2% (vol/vol) 

pig serum was brought on the plate for 1 h at 37°C. An ABTS solution containing 

H2O2 was added and after 1 hr incubation at 37°C the optical density was 

spectrophotometrically measured at 405 nm (OD405). The plates were washed three 

times with ELISA washing buffer (PBS + 0.2% (vol/vol) Tween®20) between each 

incubation step. The IgM, IgA and IgG cut-off values were calculated as the mean 

OD405-value of all sera (dilution 1/10) at day 0, increased with 3 times the standard 

deviation. The antibody titer was the inverse of the highest dilution that still had an 

OD405 higher than the calculated cut-off value. 

For detection of F4-specific antibodies, the indirect ELISA described by (Van 

den Broeck et al., 1999a) was used. Briefly, the wells of a 96-well microtiter plate 

were coated with the F4-specific monoclonal antibody (IMM01) at a concentration of 

1µg/ml coating buffer. Subsequently, purified F4, the treated sera or intestinal 

contents, optimal dilutions of biotinylated-swine-specific IgM, IgA and IgG MAb and 

HRP-conjugated streptavidin (GIBCO BRL) were added. Incubation times and 

conditions were similar as for F18. 
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5.2.10. Elispot assays for antigen-specific IgM, IgA and IgG 

antibody-secreting cells  
F18 or F4 coated plates were prepared as described above. Thereafter, MC 

suspensions at a concentration of 106 cells/ml leukocyte medium were added (100 

µl/well), and plates were incubated for 14 hours at 37°C in a humidified 5% CO2 

atmosphere. Subsequently, the cells were removed by three washes with ELISA 

washing buffer and wells were sequentially incubated with anti-swine IgM, IgA and 

IgG Mab, rabbit anti-mouse antibodies (Dako) coupled to biotin and HRP-conjugated 

streptavidin (Dako) each time for 1 hour at 37°C. Between each step, the plates were 

washed with ELISA washing buffer. Subsequently, a substrate solution, consisting of 

4 volumes of 3-amino-9-ethylcarbazole (AEC) (Sigma) working solution (0.67 ml 

AEC stock solution (0.4% (wt/vol) in dimethylformamide) in 10 ml Na acetate (0.1 

M, pH 5.2) + 10 µl 30% H2O2) and 1 volume of 3% (wt/vol) low-melting-point 

agarose (BIOzym, Landgraaf, The Netherlands) was added. After overnight 

incubation in the dark at room temperature, spots were counted with an inverted 

microscope. For each MC suspension, spots in 3 wells (106 MC/well) were counted to 

obtain the number of isotype-specific ASCs per 3 x 105 MC. Results are presented as 

the mean number of ASCs per 106 MC ± SEM. 

 

5.2.11. Statistical analysis 
Statistical analysis (SAS, version 8) was done using mixed models with pig as 

random effect and the ETEC/VTEC strains, time and the interaction between 

ETEC/VTEC strains and time (categorized) as fixed effects. Firstly these fixed effects 

were tested for significance and secondly, the ETEC/VTEC infection was compared 

at each of the time points separately, adjusting for multiple comparison by Bonferoni, 

with each individual comparison being tested at α = 0.05 divided by the number of 

time points.  
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5.3. Results 
5.3.1. Clinical signs and excretion of F18+ VTEC or F4+ ETEC 

In the VTEC experiment, eighteen 5-week-old F18-seronegative but F18R+ 

pigs were intragastrically infected with F18+ VTEC, whereas in the ETEC 

experiment, twenty 5-week-old, F4-seronegative but F4R+ pigs were infected with F4+ 

ETEC. The presence of the F18R was demonstrated by PCR and confirmed by the in 

vitro villous adhesion assay. Indeed, all PCR-positive pigs were shown to be receptor 

positive (data not shown). Similarly, the presence of the F4R on enterocytes of all the 

pigs was demonstrated in the in vitro villous adhesion assay (data not shown).  

Following the F18+ VTEC infection only three pigs had diarrhoea 1 dpi, but 

following the F4+ ETEC infection ten pigs had severe watery diarrhoea 2 dpi, six pigs 

3 dpi and three pigs 4 dpi.  

Furthermore, two pigs died following the F18+ VTEC infection, one 6 dpi and 

another 10 dpi, without obvious clinical signs of disease. F18+ E. coli was isolated 

from their intestinal tract and hemorrhagic intestines and swollen mesenteric lymph 

nodes were found. In the F4 infection experiment, one of the pigs with severe 

diarrhoea died 3 dpi. F4+ E. coli was isolated from the intestinal content of this pig, 

but postmortem examination revealed no pathologic signs.  

F4+ and F18+ E. coli excretion were statistically significant different (p = 

0.0008) and the F4+ E. coli excretion evolved differently over time than F18+ E. coli 

excretion (significant time-strain interaction, p < 0.0001). Before infection, the 

examination of the faecal samples for F18+ and F4+ E. coli was negative. Following 

infection, F18+ E. coli were detected in pigs of the VTEC experiment from 2 till 9 dpi 

with a peak excretion 3 dpi (9.9 x 107 F18+ E. coli / g feces), whereafter the amount of 

F18+ E. coli gradually decreased (Fig. 1). The pigs of the ETEC experiment excreted 

2 dpi a very high number of F4+ E. coli (5.97 x 108 F4+ E. coli / g feces). 

Subsequently, this number rapidly decreased and F4+ E. coli could not be detected 

anymore from 7 dpi (Fig. 1). Moreover, the excretion of F4+ E. coli was significant 

lower (p < 0.0001) compared with the excretion of F18+ E. coli at 6 and 7 dpi.  
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Figure 1 : Mean faecal F18+ VTEC and F4+ ETEC excretion per
gram feces (± SEM) (* P<0.0001)

5.3.2. Localization of the fimbriae-specific antibody response
following infection

In order to localize the induced antibody response following the F18+ VTEC

and the F4+ ETEC infection, the number of fimbriae-specific IgM, IgA and IgG ASCs
was determined in bone marrow, peripheral blood, spleen, mesenteric lymph nodes,

jejunal and ileal Peyer’s patches and jejunal lamina propria. There were no F18-
specific ASCs present at the moment of infection (0 dpi), but F4-specific background

levels of IgM ASCs (Fig. 2) were detected at the moment of infection in the spleen (9

IgM ASCs per 106 MC) and the mesenteric lymph nodes (25 IgM ASCs per 106 MC)
as previously also observed by Van den Broeck et al. (1999a).

F18-specific IgM ASCs could already be detected 4 dpi. At that moment the
mean numbers of IgM ASCs (Fig. 2) peaked in the spleen (15 IgM ASCs per 106 MC)

whereas the peak occurred 3 days later in the mesenteric lymph nodes (7.5 IgM ASCs

per 106 MC) and the ileal Peyer’s patches (3.3 IgM ASCs per 106 MC) and 7 days
later in the jejunal Peyer’s patches (23 IgM ASCs per 106 MC), lamina propria (7 IgM

ASCs per 106 MC), peripheral blood (6.6 IgM ASCs per 106 MC) and bone marrow
(0.83 IgM ASCs per 106 MC). In the F4+ ETEC experiment, the spleen contained the

highest number of F4-specific IgM ASCs (100 per 106 MC) 4 dpi,
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Figure 2 : Mean F18-specific IgM, IgA and IgG and F4-specific IgM, IgA and IgG ASC per

106 MC (± SEM) in spleen (SP), mesenteric lymph node (MLN), jejunal Peyer’s patches

(JPP), and lamina propria (LP) at 0, 4, 7, 11 and 15 days post infection (dpi).
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whereas the other lymphoid tissues revealed maxima 7 dpi with the highest number in 

the jejunal Peyer’s patches (159 per 106 MC) (Fig. 2). However, the numbers F4-

specific IgM ASCs were several times higher than for F18-specific IgM ASCs.  

F18-specific IgA ASCs appeared later in the immune response. The first IgA 

ASCs were found in most tissues 11 dpi, but only 15 dpi substantial numbers of IgA 

ASCs were present in the jejunal Peyer’s patches (9 IgA ASCs per 106 MC) and in the 

lamina propria (35 IgA ASCs per 106 MC) (Fig. 2). In contrast to the F18+ VTEC 

infection, F4-specific IgA ASCs (Fig. 2) could already be detected 4 dpi in peripheral 

blood, the mesenteric lymph nodes, jejunal and ileal Peyer’s patches and jejunal 

lamina propria. Furthermore, the F4-specific IgA ASCs number already peaked in 

these tissues 7 dpi, except for the jejunal Peyer’s patches where a gradual increase 

was observed until 15 dpi (7 IgA ASCs per 106 MC). In the spleen and bone marrow 

F4-specific IgA ASCs were first seen 7 dpi, but remained low in number. 

Furthermore, the numbers of fimbriae-specific IgA ASCs were generally higher 

following the F4+ ETEC infection than following the F18+ VTEC infection. 

In accordance to the late appearance of F18-specific IgA, F18-specific IgG 

ASCs appeared in most tissues 15 dpi, but their mean numbers were almost 10 times 

lower than for IgA (0 to 28 IgG ASCs per 105 MC) (Fig. 2). However, F4-specific 

IgG ASCs (Fig. 2) were already observed in most tissues 4 dpi, but in general these 

numbers remained low. The highest numbers of F4-specific IgG ASCs per 106 MC 

were observed 7 dpi in the mesenteric lymph nodes (8) and 11 dpi in the jejunal 

lamina propria (11) and the jejunal Peyer’s patches (6).  

 

5.3.3. Fimbriae-specific serum antibody responses following 

infection 
The F18-specific serum antibody response following the F18+ VTEC infection 

was low (Fig. 3). F18-specific serum IgM only slightly increased till 7 dpi and 

decreased again from 15 dpi to reach the background level 21 dpi. Following the F4+ 

ETEC infection, F4-specific serum IgM peaked 7 dpi whereafter it gradually 

decreased again to baseline values. F4-specific IgM was however significantly higher 

(p < 0.0001) 4, 7 and 11 dpi in comparison with F18-specific IgM. 
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F18-specific serum IgA and IgG were first detected 11 dpi (Fig. 3).  

Thereafter, IgA reached a maximum on 21 dpi whereas IgG was still increasing 25 

dpi. On the other hand, F4-specific IgA and IgG were already detected 4 and 7 dpi to 

reach a plateau on 7 and 11 dpi, respectively. Besides the faster appearance, F4-

specific IgA and IgG responses were also significantly higher (p < 0.0009) than F18-

specific IgA and IgG responses from 7 to 25 dpi.  

 

5.3.4. Fimbriae-specific IgA in intestinal contents following 

infection 
At euthanasia, the intestinal contents of duodenum, jejunum and ileum were 

collected for determining fimbriae-specific IgA. F18-specific IgA appeared relative 

late (11 to 15 dpi) in the jejunum and ileum. It could not be detected in duodenal 

content (Table 1). Only in 1 pig IgA was already detected 7 dpi in the jejunal content. 

The F4-specific IgA appeared earlier than the F18-specific IgA : two out of three 

jejunal samples were already positive 4 dpi (Table 1). Furthermore, IgA was not 

restricted to jejunum and ileum as most duodenal samples were also positive from 7 

dpi onwards. 

 

Table 1 : F18- and F4-specific IgA titers in intestinal contents of the duodenum, jejunum and 
ileum at  0, 4, 7, 11 and 15 days post infection (dpi). 
 
  
 

duodenum 
  

jejunum 
 

ileum 
    

duodenum 
 

jejunum
 

ileum 
 

0 dpi 0 0 0  0 dpi 0 0 0 
(n=3) 0 0 0  (n=4) 0 0 0 
  0 0 0    0 0 0 
4 dpi 0 0 0    0 0 0 
(n=3) 0 0 0  4 dpi 0 4 0 
  0 0 0  (n=3) 0 0 0 
7 dpi 0 0 0    0 4 0 
(n=3) 0 0 0  7 dpi 16 4 8 
  0 2 0  (n=3) 8 0 32 
11 dpi 0 0 4    8 32 8 
(n=2) 0 0 2  11 dpi 0 0 0 
15 dpi 0 4 2  (n=3) 32 128 4 
(n=2) 0 32 128    64 64 8 
     15 dpi 32 32 ND 
     (n=4) 32 ND 4 
       4 32 ND 
       64 128 16 

F18    F4 
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5.4. Discussion 
In the present study, infection of newly weaned pigs with F18+ VTEC and F4+ 

ETEC resulted in a significant different excretion of F18+ and F4+ E. coli. In 

accordance with previous studies (Bertschinger and Pohlenz, 1983; Bertschinger et 

al., 1990; Nagy et al., 1992), the peak excretion following the F4+ ETEC infection 

was observed 2 dpi, whereas 1 to 3 days later for the F18+ VTEC infection the 

maximal excretion occurred. Furthermore, the excretion of F4+ E. coli disappeared 7 

dpi whereas the F18+ E. coli could be detected till 9 dpi. A reason for the slower 

colonization of the F18+ VTEC than F4+ ETEC is not known. A factor that could play 

a role is the adhesion to the receptor. For F4 fimbriae, the adherent subunit is the 

major subunit whereas for F18 fimbriae this is a minor subunit of which the 

localization in the fimbrial structure is not known (Bakker et al., 1992a; Smeds et al., 

2001). This difference could account for a weaker adhesion of F18+ E. coli to the 

enterocytes brush border receptor. In the in vitro villous adhesion assay, the F18+ E. 

coli strain 107/86 always showed a weak adhesion (maximum 53 bacteria/250 µm 

brush border), in comparison with the F4+ E. coli strain GIS26 (> 80 bacteria/250 µm 

brush border). Other factors that could influence this adhesion are the amount of 

fimbriae expressed by the bacteria, the number of receptors on the surface of 

enterocytes, the strength of the binding and environmental factors influencing the 

interaction.  

The rapid colonization of the intestine with F4+ ETEC resulted in a fast F4-

specific mucosal immune response. Indeed, more than 30 F4-specific IgM ASCs per 

106 MC were seen 4 dpi in the mesenteric lymph nodes, the jejunal Peyer’s patches 

and the spleen followed only four days later in the mucosal tissues by maximal 

amounts of F4-specific IgA ASCs. On the other hand, the slower F18+ VTEC 

colonization induced a slower F18-specific mucosal immune response. First detection 

of F18-specific IgM ASCs occurred 4 to 7 dpi and maximal amounts of F18-specific 

IgA ASCs were observed only on 15 dpi. It is reported in several studies that 

fimbriae-specific mucosal antibodies prevent colonization (Yokoyama et al., 1992; 

Imberechts et al., 1997b; Zuniga et al., 1997; de Geus et al., 1998; Van den Broeck et 

al., 1999b). As a consequence, the rapid appearance of F4-specific ASCs in the lamina 

propria and F4-specific IgA in the small intestinal content resulted in an early 

decrease in faecal excretion of F4+ E. coli (6 dpi), whereas the slower response 
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against F18 fimbriae was accompanied with a longer excretion of the F18+ strain (9 

dpi). This slower immune response following the F18+ VTEC infection and the 

corresponding longer excretion increases the risk on spreading of an F18+ VTEC 

infection. This might explain why in a recent seroprevalence study 93% of the farms 

were F18-positive (Verdonck et al., 2003), whereas only 65% of the farms were F4-

positive (Van den Broeck et al., 1999d).  

In order to develop an oral vaccine against E. coli induced postweaning 

diarrhoea and oedema disease, it is important to elucidate why the F4+ ETEC 

infection is inducing such a rapid and high immune response.  

It has been demonstrated that oral immunization of pigs with purified F4 

fimbriae induces a protection against F4+ ETEC infections (Van den Broeck et al., 

1999b), whereas oral immunization of pigs with purified F18 fimbriae does not 

(unpublished data). In agreement, Felder et al. (2001) reported that oral immunization 

of pigs with poly(lactide-co-glycolide) microspheres containing F18 fimbriae could 

not induce significant F18-specific serum antibodies, nor reduced F18+ E. coli 

colonization following a challenge infection. These findings indicate that F18 is less 

immunogenic than F4 when given via the oral route. Here, the same mechanisms 

responsible for the differences in colonization might give an explanation.  

Furthermore, the F4+ ETEC strain GIS26 produces heat-labile (LT) and heat-

stable (STa, STb) enterotoxins, whereas the F18+ VTEC strain 107/86 expresses the 

verotoxin SLT-IIv. In contrast with SLT-IIv, the LT enterotoxin is known to possess 

adjuvant properties (Rappuoli et al., 1999). Several studies reported increased IgA and 

IgG but not IgM responses following an immunization with antigen in the presence of 

LT (Guidry et al., 1997; Hartman et al., 1999; de Haan et al., 2001). So, the 

adjuvanticity of LT is a second important factor that could be involved with the rapid 

F4-specific immune response and the early switch from IgM to IgA and IgG. Indeed, 

in different lymphoid tissues the F4-specific IgM ASCs following F4+ ETEC infection 

reached 4 days earlier their maximum number, which was more than twice as high as 

following oral F4 immunization with purified F4 fimbriae (without LT) (Van den 

Broeck et al., 1999a). Similar, the maximal amounts of F4-specific IgA and IgG ASCs 

were seen 4 days earlier and were ten times higher following F4+ ETEC infection as 

opposed to oral immunization with purified F4 fimbriae. One should however also 

consider that LPS has also adjuvant properties, which might influence fimbriae-

specific antibody responses in E. coli infections. 
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The reported results have useful implications for the development of an oral 

vaccine against E. coli induced postweaning diarrhoea and oedema disease. Oral 

immunization of newly weaned pigs with purified F4 fimbriae is already reported to 

induce a protective mucosal immune response against F4+ ETEC challenge (Van den 

Broeck et al., 1999b). However, in the case of post-weaning diarrhoea a very rapid 

immune response is needed since oral vaccination of the suckling piglets is probably 

impossible and infection with ETEC strains occurs during the first week after 

weaning. The results of the present study show that immune response against F4 can 

occur within 4 days following infection. So, factors such as dose of the antigen and 

the use of LT enterotoxin as oral adjuvant have to be considered for ameliorating the 

response against purified fimbriae. In case of F18 fimbriae, the antibody response is 

mainly directed against the major FedA subunit and not against the minor FedF 

subunit, which is responsible for adhesion. Therefore, vaccination with FedF in the 

absence of FedA could improve protection. Based on reported results of the 

recombinant adhesin FimH of type 1 fimbriae of uropathogenic E. coli, use of 

recombinant FedF adhesins could be envisaged. Indeed, vaccination of mice and 

monkeys with recombinant minor subunit FimH protects them against challenge with 

uropathogenic E. coli, whereas the antibodies evoked with purified type 1 fimbriae 

were directed primarily at the nonconserved major FimA subunit (Levine et al., 1982; 

Pecha et al., 1989; Langermann et al., 1997 and 2000; Thankavel et al., 1997). On the 

other hand, protection against VTEC infections has also been reported by 

immunization of pigs with recombinant SLT-IIv (Bosworth et al., 1996; Johansen et 

al., 1997; Makino et al., 2001). However, although these vasotoxin-specific antibodies 

can block the toxic effects of the SLT-IIv (Johansen et al., 2000), they will not 

influence the colonization of the intestine and subsequently the spread of the VTEC 

bacteria. Therefore, the induction of a protective F18-specific mucosal immune 

response against F18+ E. coli infections remains preferable.  

 



 



 

 

 

 

 

Chapter 6 

 

The interaction of F4 fimbriae with porcine 

enterocytes as analysed by surface plasmon 

resonance1 
 

 

 

                                                           
1 Based on : Verdonck F, Cox E, Vancaeneghem S, Goddeeris BM. 2004b. The 
interaction of F4 fimbriae with porcine enterocytes as analysed by surface plasmon 
resonance. FEMS Immunol. Med. Microbiol., in press. 
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Abstract 
Fimbriae often play a prominent role in anchoring bacterial cells to host tissue 

and mediate the first step in pathogenesis. As a consequence, there is a continuous 

development of new strategies to block the binding of fimbriae to their specific 

receptor on host cells. The present study demonstrates the specific interaction of F4 

(K88) fimbriae and porcine enterocytes using a real-time biomolecular interaction 

analysis system (BIAcore® 3000), based on the principles of surface plasmon 

resonance (SPR). This method offers new opportunities to screen therapeutics for 

prevention of adhesion and subsequent disease without receptor purification. 

 
6.1. Introduction 

F4+ ETEC are an important cause of neonatal and post-weaning diarrhoea in 

piglets. The F4 fimbriae allow attachment to F4R on enterocytes, enabling the 

bacteria to colonize the small intestine and to produce heat-labile (LT) and/or heat-

stable enterotoxins (STa, STb), resulting in diarrhoea (Gyles, 1994).  

F4 fimbriae are long proteinaceous appendages radiating from the surface of 

the bacteria and occur as three antigenic variants: F4ab, F4ac and F4ad (∅rskov et al., 

1964 ; Guinée and Jansen, 1979). The differences between these variants were found 

to be only located in the major F4 fimbrial subunit FaeG, which is also the adhesin. 

Conserved regions of FaeG form the “a” epitopes, whereas a variable region forms the 

“b”, “c” or “d” epitope (Bakker et al., 1992a). With these 3 variants, 6 porcine 

phenotypes (A through F) can be distinguished with regard to brush border 

adhesiveness (Bijlsma et al., 1982; Baker et al., 1997). The phenotypic difference 

between pigs has been shown to be genetic in origin, being inherited in a Mendelian 

way, with adhesion dominant over non-adhesion (Sellwood and Kearns, 1979).  

In vitro F4-mediated adhesion to isolated porcine small intestinal brush border 

membranes (Sellwood et al., 1975; Valpotic et al., 1989a), small intestinal enterocytes 

(Isaacson et al., 1978) or isolated villi (Girardeau, 1980) correlates with in vivo 

villous adhesion and colonization by F4+ ETEC. Furthermore, an indirect ELISA 

(Valpotic et al., 1989b) and a Western blot (Willemsen and de Graaf 1992; Erickson 

et al., 1992) are described to distinguish F4 adhesive and non-adhesive pigs. 

However, these assays analyse  
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the interaction between fimbriae and their receptor in a static way, in contrast to the in 

vivo situation. Therefore, the aim of the present study was to determine the interaction 

of host cells and fimbriae in a non-static situation and without previous receptor 

purification. Hereto, the interaction of F4 receptor positive (F4R+) and F4R- 

enterocytes with F4 fimbriae was determined in a continuous flow using the BIAcore® 

3000 (Uppsala, Sweden), a real-time biomolecular interaction analysis system based 

on the principles of surface plasmon resonance (SPR). 
 

6.2. Material and methods 
6.2.1. Isolation of F4 fimbriae  

F4ac fimbriae of the E. coli strain GIS26 (O149:K91:F4ac, LT+STa+STb+) 

were isolated by homogenizing a GIS26 bacterial suspension. Subsequently, fimbriae 

were purified by anion exchange chromatography using a Bio-Scale Q5 column (BIO-

RAD Laboratories) as described by Van den Broeck et al. (1999c). The protein 

concentration was determined using the bicinchoninic acid reaction with bovine 

serum albumin (BSA) as standard (ICN Biomedicals, Belgium) and the purity of the 

purified F4 fimbriae was assessed using a Coomassie stained 15% SDS-PAGE and 

the ImageMaster 1D prime software (Amersham Pharmacia Biotech, Belgium).  

 

6.2.2. In vitro villous adhesion assay 
The in vitro villous adhesion assay has been described by Van den Broeck et 

al. (1999c). Adhesion of more than 30 bacteria per 250 µm brush border length was 

noted as strong, less than 30 bacteria per 250 µm brush border length meant weak 

adhesion, and less than 5 was regarded as negative (Cox et al., 1991). 

 

6.2.3. Enterocyte isolation 
Enterocytes of nine pigs were isolated from the jejunum since the F4R is 

present in high amounts in the mid-small intestine (Cox and Houvenaghel, 1993; 

Chandler et al., 1994).  

Hereto, a 1-m-long intestinal segment was excised of the mid jejunum at the 

moment of slaughter. The segment was washed in Krebs-Henseleit buffer (160 mM, 

pH 7.4) containing 1% (vol/vol) formaldehyde, whereafter the segment was filled 

with EDTA-buffer (phosphate buffered saline (PBS; pH 7.4, 150 mM) + 0.01M 
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EDTA, pH 6.8). The ends were ligated and the segment was incubated 30 minutes on 

ice in a sucrose-buffer (PBS + 0.3 M sucrose, pH 6.8). The content of the segment 

was collected and the segment was refilled again with sucrose-buffer and incubated 

for 5-10 minutes at room temperature. The content of the segment was collected and 

centrifugated (10 min, 200 g, 4°C). Subsequently, the pellet was resuspended in 10 

volumes EDTA-buffer, pushed gently through an 18G needle and centrifugated (10 

min, 200 g, 4°C). Finally, the pellet was resuspended in Krebs-Henseleit buffer.  

 

6.2.4. Immobilization of F4 fimbriae on sensor chip 
The interaction between F4 fimbriae and the F4R on pig enterocytes was 

analyzed with the Biacore®3000 biosensor (Uppsala, Sweden) using the F1 chip. This 

has a short carboxymethyldextran surface to allow immobilization of F4 fimbriae via 

free NH2 using an amine coupling kit (Biacore, Uppsala, Sweden) containing N-

hydroxysuccinimide (NHS), N-ethyl-N’-[(3-dimethylamino)-propyl]-carbodiimide 

hydrochloride (EDC) and ethanolamine-HCl. Hereto, 50 µl of a mixture of NHS (290 

µg) and EDC (190 µg) was injected at a flow rate of 5 µl/ml at 25°C to activate the 

dextran matrix on the sensor chip, followed by purified F4 at a concentration of 100 

µg/ml in 10 mM sodium acetate buffer pH 3.5 until the amount (mol) of immobilized 

F4 equalized 2000 resonance units (RU). Thousand RU corresponds to a change in the 

surface concentration of 1 ng/mm2 (Fägerstam et al., 1992 ; Stenberg et al., 1991). 

Subsequently, the remaining active sites of the matrix were blocked with 

ethanolamine-HCl (1 M) and washed with HBS-EP (0.01 M HEPES, 0.15 M NaCl, 3 

mM EDTA, 0.005 % (v/v) polysorbate 20). One flow cell was activated and 

subsequently blocked without immobilization of F4 fimbriae and served as blanco. 

All samples used in further experiments were diluted in HBS-EP buffer, which also 

served as running buffer during the experiments. 

 

6.2.5. Analysis of the F4R phenotype of enterocytes 
  Enterocyte suspensions were injected at a concentration of 5.105 cells/ml and a 

flow rate of 5 µl/min during 240 seconds at 25°C. The binding of the enterocytes was 

monitored and registered as a sensogram (plot of RU versus time). To regenerate flow 

cells after binding of enterocytes to immobilized F4 fimbriae, 25 mM NaOH + 100 

mM CHAPS (3-[(3-cholamiindopropyl)dimethylammonio]-1-propane-sulphonate, 
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Sigma) was used. The experiments were always performed in duplicate and revealed 

identical results. 

 

6.2.6. Determining the specificity of F4R+ enterocyte binding 
The first approach was to block the c-epitope of immobilized F4 fimbriae. 

This epitope is involved in binding the F4R. Hereto, the F4ac-specific monoclonal 

antibody (MAb) CVI F4ac-5 (van Zijderveld et al., 1990; ID-DLO, Lelystad, The 

Netherlands) was diluted to concentrations of 1 µg/ml and 10 µg/ml and injected with 

a flow rate of 5 µl/min during 240 seconds. Subsequently, enterocytes of the F4R+ 

pigs were injected as described above. 

The second approach was to pre-incubate the F4R+ enterocytes with 0, 50, 

100, 200, 500 or 1000 µg/ml F4 fimbriae, while gently shaking. After 1 h pre-

incubation at room temperature, a gentle short spin centrifugation was performed. 

Subsequently, the supernatant was discharged, enterocytes were adjusted to the start 

volume (5.105 cells/ml) and injected as described above.  

The third approach was to destroy the carbohydrates of F4R+ enterocytes, 

which are reported to be part of the F4R (Erickson et al., 1992; Grange et al., 2002). 

Hereto, periodate oxidation of carbohydrates was performed by treating enterocytes 

for 1 h at room temperature with 0.2 M sodium acetate (pH 4.5) containing 10 mM 

sodium metaperiodate (Erickson et al., 1992). In addition, the enterocytes were 

similarly treated with 0.2 M sodium acetate (pH 4.5) as a control. After treatment, the 

enterocytes were washed three times with running buffer and injected as described 

above. All these experiments were performed in duplicate and revealed identical 

results. 

 

6.3. Results 
To determine the interaction of F4 fimbriae with the F4R on intestinal villi 

using SPR, purified F4 fimbriae were immobilized on a sensor chip F1. A dose 

dependent binding of the c-epitope specific MAb to F4 fimbriae was observed. This 

MAb has been shown to inhibit the binding of F4+ ETEC to F4R+ villi in an in vitro 

villous adhesion assay since the c-epitope is involved in the interaction with the F4R 

(Bakker et al., 1992a; Van den Broeck et al., 1999c). An irrelevant porcine IgG-

specific MAb of the same isotype (23.3.1b, Van Zaane and Hulst, 1987) was not able 
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to bind immobilized fimbriae and this up to a concentration of 100 µg/ml (data not

shown).

Nine piglets were tested for F4R presence in an in vitro villous adhesion assay
(Table 1). Subsequently, the enterocytes of three F4R- pigs (pigs 4, 5 and 6), one

weakly F4R+ pig (pig 2) and five strong F4R+ pigs (pigs 1, 3, 7, 8 and 9) were
examined in SPR for their F4-specific binding to immobilized F4 fimbriae. As shown

in figure 1, strong F4R+ enterocytes were able to bind to the F4 fimbriae (1500 to

2400 RU). This interaction was stable since no dissociation was observed when
flushing with running buffer. On the other hand, no interaction was observed using

weakly F4R+ or F4R- enterocytes.

Figure 1 : Sensogram showing the real-time interaction of
enterocytes with immobilized F4ac fimbriae. Enterocytes of pigs
that were adherent in the in vitro villous adhesion assay are shown
in A, whereas the non-adherent are shown in B. White arrow :
injection of enterocytes.
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Table 1 : Results of the in vitro villous adhesion assay.

Pig number Mean number of adhering F4ac+

ETEC bacteria per 250 µm length of

villous brush border

1 43.2

2 8.7

3 41.5

4 0.2

5 0.5

6 1.3

7 40.7

8 45.5

9 35.5

To prove that the observed binding between F4R+ enterocytes and

immobilized F4 fimbriae was F4-specific, the c-epitope specific MAb was injected

over the immobilized F4 fimbriae to block the F4R, whereafter the enterocytes were
injected. Figure 2 shows that a concentration of 10 µg/ml MAb was able to inhibit the

adhesion of F4R+ enterocytes to the immobilized F4 fimbriae. This inhibition was
dose dependent as a 10-fold lower amount of the MAb could not inhibit the adhesion

completely.
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Figure 2 : Sensogram showing the interaction of the c-epitope specific MAb CVI
F4ac-5 (1 and 10 µg/ml) with immobilized F4 fimbriae and the effect of MAb
binding on subsequent binding of enterocytes. Injection of the MAb (black
arrow), injection of F4R+ enterocytes (white arrow).
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A second way to test the specificity of binding between immobilized F4

fimbriae and F4R+ enterocytes, was to pre-incubate the enterocytes with different

concentrations of purified F4 fimbriae. F4 fimbriae at a concentration of 50, 100 and
200 µg per ml inhibited the adhesion of enterocytes to immobilized F4 in a dose-

dependent way, resulting in 51.5 ± 6.5, 40.8 ± 8.2 and 8.3 ± 1.6 % binding of F4R+

enterocytes to immobilized F4, respectively (Fig. 3).
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Figure 3 : Sensogram showing the interaction of F4R+ enterocytes, pre-
incubated with different concentrations of purified F4 (0, 50, 100, 200, 500 or
1000 µg/ml), with immobilized F4 fimbriae. White arrow: injection of
enterocytes.

It has previously been demonstrated that a carbohydrate moiety on the

enterocytes is involved in the interaction between F4 fimbriae and the F4R (Erickson
et al., 1992; Grange et al., 2002). Therefore, a third way to test the specificity of the

obtained signal was to disrupt the carbohydrate molecules of the enterocytes with

sodium metaperiodate. Figure 4 shows that incubation of F4R+ enterocytes in sodium
acetate buffer reduced the binding ability to F4 fimbriae, but that binding was

completely lost following sodium metaperiodate treatment.
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Figure 4 : Sensogram showing the interaction of F4R+ enterocytes, previously
incubated in PBS, sodium acetate buffer or sodium acetate buffer supplemented
with sodium metaperiodate, with immobilized F4 fimbriae. White arrow:
injection of enterocytes.

6.4. Discussion
Results demonstrate that the SPR technique is useful to determine the F4-

specific interaction between fimbriae and small intestinal enterocytes isolated from
the mid jejunum of pigs. Indeed, immobilized F4 fimbriae retain enough free

receptor-binding c-epitopes to allow binding of strong F4R+ enterocytes. The

specificity of the binding is proven by blocking the interaction in three different ways.
First, a MAb specific for the c epitope is able to inhibit the binding in a dose-

dependent manner. Indeed, Bakker et al. (1992a) already demonstrated that there is at
least a partial overlap between the receptor-binding site of the F4 fimbriae and the c

epitope. Second, incubation of F4R+ enterocytes with purified F4 fimbriae is able to

inhibit a subsequent adhesion to immobilized F4 fimbriae in a dose dependent way.
These results are comparable to those seen in the in vitro villous adhesion assay

described by Van den Broeck et al. (1999c). Third, adhesion of F4R+ enterocytes to
immobilised F4 is inhibited following oxidation of the enterocyte carbohydrates using

sodium metaperiodate. Indeed, it is already reported that the binding activity of F4 to

the F4R is dependent on the presence of a carbohydrate structure (Erickson et al.,
1992; Grange et al., 2002).
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On the other hand, no interaction was observed with F4R- or weakly F4R+ 

enterocytes. In agreement, we observed in previous infection experiments that pigs 

with less than 15 bacteria per 250 µm brush border length in the in vitro villous 

adhesion assay, excreted only very few bacteria for 1 to 2 days following challenge 

with the pathogenic F4+ ETEC strain GIS26 (Verdonck et al., 2002; Vancaeneghem S, 

unpublished data). In the Biacore system, the binding strength between the few 

receptors on the weakly F4R+ enterocytes and the immobilized F4 fimbriae is 

probably so low that the enterocytes are flushed away by the flow of the running 

buffer. The used flow rate in the flow cell corresponds to 8.33 cm/min, but flow rates 

in the small intestine of pigs, which are fed ad libitum, can reach 20.6 ± 2.4 cm/min 

(Devinder et al., 1986). It is therefore likely that the biosensor can mimic the in vivo 

situation more than an in vitro villous adhesion assay.  

The biosensor has some well known advantages: the method is less subjective, 

is adaptable to automatization for processing a large number of samples and is also 

less time-consuming than the immunoblotting technique or the in vitro villous 

adhesion assay. Furthermore, the use of SPR to determine the interaction between 

adhesins and receptors on eukaryotic cells allows easy screening for blocking agents 

or receptor analogues to prevent infection. Indeed, one of the strategies to prevent F4+ 

ETEC-induced diarrhoea in neonatal or weaned piglets, is to prevent attachment of the 

bacteria to the intestinal F4R. Proteases (Chandler et al., 1994; Mynott et al., 1996), 

antibodies (Yokoyama et al., 1992; Jin et al. 1998) or lactic acid bacteria (Blomberg et 

al., 1993b; Ouwehand and Conway, 1996) have been used to inhibit the interaction 

between F4 fimbriae and the F4R and subsequent disease.  

In conclusion, this study shows that SPR can be used to distinguish strong 

F4R+ pigs from weak F4R+ or F4R- pigs and offers new opportunities to study the 

interaction between F4 fimbriae and the F4R. Furthermore, SPR opens new 

perspectives to screen therapeutics for prevention of ETEC adhesion.  

 



 

 

 

 

 

Chapter 7 
 

F4 fimbriae as carrier and cholera toxin as adjuvant 
synergistically improve the induction of a HSA-specific 
immune response following oral immunization of pigs1 

 

 

                                                 
1 Based on : Verdonck F, De Hauwere V, Bouckaert J, Goddeeris BM, Cox E. F4 
fimbriae as carrier and cholera toxin as adjuvant synergistically improve the 
induction of a HSA-specific immune response following oral immunization of pigs. 
Submitted. 
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Abstract 
Receptor-mediated uptake of orally administered antigen can lead to an 

antigen-specific immune response, whereas oral administration of most other non-

replicating soluble antigens results in the induction of oral tolerance. In the present 

study, it is shown that fimbriae purified from an F4+ enterotoxigenic Escherichia coli 

strain can function as a mucosal carrier molecule for the model antigen human serum 

albumin (HSA). Oral immunization of pigs with glutaraldehyde coupled F4/HSA 

conjugates induced a HSA-specific immune response. This mucosal carrier function 

of F4 fimbriae was improved following oral co-administration of the F4/HSA 

conjugates with the mucosal adjuvant cholera toxin (CT) to F4R+ pigs, since both 

humoral and cellular HSA-specific responses were significantly increased. In 

comparison with F4R+ pigs, the HSA-specific response was reduced following oral 

F4/HSA+CT immunization of F4R- pigs. This indicates that F4 fimbriae as carrier and 

CT as adjuvant synergistically improve the induction of a HSA-specific immune 

response following oral immunization of pigs. 

 

7.1. Introduction 
Most bacterial and viral infections of man and animals begin by the interaction 

of the pathogen with mucous membranes. It is generally accepted that protection of 

these mucosal surfaces is largely mediated by local production of IgA (Porter et al., 

1974; Mestecky and McGhee, 1987). To induce the secretion of antigen-specific IgA 

in the intestine, oral immunization is needed since parenteral immunization is not very 

effective for the induction of IgA (Bianchi et al., 1996; Van der Stede et al., 2002b). 

However, oral immunization with most soluble non-replicating antigens results in oral 

tolerance (Weiner, 2001). On the other hand, receptor-dependent uptake of soluble 

antigen by epithelial cells can result in an antigen-specific mucosal and systemic 

immune response. Indeed, oral immunization of F4-receptor positive (F4R+) pigs with 

purified F4 (K88) fimbriae induces an intestinal F4-specific antibody response 

protecting pigs against a subsequent challenge with F4+ enterotoxigenic Escherichia 

coli (ETEC) (Van den Broeck et al., 1999b). In F4R- pigs, F4 fimbriae behave as a 

normal food antigen (Van den Broeck et al., 2002). 
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Fimbriae are attractive structures to be used as carriers in vaccine design due 

to their polymeric character, their high immunogenicity, their ability to bind to 

specific receptors, the presence on the surface of bacteria and the possibility to 

prepare them in large amounts. F4 fimbriae have the same properties since they are 

surface exposed (Ørskov and Ørskov, 1961), immunogenic (Rutter and Jones, 1973), 

easy to purify in large amounts (Van den Broeck et al., 1999c; Wong et al., 2003), 

able to bind to the F4R on porcine small intestinal enterocytes (Sellwood et al., 1975) 

and are multimeric structures of the major fimbrial subunit FaeG that constitutes the 

adhesin and some minor subunits (Oudega et al., 1989). Moreover, the potential 

carrier function of F4 fimbriae has already been demonstrated by the induction of 

antibodies against a heterologous epitope that was inserted in the variable region of 

FaeG (Thiry et al., 1989; Bakker et al., 1990). However, the length of the inserted 

heterologous epitopes is limited as the folding and the stability of the fimbrial 

subunits may not be disturbed. On the other hand, fimbriae are able to function as 

carriers for larger heterologous antigens when chemically coupled. Indeed, F5 and F6 

fimbriae were already reported to have the potential to function as a mucosal carrier 

molecule, inducing an antibody response against chemically conjugated bovine serum 

albumin following oral immunization of mice (Russell-Jones, 2001).  

The aim of the present study was to determine for the first time the potential of 

F4 fimbriae to act as a mucosal carrier molecule, inducing a mucosal and systemic 

immune response against a chemically conjugated antigen following oral 

immunization in pigs. In the present study, the model antigen human serum albumin 

(HSA) was chosen since HSA is not known to interact with a specific receptor. In 

addition, it was determined whether the mucosal adjuvant cholera toxin (CT) could 

improve the mucosal immune response against the F4-conjugated HSA. The 

mechanisms of CT adjuvanticity are not completely known but include an enhanced 

antigen presentation by a variety of cell types, promotion of the isotype switch to IgA 

and an influence on cytokine production and T cell activation (Holmgren et al., 2003). 
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7.2. Material and methods 

7.2.1. Purification of F4 fimbriae 
 F4ac fimbriae of the E. coli strain GIS26 (O149:K91:F4ac, LT+STa+STb+) 

were isolated by homogenizing a GIS26 bacterial suspension. Subsequently, fimbriae 

were purified by anion exchange chromatography using a Bio-Scale Q5 column (BIO-

RAD Laboratories) as described by Van den Broeck et al. (1999c). The protein 

concentration was determined using the bicinchoninic acid reaction with bovine 

serum albumin (BSA) as a standard (ICN Biomedicals, Belgium). The purity of the 

purified F4 fimbriae was assessed using a Coomassie stained 15% SDS-PAGE and 

the ImageMaster 1D prime software (Amersham Pharmacia Biotech, Belgium). 

 

7.2.2. Conjugation of F4 fimbriae and HSA 
HSA (Sigma, Bornem, Belgium) was conjugated to purified F4 fimbriae 

(F4/HSA) in a molar ratio (HSA to FaeG subunits) of 0.5:1, 1:1, 2:1, 4:1 as described 

by Vervelde et al. (1998) with minor modifications. Briefly, HSA and purified F4 

were dissolved in 0.1 M phosphate buffer pH 8.0. Glutaraldehyde was slowly added 

to the mixture until a concentration of 0.5, 1, 2 or 4 mM was reached. Subsequently, 

the mixture was stirred for 2.5 h at room temperature. Thereafter, the reaction was 

stopped by adding glycine in a final concentration of 60 mM and by stirring the 

solution for another 45 min. Finally, the solution was dialysed for 18 h against PBS 

(27.5 mM NaCl, 0.54 mM KCl, 2 mM Na2HPO4, 0.4 mM KH2PO4, pH 7.4) at 4°C. 

Similar procedures were used to couple HSA to HSA (HSA/HSA) and F4 to F4 

(F4/F4).  

 

7.2.3. Characterization of conjugates 
7.2.3.1. Analysing coupling of F4 to HSA 

To analyse the effectiveness of the different conjugation conditions on cross-

linking F4 to HSA, the conjugated samples were analysed in ELISA. The wells of 96-

well microtiter plates (NUNC, Maxisorp Immuno Plates, Roskilde, Denmark) were 

coated with the F4-specific monoclonal antibody (MAb) IMM01 (Van der Stede et 

al., 2002b) or a HSA-specific polyclonal antibody (Serotec, Kidlington, England). 

Blocking and washing were performed according to the procedure described by Van 
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den Broeck et al. (1999a). Thereafter, serial dilutions of the conjugates starting from 

1/10 in PBS supplemented with 0.05% Tween®20 were added to both the F4- and the 

HSA-specific antibody coated plates and plates were incubated for 1 h at 37°C. 

Purified F4 fimbriae, HSA (both starting at 1 mg/ml) and plain conjugation buffers 

were used as controls. After several washes, the F4- and HSA-specific antibody-

coated plates were incubated with optimal dilutions of peroxidase-conjugated HSA- 

and F4-specific antibodies respectively for 1 h at 37°C. After several washes, an 

H2O2-containing ABTS solution was added and the optical density was 

spectrophotometrically measured at 405 nm (OD405) following 30 and 60 minutes of 

incubation at 37°C. 

 

7.2.3.2. Real-time interaction of conjugates with enterocytes 
The interaction between the conjugates and the F4R on small intestinal pig 

enterocytes was analysed with the BIAcore®3000 biosensor (Uppsala, Sweden) as 

described in chapter 6. Enterocytes of two F4R- and two F4R+ pigs were used, with a 

mean binding of 0.2, 1.3, 43.2 and 45.5 F4+ ETEC bacteria per 250 µm length of 

villous brush border respectively in the in vitro villous adhesion assay. The HSA-

specific polyclonal antibodies were immobilized in one flow cell of a F1 chip using a 

10 mM sodium acetate buffer pH 4.8 until the amount (mol) of immobilized 

antibodies equalized 13,000 resonance units (RU). Thousand RU corresponds to a 

change in the surface concentration of 1 ng/mm2 (Fägerstam et al., 1992). Another 

flow cell on the same chip was activated and subsequently blocked without 

immobilization of antibodies and served as control.  

 F4/HSA conjugates were injected at a flow rate of 5 µl/min during 120 

seconds at 25°C. Thereafter, enterocyte suspensions prepared as described in chapter 

6 were injected at a concentration of 5.105 cells/ml and a flow rate of 5 µl/min during 

240 seconds at 25°C. Binding of conjugates and enterocytes was monitored and 

registered as a sensogram (plot of RU versus time). To regenerate flow cells at the end 

of each experiment, 25 mM NaOH was used. The experiments were performed in 

duplicate. The duplicates gave similar results. 
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7.2.3.3. Determination of the hydrodynamic radius 
 The hydrodynamic radii of F4, HSA or conjugates were determined using 

dynamic light scattering (DLS). Following centrifugation of the samples at 18,000 g 

for 60 minutes at 4°C, 30 µl was injected into a flow cell of the Laser-spectroscatter 

(RiNA Netzwerk RNA-Technologien, Berlin, Germany) at room temperature and 

illuminated by a 30-mW, 660-nm-wavelength, solid-state laser. Data were collected of 

10 measurements, 20 seconds each. Two independent experiments were performed, 

resulting in identical results. 

 

7.2.4. Experimental procedure 
7.2.4.1. Pigs 

Twenty F4- and HSA-seronegative, conventionally bred pigs (Belgian 

Landrace x Piétrain) were weaned at the age of 4 weeks, transported to the 

experimental facilities at the faculty and subsequently housed in isolation units with 

water and feed ad libitum. These pigs were treated orally with colistine (Promycine 

pulvis, VMD, Berendonk, Belgium, 150,000 U/kg of body weight/day) from 2 days 

before till 3 days after weaning to prevent E. coli infections due to transport and 

handling. 

 

7.2.4.2. Immunization 
One week post weaning (0 days post primary immunization, dppi), pigs were 

orally immunized with the F4/HSA conjugate in the absence (F4/HSA group, n=6) or 

presence of 50 µg CT (F4/HSA+CT group, n=6) or with the HSA/HSA conjugate in 

the absence (HSA/HSA group, n=3) or presence of 50 µg CT (HSA/HSA+CT group, 

n=5). In fact, CT was added or not to 2 ml of the conjugation solutions (containing 2 

mg purified F4 and/or 4.8 mg HSA) which was subsequently adjusted with PBS to a 

final volume of 10 ml. The pigs were orally immunized at 0, 1 and 2 dppi, which is 

referred as the first oral immunization. The pigs were orally immunized for a second 

and a third time at 16 and 35 dppi, respectively. From three hours before till 2 h after 

oral immunization, all animals were deprived of food and water. At 48 dppi, all 

animals were intramuscularly (IM) immunized with 1 mg HSA to observe priming of 

the systemic immune system against HSA by the oral immunizations. Hereto, HSA 
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was dissolved in 0.5 ml PBS and suspended in an equal volume of incomplete 

Freund’s adjuvant (DIFCO Laboratories, Detroit, USA). 

 

7.2.4.3. Kinetics of F4-, HSA- and CT-specific immune response 
F4- and HSA-specific serum IgA, IgG and IgM antibodies were determined 0, 

7, 16, 21, 24, 35, 38, 42, 48, 52, 55, 62, 69 and 77 dppi, whereas F4- and HSA-

specific IgA mucosal antibodies were analysed in saliva 0, 16, 24, 35 and 41 dppi. 

Serum samples of 0, 16, 35 and 48 dppi were also tested for the presence of CT-

specific antibodies. The F4-specific lymphocyte proliferation was examined 42 and 55 

dppi and the HSA-specific lymphocyte proliferation was determined 42, 55 and 66 

dppi.  

 

7.2.4.4. Weight and average daily weight gain (ADWG) 
 All pigs were weighed at 0, 3, 7, 15 and 24 dppi. The daily weight gain of 

each pig was calculated at 3, 7, 15 and 24 dppi by calculating weight gain between 

two subsequent measurements divided by the number of days between both 

subsequent measurements. Subsequently, the average daily weight gain (ADWG) per 

group was calculated ± SEM. 

 

7.2.5. Samples 
To determine F4-specific serum and mucosal antibodies, serum and saliva 

were sampled as described by Van der Stede et al. (2002b).  

In order to analyse the F4- and HSA-specific lymphocyte proliferation, blood 

was collected from the jugular vein and peripheral blood monomorphonuclear cells 

(PBMC) were isolated as described by Van den Broeck et al. (1999a). 

At the end of the experiment, the pigs were euthanised and jejunal villi were 

isolated for determining the presence or absence of the F4R as described by Van den 

Broeck et al. (1999c). 

 

7.2.6. ELISA for F4-, HSA- and CT-specific antibodies 
For quantifying the F4-specific IgM, IgA and IgG antibody response, the 

indirect ELISA described by Van den Broeck et al. (1999a) was used and serial 
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dilution of serum and saliva samples were tested, starting from 1/10 and 1/2.5, 

respectively. 

The HSA-specific IgM, IgA and IgG antibody titers were determined with the 

indirect ELISA as described by Van der Stede et al. (2001), with some modifications. 

Briefly, the wells of a 96-well microtiter plate (NUNC®, Polysorb Immuno Plates, 

Roskilde, Denmark) were coated with HSA at a concentration of 30 µg/ml in PBS. 

After 2 h incubation at 37°C, the remaining binding sites were blocked overnight at 

4°C with PBS supplemented with 0.2 % Tween®80. Subsequently, the plates were 

incubated for 1 h at 37°C with twofold serial dilutions of the samples in ELISA 

dilution buffer (PBS + 0.05% Tween®20), followed by the swine-specific IgM, IgA 

and IgG MAb (Van Zaane and Hulst, 1987) and peroxidase-conjugated rabbit-anti-

mouse polyclonal antibodies (Dako, Denmark) supplemented with 2% (vol/vol) pig 

serum. Finally, ABTS and H2O2 were used as chromogen and substrate and the optical 

density was spectrophotometrically measured at 405 nm (OD405). 

An identical ELISA with minor modifications was used to determine the CT-

specific antibodies. The wells of microtiter plates (NUNC®, Polysorb Immuno Plates) 

were coated with 5 µg/ml CT (Sigma) in PBS and an optimal dilution of horseradish 

peroxidase conjugated rabbit-anti-swine polyclonal antibodies (Dako) was used as 

conjugate. 

The cut-off values were calculated as the mean OD405-value of all sera 

(dilution 1/10) or saliva (dilution 1/2.5) at day 0, increased with 3 times the standard 

deviation. The antibody titer was the inverse of the highest dilution that still had an 

OD405 higher than the calculated cut-off value. The cut-off values for F4-specific 

serum IgM, IgA, IgG and saliva IgA and IgM were 0.48, 0.26, 0.43, 0.31 and 0.35 

respectively. The cut-off values for HSA-specific serum IgM, IgA, IgG and saliva IgA 

and IgM were 0.20, 0.12, 0.15, 0.25 and 0.28 respectively, whereas the cut-off value 

for the CT-specific serum antibodies was 0.24. 

 

7.2.7. Presence of the F4R  
The presence or absence of the F4R on the brush border of small intestinal 

enterocytes was determined on isolated intestinal villi as described by Van den 

Broeck et al. (1999c).  Adhesion of more than five F4+ E. coli per 250 µm villous 

length was noted as positive (Cox and Houvenaghel, 1993). 
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7.2.8. F4- and HSA-specific lymphocyte proliferation 
The PBMC were diluted to a concentration of 5.106 cells/ml in leukocyte 

medium (RPMI-1640 supplemented with penicillin (100 IU/ml), streptomycin (100 

µg/ml), kanamycin (100 µg/ml), L-glutamin (200 mM), sodiumpyruvate (100 mM), 

non-essential amino acids (100 mM), β-mercaptoethanol (5.10-5 M) and 5% (vol/vol) 

F4-seronegative serum. Subsequently, the isolated PBMC (5.105 cells/well) were 

incubated in medium without (negative control) or with purified F4 (final 

concentration of 10 µg/ml), HSA (final concentration of 100 µg/ml) or concanavalin 

A (final concentration of 10 µg/ml, positive control) to determine their F4- and HSA-

specific proliferation as described by Van der Stede et al. (2002a and 2003). The 

results are presented as F4- and HSA-specific stimulation index (SI), obtained by 

dividing the mean counts per minute (cpm) of the F4- and HSA-stimulated cultures, 

respectively, by the mean cpm of the non-stimulated cultures. Mean background 

levels of about 350, 620 and 510 cpm were obtained in medium samples at 42, 55 and 

66 dppi, whereas positive controls of concanavalin A reached 130,000, 150,000 and 

150,000 cpm respectively. 

 

7.2.9. Statistical analysis 
Statistical analysis (SPSS 10.0 for Windows) of antibody titers was done using 

General Linear Model (Repeated Measures Analysis of Variance), adjusting for 

multiple comparison by Bonferoni. Differences between groups in F4- or HSA-

specific cell proliferation were analysed for statistical significance using the Kurskal-

Wallis test. Differences in the ADWG between the groups were tested for statistical 

significance using a two-sample T-test. P<0.05 was considered as statistically 

significant. 
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7.3. Results

7.3.1. Characterization of F4/HSA conjugates
Optimal covalent binding between F4 and HSA was obtained at a molar ratio

of 1:1 using 4 mM glutaraldehyde. Indeed, the F4/HSA molecules obtained at this

ratio were able to interact with both a F4- or HSA-specific antibody coating and were
subsequently detected by HSA- or F4-specific peroxidase labelled antibodies,

respectively, resulting in OD405-values of 1.47 and 1.7 at a 1/10 dilution of the

F4/HSA conjugates. In addition, these F4/HSA conjugates were able to bind F4R+ but
not F4R- enterocytes as determined by surface plasmon resonance (Fig. 1). Other

conjugation conditions resulted in lower OD405-values or in a reduced F4R-binding
(data not shown). In further experiments, only the optimally conjugated F4/HSA was

used.
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Figure 1 : Sensogram showing the interaction of the F4/HSA conjugate with
immobilized HSA-specific antibodies and subsequent with F4-receptor positive (white
symbols) and F4-receptor negative (black symbols) porcine enterocytes. Black arrow,
F4/HSA injection; White arrow, injection of enterocytes.

Binding of HSA to purified F4 fimbriae was also confirmed by determining
the hydrodynamic radii of the F4/HSA conjugates using the DLS technique (Fig. 2).

DLS measurements of non-conjugated HSA molecules revealed a single group of
particles with a radius of 4 to 7 nm (Fig. 2B). Measurements of purified F4 fimbriae

showed different particles with a radius ranging between 10 and 100 nm (Fig. 2A).
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When HSA and F4 were mixed (F4+HSA), particles were detected with a radius of 4 

to 7 nm as well as particles with a ratio of 10 to 100 nm (Fig. 2C). Conjugation of 

HSA to F4 fimbriae resulted in a clear reduction of the 4 to 7 nm particle group (Fig. 

2D), suggesting that HSA molecules were indeed coupled to F4. Since the linear F4 

fimbriae are measured as ellipsoid spheres by the DLS technique, conjugation of HSA 

molecules along the linear F4 fimbriae will result in a similar ellipsoid sphere and not 

in particles with a larger radius. SDS-PAGE and Coomassie staining of F4/HSA 

samples also showed a decrease in free HSA molecules as compared to samples of 

mixed F4 and HSA (data not shown). In contrast to the F4/HSA conjugation, coupling 

F4 to F4 and HSA to HSA seemed less effective since the hydrodynamic radii of the 

conjugates are similar to the uncoupled molecules (Fig. 2E and 2F). However, the 

glutaraldehyde treatment of F4 fimbriae seemed to result in the covalent linkage of its 

subunits since incubation of F4/F4 at 95°C for 5 minutes did not reduce the polymeric 

character of F4, whereas heating of non-coupled F4 resulted in the desintegration of 

F4 fimbriae as only its adhesin FaeG could be observed following SDS-PAGE and 

Coomassie staining (data not shown).  
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Figure 2 : Distribution of the hydrodynamic radii (nm) of the molecules present in F4 (A), HSA (B), 
F4+HSA (C), F4/HSA (D), F4/F4 (E) or HSA/HSA (F) samples as determined by the dynamic light 
scatter method and presented using a color gradient. Each sample was measured ten times (Y-axis). 
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7.3.2. Induction of F4-specific serum antibodies 
 The in vitro villous adhesion assay revealed that seventeen pigs were F4R+ 

whereas three pigs were F4R-. As a consequence, the six pigs that were orally 

immunized with F4/HSA  conjugates and CT were divided in two subgroups of three 

pigs each : three F4R+ pigs (F4/HSA+CT group) and three F4R- pigs (F4/HSA+CT 

F4R- group). 

As expected, pigs orally immunized with HSA/HSA in the presence or 

absence of CT (HSA/HSA+CT and HSA/HSA groups, respectively) did not have a 

F4-specific antibody responses. The F4R+ pigs immunized with plain F4/HSA only 

showed F4-specific IgA and IgG responses after the third oral immunization (Fig. 3), 

which became significantly higher (P≤0.031) than the background in the HSA groups 

42 and 48 dppi. On the other hand, oral co-administration of CT to F4/HSA in F4R+ 

pigs (F4/HSA+CT group) significantly increased the F4-specific antibody response. 

Indeed, a primary antibody response already occurred 7 days following the first oral 

immunization (7 dppi) with first IgM (log2 titer 4.85) and subsequently IgA and IgG 

antibodies, which reached maximal log2 titers of 8.32 and were significantly higher 

than these of other groups during a period of about 2 months (P≤0.046).  

In F4R- pigs, CT adjuvanticity also induced F4-specific antibodies following 

oral co-administration with F4/HSA (F4/HSA+CT F4R- group) from one week 

following the second oral immunization onwards (Fig. 4). Moreover, this 

immunization resulted in a faster appearance of F4-specific IgA and IgG titers than in 

F4R+ pigs immunized with plain F4/HSA (F4/HSA group). However, the F4-specific 

IgG and IgA serum antibody titers in the F4/HSA+CT F4R- group reached similar 

levels as in the F4/HSA group from the third oral immunization onwards and was 

significantly lower as compared to F4R+ pigs immunized with F4/HSA + CT 

(F4/HSA+CT group). These results demonstrated that CT functions as mucosal 

adjuvant in pigs and that the highest F4-specific response is obtained following 

mucosal targeting of F4 in the presence of CT. 
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Figure 3 : Mean F4-specific IgM, IgA and IgG serum antibody titers (± SEM) of immunized pigs. The
animals of the F4/HSA+CT F4R- group are F4R-, whereas all other animals are F4R+. Significant
difference (P<0.05) between F4/HSA+CT and F4/HSA, HSA/HSA, HSA/HSA+CT, F4/HSA+CT F4R-

(a), between F4/HSA+CT and HSA/HSA+CT (b), between F4/HSA+CT and HSA/HSA, F4/HSA (o),
between F4/HSA and HSA/HSA, HSA/HSA+CT (s), between F4/HSA+CT F4R- and F4/HSA, HSA/HSA
(t), between F4/HSA+CT F4R- and HSA/HSA, HSA/HSA+CT (u). Black arrow, oral immunization.
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Figure 4 : Mean HSA-specific IgM, IgA and IgG serum antibody titers (± SEM) of immunized pigs.
Significant difference (P<0.05) between F4/HSA+CT and HSA/HSA, HSA/HSA+CT, F4/HSA, F4/HSA+CT
F4R- (a), between F4/HSA+CT and HSA/HSA+CT (b), between F4/HSA+CT and HSA/HSA (c), between
HSA/HSA+CT and F4/HSA (f), between HSA/HSA+CT and F4/HSA+CT F4R- (h), between F4/HSA+CT and
F4/HSA, F4/HSA+CT F4R-, HSA/HSA (i), between HSA/HSA+CT and F4/HSA, F4/HSA+CT F4R-, HSA/HSA
(j), between HSA/HSA and F4/HSA+CT, F4/HSA+CT F4R-, HSA/HSA+CT, F4/HSA (k), between F4/HSA and
F4/HSA+CT, F4/HSA+CT F4R-, HSA/HSA+CT, HSA/HSA (l), between HSA/HSA and F4/HSA,
HSA/HSA+CT (m), between F4/HSA and HSA/HSA (n), between F4/HSA+CT and HSA/HSA, F4/HSA (o),
between HSA/HSA+CT and HSA/HSA, F4/HSA (p), between F4/HSA+CT and HSA/HSA+CT, F4/HSA,
F4/HSA+CT F4R- (r). Black arrow, oral immunization; white arrow, intramuscular HSA immunization
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7.3.3. Induction of HSA-specific serum antibodies
7.3.3.1. Oral immunization

To analyse the mucosal carrier function of F4 for the conjugated HSA, the
HSA-specific antibody response was determined. As expected, no HSA-specific

antibodies were observed following oral immunization of pigs with HSA/HSA
(HSA/HSA group) (Fig. 4), nor were HSA-specific serum antibodies detected

following oral administration of F4/HSA conjugates to F4R+ pigs (F4/HSA group).

On the other hand, oral co-administration of HSA/HSA or F4/HSA with CT
(HSA/HSA+CT and F4/HSA+CT group, respectively) induced a HSA-specific IgG

and IgA serum antibody response in F4R+ pigs around the moment of the second oral
immunization and following the third oral immunization, respectively (Fig. 4).

However, conjugation of HSA to F4 enhanced the induction of a HSA-specific

response since significantly higher HSA-specific IgG and IgA titers were observed in
the F4/HSA+CT group as compared to the HSA/HSA+CT group following the second

and the third oral immunization, respectively. Later on, the HSA-specific IgG titer in

the HSA/HSA+CT group reached the level of the F4/HSA+CT group at the moment
of the third oral immunization (35 dppi) and remained at this level till the IM

immunization at 48 dppi. The titers in the CT-supplemented groups were significantly
higher than for the groups without CT (F4/HSA and HSA/HSA groups) following the

third oral immunization (between 38 and 48 dppi).

In F4R- pigs orally immunized with F4/HSA+CT (F4/HSA+CT F4R- group), a
HSA-specific IgG serum response was only observed two weeks following the third

oral immunization (Fig. 4). These data indicate that the fast induction of a HSA-
specific serum response following oral co-administration of CT and F4/HSA in F4R+

pigs (F4/HSA+CT group) resulted from a complementary effect of CT as adjuvant

and F4 as mucosal carrier. A remarkable observation was the faster appearance of
HSA-specific serum IgG in the HSA/HSA+CT group than in the F4/HSA+CT F4R-

group.

7.3.3.2. Intramuscular HSA immunization
At 48 dppi, the pigs were IM immunized with HSA to determine whether oral

immunization had primed the animals systemically against HSA (Fig. 4). A

significant increase of the HSA-specific serum IgM titer between 7 and 14 days post
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IM immunization (55 and 62 dppi) was only observed in the HSA/HSA group,

confirming a primary antibody response in this group. The kinetics of HSA-specific
serum IgG confirms a primary response (Fig. 4), whereas no HSA-specific serum IgA

response could be detected in the HSA/HSA group.
In contrast to a primary response in the HSA/HSA group, secondary responses

were detected in the four other groups with significant increases in HSA-specific

serum IgG titers directly following IM immunization (between 48 and 52 dppi)
(P≤0.025). This resulted in a significantly higher IgG antibody titer in these four

groups than in the HSA/HSA group one week following IM immunization (55 dppi).

However, gradual differences in priming were observed between these four groups as

evidenced by the different kinetic of the HSA-specific serum IgG response. Indeed, a
HSA-specific serum IgG titer of 1280 (log2 titer > 10) was reached at 29, 14, 7 and 4

days following IM HSA immunization in the F4/HSA, F4/HSA+CT F4R-,
HSA/HSA+CT and F4/HSA+CT groups, respectively. A similar kinetic pattern was

obtained for the HSA-specific IgA serum response. These observations are in

agreement with those following oral immunization, confirming that conjugation of
HSA to F4 improved the targeting of HSA to the gut associated lymphoid tissue

following oral administration and that CT functioned as a mucosal adjuvant to orally
co-administered antigens. In addition, it is interesting to notice that HSA-specific

serum IgA also boosted in the F4/HSA group upon IM HSA immunization, This

observation revealed the priming of the gut-associated immune system by HSA that
was conjugated to F4, in contrast to non-mucosae-targeted HSA/HSA.

7.3.4. F4- and HSA-specific IgA response in saliva
The presence of F4-specific serum antibodies in F4/HSA, F4/HSA+CT and

F4/HSA+CT F4R- groups following oral immunization corresponded with the
presence of F4-specific IgA in saliva (Fig. 5). The HSA-specific IgA in saliva was

only detected in the F4/HSA+CT group one week after the second oral immunization
(24 dppi). At that moment, no HSA-specific IgA could be detected in serum. The

induced HSA-specific IgA in saliva was also significantly higher in the F4/HSA+CT

group than in the HSA/HSA, F4/HSA and F4/HSA+CT F4R- groups one week
following the third oral immunization (42 dppi) (P≤0.016).
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Figure 5 : Mean F4- and HSA-specific IgA antibody titer (± SEM) in saliva of
immunized pigs. The animals of the F4/HSA+CT F4R- group are F4R-, whereas all
other animals are F4R+. Significant difference (P<0.05) between F4/HSA+CT and
HSA/HSA, HSA/HSA+CT, F4/HSA, F4/HSA+CT F4R- (a), between F4/HSA+CT
and F4/HSA, F4/HSA+CT F4R-, HSA/HSA (i). Black arrow, oral immunization.

7.3.5. Induction of a F4- and HSA-specific lymphocyte
proliferation

The F4-specific cellular immune response is in accordance with the humoral
antibody response one week following the third oral immunization (42 dppi) in that

the F4-specific cellular immune response was significantly higher in the F4/HSA and
F4/HSA+CT groups than the background levels of the HSA/HSA and HSA/HSA+CT

groups (P≤0.020) (Fig. 6). A similar situation was observed 55 dppi, but then the SI

were lower suggesting a decreased F4-specific cellular immune response.
The HSA-specific lymphocyte proliferation was low after the third oral

immunization as well as one week after the IM HSA immunization (maximal mean SI
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of 2.3 and 2.8, respectively) (Fig. 6). However, the HSA-specific lymphocyte

proliferation was significantly increased (P≤0.022) in all groups except the HSA/HSA

group three weeks after IM immunization. At that moment, the HSA-specific SI was
significant lower in the HSA/HSA group as compared to the HSA/HSA+CT,

F4/HSA+CT and F4/HSA+CT F4R- groups (P≤0.030), resembling the HSA-specific

antibody response.

Figure 6 : Mean F4- and HSA-specific stimulation index (SI) (±  SEM). of
immunized pigs. The animals of the F4/HSA+CT F4R- group are F4R-, whereas all
other animals are F4R+. Bars with a different letter are significantly different
(P<0.05).
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7.3.6. Induction of CT-specific serum antibodies
The use of CT as mucosal adjuvant resulted in the improvement of the

antigen-specific immune responses as shown above. CT also induced toxin-specific
antibodies (Fig. 7). The use of CT did not result in diarrhoea or a reduced weight gain

(data not shown).
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Figure 7 : Mean CT-specific serum antibody titer (± SEM) of immunized pigs.
Bars with a different letter are significantly different (P<0.05).

7.4. Discussion
It is generally accepted that oral immunization with non-replicating antigens

that do not bind to the intestinal mucosae, does not result in the induction of antigen-
specific antibodies in serum or at mucosae (Foss and Murtaugh, 1999a; Van den

Broeck et al., 2002; Lauterslager et al., 2003). Oral immunization of animals with
proteins can lead to either oral tolerance or priming of the systemic immune system,

depending on the dose given (Lamont et al., 1989; Mowat, 1995; Van den Broeck et

al., 2002). In the present study, oral immunization of pigs with HSA-HSA at a dose of
4.8 mg per immunization did not result in oral tolerance, nor in a clear priming of the

systemic immune response since a primary HSA-specific serum antibody response
was observed following IM HSA immunization.

Mice orally immunized with antigen in the presence of CT showed an

enhanced induction of the antigen-specific humoral and cellular immune response

b
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(Clarke et al, 1991; Smith et al., 2002; Lauterslager et al., 2003). This has also been 

demonstrated in guinea pigs, chickens and rabbits (McKenzie and Halsey, 1984; 

Debard et al., 1996; Girard et al., 1999). The present study is the first to show that CT 

is also a mucosal adjuvant for an orally administered non-mucosa-targeted antigen in 

pigs. Indeed, the observed high HSA-specific serum IgG antibody titer following oral 

co-administration of antigen and CT indicate an antigen-specific priming of the 

systemic immune response. This observation is in line with previous studies using CT 

in mice, rabbits, guinea pigs and chickens (McKenzie and Halsey, 1984; Debard et al., 

1996; Benedetti et al., 1998; Girard et al., 1999; Lauterslager et al., 2002). Foss et al. 

(1999a), however, did not observe an antigen-specific immune response following 

oral co-administration of CT with non-mucosa-targeted albumin or keyhole limpet 

hemocyanin. This argues that the dose of antigen and the immunization schedule are 

probably very important since these were the major differences with the present study.  

The results of the present study indicate that F4 fimbriae can act as a mucosal 

carrier molecule for HSA, inducing a HSA-specific priming of the mucosal and 

systemic immune system. Indeed, the IM HSA immunization resulted in a secondary 

immune response in the orally F4/HSA immunized pigs as evidenced by a low HSA-

specific IgM response and a rapidly increasing HSA-specific IgG titer which reached 

a high titer. A primary HSA-specific antibody response appeared in the HSA/HSA 

immunized animals with a high HSA-specific IgM response and a slower IgG 

response reaching lower titers than in the F4/HSA immunized animals. This priming 

of a HSA-specific immune response following F4/HSA immunization is probably not 

due to an adjuvant effect of F4 since co-administration of F4 with ovalbumin did not 

induce an ovalbumin-specific immune response (Van den Broeck, unpublished data). 

The conjugation of HSA to purified F4 fimbriae in a 1:1 molar ratio resulted in 

F4/HSA complexes that are still able to bind to the F4R, as shown by the interaction 

of the complexes with F4R+ enterocytes using a biosensor. This suggests that the F4-

mediated binding of F4/HSA allows a more efficient uptake of the conjugated HSA 

across the intestinal epithelial barrier. Indeed, a recent study in our lab showed that F4 

fimbriae can be taken up in F4R+ pigs by both enterocytes and M cells thus reaching 

antigen presenting cells such as porcine SWC-3 positive myeloid cells in the lamina 

propria (Snoeck et al., 2004b). The F4-dependent uptake of F4/HSA in F4R+ pigs 

reaches the gut-associated lymphoid tissue as evidenced by the appearance of HSA-

specific serum IgA in the F4/HSA group following the IM booster immunization, in 
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contrast to the HSA/HSA immunized pigs. It has been reported that mucosal priming 

followed by a systemic booster immunization enhances not only the antigen-specific 

mucosal  response but also the systemic immune response (Vajdy et al., 2003).   

A negative effect of the conjugation of HSA to F4 fimbriae is the lower F4-

specific antibody response following the oral immunization with F4/HSA in the 

present study in comparison with oral immunization with purified F4 in a previous 

study (Van den Broeck et al., 1999b), despite the similar experimental design. This 

could be due to a reduced capacity of F4/HSA to bind the F4R since further increasing 

the molar amount of HSA conjugated to F4 clearly reduced the F4R binding in the 

biosensor assay. The conjugation could influence binding as shown for the dietary 

lectin wheat germ agglutinin (WGA). Increasing the molar ratio of WGA in a WGA-

albumin conjugation results in increased binding of the WGA-albumin complexes to 

Caco-2 cells (Gabor et al., 2002). A second factor influencing the immunogenicity 

could be the covalent linkage of adjacent FaeG subunits in the F4 fimbriae due to the 

glutaraldehyde-mediated conjugation, making the F4 fimbriae more rigid and perhaps 

influencing their immunogenicity. It has been reported that chemical conjugation of 

antigens can inhibit their degradation and subsequently reduce antigen presentation 

and induction of an antigen-specific immune response (Kobayashi et al., 2003). 

Oral co-administration of F4/HSA and CT significantly increased the F4-

specific serum IgA titer, whereas HSA/HSA with CT feeding did not significantly 

induce HSA-specific serum IgA antibodies. Oral co-administration of CT with other 

fimbriae like CFAI and CS6 also resulted in the induction of higher fimbriae-specific 

IgG and IgA serum responses and in higher amounts of faecal IgA (Byrd and Cassels, 

2003). In addition, the results of the present study show that the addition of CT 

significantly enhanced the immune response against the antigen that was targeted to 

the mucosa by F4 following the oral immunization. Indeed, significantly higher HSA-

specific serum IgG titers are present in F4R+ pigs immunized with F4/HSA+CT as 

compared to HSA/HSA+CT immunization. In addition, oral F4/HSA+CT 

immunization results in significantly higher HSA-specific antibody titers in F4R+ than 

in F4R- pigs. Thus, conjugation to F4  and addition of CT enhance synergistically the 

HSA-specific antibody response. This is in agreement with studies that report higher 

antigen-specific antibody responses following oral co-administration of CT with 
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mucosa-targeted antigen as compared to non-mucosa-targeted antigen (McKenzie and 

Halsey, 1984; Czerkinsky et al., 1989; Van der Heijden et al., 1991).  

In F4R- pigs, oral co-administration of F4/HSA with CT results in a 

significantly lower HSA-specific serum IgG antibody titer as compared to oral co-

administration of HSA/HSA with CT in F4R+ pigs. This difference in HSA-specific 

immune response is not due to a different efficiency of CT in both groups as the CT-

specific antibody response is identical in both groups. Frey et al. (1996) observed that 

smaller molecules could better pass the intestinal mucus layer than larger molecules. 

Probably, the smaller size of the HSA/HSA molecules that was observed in the DLS 

experiments could enable the uptake of these molecules through the intestinal mucus 

layer as compared to the larger F4/HSA molecules. Indeed, CT is suggested to attract 

dendritic cells to the epithelial cells lining the gut mucosa, subsequently enhancing 

uptake of luminal antigens (Lycke, 2004). In addition, Verma et al. (1994) reported 

that CT increases the intestinal permeability. Therefore, a more efficient passage of 

HSA/HSA through the intestinal mucus than of F4/HSA probably could result in a 

faster induction of an HSA-specific immune response.  

Nevertheless, the use of F4 fimbriae as mucosal carrier to heterologous 

antigens could open new perspectives in the development of a vaccine that 

simultaneously protects pigs against the widely spread F4+ ETEC and other 

enteropathogens such as rotavirus or verotoxigenic E. coli. In contrast to the insertion 

of heterologous epitopes in the variable region of FaeG (Thiry et al., 1989; Bakker et 

al., 1990), conjugation of antigens to fimbriae is not restricted to short peptides. In 

addition, conjugates can be obtained that retain their F4R-binding capacity and 

subsequently can be used as mucosal carrier molecule, whereas exchanging the 

variable region of FaeG seems to inhibit its F4R-binding (Bakker et al., 1992a). 

Perhaps, further improvement of the mucosal carrier capacity of F4 fimbriae could be 

obtained by altering the molar ratio of F4 to HSA in the conjugate (Russell-Jones, 

2001). On the other hand, fusion of a heterologous antigen to recombinant fimbrial 

adhesin subunits could be used as mucosal carrier system (Batisson et al., 2000a and 

2000b). Indeed, fusion of a heterologous peptide to the F4 fimbrial adhesin FaeG 

induces a peptide-specific antibody response following oral immunization of pigs 

with this fusion protein (Verdonck et al., 2004a). Perhaps, the fimbrial adhesin FaeG 

could be a better mucosal carrier than F4 fimbriae as no HSA-specific antibodies were 

found in this study following oral F4/HSA immunization of F4R+ pigs. However, it is 
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not known at the moment if FaeG has the potential to function as mucosal carrier for 

large antigens.  

In conclusion, the results of the present study show the potential of F4 

fimbriae to induce an immune response against a coupled heterologous antigen 

following oral administration in pigs. In addition, this potential of F4 fimbriae to 

function as a mucosal carrier can be improved by the adjuvant effect of CT. The 

combined use of CT as mucosal adjuvant and F4 fimbriae as mucosal carrier could 

open new perspectives in the development of vaccines against other enteropathogens 

in pigs. 

 

 

 
 



 

 

 

 

 

Chapter 8 

 

Altered bioactivity of purified F4 fimbriae by anionic 

detergents, temperature and pH: correlation with a 

monoclonal antibody based ELISA1 
 

 

                                                 
1 Based on : Verdonck F, Snoeck V, Goddeeris BM, Cox E. Binding of a monoclonal 
antibody positively correlates with bioactivity of the F4 fimbrial adhesin FaeG. 
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Abstract 
To develop a vaccine, a bioactive F4-receptor (F4R) binding FaeG molecule is 

required that binds to the F4R following oral immunization and induces a FaeG-specific 

immune response. The present study reports the altered binding of the FaeG-specific 

monoclonal antibody IMM01 with bioactive versus non-bioactive F4 fimbrial adhesin 

FaeG. The correlation of altered IMM01 binding with altered FaeG bioactivity, enables 

the use of an IMM01-based ELISA as a fast, specific and sensitive in vitro selection for 

potent F4 or (recombinant) FaeG antigen formulations, useful in an F4+ ETEC vaccine.  

 

8.1. Introduction 
Today, no commercial vaccine exists against post-weaning diarrhoea. However, 

orally administered F4 fimbriae bind to the F4R in the small intestine and induce local 

secretion of F4-specific IgA (Van den Broeck et al., 1999a) that inhibit subsequent 

colonization of F4+ ETEC (Van den Broeck et al., 1999b). Incorporation of F4 fimbriae 

in pellets or microspheres (Snoeck et al., 2003) or coupling of F4-fimbriae to an adjuvant 

could favour the induction of a protective mucosal F4-specific immune response and/or 

decrease the amount of antigen needed for immunization. On the other hand, the use of 

recombinant FaeG (rFaeG) subunits could perhaps be an alternative to the purified F4 

fimbriae to induce a mucosal F4-specific antibody response. Recently, expression of 

rFaeG is reported in tobacco (Huang et al., 2003; Joensuu et al., 2004) and in Escherichia 

coli (Verdonck et al., 2004a). 

To analyse the usefulness of formulations containing purified F4 fimbriae or 

rFaeG to induce a mucosal F4-specific immune response, or to study their capacity as 

mucosal carrier for heterologous antigens, it is important to analyse their bioactive 

properties in a fast, specific and sensitive way. First, multimerization of FaeG will be 

important, as the multimeric nature of an antigen is reported to induce better protection 

following immunization than its monomeric nature (Miller et al., 1998). Second, F4 

fimbriae or FaeG subunits need to bind to the F4R as purified F4 fimbriae only induce an 

F4-specific mucosal immune response when they bind to the F4R on small intestinal villi 
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(Van den Broeck et al., 1999b). At the moment, the inhibition adhesion assay described 

by Van den Broeck et al. (1999c) is the most accurate system to test the binding of F4 

fimbriae or FaeG subunits to the F4R. However, this assay is not very sensitive and is 

labour intensive. Haemagglutination assays are also reported to analyse adhesive 

properties of FaeG adhesins, but it is presently not known if this interaction reflects the 

interaction between FaeG and the F4R on intestinal villi (Gibbons et al., 1977; Bakker et 

al., 1992a). Furthermore, haemagglutination assays are not useful in the presence of 

contaminating molecules like detergents in the sample. On the other hand, the 

conformation of FaeG can be analysed using conformational epitope-specific monoclonal 

antibodies (MAb) (Bakker et al., 1992a). 

The aim of the present study was to determine the bioactivity of F4 fimbriae 

following incubation in a number of conditions, often used during protein purification 

and refolding, in encapsulation of antigens or during coupling procedures. Subsequently, 

an ELISA was developed that correlated the optical density of analysed F4 fimbrial 

samples with their bioactive properties in a fast, sensitive and specific manner. 

 

8.2. Materials and methods 

8.2.1. Isolation of F4 fimbriae 
  The F4 fimbriae were purified as described by Van den Broeck (1999c). Briefly, 

fimbriae were isolated by homogenizing the bacterial suspension of strain E. coli GIS26 

using an Ultra Turrax (Janke & Kunkel, IKA Labortechnik, Staufen, Germany), followed 

by a purification using two centrifugation steps and a precipitation step with 40 % (w/v) 

ammonium sulphate. Thereafter, the pellet was dissolved and dialyzed overnight against 

ultra-pure H2O. 

  

8.2.2. Incubation conditions 
  The protein concentration of purified F4 fimbriae was determined using the 

bicinchoninic acid reaction with bovine serum albumin (BSA) as a standard (ICN 

Biomedicals, Belgium). The purity of the purified F4 fimbriae was assessed in a 
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Coomassie stained 15 % SDS-PAGE with the ImageMaster 1D prime software 

(Amersham Pharmacia Biotech, Belgium).  

  Purified F4 fimbriae were incubated in different conditions to analyse 

conformational changes of F4 fimbriae or to study the influence of frequently used 

chemicals or physical conditions on its receptor-binding capacity, multimerization and 

conformation. Therefore, 500 µg of purified F4 fimbriae were incubated for 30 minutes at 

room temperature (25°C) in a total of 500 µl reaction volume, whereafter the treated F4 

sample was dialyzed overnight against PBS (137 mM NaCl, 2.7 mM KCl, 10.1 mM 

Na2HPO4, 1.8 mM KH2PO4, pH 7.4) at 4°C. In this way, F4 fimbriae were incubated in 

PBS supplemented with final concentrations of 5; 1.5; 0.5 or 0.15 % (v/v) SDS, Triton-X-

100, saponin or Tween®20. Furthermore, 500 µg of purified F4 fimbriae were incubated 

for 30 minutes at room temperature in 500 µl 50 mM TrisHCl-buffer with/without urea or 

guanidine hydrochloride (GuHCl) at a final concentration of 1, 2, 3 or 4 M. Additionally, 

F4 fimbriae were also incubated in PBS with adjusted pH values (using 1M HCl) of 2, 4, 

6, 8 or 10 in the presence/absence of 0.05 % SDS. Finally, F4 fimbriae were incubated 5 

minutes at room temperature (25°C), 50, 70, 85 or 100°C. All samples were also made 

without the addition of purified F4 fimbriae (further indicated as ‘treatment solution’) and 

analysed to determine the direct influence of the treatment solutions on the used test 

systems. Each condition of treating purified F4 samples were individually performed 

three times and were always dialyzed overnight against PBS following treatment.  

 

8.2.3. Multimeric FaeG character of F4 fimbriae 
  The multimeric nature of an antigen is reported to induce better protection 

following immunization than its monomeric nature (Miller et al., 1998). Therefore, the 

presence of FaeG multi- or monomers following incubation of F4 fimbriae was 

determined by SDS-PAGE followed by Western blot using the F4-specific MAb IMM01 

(Van der Stede et al., 2002b) as described by Van den Broeck (1999c). The samples were 

diluted in the same volume of 60 mM TrisHCl pH 6.8, 2 % SDS, 10 % glycerol and 0.02 

% bromophenol blue and loaded without heating the samples. The SDS concentration in 

the gel and the running buffer is 0.1%. 
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8.2.4. Turbidity analysis 
  The turbidity of a protein solution gives an indication of the amount of protein 

aggregates of a sufficient size to scatter visible light. Turbidity measurements were 

performed with a spectrophotometer (Ultrospec 4000, Pharmacia Biotech) at 550 nm 

(OD550) (Andersen, 2002), immediately after each of the incubations (done to induce 

conformational changes of F4) as well as after overnight dialysis to see if aggregates 

(dis)appeared. 

 

8.2.5. Bioactivity 
  The bioactivity of the treated F4 samples is correlated with its ability to bind to 

the F4R. Therefore, the binding of treated F4 fimbriae to the F4R was determined by the 

in vitro competitive villous adhesion assay, a variant of the method described by Van den 

Broeck et al. (1999c). Briefly, villi of F4R positive (F4R+) or F4R negative (F4R-) pigs 

were washed four times in Krebs-Henseleit buffer (160 mM, pH 7.4) whereafter they 

were resuspended in PBS supplemented with 1 % (w/v) D-mannose (Fluka, Sigma-

Aldrich, Bornem, Belgium) to prevent adhesion by type 1 pili. Subsequently, 4 x 108 F4+ 

E. coli and the test sample (200 µg treated F4 fimbriae or the treatment solution without 

F4 as negative control) were added to an average of 50 villi. The suspension was adjusted 

with PBS and D-mannose to a final volume of 0.5 ml containing 1 % (w/v) D-mannose. 

This suspension was incubated at room temperature for 1 h while gently shaking. Then, 

the adhesion of bacteria was evaluated quantitatively by counting the number of bacteria 

adhering along a 50 µm villous brush border at 20 randomly selected places using phase-

contrast microscopy at a magnification of 600x, after which the mean bacterial adhesion 

per 250 µm villous brush border was calculated. The percentage inhibition was calculated 

in comparison with F4R+ villi incubated only with F4+ E. coli. Villi of three different 

F4R+ pigs and one F4R- pig as negative control were used and the analyses were 

performed in triplicate. 

 

8.2.6. ELISA 
  An indirect ELISA was developed to analyse the conformation of FaeG. 

Therefore, a 96-well microtiter plate (NUNC, Maxisorp Immuno Plates, Roskilde, 
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Denmark) was coated with an optimal concentration of F4-specific swine polyclonal 

antibodies in PBS. This polyclonal antibody will bind native as well as denaturated F4. 

After 2 h incubation at 37°C, the remaining binding sites were blocked overnight at 4°C 

with PBS supplemented with 0.2 % (v/v) Tween®80. Following blocking, series of two-

fold dilutions (10 to 0.005 µg⁄ml) of native and treated F4 fimbriae in ELISA dilution 

buffer (PBS + 0.05 % (v/v) Tween®20 + 3 % (w/v) BSA) were incubated for 1 h at 37°C. 

In addition, native F4 was similarly diluted in the treatment solutions to determine their 

direct influence on the assay. Thereafter, an optimal dilution of the FaeG-specific 

monoclonal antibody (MAb) IMM01 was added to the wells for 1 h at 37°C. 

Subsequently, rabbit anti-mouse HRP-conjugated serum (Dako, Denmark) optimally 

diluted in ELISA dilution buffer and supplemented with 2 % (v/v) pig serum was brought 

onto the plates for 1 h at 37°C. An ABTS solution containing H2O2 was added and after 1 

h incubation at 37°C the optical density was spectrophotometrically measured at 405 nm 

(OD405). The plates were washed three times with ELISA washing buffer (PBS + 0.2 % 

(v/v) Tween®20) between each incubation step. The treated samples were independently 

analysed three times and data of a representative analysis are shown. 

 

8.3. Results 
Purified F4 fimbriae were incubated at different temperatures to induce 

conformational changes in the FaeG adhesins. Indeed, the bioactivity of the F4 fimbrial 

adhesin FaeG decreased following incubation of F4 fimbriae at high temperatures: F4 

fimbriae incubated at 70°C still inhibited the adhesion of F4+ E. coli to F4R+ villi by 89.4 

± 4.5 %, whereas F4 fimbriae incubated at 85°C and 100°C only inhibited by 34.4 ± 14.8 

% and 7.7 ± 6.8 %, respectively (Table 1). Western blotting of purified F4 fimbriae 

incubated at 85°C or higher temperatures revealed also a decreased polymerisation of the 

FaeG adhesins (Fig. 1), whereas turbidity measurements suggested the presence of non-

ordered protein aggregations as evidenced by their increase in OD550 (Table 1). However, 

these aggregates did not precipitate, neither influence the concentration of F4 in solution. 

Indeed, the protein concentration in the top fraction of an F4 fimbrial sample incubated 5 
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minutes at 95 °C is identical directly following heat treatment and mixing as compared to 

3 hours later. 

 

 

Table 1 : Effect of different incubation conditions for F4 fimbriae on formation of aggregates 
(OD550 ± standard deviation, SD) (directly following incubation or following dialysis of the 
test samples) and on inhibition of adhesion of F4+ E. coli adhesion to F4R+ 

 villi (% ± SD) (after dialysis). 

Incubation conditions* 

 

OD550 after 

incubation                     dialysis    

Percent inhibition of F4+ 

ETEC to F4R+ villi 

25°C 0.056 ± 0.005 0.008 ± 0.002 92.4 ± 3.4 

50°C 0.053 ± 0.004 0.008 ± 0.001 91.2 ± 3.6 

70°C 0.055 ± 0.006 0.007 ± 0.001 89.4 ± 4.5  

85°C 0.262 ± 0.022 0.347 ± 0.025 34.4 ± 14.8 

100°C 0.375 ± 0.037 0.466 ± 0.046 7.7 ± 6.8 

0.15% SDS 0.049 ± 0.004 0.062 ± 0.006 86.8 ± 4.1 

0.5% SDS 0.025 ± 0.010 0.013 ± 0.007 78.6 ± 7.8 

1.5% SDS 0.007 ± 0.005 0.005 ± 0.003 54.7 ± 9.0 

5% SDS 0.005 ± 0.003 0.004 ± 0.003 13.1 ± 6.3 

pH2 1.342 ± 0.069 0.081 ± 0.034 87.0 ± 7.1 

pH4 0.583 ± 0.021 0.050 ± 0.008 85.3 ± 4.6 

pH6 0.090 ± 0.009 0.061 ± 0.012 91.2 ± 5.3 

pH8 0.078 ± 0.007 0.051 ± 0.009 90.7 ± 4.7 

pH10 0.069 ± 0.012 0.032 ± 0.013 89.6 ± 6.2 

pH2 0.05% SDS 0.510 ± 0.037 0.004 ± 0.004 15.7 ± 3.3 

pH4 0.05% SDS 0.032 ± 0.005 0.006 ± 0.005 24.0 ± 8.1 

pH6 0.05% SDS 0.015 ± 0.003 0.006 ± 0.002 88.9 ± 4.4 

pH8 0.05% SDS 0.013 ± 0.004 0.007 ± 0.003 89.8 ± 5.2 

pH10 0.05% SDS 0.013 ± 0.005 0.004 ± 0.002 87.9 ± 5.6 

* 500 µg purified F4 fimbriae in 500 µl during 30 minutes 
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Figure 1 : Multimeric FaeG character of F4 fimbriae incubated for 5 minutes 
at 25°C (1), 50°C (2), 70°C (3), 85°C (4) and 100°C (5), determined in 
Western blot using the IMM01 MAb. M = molecular weight marker. 

 

 

Subsequently, interaction of the F4-specific MAb IMM01 with serial dilutions of 

these temperature treated F4 fimbriae were tested in ELISA. Purified F4 fimbriae 

incubated at 25 to 70°C resulted in near parallel sigmoid OD405-curves, characterized by 

an identical steep linear phase and a plateau phase decreasing with increasing incubation 

temperature (Fig. 2). However, F4 fimbriae incubated at a temperature of 85°C or higher, 

resulted in sigmoid OD405-curves with a very low plateau phase and a linear phase with a 

flat slope. These flat sigmoid OD405-curves indicate a lower affinity of the MAb for the 

high-temperature treated F4 fimbriae, most likely due to a conformational change in the 

epitope recognized by the MAb.  
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Figure 2 : Binding of the FaeG-specific MAb IMM01 with F4 fimbriae 
incubated for 5 minutes at 25°C, 50°C, 70°C, 85°C and 100°C. 

 

 

F4 fimbriae were analysed following treatment with urea, GuHCl, detergents or at 

different pH as these conditions are often used during purification and refolding of 

proteins, in encapsulation of antigens or during coupling procedures (Singh and O’Hagan, 

1998; De Bernandez, 2001; Tsumoto et al., 2003). Incubation with non-ionic detergents, 

urea or GuHCl did not influence the ELISA reactivity as well as the multimerization and 

the bioactivity of the treated F4 samples following dialysis (data not shown). However, 

incubation of F4 fimbriae with increasing SDS concentrations, resulted in a gradually 

altered binding of the IMM01 MAb to the treated F4 (Fig. 3) as no influence of the 

treatment solution containing SDS was observed. Indeed, conditions with 0.15 % and 0.5 

% SDS revealed both sigmoid OD405-curves with a decreased plateau phase but a quite 

parallel and steep linear phase as compared with native purified F4 fimbriae incubated 

without SDS. Higher concentrations of SDS resulted in linear-like, low value OD405-

curves. Furthermore, the incubation of F4 fimbriae with SDS reduced also its multimeric 

character (Fig. 4) and its bioactivity (% inhibition) in a SDS concentration-dependent 

manner (Table 1). However, the influence of SDS concentrations below 1 % on the 

multimeric character of F4 could not be determined by SDS-PAGE since the preparation 

of the samples resulted in a minimal final SDS-concentration of 1%. In agreement with 

the ELISA, no influence of the treatment solution on the in vitro competitive villous 

adhesion assay was noticed. Aggregate formation, as evidenced by turbidity, was 

however not increased (Table 1). 
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Figure 3 : Binding of the FaeG-specific MAb IMM01 with F4 fimbriae 
incubated for 5 minutes at 25°C or treated 30 minutes with 0.15 %, 0.5 %, 
1.5 % and 5 % SDS, followed by overnight dialysis against PBS. 
 

 
Figure 4 : Multimeric FaeG character of F4 fimbriae treated 30 minutes with 5 
% SDS (1), 1.5 % SDS (2), 0.5 % (3), 0.15 % (4) or incubated for 5 minutes at 
25°C (5) and both followed by overnight dialysis against PBS, determined in 
Western blot using the IMM01 MAb. M = molecular weight marker 
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Following incubation of F4 fimbriae at pH2 and 4, the turbidity increased, 

suggesting aggregation of proteins (Table 1). After dialysing these samples, aggregation 

disappeared and interaction of the treated F4 with the IMM01 MAb was identical as 

compared to native F4 fimbriae. Indeed, sigmoid OD405-curves were obtained in ELISA 

identical to those obtained with F4 fimbriae incubated at pH 7.4 (Fig. 5). Furthermore, 

FaeG multimerization was present with little more FaeG mono- and dimers and the 

bioactivity was only slightly decreased as compared to non-incubated purified F4 

fimbriae. These results suggest a reversible conformational change of F4 fimbriae in the 

presence of a low pH environment. In a subsequent experiment, F4 fimbriae were 

incubated at different pH in the presence of SDS at a concentration (0.05 %) that is not 

influencing characteristics of purified F4 fimbriae on its own. Following dialysis, samples 

of the pH2 SDS and the pH4 SDS conditions revealed linear instead of sigmoid OD405-

curves (Fig. 5), could only inhibit the binding of F4+ E. coli to the F4R by 15.7 ± 3.3 % 

and 24 ± 8.1 % respectively and showed reduced FaeG polymerisation (mono- to trimers 

and mono- to hexamers, respectively) as compared to non-incubated purified F4 fimbriae 

and the other pH conditions in the presence of 0.05 % SDS.  
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Figure 5 : Binding of the FaeG-specific MAb IMM01 with F4 fimbriae incubated 
for 5 minutes at 25°C (pH7.4) or 30 minutes at pH2, pH4, pH6 in the 
presence/absence of 0.05 % SDS, both followed by overnight dialysis against PBS. 
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8.4. Discussion 
F4 fimbriae purified from the F4+ ETEC strain GIS26 seem to be very stable 

proteins since they retain their multimeric FaeG character and their F4R binding 

following incubation in the presence of 5 % (v/v) non-ionic detergents, 4 M urea or 

GuHCl and at temperatures up to 70°C. In agreement, treatment of F4ab fimbriae with 2 

M urea at 55°C is reported to remove all minor fimbrial subunits, but without dissociating 

and affecting the adhesive properties of the fimbriae (Oudega et al., 1989; Bakker et al., 

1992a). Also fimbriae of other bacteria are reported to be stable protein structures. For 

example, dissociation of type 1 pili requires 8.6 M GuHCl (Eshdat et al., 1981). In the 

present study, irreversibly reduced F4 bioactivity is observed following incubation with 

SDS at concentrations of 1.5 % or higher and at temperatures of 85 °C or higher. The 

high denaturation temperature of FaeG is associated with a high stabilizing Gibbs energy 

(Knörle and Hubner, 1995). However, the Yersinia pestis F1 capsular antigen is reported 

to dissociate after heating in the absence and presence of 0.1 % SDS, but to reassociate 

upon cooling and removal of SDS by dialysis against PBS, respectively (Miller et al., 

1998). This difference between F4 fimbriae and F1 antigen is probably due to structural 

differences and not due to a different multimerization mechanism. Indeed, the 

multimerization of FaeG subunits in F4 fimbriae as well as that of the non-fimbrial F1 

antigen, is mediated by the conserved chaperone-subunit pathway (Sauer et al., 2000; 

Zavialov et al., 2003b; Chapter 4).  

Exposure of type 1 pili to low pH does not affect the pili (McMichael and Ou, 

1979), but incubation of purified F4 fimbriae at low pH results in a reversible 

conformational change of fimbriae. In agreement, a number of research groups use this 

phenomenon as the basis for a method for purification of F4 fimbriae (Erickson et al., 

1994; Jin et al., 1998). However, this reversible conformational change became 

irreversible and stabilised in the presence of 0.05 % SDS, a concentration which did not 

affect the bioactivity at neutral pH. The addition of SDS itself is not harmful because 

samples were always dialyzed against PBS following treatment and no influence was 

observed in the analysis of control solutions. Furthermore, the results of Miller et al. 
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(1998) indicated that the bioactivity of F1 antigen can be altered following incubation 

with SDS, but can be restored following dialysis against PBS.  

The suggested conformational change of F4 fimbriae at low pH is probably not 

very detrimental for the fimbrial characteristics in vivo, since only very limited digestion 

of F4 fimbriae was observed following 2 h incubation in the presence of pepsin at pH 2 

(Snoeck et al, 2004a). In agreement, oral administration of purified F4 fimbriae can still 

immunize F4R+ pigs, indicating that the stomach is not destroying the binding capacity of 

F4 (Van den Broeck et al., 1999a en 1999b).  

 To develop an F4 fimbrial vaccine against F4+ ETEC-induced diarrhoea in post-

weaning piglet or to use the adhesin as a carrier molecule (Schembri et al., 1999), it is 

important to determine the bioactive-related characteristics of the F4 fimbrial adhesin 

FaeG in a specific and fast manner. Results of the present study reveal a correlation of 

FaeG bioactivity and binding of the FaeG-specific MAb IMM01, as no direct influences 

of the used treatment solutions on the ELISA or the in vitro competitive adhesion assay 

were observed. Therefore, reduced binding of the adhesin with its receptor and a reduced 

multimerization of FaeG adhesins seems to be correlated with altered interaction of the 

IMM01 MAb with FaeG.  However, this altered binding by IMM01 MAb upon antigen 

denaturation cannot be interpreted as an indication of complete antigen denaturation. It 

can only be considered as an indication that the conformational modifications that have 

occurred are important enough to disrupt the specific spatial arrangement necessary for 

antibody binding and bioactivity. The MAb IMM01 is able to block the binding of F4+ E. 

coli of the F4ab, F4ac and F4ad antigenic variants to the F4R (Van der Stede et al., 

unpublished data). Furthermore, the IMM01 MAb binds to fimbriae of more than 25 

haemolytic F4ac+ E. coli strains isolated from pigs with post-weaning diarrhoea 

(Verdonck et al, unpublished data). Thus, the epitope recognized by the IMM01 MAb is a 

conserved ‘a’-epitope present in all three different F4 antigenic variants.  

The interaction of FaeG with the F4R is not fully characterized, but both 

conserved and variable amino acids seem to contribute to the receptor-binding site 

(Bakker et al., 1992a). It is not clear if the receptor-binding site and the multimerization 

site are identical or located near to each other, as the protein structure of FaeG is not 

elucidated at the moment. Therefore, the present study cannot discriminate if the 
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observed reduction in binding of treated F4 fimbriae to the F4R is due to conformational 

changes in the receptor binding epitope or due to the reduced polymerisation of FaeG 

adhesins.  

 In conclusion, purified F4 fimbriae are very stable proteins but their bioactivity 

was observed to be reduced following incubation with SDS at concentrations of 1.5 % or 

higher, at temperatures of 85°C or higher and at pH 4 or lower. This reduced F4R-

binding and reduced FaeG multimerization of treated F4 fimbriae correlated with optical 

density determined in a newly developed ELISA using the FaeG-specific MAb IMM01. 

This assay will enable a fast, specific and sensitive in vitro selection for potent F4 or 

(r)FaeG antigen formulations, useful in an F4+ ETEC vaccine. 

 
 



 

 
 
 
 
 
 

Chapter 9 
 
 

Bioactive recombinant F4 fimbrial adhesin FaeG 
monomers induce a fimbriae-specific immune response 
following oral immunization of piglets and function as 

mucosal carrier to an N-terminal fused peptide1 
 

 

                                                 
1 Based on : Verdonck F, Cox E, Van der Stede Y, Goddeeris BM. 2004a. Oral 
immunization of piglets with recombinant F4 fimbrial adhesin FaeG monomers induces a 
mucosal and systemic F4-specific immune response. Vaccine, in press. 
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Abstract 
The importance of adhesins in the pathogenicity of several bacteria resulted in 

studies on their usefulness in vaccines. In this study, the gene of the F4(K88)-fimbrial 

adhesin FaeG of the pathogenic enterotoxigenic Escherichia coli (ETEC) strain GIS26 

was cloned in the pET30Ek-LIC vector and expressed with an N-terminal His- and S-tag 

in the cytoplasm of BL21(DE3). Recombinant FaeG (rFaeG) subunits were isolated from 

insoluble cytoplasmic aggregates and refolded into a native-like F4R-binding 

conformation. Indeed, the presence of conformational epitopes was shown by ELISA and 

the ability to bind the F4R was observed by inhibiting the adhesion of F4+ ETEC to F4R+ 

villi with increasing concentrations of native-like refolded rFaeG subunits. The rFaeG 

subunits appear as monomers, whereas the purified F4 fimbriae are multimers. Oral 

immunization of newly weaned piglets with native-like rFaeG induced a mucosal and 

systemic F4-specific immune response, significantly reducing F4+ E. coli excretion from 

2 till 5 days following challenge infection. However, improvement of stability and 

immunogenicity of rFaeG is necessary since a higher F4-specific response was obtained 

following immunization with purified F4 fimbriae. Furthermore, the presence of 

antibodies against the N-terminal fused His- and S-tag containing peptide support the use 

of (r)FaeG as a mucosal carrier.  

 

9.1. Introduction 
The importance of fimbriae as colonizing factors in the pathogenesis of ETEC 

induced diseases, led to the development of fimbriae-based vaccines. Rutter and Jones 

(1973) reported that parenteral vaccination of sows with fimbriae protected suckling 

piglets via passive lactogenic immunity. However, in the postweaning period, an active 

intestinal mucosal immune response is required. Since parenteral vaccination tends to 

stimulate the systemic rather than the mucosal immune system (Moon and Bunn, 1993; 

Bianchi et al., 1996; Van der Stede et al., 2003), it seems worthwhile to develop oral 

vaccines containing fimbriae that stimulate the intestinal mucosal immune system.  
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Van den Broeck et al. (1999a and 1999b) reported that oral immunization of 

weaned piglets with purified F4 fimbriae induced a protective FaeG-specific immune 

response in F4R+ piglets. On the other hand, purified F4 seemed to behave as a normal 

food antigen in F4R- pigs (Van den Broeck et al., 2002). In contrast to F4 fimbriae, oral 

immunization with most soluble antigens induces an immunohyporesponsive state, 

named oral tolerance (Strobel and Mowat, 1998; Stokes and Bailey, 2000). However, the 

conjugation of an antigen to a mucosal carrier molecule can result in the induction of an 

antigen-specific immune response (Holmgren et al., 1993; Foss and Murtaugh, 1999b; 

Ogra et al., 2001). 

The purpose of the present study was to determine whether recombinant FaeG 

(rFaeG) could be obtained in native-like conformation in the absence of the chaperone 

FaeE, allowing oral immunization of pigs and induction of an FaeG-specific immune 

response. In addition, it was analysed if rFaeG could be used as a mucosal carrier that is 

able to induce an immune response against an N-terminal fused heterologous peptide 

following oral immunization. 

 

9.2. Material and methods 

9.2.1. Bacterial inoculum  
The ETEC strain GIS26 (serotype O149:K91, F4ac+, LT+STa+STb+) was cultured 

during 18 h in Tryptone Soya Broth (Oxoid, Basingstoke, Hampshire, England) at 37°C 

and 85 rpm. The bacteria were collected by centrifugation and washed with phosphate-

buffered saline (PBS) (150mM, pH 7.4). The concentration of the bacteria was 

determined by measuring the optical density of 10-fold dilutions of the bacterial 

suspension at 660nm (OD660). An OD660 of 1 equals 109 viable bacteria/ml, as determined 

by counting colony-forming units. 

 

9.2.2. Purification of F4 fimbriae 
  F4 fimbriae were purified from an E. coli GIS26 bacterial suspension as described 

by Van den Broeck et al. (1999c). The purity of the purified F4 fimbriae was assessed 

using a Coomassie stained 15% SDS-PAGE and the ImageMaster 1D prime software 
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(Amersham Pharmacia Biotech, Belgium). The protein concentration of purified F4 

fimbriae was determined using the bicinchoninic acid reaction with bovine serum 

albumin (BSA) as a standard (ICN Biomedicals, Belgium), taking into account the purity 

of the purified F4 fimbriae. Furthermore, rFaeG or purified F4 fimbriae were identified 

by Western blot using the FaeG-specific MAb IMM01 (Van der Stede et al., 2002b) as 

described by Van den Broeck et al. (1999c). 

 

9.2.3. pETFaeG/7 construction  
faeG without its signal sequence was amplified from purified chromosomal DNA 

of strain GIS26 by the polymerase chain reaction (PCR), using the primers FaeGac Forw  

(5’-GACGACGACAAGATTGCACATGCCTGGATGACTGG-3’) and FaeGac Rev  (5’-

GAGGAGAAGCCCGGTAATAAATTGGCAGCTCATCACG-3’). The resulting 

product was purified (Quantum Prep PCR Kleen Spin Columns, BioRAD and made 

sticky by treating with T4 DNA polymerase (Promega, Madison, USA) in the presence of 

dATP. Subsequently, the sticky fragment was ligated in the pET-30 Ek/LIC vector 

(Novagen, Madison, USA) and transformed by heat shock in Nova Blue Singles 

competent cells (Novagen) according to the manufacturers instructions. The nucleotide 

sequence of purified plasmid (Midiprep, Qiagen) of the selected pETFaeG/7 clone was 

determined by the Sanger dideoxy chain termination method using the ABI PRISM Big 

DyeTM Terminator Cycle Sequencing Ready Reaction Kit (ABI) and the FaeGac and T7 

primer sets (T7 forward : TAATACGACTCACTATAGGG, T7 reverse: 

GCTAGTTATTGCGCGG), following the manufacturers protocol. After the cycle 

sequencing reaction, the products were sequenced on a 377 ABIPRISM automated DNA 

sequencer according to the manufacturers manual. The chromatograms of the sequences 

were visualised using the CHROMAS 2.0 software (Technelysium Ltd., Australia) and 

the DNA sequences were analysed using the DNAMAN version 5.0 (Lynnon Biosoft). 

Finally, BL21(DE3) host cells (Novagen) were transformed by heat shock with the 

selected construct pETFaeG/7. 
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9.2.4. rFaeG expression 
The rFaeG expressing BL21(DE3)[pETFaeG/7] E. coli were grown overnight in 

Luria broth (LB; Life Technologies, Paisley, Scotland) with 30 µg/ml kanamycin at 

28°C. Afterwards, the bacteria were diluted 100 times in fresh LB supplemented with 

kanamycin and incubated at 28°C, 200 rpm to an OD660 of 0,2 - 0,3. So, the bacteria 

could grow and the expression of rFaeG in the absence of induction was reduced. rFaeG 

expression was subsequently induced by adding 1mM isopropyl-β-D-thiogalactoside 

(IPTG, Sigma) to the cultures, which were further incubated during 4 hours at 37°C and 

200 rpm. 

 

9.2.5. Purification of different fractions of E. coli 
Spheroplasts of BL21(DE3)[pETFaeG/7] E. coli were prepared as described by 

Lindberg et al. (1989). In addition, the method described by Ausubel et al. (1989) was 

used to purify proteins from different fractions of E. coli. Briefly, 1010 induced bacteria 

were harvested by centrifugation at 10,000 x g for 10 min at 4°C. The resulting 

supernatant is the ‘medium fraction’. The pellet was resuspended in 30 ml Tris-HCl 

buffer (30 mM, pH 8) supplemented with 20% sucrose. Thereafter, EDTA was 

supplemented to a final concentration of 1 mM for 10 min at room temperature. The 

bacteria were collected by centrifugation at 10,000 x g and 4°C for 10 min. The pellet 

was resuspended in 30 ml ice-cold 5 mM MgSO4, shaken slowly for 10 min on ice and 

centrifugated again. The supernatant was the ‘periplasmic fraction’, the pellet contained 

the shocked cells and was resuspended for 15 min at 30°C in 4 ml of cold 20 mM Tris-

HCl pH 7.5, supplemented with 100 µg/ml lysozyme. Subsequently, the bacterial 

suspension was sonicated 20 seconds with power level 5, duty 50% (Vibra Cell, Sonics & 

Materials Inc., Danbury, Conneticut, USA) and centrifugated for 10 minutes by 14,000 x 

g at 4°C. The resulting supernatant was the ‘soluble cytoplasmatic fraction’, whereas the 

‘insoluble cytoplasmatic fraction’ (pellet) was washed twice with 20 mM Tris-HCl pH 

7.5 and finally resuspended in 1.5 ml Tris-HCl buffer containing 6M urea or PBS + 0.5 % 

SDS. Following overnight dialysis against PBS at 4°C, rFaeG of the urea- or SDS-

refolded insoluble cytoplasmic fraction (urea- and SDS-refolded rFaeG, respectively) was 
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used in tests to analyse its conformation or was used to immunize animals. The medium 

and periplasmic fraction were concentrated using saturated ammonium sulphate prior to 

SDS-PAGE. 

 

9.2.6. Determination of epitopes on rFaeG by ELISA 
An indirect ELISA was developed to determine the presence of different 

conformational epitopes on rFaeG. A 96-well microtiter plate (NUNC, Maxisorp Immuno 

Plates, Roskilde, Denmark) was coated with polyclonal F4-specific swine antibodies, 

optimally diluted in PBS. After 2 h incubation at 37°C, the remaining binding sites were 

blocked overnight at 4 °C with PBS supplemented with 0.2% (w/v) Tween®80. Then, the 

plates were incubated for 1 h at 37°C with serial two-fold dilutions of rFaeG, F4 fimbriae 

or heat-denaturated F4 fimbriae (5 min, 95°C) in ELISA dilution buffer (PBS + 0.05% 

(v/v) Tween®20 + 3% (w/v) BSA). Thereafter, optimal dilutions (determined in an assay 

with purified F4 fimbriae) of FaeG-specific MAb (IMM01, Van der Stede et al., 2002b; 

CVI-F4ac-5, CVI-F4ac-6 and CVI-F4ad-3, van Zijderveld et al. 1990) were added to the 

wells for 1 h at 37°C. Subsequently, rabbit anti-mouse HRP-conjugated serum (Dako, 

Denmark) optimally diluted (1/1000) in ELISA dilution buffer and supplemented with 

2% (v/v) pig serum was brought on the plate for 1 h at 37°C. An ABTS solution 

containing H2O2 was added and the optical density was spectrophotometrically measured 

at 405 nm (OD405). Between each incubation step, the plates were washed three times 

with ELISA washing buffer (PBS + 0.2% (v/v) Tween®20). 
 

9.2.7. In vitro villous adhesion assays 
The presence or absence of the F4R on the brush border of small intestinal 

enterocytes was determined on isolated intestinal villi as described by Van den Broeck et 

al. (1999c).   

The F4R-binding capacity of F4 fimbriae and rFaeG was analyzed by an in vitro 

competitive villous adhesion assay. Briefly, an average of 50 villi of F4R+ or F4R- pigs 

were incubated while gently shaking at room temperature with 800, 400, 200, 100, 50, 

25, 12.5 or 1.25 µg/ml F4 fimbriae or rFaeG together with 4 x 108 F4+ E. coli in a final 

volume of 0.5 ml. The suspension contained 1% (w/v) D-mannose (Fluka, Sigma-
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Aldrich, Bornem, Belgium) to prevent adhesion by type 1 pili. The adhesion of bacteria 

to villi was evaluated quantitatively by counting the number of bacteria adhering along a 

50 µm villous brush border at 20 randomly selected places by phase-contrast microscopy 

at a magnification of 600x. Then, the mean bacterial adhesion per 250 µm villous brush 

border was calculated. The percentage inhibition of adhesion was calculated for each 

sample by comparing with F4R+ villi incubated with only the F4+ E. coli.  

To demonstrate that rFaeG was responsible for the inhibition of adhesion of F4+ 

E. coli to F4R+ villi, 200 µg/ml SDS-refolded rFaeG was pre-incubated with 1 µg/ml of 

the c-epitope specific MAb CVI-F4ac-5 to block their adhesion to the F4R. After 

incubation with the F4R+ villi and washing, F4+ E. coli were added and the inhibition 

percentage was determined. Similarly, the inhibiting capacity of an irrelevant swine IgG-

specific MAb of the same isotype (clone 23.3.1b) (Van Zaane and Hulst, 1987) was 

tested at a concentration of 10 µg/ml as a control. 

Villi of three different F4R+ pigs were used and all analyses were performed in 

triplicate. F4R- villi of one pig served as negative control. These villi never bound F4+ 

ETEC. 

 

9.2.8. Oral immunization experiment 
Twenty-nine, F4R+ and F4-seronegative conventionally bred pigs (Belgian 

Landrace x Piétrain) were weaned at the age of 4 weeks, transported to the experimental 

facilities at the faculty and subsequently housed in isolation units where they obtained 

water and food at libitum. These piglets were treated orally with colistine (Promycine 

pulvis, VMD, Berendonk, Belgium, 150,000 U/kg of body weight/day) from 2 days 

before till 3 days after weaning to prevent E. coli infections due to transport and handling.  

One week post weaning, thirty-two pigs were orally given 20 mg rabeprazolum 
(Pariet, Janssen-Cilag, Berchem, Belgium) on 3 consecutive days and again 15 days post 

primary immunization (dppi) to neutralize the acidic gastric pH and thus reducing the 

possible alteration of fimbrial antigens during exposure to the low pH (Snoeck et al., 

2004a). Twenty-four hours following each rabeprazolum ingestion (0, 1, 2 and 16 dppi), 

the pigs were orally immunized with 2 mg purified F4 fimbriae (F4 group, n=10) or 8 mg 

SDS-refolded rFaeG (rFaeG (SDS) group, n=9) in 10 ml PBS. Three animals were orally 
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immunized with 8 mg urea-refolded rFaeG (rFaeG (urea) group, n=3) in 10 ml PBS with 

2M urea to reduce the formation of rFaeG aggregates. Ten animals received PBS (PBS 

group) and served as negative control. Three hours before till 2 h after gastric pH 

neutralization or immunization, each animal was deprived of food and water. 

One week following the booster immunization (23 dppi), the local mucosal F4-

specific immune response was analysed in two pigs of the F4, the rFaeG (SDS) and the 

PBS groups and in all three pigs of the rFaeG (urea) group by enumerating the F4-

specific IgA, IgG and IgM antibody-secreting cells (ASCs) in mesenteric lymph nodes 

(MLN), jejunal and ileal Peyer’s patches (JPP and IPP) and jejunal lamina propria (LP). 

In addition, F4-specific IgA and IgM antibodies were determined in duodenal, jejunal and 

ileal contents. Tissues and intestinal content were sampled following euthanasia of 

animals by intravenous injection of pentobarbital (24 mg/kg; Nembutal, Sanofi Santé 

Animale, Brussels, Belgium) and subsequent exsanguination. The remaining animals 

were orally challenged with the virulent F4+ ETEC strain GIS26 as previously described 

(Cox et al., 1991) with minor modifications. Briefly, pigs were orally pre-treated at 21 

and 22 dppi with 300 mg florfenicol (Nuflor, Schering-Plough, Brussels, Belgium) to 

decrease colonization resistance. At 24 dppi, pigs were sedated with Stressnil (40 mg/ml; 

Janssen-Cilag, Berchem, Belgium), after which the gastric pH was neutralized by 

intragastrical administration of 62 ml NaHCO3 (1.4% (w/v) in distilled water). Fifteen to 

thirty min later, 1010 F4+ ETEC in 10 ml PBS was given intragastrically. Faecal samples 

were taken daily for determining the excretion of F4+ ETEC from challenge till 7 days 

post challenge (31 dppi). Furthermore, FaeG-specific serum IgA, IgG and IgM were 

determined 0, 7, 16, 24, 27, 31, 37 and 45 dppi. Three weeks following challenge (45 

dppi), the remaining pigs were euthanatised. Jejunal villi were isolated of all euthanatised 

pigs to confirm the presence of F4R as described by Van den Broeck et al. (1999c).  

 

9.2.9. Samples 
Serum and contents of duodenum, jejunum and ileum were sampled as described 

by Van den Broeck et al. (1999a) and Verdonck et al. (Chapter 5), respectively.  

F4+ E. coli were enumerated in faecal samples by dot blotting using the FaeG-

specific MAb IMM01 as previously described (Van den Broeck et al., 1999b). The 
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resulting brown-red dots were counted and the average within each group was calculated. 

Results are presented as the mean number ± standard error of the mean (SEM) of 

excreted E. coli per gram faeces.   

At the moment of slaughter, mesenteric (jejunal and ileal) lymph nodes, a mid 

jejunal intestinal segment without Peyer’s patches, and jejunal and ileal intestinal 

segments with Peyer’s patches were sampled. Subsequently, monomorphonuclear cells 

(MC) were isolated as described by Verdonck et al. (chapter 5) and finally resuspended at 

106 cells/ml.  

 

9.2.10. ELISA for FaeG-specific IgM, IgA and IgG 
For detection of FaeG-specific antibodies, the indirect ELISA described by Van 

den Broeck et al. (1999a) was used. The IgM, IgA and IgG cut-off values were calculated 

as the mean OD405-value of all sera (dilution 1/10) at day 0, increased with 3 times the 

standard deviation. In case of intestinal contents, the IgA and IgM cut-off values were 

calculated as the OD405-value of the dilution buffer, increased with 3 times the standard 

deviation. The antibody titer was the inverse of the highest dilution that still had an OD405 

higher than the calculated cut-off value. 

 

9.2.11. Elispot assays for FaeG-specific IgM, IgA and IgG ASCs 
FaeG-specific IgM, IgA and IgG ASCs were detected as described by Van den 

Broeck et al. (1999a). For each MC suspension, spots in 5 wells (105 MC/well) were 

counted to obtain the number of isotype-specific ASCs per 5 x 105 MC. Results are 

presented as the mean number of ASCs per 106 MC ± SEM. 

 

9.2.12. Analysis of His- and S-tag-specific antibodies 
To analyse the usefulness of rFaeG as mucosal carrier molecule, the presence of 

His- and S-tag-specific antibodies was determined in serum at 24 dppi using the His-S-

SctW fusion protein (Geens et al., unpublished data) that was kindly provided by Tom 

Geens et al. (Ghent University). The His-S-SctW protein is encoded by pET-HTSctW 

that is obtained from ligation of the Chlamydia psittaci type III secretion protein SctW in 

the pET-30 Ek/LIC vector. The His-S-tag fragment was cleaved from SctW using 
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enterokinase (Sigma) according to the manufacturers instructions. Thereafter, the His-S-

tag-fragment and SctW were separated using a 10% SDS-PAGE and blotted onto a 

polyvinylidene fluoride membrane as described by Van den Broeck et al. (1999c). 

Following overnight blocking, the membranes were firstly incubated with undiluted 

serum samples, secondly with peroxidase-conjugated rabbit-anti-swine polyclonal 

antibodies (Dako, Denmark) and thirdly with a 3-amino-9-ethylcarbazole containing 

substrate solution to visualize binding of the conjugate in accordance to the procedure 

described by Van den Broeck et al. (1999c).  

 

9.2.13. Statistical analysis 
Statistical analysis (SPSS 10.0 for Windows) of serum antibody titers and F4+ E. 

coli excretion (log-values) was done using General Linear Model (Repeated Measures 

Analysis of Variance), adjusting for multiple comparison by Bonferoni. P < 0.05 was 

considered as statistically significant. 

 

9.3. Results  

9.3.1. Expression of rFaeG 
Since high yield expression of several recombinant proteins in the cytoplasm of E. 

coli are reported (Makrides, 1996), faeG from the pathogenic F4+ ETEC strain GIS26 

was cloned in the pET-30 Ek/LIC vector without its signal sequence to obtain expression 

in the cytoplasm of BL21(DE3). The cytoplasm allows extensive protein accumulation 

and the more reducing environment as compared to the periplasm was not expected to be 

harmful because FaeG does not contain disulfide bounds (Cornelis, 2000). rFaeG has a 

molecular weight of 32 kDa due to the presence of N-terminal His- and S-tag, whereas 

native FaeG is 27 kDa. As shown in Figure 1, rFaeG was found in the pellet fraction of 

induced BL21(DE3)[pET-FaeG/7] spheroplasts, and not in the supernatant containing the 

periplasmic proteins. Indeed, immunoblotting of proteins from the soluble and insoluble 

cytoplasmic fractions of induced BL21(DE3)[pET-FaeG/7] using the FaeG-specific MAb 

IMM01, indicated that rFaeG was expressed in the cytoplasm, but only in an insoluble 

form. Approximately 95 mg rFaeG was obtained following purification of the insoluble 
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cytoplasmic fraction of 1012 induced bacteria, with a purity of 90-94%. On the other 

hand, mechanical sharing of the same amount of GIS26 resulted in a protein mixture 

containing 1.7 mg F4 fimbriae with a purity of 75% (Van den Broeck et al., 1999c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : Coomassie stained SDS-PAGE of isolated fractions of induced 
BL21(DE3)[pETFaeG/7] : heat denaturated purified F4 fimbriae of GIS26 (lane 1), 
supernatant of spheroplast preparation (lane 2), pellet of spheroplast preparation (lane 3), 
molecular weight marker (lane 4), insoluble cytoplasmic fraction (lane 5), soluble 
cytoplasmic fraction (lane 6). Native FaeG (white arrow), rFaeG (black arrow). 

 

9.3.2. Optimalisation of rFaeG folding 
Purification and folding of rFaeG were optimised using an ELISA based on the 

FaeG-specific MAb IMM01 (Chapter 8). The epitope recognized by IMM01 is not 

defined but adhesion of F4+ ETEC to F4R+ villi is inhibited by IMM01 (Y. Van der 

Stede, unpublished data). Figure 2 shows that serial dilutions of heat-denaturated and 

native fimbriae, resulted in non-parallel OD405-lines. This must be due to a difference in 

affinity of F4 fimbriae and heat-denaturated F4 fimbriae for IMM01. Refolding of rFaeG 

using SDS resulted in a conformational structure that reacted similarly in this ELISA with 

IMM01 as native purified F4 fimbriae (parallel slopes, Fig. 2). However, to obtain 
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identical OD405 values, the protein concentration of rFaeG had to be 75 times higher than 

the F4 fimbriae concentration. This great difference between rFaeG and F4 fimbriae is 

probably an overestimation due to a higher signal for multimers than for monomers in the 

used ELISA. In contrast, refolding of rFaeG using urea did not result in OD405-lines 

parallel to this of native F4 fimbriae and removal of the denaturating agent caused 

aggregation of the rFaeG. Also the use of guanidine hydrochloride (GuHCl), non-ionic 

detergents (Tween, Triton-X-100), sonication or altered pH (pH 2 till 10) was not 

successful in refolding rFaeG and is therefore not discussed further. Furthermore, the 

SDS-refolded rFaeG as well as purified F4 fimbriae bound the c-, a6- and a7-specific 

MAb’s (CVI-F4ac-5, CVI-F4ac-6 and CVI-F4ad-3), whereas urea-refolded rFaeG did 

not. The fimbrial c epitope is reported to constitute at least partially the F4ac receptor-

binding site (Bakker et al., 1992a). 
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Figure 2 : OD405-lines represent the interaction of the FaeG-specific monoclonal 
antibody IMM01 with purified F4, heat-denaturated purified F4 fimbriae, SDS- 
or urea-refolded rFaeG. 

 

The ability of rFaeG monomers to bind the F4R was evaluated in a competitive 

villous adhesion assay. Intestinal villi of F4R+ pigs were incubated with different 

concentrations of F4 fimbriae or rFaeG and with 4.108 F4+ ETEC. A concentration 

dependent inhibition of F4+ ETEC adhesion to the F4R for both SDS-refolded rFaeG and 
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F4 fimbriae was observed (Fig. 3). However, 94.7 ± 4.93 % inhibition was obtained at a 

concentration of 800 µg/ml rFaeG, whereas 200 µg/ml F4 fimbriae already resulted in 

97.7 ± 3.21 % inhibition. In contrast, heat-denaturated F4 fimbriae and rFaeG refolded 

using urea, GuHCl, non-ionic detergents, sonication or altered pH were not inhibiting F4+ 

ETEC binding to F4R+ villi.  
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Figure 3 : Percentage inhibition of F4+ ETEC adhesion to F4R+ intestinal villi by 
competition with purified F4 fimbriae and SDS-refolded rFaeG. 

 

Preincubation of SDS-refolded rFaeG with MAb CVI F4ac-5, decreased the 

inhibition of F4+ ETEC adhesion from 37 % to 5.2 ± 4.1 %, indicating that the inhibition 

of adhesion is due to binding of rFaeG to the F4R. Indeed, pre-incubation with an 

irrelevant MAb had no effect (32 % adhesion). 
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9.3.3. rFaeG monomers  

As expected, rFaeG was only found as monomers in Western blot using the 

IMM01 MAb. Conversely, a ladder pattern consisting of FaeG multimers was observed 

when F4 fimbriae were not heat-denaturated (Fig. 4). The polymeric FaeG structure of F4 

fimbriae disintegrated into its FaeG monomers following heat-denaturation in the 

presence of SDS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Western blot of purified F4 fimbriae and SDS-refolded rFaeG using the 
FaeG-specific monoclonal antibody IMM01 : molecular weight marker (lane 1), 
purified F4 fimbriae (lane 2), heat-denaturated purified F4 fimbriae (lane 3), rFaeG 
(lane 4), heat-denaturated rFaeG (lane 5). 

 

9.3.4. Oral immunization with rFaeG and challenge infection 

The capacity of rFaeG to induce an FaeG-specific mucosal immune response 

upon oral administration to newly-weaned piglets was determined. Based on the in vitro 

inhibition assays wherein four times more SDS-refolded rFaeG than F4 fimbriae was 

needed to inhibit the adhesion of F4+ ETEC to the F4R, a four times higher dose of rFaeG 

(8 mg) was used than F4 fimbriae (2 mg) to immunize the animals.  

From 7 and 16 dppi onwards, FaeG-specific IgM, IgG and IgA antibodies were 

detected in the F4 group and the rFaeG (SDS) group respectively, whereas no antibodies 

were observed in the PBS group (Fig. 5). The F4 immunization induced the highest 

response with all titers significantly higher (p≤0.017) 16 and 24 dppi as compared to the 

 1         2         3         4          5  

10 

15 

25 

50 

   250



Chapter 9 : Bioactive rFaeG induces mucosal immune response

155

response with all titers significantly higher (p≤0.017) 16 and 24 dppi as compared to the

PBS group and the IgM titer at 16 dpi (p=0.002) as well as the IgA titer at 16 (p=0.012)

and 24 dppi (p=0.002) significantly higher than for the rFaeG (SDS) group. The SDS-
refolded rFaeG immunization induced a weak antibody response and was only

significantly higher (p=0.017) for IgM at 24 dppi in comparison with the PBS group,
whereas urea-rFaeG immunization induced no FaeG-specific antibodies.
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Figure 5 : Mean FaeG-specific IgM, IgA and IgG serum antibody titers (± SEM) of weaned pigs immunized
with PBS, SDS-refolded rFaeG or purified F4 fimbriae at 0, 7, 16, 24, 27, 31, 37 and 45 days post primary
immunization (dppi). Significant difference (p<0.05) between PBS and rFaeG (a), between PBS and F4
group (b) and between rFaeG and F4 (c). Black arrow, immunization; white arrow, F4+ ETEC challenge.
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Figure 6 : Mean FaeG-specific IgM, IgA and IgG ASCs per 106 MC in ileal Peyer’s patches
(IPP), jejunal Peyer’s patches (JPP), lamina propria (LP) and mesenteric lymph nodes (MLN) of
weaned pigs immunized with PBS (n=2), SDS-refolded rFaeG (n=2), urea refolded rFaeG (n=3)
or purified F4 fimbriae (n=2) at 23 dppi.
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One day before the challenge infection, the mucosal FaeG-specific immune 

response was analysed by determining the number of FaeG-specific IgA, IgG and IgM 

ASCs in MLN, JPP, IPP and LP and the presence of FaeG-specific IgA and IgM in 

intestinal contents of three piglets of the rFaeG (urea) group and two piglets of the F4, 

PBS and rFaeG (SDS) groups. As shown in Figure 6, IgA and IgM FaeG-specific ASCs 

were detected in all four tissues of piglets from the F4 and the rFaeG (SDS) groups, 

whereas a background signal of two FaeG-specific IgM ASCs per 106 MC was observed 

in the IPP of one piglet from the PBS group. However, the numbers of IgA and IgM 

FaeG-specific ASCs found in JPP, LP and MLN of the F4 group were higher (twice or 

more) than in the rFaeG group whereas IPP showed similar low numbers for both groups. 

On the other hand, FaeG-specific IgG ASCs were only clearly detected in JPP (22 and 16 

per 106 MC) and MLN (18 and 12 per 106 MC) of the F4 immunized piglets. No FaeG-

specific ASCs were found in the rFaeG (urea) group. 

In agreement with these results, FaeG-specific IgA and IgM were observed in 

small intestinal contents of rFaeG (SDS) as well as of F4 immunized piglets, with the 

highest titers in the F4 group (Table 1). These results indicate that oral immunization of 

pigs with rFaeG in an F4R-binding conformation induces an FaeG-specific mucosal 

antibody response, which is weaker than the immunization with F4 fimbriae.  

 

Table 1: FaeG-specific IgM and IgA titers in contents of the duodenum, jejunum, and 
ileum of weaned pigs immunized with PBS (n=2), SDS-refolded rFaeG (n=2), urea- 
refolded rFaeG (n=3) or purified F4 fimbriae (n=2) at 23 dppi.  

   
IgM 
      

IgA 
     

   
duodenum 

 
jejunum

 
ileum 

  
duodenum

 
jejunum 

 
ileum 

 
PBS <2 <2 ND  <2 <2 ND 

   ND <2 <2  ND 2 <2 
rFaeG (SDS) 2 32 <2  <2 32 <2 

   ND 16 32  ND 16 16 
rFaeG (urea) <2 <2 <2  <2 <2 <2 

 <2 <2 <2  <2 <2 <2 
   ND <2 <2  ND <2 <2 

F4 128 256 <2  64 128 64 
   ND 128 <2  ND 512 128 

        ND = not determined 
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To see if this response provided protection against an F4+ ETEC infection, piglets

of the PBS, F4 and rFaeG (SDS) groups were challenged 24 dppi with the F4+ ETEC
strain GIS26 and excretion of F4+ E. coli was daily analysed from 1 till 7 days post

challenge (dpc) (Fig. 7). In the rFaeG (SDS) group, F4+ E. coli excretion was detected till
3 dpc, whereas excretion in the PBS control group lasted till 6 dpc and was significantly

higher (p≤0.003) as compared to the rFaeG (SDS) group from 2 till 5 dpc. However, the

F4+ ETEC excretion in the rFaeG (SDS) group was significantly higher (p<0.001) than in

the F4 group 1 and 2 dpc. Indeed, immunization of weaned piglets with purified F4
resulted in protection against infection as only a low amount of F4+ E. coli (1.34 log10

F4+ E. coli per g faeces) was excreted 1 dpc.
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Figure 7 : Mean faecal F4+ E. coli (log 10) per gram faeces (± SEM) following F4+

ETEC challenge of weaned pigs immunized with PBS (n=8), SDS-refolded rFaeG
(n=7) or purified F4 fimbriae (n=8) at 0 to 7 days post challenge (dpc). Significant
difference (p<0.05) between PBS and rFaeG (a), between PBS and F4 group (b)
and between rFaeG and F4 (c).

The protection in the F4 group and the absence of protection in the PBS group

were reflected in their serum antibody responses. Upon challenge, the PBS group (Fig. 5)
showed a primary systemic FaeG-specific response with relatively high IgM titers

peaking 14 dpc, at the same time as the IgG and IgA titers (5.72 and 5.97, respectively).
In contrast, the F4 group did not show an antibody boost response after challenge : IgM

and IgA decreased and IgG did not change much. In the rFaeG (SDS) group, the boost

response upon challenge was also missing, as observed in the F4 group. Thus, the
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infection in the F4 and the rFaeG (SDS) group was not able to induce a secondary 

response, confirming the lack of colonization and multiplication by F4+ E. coli.  

 

9.3.5. The use of rFaeG as mucosal carrier 
To explore the usefulness of SDS-refolded rFaeG as mucosal carrier molecule, the 

presence of His-S-tag-specific antibodies was analysed in serum of two animals per 

group at 24 dppi. As shown in Figure 8, serum of SDS-refolded rFaeG immunized piglets 

bound to the His-S-SctW fusion protein but not to the SctW. Serum samples of F4 

immunized piglets and PBS control piglets did not react with His-S-SctW or SctW, 

whereas His-S-SctW-specific control serum bound to both proteins. Therefore, we 

suggest that SDS-refolded rFaeG can be used as a mucosal carrier molecule to induce an 

immune response against a fused heterologous antigen following oral immunization with 

the fusion protein. 

 
 
 

 
 

 
      Figure 8 
 
 
 
 
 
 
 
 
 
 

Figure 8 : Western blot of enterokinase digest from His-S-SctW using His-S-
SctW-specific control serum (lane 1), serum of pig immunized with SDS-
refolded rFaeG (lane 2) or purified F4 fimbriae (lane 3) or serum of a PBS 
control pig (lane 4). Black arrow : His-S-SctW protein (47.4 kDa); White 
arrow : SctW protein (43 kDa). 
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9.4. Discussion 
The importance of adhesins in the pathogenicity of several bacteria resulted in 

studies on their usefulness in vaccines (Langermann et al., 1997 and 2000; Thankavel et 

al., 1997; Barnhart et al., 2000). Recently, oral immunization with recombinant 

pneumococcal surface adhesin A (rPSA) of Streptococcus pneumoniae induced systemic 

and mucosal rSPA-specific antibody responses, suggesting the utility of recombinant 

adhesins for mucosal immunizations (Seo et al., 2002). The present study reports the 

induction of a fimbriae-specific as well as a heterologous-antigen specific immune 

response following oral immunization of piglets with the SDS-refolded rFaeG fimbrial 

adhesin containing an N-terminal His- and S-tag peptide.  

The adhesin FaeG of the pathogenic F4+ ETEC strain GIS26 was cloned and 

expressed in the cytoplasm of BL21(DE3). Purification of cytoplasmic rFaeG inclusion 

bodies in denaturating conditions resulted mostly in aggregation of rFaeG during 

refolding or removal of the denaturating agents. Similarly, high level expression of the 

type 1 fimbrial adhesin FimH and the P-pili adhesin PapG, resulted in inclusion bodies in 

the cytoplasm and in aggregation when the denaturant urea was removed by dialysis 

(Kariyawasam et al., 2002). X-ray diffractions of type 1- and P-pili subunits revealed an 

immunoglobulin-like domain, but lacking the C-terminal β-strand. However, the groove 

along the surface of these subunits is filled by a β-strand of the chaperone in the 

periplasm or by a β-strand of a subunit in the fimbriae (Choudhury et al., 1999; Sauer et 

al., 1999). The conformation of the F4 fimbrial adhesin FaeG and the chaperone FaeE are 

not known at the moment, but sequence alignment with other fimbrial subunits and 

chaperones suggest a similar interaction. Therefore, a hydrophobic core of rFaeG could 

have caused the aggregation during refolding. 

The capacity of rFaeG to successfully assemble in a native-like receptor binding 

conformation in the presence of SDS was somewhat surprising since SDS is a known 

denaturating agent. However, FaeG and FimH subunits eluted from a SDS-

polyacrylamide gel were reported to bind the F4R and mannose respectively (Van den 

Broeck et al., 1999c; Tewari et al., 1993). In addition, several recombinant proteins with 

a high hydrophobic character or a high tendency to aggregate were also successfully 
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refolded in the presence of SDS (Juri et al., 2001; Niebla et al., 2001; Ohnishi and 

Kameyama, 2001; Tsetlin et al., 2002). Perhaps, the masking of hydrophobic protein 

interfaces by detergent molecules may explain the reduced aggregation (Schrooyen et al., 

2001).  

The SDS-refolded rFaeG appeared a good candidate vaccine against F4+ ETEC 

infections since it was able to bind to the F4R and to induce in rabbit antibodies, which 

could inhibit F4+ E. coli adhesion (data not shown). The conformation of the refolded 

rFaeG is important to bind the F4R and to induce a FaeG-specific immune response since 

FaeG-specific ASCs were detected in intestinal lymphoid tissues of piglets immunized 

with SDS-refolded rFaeG, but not with urea-refolded rFaeG. This result confirms the 

need for receptor-binding to induce an FaeG-specific immune response following oral 

immunization (Van den Broeck et al., 1999c).  

Piglets immunized with SDS-refolded rFaeG showed a FaeG-specific systemic 

and mucosal antibody response that significantly reduced the F4+ E. coli excretion from 2 

till 5 days following challenge infection. However, rFaeG immunization did not prevent 

infection as the F4 immunization did. Indeed, F4 immunized pigs excreted only few F4+ 

E. coli on 1 dpc, probably some remainder of the orally inoculated F4+ E. coli and 

showed higher serum and mucosal antibody responses than the rFaeG immunized pigs. It 

is important to note that it did not matter whether rFaeG or purified F4 fimbriae was used 

in the ELISA, as similar titers were obtained.  

The observed difference in the FaeG-specific immune response following oral 

immunization with F4 fimbriae versus SDS-refolded rFaeG can be multifactorial. Firstly, 

N-terminal fusion of the His- and S-tag to rFaeG is probably not favourable to form 

rFaeG polymers since the N-terminal strand of Fim and Pap subunits is reported to 

contribute in subunit-subunit interactions (Sauer et al., 1999, Choudhury et al., 1999). 

Indeed, rFaeG was shown to appear as monomers whereas purified F4 fimbriae have 

polymeric structures mainly composed of FaeG subunits (Bakker et al., 1992a). At the 

moment, differences in the interaction of monomeric versus polymeric E. coli adhesins 

with their receptor were not analysed and a number of questions remain. However, in the 

case of Porphyromonas gingivalis, the inhibitory effect of recombinant major subunit 

monomers on binding of the bacteria to their receptor is higher than that of the purified 
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native fimbriae on a molar basis (Sharma et al., 1993). On the other hand, it is well 

known that multimeric structures are more immunogenic as compared to monomers 

(Jackson et al., 1997). 

Secondly, the stability of SDS-refolded rFaeG is probably low since storage is 

best at 4°C and activity was found to decrease over time (>50% reduction after 72 h). 

Similarly, the lectin and pilin domain of FimH can both fold chaperone independently, 

but the thermodynamic stability of the pilin domain is very low and leads to unfolding of 

the pilin domain even in the absence of denaturant (Vetsch et al., 2002). However, the 

piglets were treated with rabeprazolum to neutralize the gastric pH at the moment of 

immunization, in order to prevent effects resulting from differences in resistance to low 

pH and proteolytic degradation between rFaeG and purified F4. 

Fimbriae have been used to display heterologous peptides because of their strong 

immunogenicity, strong adhesive properties and ease of purification (Klemm and 

Schembri, 2000). Unfortunately, the inserted peptides had to be short and the constructed 

F4 fimbriae lost their receptor-binding epitope (Thiry et al., 1989; Bakker et al., 1990). In 

contrast, the results of the present study indicate that a N-terminal fusion with a His- and 

S-tag containing 4.8 kDa peptide sequence to FaeG was not detrimental for its binding to 

the F4R. Moreover, the presence of antibodies against this His-S-tag peptide suggest that 

rFaeG can be used as mucosal carrier to induce an immune response against N-terminal 

fused peptides. In agreement, the major subunit ClpG of the F4-related CS31A fimbriae 

was coupled to peptides containing all or part of the E. coli human heat-stable enterotoxin 

(STh), by fusing the STh-encoding DNA sequence to the 5’ or 3’ extremity of the clpG 

gene. These ClpG-STh subunits were exported efficiently but none formed hybrid 

CS31A-STh fimbriae at the cell surface of E. coli (Batisson et al., 2000a and 2000b). 

However, the potential of rFaeG or other fimbrial adhesins to function as a mucosal 

carrier to antigens remains to be confirmed. 

  In conclusion, rFaeG can be produced in a correct bioactive form which is, by oral 

immunization, able to partly protect piglets against F4+ ETEC infection and functions as 

mucosal carrier to an N-terminal fused peptide. This opens new perspectives to 

simultaneously immunize pigs against F4+ ETEC infections and other intestinal 

pathogens. However, improvement of the stability and immunogenicity of rFaeG must be 
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considered since immunization with purified F4 fimbriae resulted in a more robust FaeG-

specific response. 

 

 



 



 

 

 

 

 

Chapter 10 

 

Mucosal carrier potential of recombinant F4 fimbrial 

adhesin FaeG is significantly improved following oral 

co-administration with cholera toxin in pigs1 
 

 

                                                 
1 Based on :Verdonck F, Snoeck V, Goddeeris BM, Cox E. Mucosal carrier potential 
of recombinant F4 fimbrial adhesin FaeG is significantly improved following oral co-
administration with cholera toxin in pigs. Submitted. 
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Abstract 
Oral immunization of both humans and animals with non-replicating soluble 

antigens often results in the induction of oral tolerance. However, receptor-dependent 

uptake of orally administered soluble antigens can lead to the induction of an antigen-

specific immune response. Indeed, oral immunization of pigs with recombinant FaeG 

(rFaeG), the adhesin of the F4(K88) fimbriae of enterotoxigenic E. coli, induces an F-

specific humoral and cellular immune response. This response is accompagnied with a 

reduction in the excretion of F4+ enterotoxigenic Escherichia coli (ETEC) following 

challenge. In addition, rFaeG has the potential to function as a mucosal carrier since 

oral immunization of pigs with rFaeG induces antibodies against an N-terminally 

fused His- and S-tag. To improve the immune response against FaeG and the carried 

peptide, rFaeG was orally co-administered with the mucosal adjuvant cholera toxin 

(CT). Oral immunization of pigs with rFaeG and CT significantly enhanced the 

immune response against the peptide since significantly higher His-S-tag-specific 

antibodies were detected. In addition, the co-administration significantly improved the 

F4-specific humoral and cellular immune response and significantly reduced the fecal 

F4+ E. coli excretion following challenge infection as compared to rFaeG-immunized 

pigs. In conclusion, the results of the present study suggest that fimbrial adhesins can 

be used as a mucosal carrier for inducing an immune response against antigens, which 

normally are not immunogenic.  

 

10.1. Introduction 
 

The induction of an antigen-specific mucosal antibody response is needed to 

protect both humans and animals against an intestinal infection (Porter et al., 1974; 

Bloom and Boedeker, 1996). However, oral administration of most non-replicating 

antigens (e.g. food antigens) results in oral tolerance (Strobel and Mowat, 1998). One 

of the exceptions is the oral immunization of F4-receptor positive (F4R+) pigs with F4 

fimbriae, which induces a protective FaeG-specific intestinal antibody response (Van 

den Broeck et al., 1999b). In F4R- pigs, F4 fimbriae act as a normal food antigen (Van 

den Broeck et al., 2002). We recently demonstrated that this unique F4R-based uptake 

of antigen can be used to induce an antibody response against a heterologous peptide 

that is fused to the N-terminus of the F4 fimbrial adhesin FaeG (Chapter 9). On the 
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other hand, the FaeG-specific response was weaker following oral immunization with 

rFaeG than with purified F4, resulting in a decreased protection against an F4+ ETEC 

challenge. 

The interest of the present study was to improve the FaeG- and heterologous-

specific immune response following co-administration of rFaeG with the mucosal 

adjuvant cholera toxin (CT) (Ogra et al., 2001), since this rFaeG carrier system could 

open new perspectives to simultaneously induce a mucosal immune response against 

FaeG and against antigens of other enteropathogens. In mice, CT enhances co-

stimulation (Cong et al., 1997) and promotes Th2 cytokine responses with induction 

of antigen-specific serum IgG and mucosal IgA (Marinaro et al., 1995). In pigs, the 

oral administration of CT is non-toxic at an oral dose of 100 µg and is reported to 

enhance the induction of an antigen-specific immune response to co-administered 

antigens that are targeted to the gut-associated lymphoid tissue by coupling to CT-B 

(Foss and Murtaugh, 1999a). However, there is no information whether oral co-

administration of an antigen and CT, without conjugation of the antigen to CT or its 

B-subunit, improves the antigen-specific immune response in pigs. 

In the present study, it was determined if the use of CT could improve the 

induction of an immune response against the FaeG carrier as well as against the N-

terminal fused His-S-tag peptide following oral co-administration of newly weaned 

pigs with rFaeG.  

 

10.2. Material and methods 
10.2.1. Bacterial inoculum  

The ETEC strain GIS26 (serotype O149:K91, F4ac+, LT+STa+STb+) was 

cultured during 18 h in Tryptone Soya Broth (Oxoid, Basingstoke, Hampshire, 

England) at 37°C and 85 rpm. The bacteria were collected by centrifugation and 

washed with phosphate-buffered saline (PBS) (150mM, pH 7.4). The concentration of 

the bacteria was determined by measuring the optical density of 10-fold dilutions of 

the bacterial suspension at 660nm (OD660). An OD660 of 1 equals 109 viable 

bacteria/ml, as determined by counting colony-forming units. 
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10.2.2. Purification of F4 fimbriae 
F4 fimbriae were purified as described by Van den Broeck et al. (1999c). 

These fimbriae were used in the FaeG-specific antibody ELISA. Isolated F4 fimbriae 

were also further purified by anion exchange chromatography (AEC) using a Bio-

Scale Q5 column (BIORAD, Eke, Belgium) (indicated as AEC purified F4), 

subsequently sterilised by filtration through an 0.2 µm filter and used to induce F4-

specific proliferation. The percent purity of the isolated F4 and the AEC purified F4 

fimbriae was assessed using a Coomassie stained 15% SDS-PAGE and the 

ImageMaster 1D prime software (Amersham Pharmacia Biotech, Belgium). The F4 

fimbrial protein concentration was calculated from the total protein concentration as 

determined using the bicinchoninic acid (BCA) reaction with bovine serum albumin 

(BSA) as standard (ICN Biomedicals, Belgium) and taking into account the 

percentage of F4 fimbriae on the total protein concentration. 

 

10.2.3. rFaeG expression and refolding 
Recombinant FaeG (rFaeG) containing an N-terminal fused His- and S-tag 

was expressed and refolded as described in chapter 9. Briefly, 

BL21(DE3)[pETFaeG/7] E. coli were grown overnight in Luria broth (LB; Life 

Technologies, Paisley, Scotland) with 30 µg/ml kanamycin at 28°C. Afterwards, the 

bacteria were diluted 100 times in fresh LB supplemented with kanamycin and 

incubated at 28°C, 200 rpm to an OD660 of 0.2 – 0.3. rFaeG expression was 

subsequently induced by adding 1mM isopropyl-β-D-thiogalactoside (IPTG, Sigma) 

to the cultures, which were further incubated during 4 hours at 37°C and 200 rpm. 

Subsequently, the insoluble cytoplasmatic fraction was isolated and resuspended in 

PBS + 0.5 % SDS. Following overnight dialysis against PBS at 4°C, the concentration 

of rFaeG was determined using the BCA-reaction and used to immunize animals.  

 

10.2.4. Experimental procedure 
Twenty-one, F4R+ and FaeG-seronegative, conventionally bred pigs (Belgian 

Landrace x Piétrain) were weaned at the age of 4 weeks, transported to the 

experimental facilities at the faculty and subsequently housed in isolation units were 

they obtained water and food ad libitum. These pigs were treated orally with colistine 

(Promycine pulvis, VMD, Berendonk, Belgium, 150,000 U/kg of body weight/day) 
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from 2 days before till 3 days after weaning to prevent E. coli infections due to 

transport and handling. 

One week post weaning, all pigs were orally given 20 mg rabeprazolum 

(Pariet, Janssen-Cilag, Berchem, Belgium) on 3 subsequent days to block the gastric 

HCl production. They also received rabeprazolum 15 days post primary immunization 

(dppi). Twenty-four hours following each rabeprazolum ingestion (0, 1, 2 and 16 

dppi), the pigs were orally immunized with 50 µg CT (CT group, n=7), 4 mg rFaeG 

(rFaeG group, n=7) or 4 mg rFaeG + 50 µg CT (rFaeG+CT group, n=7) in 10 ml PBS. 

Each animal was deprived of food and water from three hours before till 2 h after 

gastric pH neutralization or immunization. One week following the booster 

immunization (23 dppi), the F4-specific proliferation of peripheral blood 

monomorphonuclear cells (PBMC) was determined. 

At 24 dppi, the animals were orally challenged with the virulent F4+ ETEC 

strain GIS26 as previously described (Cox et al., 1991) with minor modifications. 

Briefly, pigs were orally pre-treated at 21 and 22 dppi with 300 mg florfenicol 

(Nuflor, Schering-Plough, Brussels, Belgium) to decrease colonization resistance. 

Pigs were sedated with Stressnil (40 mg/ml ; Janssen-Cilag, Berchem, Belgium), after 

which the gastric pH was neutralized by intragastrical administration of 62 ml 

NaHCO3 (1.4% (w/v) in destilled water). Fifteen to thirty minutes later, 1010 F4+ 

ETEC (GIS26) in 10 ml PBS was given intragastrically. Faecal samples were taken 

daily to determine the excretion of F4+ E. coli from challenge till 8 days post 

challenge (dpc, 31 dppi). Furthermore, FaeG-specific IgA, IgG and IgM and CT-

specific  (total) antibodies were determined in serum at 0, 7, 16, 24, 28, 31, 38 and 49 

dppi, whereas FaeG-specific IgA was analysed in saliva at 0, 16 and 24 dppi. His-S-

tag specific (total) serum antibodies were determined in serum at 0 and 24 dppi. Three 

weeks following challenge (49 dppi), the remaining pigs were euthanatised and 

jejunal villi were isolated to confirm the presence of the F4R.  

All pigs were weighed at 0, 3, 7, 15, 24, 31 and 49 dppi. The daily weight gain 

of each pig was calculated at 3, 7, 15, 24, 31 and 49 dppi by substracting the weight of 

two subsequent measurements, and dividing the difference by the number of days 

between both measurements. Subsequently, the average daily weight gain (ADWG) 

per group was calculated ± standard error of the mean (SEM). 
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10.2.5. Samples 
To determine antigen-specific serum and mucosal antibodies, serum and saliva 

were sampled as described by Van den Broeck et al. (1999a) and Van der Stede et al. 

(2002a), respectively. 

F4+ E. coli were enumerated in faecal samples by dot blotting using the FaeG-

specific MAb IMM01 as previously described (Van den Broeck et al., 1999b). The 

resulting brown-red dots were counted and the average within each group was 

calculated. Results are presented as the mean number ± SEM of excreted F4+ E. coli 

per gram faeces.  

At the end of the experiment, jejunal villi were isolated of all euthanatised pigs 

to confirm the presence of the F4R as described by Van den Broeck et al. (1999c). 

Adhesion of more than five F4+ E. coli per 250 µm villous length was noted as 

positive (Cox and Houvenaghel, 1993). 

 

10.2.6. ELISA for FaeG-, CT- and His-S-tag-specific antibodies 
For detection of FaeG-specific antibodies, the indirect ELISA described by 

Van den Broeck et al. (1999a) was used. An identical ELISA which only differed in 

the coating step and conjugate was used to determine CT-specific antibodies : the 

wells of microtiter plates (NUNC, Polysorp Immuno Plates, Roskilde, Denmark) were 

coated with 5 µg/ml CT (Sigma) in PBS and an optimal dilution of horseradish 

peroxidase conjugated rabbit polyclonal antibodies (Dako, Denmark) was used as 

conjugate. The FaeG- and CT-specific cut-off values were calculated as the mean 

OD405-value of all sera (dilution 1/10) or saliva (dilution 1/2) samples at day 0, 

increased with 3 times the standard deviation (cut-off values of the FaeG-specific 

serum IgM, IgA, IgG and mucosal IgA and CT-specific ELISA were 0.32, 0.17, 0.31, 

0.28 and 0.21 respectively). The antibody titer was the inverse of the highest dilution 

that still had an OD405 higher than the calculated cut-off value. 

To analyse the capacity of rFaeG to function as mucosal carrier molecule, the 

presence of His-S-tag-specific antibodies was determined in serum at 24 dppi using 

the His-S-SctW fusion protein (Geens et al., unpublished data) that was kindly 

provided by Tom Geens et al. The His-S-SctW protein is encoded by pET-HTSctW 

that is obtained from ligation of the Chlamydia psittaci type III secretion protein SctW 

in the pET-30 Ek/LIC vector. His-S-SctW was purified with Ni-NTA agarose beads 
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according to the manufacturers instructions (Qiagen, Madison, US) and shown to be 

91 % pure following SDS-PAGE and Coomassie staining. The purified His-S-SctW 

protein was dialysed overnight at 4°C against PBS and used to coat the wells of 

microtiter plates (NUNC, Polysorp Immuno Plates) at a concentration of 20 µg/ml in 

PBS. Incubation times, blocking condition and washing procedures of this ELISA 

were identical as described by Van den Broeck et al. (1999a). The serum samples 

were added in series of twofold dilutions in ELISA dilution buffer (PBS + 0.2% 

Tween®20 + 3% BSA), starting from the dilution 1/4. Then, an optimal dilution of 

horseradish peroxidase conjugated rabbit polyclonal antibodies (Dako) was used as 

conjugate. Finally, ABTS and H2O2 were used as chromogen and substrate and the 

OD405 was spectrophotometrically determined. The His-S-tag-specific cut-off value 

(0.42) was calculated as the mean OD405-value of all sera (dilution 1/4) at day 0, 

increased with 3 times the standard deviation. 

 

10.2.7. F4-specific proliferation 
Blood was collected from the jugular vein and PBMC were isolated as 

described by Van den Broeck et al. (1999a). The PBMC were diluted to a 

concentration of 5.106 cells/ml in leukocyte medium (RPMI-1640 supplemented with 

penicillin (100 IU/ml), streptomycin (100 µg/ml), kanamycin (100 µg/ml), L-glutamin 

(200 mM), sodiumpyruvate (100 mM), non-essential amino acids (100 mM), β-

mercaptoethanol (5.10-5 M) and 5% (vol/vol) FaeG-seronegative serum. 

Subsequently, the isolated PBMC were incubated in medium (negative control) or 

medium with purified F4 (final concentration of 10 µg/ml), or concanavalin A (final 

concentration of 10 µg/ml, positive control) to determine their F4-specific 

proliferation as described by Van der Stede et al. (2003). The results are presented 

using the F4-specific stimulation index (SI), obtained by dividing the mean counts per 

minute (cpm) of the F4-stimulated cultures by the mean cpm of the non-stimulated 

cultures. Mean background levels of about 700 cpm were obtained in medium 

samples, whereas positive controls of concanavalin A reached 170,000 cpm. 

 

10.2.8. Statistical analysis 
Statistical analysis (SPSS 10.0 for Windows) of antibody titers and F4+ E. coli 

excretion (log-values) was done using General Linear Model (Repeated Measures 
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Analysis of Variance). Differences between groups in F4-specific cell proliferation 

and ADWG were analysed for statistical significance using the One-way Anova. P < 

0.05 was considered as statistically significant. 

 

10.3. Results 
10.3.1. FaeG-specific serum antibody response following oral 

immunization 
Oral immunizations of newly weaned pigs with rFaeG (rFaeG group) induced 

FaeG-specific serum IgM in all animals, resulting in a significantly higher titer 7 dppi 

as compared to the background value in animals immunized with CT (CT group; 

P=0.002) (Fig. 1). However, oral immunization of pigs with rFaeG in the presence of 

CT (rFaeG+CT group) resulted in significantly higher FaeG-specific IgM serum titers 

than in the rFaeG (16 dppi; P=0.004) groups. The oral booster immunization 16 dppi 

induced low FaeG-specific serum IgA and IgG titers in the rFaeG group, whereas the 

FaeG-specific IgM titer was significantly higher (P=0.011) 24 dppi as compared to 

the background value in the animals immunized with CT alone. The highest FaeG-

specific serum antibody titers following booster immunization were obtained in the 

rFaeG+CT group, with significantly higher titers than in the rFaeG group (IgG; 

P=0.038) and the CT group (IgM, IgA, IgG; P≤0.024) 24 dppi.  
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 Figure 1: Mean FaeG-specific IgM, IgA and IgG serum antibody titers (± SEM) at 0, 7, 16, 24, 28, 31, 38 and 49 
days post primary immunization (dppi) of pigs orally immunized with cholera toxin (CT, n=7), rFaeG (n=7) or 
rFaeG and cholera toxin (rFaeG+CT, n=7). Significant difference (P < 0.05) between CT and rFaeG (a), between 
CT and rFaeG+CT (b), between rFaeG and rFaeG+CT (c). Black arrow : immunization; white arrow : challenge.
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10.3.2. His-S-tag-specific serum antibody response following 

oral immunization 
 Besides inducing FaeG-specific serum antibodies following oral rFaeG 

immunization, rFaeG functioned as a mucosal carrier for the N-terminal fused His-S-

tag. Indeed, one week following oral booster immunization (24 dppi), His-S-tag-

specific antibodies were detected in the rFaeG group but not in the CT group (Fig. 2). 

However, oral co-administration of rFaeG and CT resulted in significantly higher His-

S-tag-specific serum titers than in the CT and the rFaeG groups (P=0.003 and 

P=0.047 respectively). 
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Figure 2 : Mean His-S-specific serum antibody titers (± SEM) at 24 days 
post primary immunization (dppi) of pigs orally immunized with cholera 
toxin (CT, n=7), rFaeG (n=7) or rFaeG and cholera toxin (rFaeG+CT, n=7). 
Significant difference (P < 0.05) between CT and rFaeG (a), between CT 
and rFaeG+CT (b), between rFaeG and rFaeG+CT (c).  

 

10.3.3. CT-specific serum antibody response following oral 

immunization 
The use of CT in the oral immunizations induced a CT-specific systemic 

immune response, whereas no CT-specific serum antibodies were detected in the non-

CT immunized rFaeG group (Fig. 3). One week following booster immunization (24 

dppi), the CT-specific antibody titer of both CT immunized groups was significantly 

higher as compared to the rFaeG group (P≤0.016). On the other hand, the dose of CT 

used, did not result in diarrhoea (data not shown) or growth retardation (Fig. 4) of the 

pigs. 

b 

 c 
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Figure 3 : Mean CT-specific serum antibody titers (± SEM) at 0, 7, 16, 24, 28, 31, 38 and 49 
days post primary immunization (dppi) of pigs orally immunized with cholera toxin (CT, 
n=7), rFaeG (n=7) or rFaeG and cholera toxin (rFaeG+CT, n=7). Significant difference (P < 
0.05) between CT and rFaeG (a), between CT and rFaeG+CT (b), between rFaeG and 
rFaeG+CT (c). Black arrow : immunization; white arrow : challenge. 
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Figure 4 : Mean weight at 0, 3, 7, 15, 24, 31 and 49 days post primary immunization (dppi) 
and average daily weight gain (ADWG) at 3, 7, 15, 24, 31 and 49 dppi of pigs orally 
immunized with cholera toxin (CT, n=7), rFaeG (n=7) or rFaeG and cholera toxin (rFaeG+CT, 
n=7). 
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10.3.4. F4-specific cell proliferation following oral 

immunization 
The observed adjuvanticity of CT on the F4-specific immune response to co-

administered rFaeG is not restricted to the antibody response, as also a significantly 

higher F4-specific cell proliferation was observed in the rFaeG+CT group as 

compared to both other groups 23 dppi (Fig. 5; P≤0.036). Oral immunization of pigs 

with rFaeG alone induced an F4-specific cell proliferation that was significantly 

higher as compared to the CT immunized pigs (P=0.021).  
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Figure 5 : Mean F4-specific stimulation index (SI) (± SEM) at 23 days post 
primary immunization of pigs orally immunized with cholera toxin (CT, n=7), 
rFaeG (n=7) or rFaeG and cholera toxin (rFaeG+CT, n=7). Significant difference 
(P < 0.05) between CT and rFaeG (a), between CT and rFaeG+CT (b), between 
rFaeG and rFaeG+CT (c). 

 

 

10.3.5. FaeG-specific mucosal antibody response following 

oral immunization 
Oral rFaeG immunization of newly weaned pigs resulted in the secretion of 

very low amounts of FaeG-specific antibodies in saliva. In the rFaeG group, an 

insignificant increase of FaeG-specific IgA was seen from 16 to 24 dppi (log2 titer 

1.08 and 1.25, respectively). In the rFaeG+CT group, significantly higher FaeG-

specific IgA was found as compared to both other groups both 16 and 24 dppi (log2 

titer 1.33 and 1.74 respectively, P≤0.047).  
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10.3.6. F4+ E. coli excretion following challenge
To determine if the induced FaeG-specific immune response was able to

protect against an F4+ ETEC infection, the pigs were challenge infected 24 dppi. Daily
enumeration of the faecal F4+ E. coli excretion (Fig. 6) revealed >107 bacteria per g

faeces in the CT group till 4 dpc, whereafter the excretion gradually decreased till 8
dpc. The excretion of the rFaeG-immunized animals was similar to that of the CT

group until 2 dpc, after which it decreased faster to become significantly lower from 4

till 7 dpc (P≤0.016). However, animals immunized with rFaeG in the presence of CT

already showed a significantly reduced F4+ E. coli excretion in comparison with the
CT group but also the rFaeG group from day 1 post challenge onwards until 7 and 6

dpc, respectively (P≤0.004). Despite these differences in F4+ E. coli excretion, no

significant differences were observed in faecal consistency (data not shown) and

ADWG (Fig. 4) between the groups.
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Figure 6 : Mean faecal F4+ E. coli excretion (log 10) per gram faeces (±
SEM) of pigs orally immunized with cholera toxin (CT, n=7), rFaeG
(n=7) or rFaeG and cholera toxin (rFaeG+CT, n=7). Significant
difference (P < 0.05) between CT and rFaeG (a), between CT and
rFaeG+CT (b), between rFaeG and rFaeG+CT (c).
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10.3.7. FaeG-specific serum antibody response following 

challenge 
In agreement with the high F4+ E. coli excretion in the CT group, the 

challenge infection induced a primary FaeG-specific immune response in the CT 

immunized group (Fig. 1). Indeed, an FaeG-specific IgM serum antibody response 

appeared 28 dppi (4 dpc) and was significantly higher than for both rFaeG immunized 

groups on 38 and 49 dppi (P≤0.019), whereas the FaeG-specific IgA and IgG serum 

antibodies were only detected from 38 dppi onwards. On the other hand, FaeG-

specific IgG of both rFaeG immunized groups showed a secondary response upon 

challenge with titers significantly higher as compared to the CT group 31 dppi 

(P≤0.043). Thereafter, IgG titers decreased again in the rFaeG group, but not in the 

rFaeG+CT group where they remained significantly higher than in the CT group (38 

and 49 dppi; P≤0.037).  

 

 10.3.8. CT-specific serum antibody response following 

challenge 
 Following challenge infection of CT-immunized animals with the LT-

producing F4+ ETEC strain GIS26, CT-specific antibodies remained increasing until 4 

or 7 dpc (rFaeG+CT and CT groups, respectively; Fig. 3) and then reached a plateau. 

The increase of the CT-specific antibody titer following ETEC infection could suggest 

a booster of the CT-response. On the other hand, challenge infection could not induce 

CT-specific serum antibodies in animals immunized with rFaeG alone, so that the 

observed increase in both other groups could still have been due to the CT 

immunization 16 dppi.   

 

10.4. Discussion 
The results of the present study show that oral immunization of newly weaned 

pigs with rFaeG results in an FaeG-specific mucosal and systemic immune response, 

in agreement with previous experiments (Chapter 9). However, the results of the 

present study indicate that oral co-administration of rFaeG with CT improves the 

induction of an FaeG-specific immune response in pigs. Indeed, the addition of the 

mucosal adjuvant CT induces faster and higher FaeG-specific antibody titers in serum 
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as well as F4-specific cell proliferation in the rFaeG+CT group, as compared to the 

animals immunized with rFaeG alone. The mechanisms underlying the observed 

mucosal adjuvanticity of CT are not clear, but there is growing evidence that the 

establishment of an environment leading to an enhanced antigen presentation is 

important (Porgador et al., 1998; Gagliardi and De Magistris, 2003). In pigs, CT 

increases CD80-CD86 expression and induces IL-1 expression by macrophages (Foss 

et al., 1999c). In addition, several studies in mice also report a CT-mediated optimised 

antigen presentation, influencing the induction or regulation of an antigen-specific 

immune response (Cong et al., 1997; Yamamoto et al., 1999; Jang et al., 2003).  

The high FaeG-specific serum IgG titers and the detection of FaeG-specific 

IgA in saliva samples in the rFaeG+CT group, are in agreement with the induction of 

antigen-specific IgG (mainly IgG1) and IgA in the serum and mucosal secretions 

respectively, following oral co-administration of different heterologous antigens with 

CT in mice (Xu-Amano et al., 1994; Marinaro et al., 1995; Cong et al., 1997; Kim et 

al., 1998). The low levels of FaeG-specific IgA in saliva samples suggest diffusion of 

FaeG-specific IgA from serum to saliva, instead of a local production of FaeG-

specific IgA (Vaerman et al., 1997). On the other hand, oral immunization of pigs 

with rFaeG has been shown to induce FaeG-specific antibody secreting cells in the gut 

associated lymphoid tissue (Chapter 9). Secretion of higher FaeG-specific IgA levels 

in the small intestinal lumen following rFaeG+CT immunization could occur since 

CT induces a predominant Th2-response (Xu-Amano et al., 1994; Marinaro et al., 

1995) and stimulates IgA isotype switching (Kim et al., 1998) in mice. This could 

explain the better inhibition of F4+ ETEC colonization following challenge of the 

rFaeG+CT immunized animals as compared to rFaeG immunized animals. Indeed, a 

correlation between the presence of FaeG-specific IgA in the small intestinal lumen 

and a reduction of the F4+ ETEC colonization has been reported (Porter et al., 1974). 

Other influences of CT on leukocytes or intestinal epithelial cells that could mediate 

the induction of high FaeG-specific cellular and humoral immune response in the 

rFaeG+CT group (Holmgren et al., 2003) cannot be confirmed nor excluded with the 

results of the present study. 

 Despite the improved FaeG-specific immune response, pigs orally immunized 

with rFaeG and CT are not fully protected against a subsequent F4+ ETEC challenge. 

Therefore, further improvement of the rFaeG immunization protocol is necessary. 

Perhaps, a higher rFaeG dose is necessary and/or the refolding of rFaeG must be 
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further optimised. Refolded rFaeG is reported to bind the F4R and to have the 

conformational epitopes a6, a7 and c in common with purified F4 fimbriae (Chapter 

9). However, if the rFaeG folding is not totally identical to that of purified F4, rFaeG 

could induce less neutralizing antibodies or antibodies with a lower affinity to the 

native structure. Indeed, conformational changes in antigens are reported to influence 

its immunogenicity in terms of both affinity and titer (Subramanian et al., 2001; 

Titball and Williamson, 2001; Joyce et al., 2002). On the other hand, the effect of the 

challenge infection in the present study was more severe as compared to a previous 

experiment (Chapter 9). Therefore, pigs need a higher FaeG-specific immune 

response to inhibit the F4+ ETEC colonization in this study. 

Results of the present study show that oral administration of CT to pigs results 

in the significant induction of CT-specific serum antibodies. In addition, Foss and 

Murtaugh (1999a) observe CT-B specific IgA and IgG in jejunal mucus and saliva of 

pigs that are orally immunized with CT. As could be expected, the CT-specific 

immune response did not reduce F4+ ETEC colonization since F4+ E. coli excretion 

resembled that of identically infected non-immunized pigs (Chapter 9). However, 

cross-reactivity is reported between antibodies against the related enterotoxins CT and 

LT (Svennerholm et al., 1983; Clements et al., 1988). In humans, the presence of high 

anti-LT antibody titers is also shown not to be protective against ETEC infections 

(Levine et al., 1979; Cravioto et al., 1990). Therefore, the induced CT-specific 

antibodies are likely to reduce or even inhibit the toxic effect of F4+ ETEC produced 

LT during challenge infection. Indeed, oral vaccines successful in protecting humans 

against ETEC-induced diarrhoea contain the cholera toxin B-subunit to induce anti-

toxin antibodies (Peltola et al., 1991; Savarino et al., 1999; Hall et al., 2001).  

 Foss and Murtaugh (1999a) suggest that the mucosal adjuvanticity of CT in 

pigs needs mucosal targeting of the added heterologue antigen, as an antigen-specific 

immune response is only observed when the co-administered heterologue antigen is 

coupled to CT-B. The significantly higher His-S-tag-specific antibody titer in the 

rFaeG+CT pigs as compared to the rFaeG immunized pigs, shows that CT can act in 

pigs as a mucosal adjuvant of a heterologous antigen that is targeted to the mucosae 

by other systems than binding to the CT receptor GM1. There are advantages that may 

promote the use of the F4 fimbrial adhesin FaeG as mucosal carrier of heterologous 

antigens in combination with the mucosal adjuvant CT in pigs. Indeed, CT improves 

not only the antibody response against the adhesin but also against the coupled 
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heterologous antigen. Furthermore, the absence of competition between adjuvant and 

carrier for receptor binding could be an advantage to enhance the immune response, 

since they bind to different receptors. Further experiments are needed to confirm the 

potential of this system to obtain a simultaneously protective mucosal immune 

response against the widely spread pathogenic ETEC strains and other 

enteropathogens in pigs such as rotavirus or verotoxigenic E. coli. However, F4 

fimbrial adhesins will not be able to function as universal mucosal carriers in pigs 

since F4 behaves as a normal food antigen in F4R- pigs (Van den Broeck et al., 2002). 

In conclusion, the results of the present study show that the potential of rFaeG 

as mucosal carrier antigen to induce an antibody response against a coupled 

heterologous antigen, is improved following co-administration of rFaeG with CT in 

pigs. These results open new perspectives in the development of mucosal vaccines 

against enteric infectious diseases in pigs.  
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Chapter 11 
 

General discussion, conclusions and perspectives 
 

 

11.1. Characterization of F4 and its adhesin FaeG 
Previous studies of our group have shown that oral immunization of pigs with 

purified F4 fimbriae results in a protective F4-specific immune response in F4R+ pigs 

(Van den Broeck et al., 1999b). In F4R- pigs, F4 fimbriae seem to act as a normal 

food antigen (Van den Broeck et al., 2002). Therefore, the mucosal immunogenicity 

of F4 relies on its binding to the F4R on porcine small intestinal enterocytes. In 

agreement, soluble antigens like cholera toxin, heat-labile enterotoxin and some plant 

lectins that bind to enterocytes can induce an antigen-specific immune response 

following oral immunization, but most soluble non-replicating antigens lead to the 

induction of oral tolerance (Strobel and Mowat, 1998). The aim of the present work 

was to determine if F4 fimbriae of the F4+ ETEC reference strain GIS26 or its adhesin 

FaeG could be used as a mucosal carrier molecule following oral immunization, 

inducing an immune response against a coupled/fused heterologous antigen in 

addition to a FaeG-specific immune response. 

F4 fimbriae are composed of the minor subunits FaeC, FaeF, FaeH and FaeI 

and the major subunit FaeG that also constitutes the adhesin (Bakker et al., 1992a and 

1992b). Fimbriae on the surface of bacteria can contain up to 1000 subunits, with a 10 

times higher molar amount of the major subunit than of the minor subunits (Klemm, 

1985). Probably, the fimbriae will break down in fragments due to the purification 

process, resulting in FaeG-containing multimers of different length (Chapters 4, 7 and 

8). The hydrodynamic radii of most fimbriae in a sample of purified GIS26 F4 

fimbriae is between 60 to 70 nm (Chapter 7), suggesting that the majority of purified 

F4 fimbriae contain at least 15 subunits since the hydrodynamic radii of monomeric 

rFaeG (without tags) is 3.8 nm (Bouckaert J., unpublished data). However, we were 

unable to determine the exact number of subunits in the purified fimbriae based upon 

these data since the multimeric F4 fimbrial structure can appear in linear or more 

winded forms depending on the medium conditions (Simons et al., 1994). This 
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multimeric character of purified F4 fimbriae is not unique to the GIS26 strain as it is 

also observed in 20 out of the 21-studied F4ac+ E. coli field isolates (Chapter 4). 

Purification of other fimbriae like type 1 pili, P pili and F18 fimbriae also show 

polymeric structures (Abraham et al., 1988; Bullitt et al., 1996), but their adhesin is a 

minor subunit (Lund et al., 1985; Jones et al., 1995; Imberechts et al., 1996).  

The multimeric character of the adhesin and major subunit FaeG distinguishes 

F4 fimbriae from other fimbriae like F18 where the adhesin is a minor subunit. This 

difference could at least partly explain the faster and more severe colonization and 

subsequent induction of a protective fimbriae-specific immune response following 

infection of pigs with the F4+ ETEC strain GIS26 as compared to infection with the 

F18+ VTEC strain F107/86 (Chapter 5). Furthermore, in contrast to F4 fimbriae (Van 

den Broeck et al., 1999b), oral immunizations with F18 fimbriae (Felder et al., 2000; 

Verdonck et al., unpublished data) do not lead to induction of a protective fimbriae-

specific immune response. Parenteral immunization studies using type 1 fimbriae 

indicate that the predominant immune response against fimbriae with the adhesin as 

minor subunit, is directed against the non-adhesive major subunit that composes more 

than 99% of the total protein mass of the pilus structure (Lund et al., 1988; 

Langermann et al., 1997). These major-subunit-specific antibodies often cannot 

provide protection against infection such as is the case for the major subunits of type 1 

pili since they are not conserved (Vandemaele et al., 2003a). On the other hand, the 

type 1 adhesin FimH is conserved (Sokurenko et al., 1994; Vandemaele et al., 2003a), 

but the low level of antibodies against this adhesive minor subunit cannot protect 

against a subsequent challenge infection (Lund et al., 1988; Langermann et al., 1997; 

Kariyawasam et al., 2002).  

Since the adhesin FaeG is also the major subunit of F4 fimbriae, it was 

necessary to examine if FaeG is conserved or not. There are three different faeG allels 

encoding the adhesin of F4ab, F4ac or F4ad fimbriae (Guinee and Jansen, 1979), but 

F4ac+ ETEC strains are most prevalent at different places all over the world 

(Westerman et al., 1988; Choi and Chae, 1999). Therefore, the FaeG amino acid 

sequence of the GIS26 reference strain and of 21 F4ac+ E. coli field isolates was 

determined and subsequently compared with the FaeG amino acid sequence of F4 

strains (F4ab+, F4ac+ or F4ad+) reported in the literature.  The percentage identity 

between FaeG of F4ac+ strains was 96%, whereas the percentage identity between 

FaeG of F4ac+ and this of F4ab+ or F4ad+ strains was 92 and 88% respectively  
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(Chapter 4). These degrees of sequence identity are in the range of percentages 

reported for other fimbrial adhesins such as F18 (Smeds et al., 2003; Tiels, 

unpublished results) and F17 (Buts et al., 2003a) and indicate that FaeG is as 

conserved as other fimbrial adhesins. The high percentage of identity among the 

adhesin of F4ac+ strains gave a reason to believe that the F4ac fimbriae of one F4ac+ 

E. coli strain could induce F4-specific antibodies that could inhibit adhesion of other 

F4ac+ E. coli strains to the F4R. In chapter 4, this was confirmed for the GIS26 strain. 

Indeed, F4ac fimbriae purified from GIS26 induced F4-specific antibodies that 

blocked adhesion of the 20 tested F4ac+ E. coli field isolates. Similarly, the degree of 

sequence identity between the adhesins of F4ac+ strains and this of F4ab+ or of F4ad+ 

strains could also suggest blocking of F4ab+ and F4ad+ strains by F4ac-specific 

antibodies. Bijlsma et al. (1987) reported that oral administration of a particular F4+ 

E. coli variant to pigs resulted in FaeG-specific antibody titers that were similar for 

the homologous as for the heterologous F4 variants. On the other hand, the three 

variants of FaeG have a different receptor specificity (reviewed in Van den Broeck et 

al., 2000) mediated at least in part by the variant-specific epitopes b, c and d (Bakker 

et al., 1992a; Sun et al., 2000b). Furthermore, of the 7 epitopes identified as the ‘a’ 

part of FaeG, only three ‘a’ epitopes are present in all three F4 variants, whereas the 

four other ‘a’ epitopes are only present in one or two F4 variants. This suggests that 

blocking of F4ab and F4ad strains by F4ac-specific antibodies will be incomplete if 

present at all. Nevertheless, Parry and Porter (1978) reported that antisera raised to 

F4ab and F4ac were cross-reactive with the heterologous fimbrial type and blocked 

binding of the heterologous and homologous fimbrial variants to porcine enterocytes. 

However Wilson and Hohmann (1974) could not demonstrate this cross-blocking. 

Further experiments are needed to elucidate these seemingly contradictory 

observations.  

The high immunogenicity of F4 fimbriae is mediated by its multimeric 

character, but probably also by its high stability, certainly in the case of an oral 

immunization. Passage of immunogenic proteins through the gastro-intestinal tract 

mostly renders them non-immunogenic through the extreme low pH of the 

environment and the degradation by proteolytic enzymes in stomach (pepsin, 

gastricsin and chymosin) and small bowel (trypsin, chymotrypsin and some other 

pancreatic proteases) (Mayer, 2003). F4 fimbriae were shown to be very stable and to 

retain their immunogenicity in conditions reflecting those of the gastro-intestinal tract. 
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Indeed, incubation of F4 fimbriae at pH 4 or pH2 for 30 minutes results in a 

conformational change that can be restored by neutralizing the pH (Chapter 8). A 

significant reduction in the multimeric FaeG composition and slow digestion is only 

observed following incubation of F4 fimbriae for 2 h or longer in a simulated gastric 

fluid at pH 1.5 and 2 (Snoeck et al., 2004a). Oral immunization of pigs with purified 

F4 will not result in total destruction of the fimbriae since there is a fast transport of 

ingested material in the gastro-intestinal tract. Snoeck et al. (2003) orally administered 

pellets to piglets and found already 40% of the pellets in the small intestine 1.5 h 

following oral administration and a solution can leave the stomach even faster 

(Gregory et al., 1990). Furthermore, F4 fimbriae are very stable proteins since they 

retain their receptor-binding capacity and multimeric FaeG composition following 

heating up to 70°C, incubation in the presence of 0.5% SDS, 4M urea, 4M GuHCl or 

5% non-ionic detergents (Chapter 8; Knörle and Hubner, 1995).  

Purified F4 fimbriae of strain GIS26 are contaminated with flagellin (Chapter 

4). Flagellin could induce a proinflammatory response during an infection when it 

would be able to interact with Toll-like receptor 5 (TLR-5), resulting in IL-8 

expression (Gewirtz et al., 2001a and 2001b; Yu et al., 2003). In the human enterocyte 

cell lines T84, HT-29cI19A and Caco-2BBE and the Madin-Darby canine kidney 

cells, expression of TLR-5 is restricted to the basolateral membranes (Gewirtz et al., 

2001a; Reed et al., 2002; Yu et al., 2003) so that if present on porcine enterocytes a 

similar location can be expected. Oral immunization with F4 most likely does not 

open the tight junction between enterocytes of the epithelial barrier since F4+ ETEC 

infection of newly weaned pigs even did not increase the permeability of the porcine 

jejunal epithelium (Egberts et al., 1993). Therefore the presence of flagellin is not 

supposed to be of any importance for the immunogenicity of F4. Furthermore, the 

great immunogenicity of F4 is not due to an adjuvant effect of LT as this molecule 

was not detected in 5 different samples of GIS26 purified F4 fimbriae using an 

agglutination assay with a detection limit of 2 ng/ml (Verdonck, unpublished data). In 

addition, lipopolysaccharides (LPS) in the purified fimbrial preparation will not 

influence the FaeG-specific response following oral F4 immunization. Indeed, even 

though LPS are known immunostimulating agents when used systemically (Johnson, 

1994), there are no studies reporting a significant immunostimulating effect of LPS 

when used orally with an antigen (Childers et al., 2000). This is most likely because 

LPS is already widely present in the gut. All these data confirm that the F4 fimbriae of 
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strain GIS26 are stable, immunogenic and are composed of multimers of a conserved 

FaeG adhesin, indicating that these fimbriae can be used in a mucosal vaccine against 

F4+ ETEC infections.  

 

11.2. Oral immunization with recombinant FaeG 
Immunization with the recombinant type 1 adhesin FimH reduced in vivo 

colonization of the bladder mucosa by more than 99% in a murine cystitis model 

(Langermann et al., 1997). To determine the potential of the F4 fimbrial adhesin FaeG 

to induce a FaeG-specific immune response following oral immunization, 

recombinant FaeG was produced in the cytoplasm of E. coli. A cytoplasmatic 

expression was chosen since high yields can be obtained in the cytoplasm (Makrides, 

1996) and periplasmic expression would require co-expression of the F4 fimbrial 

chaperone FaeE in the presence of the periplasmic protease DegP (Bakker et al., 

1992a). The produced rFaeG was only present in cytoplasmic inclusion bodies 

(Chapter 9). Fimbrial adhesins of P pili, type 1 pili and F18 fimbriae expressed in an 

E. coli expression system, were also found in inclusion bodies (Vetsch et al., 2002; 

Karyawasam et al., 2002; Tiels, unpublished data). Fimbrial subunits have an 

immunoglobulin-like fold, missing the seventh β-strand (Sauer et al., 1999; 

Choudhury et al., 1999). This missing strand is complemented by the fimbrial 

chaperone during fimbrial biogenesis or by the N-terminal strand of a subsequent 

subunit in the fimbrial structure (Thanassi and Hultgren, 2000a). In the absence of this 

complementing strand, the subunit contains a hydrophobic groove on its surface 

(Barnhart et al., 2000), what could lead to the observed aggregation of monomeric 

FaeG subunits (Chapters 4, 8 and 9). The structure of FaeG is not elucidated at the 

moment, but we believe that a similar mechanism of subunit interaction is present as 

that found in other fimbriae. This is discussed in the chapters 2 and 4.  

The refolding of rFaeG was screened with an ELISA using the FaeG-specific 

MAb IMM01 (Chapter 9), since the interaction of this MAb with F4 fimbriae 

correlated with the bio-activity of the fimbriae (Chapter 8). Refolding of rFaeG with 

SDS resulted in a conformation that contains conformational epitopes and binds the 

F4R in a specific and concentration-dependent manner, in contrast to refolding with 

for instance urea (Chapter 9). The potential of SDS to refold rFaeG was somewhat 
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surprising but is probably due to SDS-mediated shielding of the hydrophobic core of 

the FaeG subunits, reducing their non-specific aggregation. Heat treatment of F4 

fimbriae resulted in aggregation and loss of the F4R-binding capacity (Chapter 8), but 

FaeG that was heat denaturated and subsequently eluted out of an SDS-PAGE could 

bind the F4R (Van den Broeck et al., 1999c). Tewari et al. (1993) also observed 

receptor binding capacity of the type 1 fimbrial adhesin FimH, following heat 

denaturation and subsequent elution out of an SDS-PAGE. The influence of SDS on 

protein conformation is concentration and protein dependent (Otzen and Oliveberg, 

2002). Indeed, the protocol that was developed to refold rFaeG with SDS was not 

successful to refold the recombinant F18 fimbrial adhesin FedF (unpublished data, 

Tiels et al.).  

The conformation of refolded rFaeG influences its binding to the receptor and 

subsequently also the induction of an FaeG-specific immune response since FaeG-

specific ASCs were found in intestinal lymphoid tissues of pigs orally immunized 

with SDS-refolded rFaeG, but not with urea-refolded rFaeG (Chapter 9). This result 

confirms the need for receptor-binding to induce a FaeG-specific immune response 

following oral immunization (Van den Broeck et al., 1999b). Interestingly, Joensuu et 

al. (2004) reported the production of rFaeG subunits in tobacco, which bind the F4R 

without a refolding procedure. These plant-produced rFaeG subunits could be an 

alternative to the SDS-refolded rFaeG when further experiments are able to show that 

they can induce an FaeG-specific immune response following oral immunization.  

Snoeck et al. (2004c) showed that uptake of F4 at the follicle associated 

epithelium via enterocytes and M cells could result in the induction of a FaeG-specific 

immune response in the (jejunal) Peyer’s patches. In addition, F4 that binds F4R+ 

enterocytes, enters the lamina propria (LP) and is at least partly taken up by local 

antigen-presenting cells (Snoeck et al., 2004b). Probably, these antigen-presenting 

cells migrate to the MLN where they could induce an FaeG-specific immune response 

since high numbers of FaeG-specific IgM ASCs were detected in MLN four to seven 

days following an F4+ ETEC infection (Chapter 5). Then, FaeG-specific ASCs likely 

home to the intestinal effector sites meanwhile switching to the IgA isotype (McGhee 

et al., 1992), thereby explaining the high numbers of FaeG-specific IgA ASCs in the 

LP 7 to 11 days post F4+ ETEC infection (Chapter 5). Oral rFaeG and F4 

immunizations induce an FaeG-specific immune response that resembles the response 

induced following F4+ ETEC infection (Chapters 9 and 10). Indeed, following F4+ 
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ETEC infection as well as following oral immunization with rFaeG or F4, higher 

amounts of IgM than IgA ASCs were found (Chapters 5 and 9). IgM is a more 

important immunoglobulin in the mucosal secretions of pigs than of other animals 

(Porter et al., 1974; Bianchi et al., 1999).  It was only following oral rFaeG or F4 

booster immunization that a clear antibody class switch from IgM to IgA was seen, 

resulting in a change in the IgM-IgA ASCs ratio (Chapters 9 and 10). As expected, 

mucosal FaeG-specific IgG responses are low but not absent (Bianchi et al., 1999; 

Yuan et al., 2001). This could suggest a role for the FcRn receptor, recently 

discovered in pigs (Claypool et al., 2004). This receptor can transport IgG bi-

directionally through epithelial cells. 

Although oral immunization of pigs with rFaeG or F4 are both able to induce 

an FaeG-specific antibody response, F4 immunization is more effective than rFaeG 

immunization since a higher FaeG-specific immune response and a better protection 

against a subsequent challenge is observed (Chapters 9 and 10). This difference in 

FaeG-specific response is probably due to a combination of factors. First, rFaeG are 

monomers, whereas purified F4 fimbriae are polymeric FaeG structures (Chapters 4 

and 9). This difference may have consequences for the immunogenicity of the protein 

as discussed before. In addition, the different multimerization status could influence 

avidity for binding to the enterocytes. It is for instance well known that the binding 

strength of one binding site of an IgG towards a multimeric antigen is much lower 

than the avidity of a whole IgG antibody interacting with its two antigen-binding sites 

to this antigen (Lee et al., 2004). On the other hand, binding of SDS-refolded rFaeG to 

the F4R may be reduced due to repulsion of some negatively charged SDS molecules 

still present on the rFaeG by the negatively charged sialic acid and sulphate groups 

that are present in mucus oligosaccharides (Cone, 1999). Furthermore, it is possible 

that refolding of rFaeG results in a native-like structure that is not totally identical to 

native FaeG. Finally, the presence of the N-terminal His-S-tag does not inhibit F4R 

binding but may influence its binding. The reduced immunogenicity of rFaeG as 

compared to F4 is likely not a result of a difference in proteolytic degradation since 

the gastric HCl production was blocked at immunization. Furthermore, Joensuu et al. 

(2004) reported that their plant-produced rFaeG was as stable in simulated gastric 

fluid as compared to F4 fimbriae.  
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10.3. F4 and rFaeG as mucosal antigen carriers 
Binding of F4 or rFaeG to the F4R on small intestinal enterocytes and their 

ability to induce an FaeG-specific immune response led to the question if F4 and/or 

rFaeG could be used as a mucosal carrier, inducing an antibody response against a 

coupled or fused heterologous antigen following oral administration. Lectins that bind 

enterocytes in mice were already reported as functional mucosal carriers, inducing an 

antibody response against a carried heterologous antigen when orally administered 

(Lavelle et al., 2000). However, the advantage of using FaeG as a mucosal carrier in 

pigs would be the simultaneous induction of FaeG- and heterologous-specific 

antibodies. This could open perspectives for simultaneously vaccinating pigs against 

the widely spread F4+ ETEC and against another enteropathogen.  

Insertion of epitopes in variable regions of FaeG has been reported to induce 

epitope-specific antibodies following parenteral immunization (Thiry et al., 1989; 

Bakker et al., 1990). However, these constructs are not able to bind the F4R since the 

variable regions are involved in the F4R binding (Bakker et al., 1992a). In addition, 

even though small epitopes can be inserted without disturbing the folding of the 

subunit, vaccination with one epitope of an antigen does not always result in 

protection against a pathogen (Fayolle et al., 2001; Jeon et al., 2002; Rodriguez et al., 

2003).  

The potential of F4 fimbriae to function as a mucosal carrier molecule was 

investigated by chemically coupling the model antigen HSA to the fimbriae. HSA has 

no receptor on enterocytes. The chemical conjugation of antigen and carrier was 

performed with glutaraldehyde since several studies reported the effective production 

of immunogenic antigen-carrier complexes, using this technique (McKenzie and 

Halsey, 1984; Hamajima et al., 1995; Fujiwara et al., 1999).  Indeed, conjugation of 

F4 to HSA (F4/HSA) in a 1:1 molar ratio resulted in F4 fimbriae that were covalently 

bound to HSA and also retained their ability to bind to the F4R (Chapter 7). Oral 

immunization of pigs followed by two oral booster immunizations with F4/HSA 

conjugates primed the immune system against HSA as a secondary HSA-specific 

antibody response was observed when these animals were boosted intramuscularly 

with HSA. In contrast, a primary HSA-specific immune response was observed after 

the intramuscular immunization in pigs which orally received HSA/HSA following 

the same protocol as for F4/HSA (Chapter 7). These results indicate that F4 fimbriae 
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allow transport of conjugated HSA through the intestinal epithelial barrier. The 

presence of HSA-specific IgA antibodies in the F4/HSA group, but not in the 

HSA/HSA group following the intramuscular HSA boost immunization, suggest that 

translocated HSA reached the gut associated lymphoid tissue. Indeed, the induction of 

an antigen-specific immune response in mucosae-associated lymphoid tissue leads to 

the production of antigen-specific IgA (Murray et al., 1987). Russell-Jones (2001) 

reported the potential of F5 and F6 to function in mice as mucosal carrier for 

chemically conjugated DNP and BSA, but specific binding of the complexes to 

murine enterocytes was not proven and binding of F5+ or F6+ E. coli to murine 

enterocytes has not yet been demonstrated. 

Although F4 fimbriae were shown to have the capacity to function as a 

mucosal carrier, this system was not very effective since the oral immunization 

induced only low FaeG-specific antibody titers and even no HSA-specific antibodies 

(Chapter 7). The F4-specific serum antibody response was significantly lower than 

following oral F4 immunization (Chapters 7 and 9). F4/HSA is a large molecule and 

its subunits cannot fall apart due to covalent linking by glutaraldehyde (Chapter 7). 

This could reduce the diffusion through the intestinal mucus layer as compared to 

purified F4 fimbriae. In vitro studies have suggested that the rate of diffusion of 

molecules through mucus progressively decreases with increasing molecular size 

(Desai et al., 1992). However, intestinal mucus is not totally impermeable for large 

proteins provided that their luminal concentration is sufficiently high (Flemström et 

al., 1999). An additional reason for the low immunogenicity of F4/HSA could be a 

reduction in the F4R-binding capacity by the conjugated HSA molecules as well as a 

mimicking of F4 epitopes. Furthermore, the chemical linker molecule used to bind 

HSA to F4 can have an effect on the immunogenicity of carrier and HSA antigen as 

demonstrated by Kirkley et al. (2001). Also the molar ratio of carrier and antigen in 

the conjugates can influence the immunogenicity (Russell-Jones, 2001). In addition, 

the presence of free HSA molecules in the F4/HSA conjugate solution could 

negatively influence the induction of a HSA-specific immune response since it rather 

induces tolerance (Stok et al., 1994).  

A genetic fusion between FaeG and a heterologous peptide/antigen allows a 

strictly controlled coupling of both molecules and results in smaller molecules than 

antigen-F4 complexes. In addition, no free His-S-tag fragments are present in purified 

rFaeG. This could explain the higher immune response against the His-S-tag than 
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against HSA following oral rFaeG or F4/HSA immunization (Chapters 7, 9 and 10). 

However, this has to be confirmed for larger antigens and comparison can only be 

made correctly if the same antigen is conjugated to F4 as is conjugated to rFaeG.  

 

10.4. Complementary effect of F4 and rFaeG as 
mucosal carrier with the mucosal adjuvant CT 
  

To improve the immune response against the carried antigen, the F4/HSA or 

rFaeG complexes were orally co-administered with CT, one of the most potent 

mucosal adjuvants (Lycke, 2004). Supplementing CT induced a faster heterologous 

peptide/antigen-specific antibody response and significantly higher antibody titers 

than immunization without CT (Chapters 7 and 10). The improved heterologous-

specific antibody response is due to a complementary effect of the carrier system and 

the adjuvant (Chapter 7). Based on a study on the uptake of F4 in intestinal loops 

(Snoeck et al., 2004b), we believe that the F4 or FaeG carrier allows an F4R-

dependent uptake of a heterologous antigen or peptide by epithelial cells. 

Subsequently, this antigen could reach antigen-presenting cells (Snoeck et al., 2004b), 

resulting in an antibody response.  

Oral co-administration of CT and antigen leads mainly to an increase of 

antigen-specific IgG titers in serum and IgA titers in saliva (Chapters 7 and 10). It is 

likely that oral co-administration of CT with an F4- or FaeG-based carrier-antigen 

complex improves the induction of a local antigen-specific immune response since 

oral immunization with both rFaeG (Chapter 9) and F4 fimbriae (Van den Broeck et 

al., 1999a) results in the induction of FaeG-specific ASCs in intestinal lymphoid 

tissues and CT is a known mucosal adjuvant (Lycke, 2004). Furthermore, HSA-

specific IgA antibodies were detected 24 dppi in saliva of F4R+ pigs immunized with 

F4/HSA and CT, whereas no HSA-specific IgA antibodies could be detected in the 

serum at that moment. In addition, several other studies showed the ability of CT to 

enhance mucosal as well as systemic immune responses against a mucosal co-

administered antigen (Biet et al., 2003; Karlsen et al., 2003; Yasuda et al., 2003).  

In contrast to the high toxicity of CT in humans (Sack et al., 2004), the use of 

50 µg CT in pigs is not toxic and does not lead to growth retardation (Chapters 7 and 

10; Foss and Murtaugh, 1999a). Moreover, induction of CT-specific antibodies could 
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cross-react with LT and inhibit its toxic effect following ETEC infection (Holmgren, 

1973; Jacob et al., 1986). Indeed, no diarrhoea was observed in animals immunized 

with CT alone  (Chapter 10), whereas non-immunized animals that were identically 

challenged developed diarrhoea (Van der Stede et al., 2003). So, the presence of CT- 

and FaeG-specific antibodies most likely results in better protection against F4+ ETEC 

challenge than when only FaeG-specific antibodies are present, as has been reported 

by Francis and Willgohs (1991) for LT- and FaeG-specific antibodies. Therefore, it is 

worthwhile to determine if co-administration of the antigen-carrier system with LT 

has a similar or even better effect than with CT. 

 

11.5. Main conclusions and future perspectives 
 

The multimeric character, the stability and the conservation of the F4 fimbrial 

adhesin FaeG render the F4 structure very immunogenic and a good mucosal vaccine 

candidate against F4+ ETEC infections. The results of the present thesis suggest that 

polymeric FaeG structures are more immunogenic following oral immunization than 

monomeric FaeG. However, there is no information available whether this is due to a 

higher avidity of binding to the F4R or due to the polymeric character of the antigen. 

It could be worthwhile to study the binding kinetics of (r)FaeG mono-, di- and higher 

FaeG-multimers to the F4R in a biosensor, their uptake by M cells and enterocytes in 

intestinal loops and their mucosal immunogenicity by orally immunizing F4R+ pigs. 

The main conclusion of this work is that both purified F4 fimbriae and rFaeG 

have the potential to function as a mucosal carrier, inducing an antibody response 

against a coupled/fused heterologous antigen/peptide. A genetic fusion of an antigen 

and a carrier molecule is favourable since there is no free antigen or carrier present 

and the conjugation is more controlled and thus more reproducible than in the case of 

chemical coupling. However, the potential of rFaeG to function as a mucosal carrier 

to an antigen needs to be confirmed. Hereto, further research is necessary to elucidate 

the structure of FaeG. This information could probably enable the production of a 

stable FaeG lectin domain or alternatively fusion of the missing seventh β-strand to 

complete its immunoglobulin fold, thus making a stable immunogen. As a 

consequence, these new FaeG constructs would circumvent SDS-refolding that could 
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influence immunogenicity of a fused heterologous antigen. Perhaps, the plant-

produced rFaeG can be an alternative.  

Several methods of antigen targeting to M cells are described that induce a 

mucosal antigen-specific immune response against non-replicating soluble antigens, 

but the quantity of material taken up from the intestine is often low (Clark et al., 2000; 

Nicoletti, 2000). The low number of M cells and their location in restricted sites of the 

intestinal wall probably cause this problem. Therefore, targeting antigens to 

enterocytes and subsequently to the intestinal lymphoid tissues is probably an 

alternative, which can be studied using the F4- or rFaeG-based carrier systems. 

However, the F4 system will not be able to function as universal mucosal carrier in 

pigs since some animals lack the F4 receptor. The development of a universal 

mucosal carrier will require the identification of molecules that bind to and can 

translocate through enterocytes of all pigs. 
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Summary 
 
 

Intestinal infections are still an important cause of disease in both humans and 

animals. Fimbriae often play a prominent role in anchoring bacterial cells to host 

tissue and mediate the first step in pathogenesis. For instance, F4 fimbriae of F4+ 

enterotoxigenic Escherichia coli (ETEC) bind to F4-receptors on small intestinal 

enterocytes of pigs, resulting in colonization of the small intestine. Subsequently, F4+ 

ETEC secrete heat-labile (LT) and heat-stable (ST) enterotoxins that cause diarrhoea. 

As a consequence, there is a continuous development of new strategies to block the 

binding of fimbriae to their specific receptor on host cells. 

Chapter 1 gives an overview of the most prevalent fimbriae of pathogenic E. 

coli strains in humans and animals. The focus of the chapter concerns the differences 

in fimbrial structures, the use of fimbriae in systemic and mucosal immunizations 

against fimbriated pathogens and the use of fimbriae as carrier systems. F4 fimbriae 

differ from most fimbriae in that the F4 fimbrial adhesin FaeG also constitutes the 

major subunit of the fimbriae. In addition, oral immunization of pigs with F4 fimbriae 

has been reported to result in the induction of a FaeG-specific immune response that 

protects piglets against a F4+ ETEC infection. This is a remarkable finding since oral 

immunization with soluble non-replicating antigens often induces oral tolerance, 

which hampers the development of mucosal vaccines. Therefore, this finding opens 

the question if F4 fimbriae or its adhesin FaeG has the potential to function as a 

carrier molecule to induce immune response against a fused/coupled heterologous 

antigen/peptide. 

Chapter 2 reviews the present knowledge on the genetic configuration of the 

F4 fimbrial operon fae, the regulation of subunit expression and the biogenesis of the 

fimbrial structure. In addition, the similarities and differences with well studied other 

fimbrial systems are discussed. 

The enterotoxins are the second virulence factors of pathogenic (F4+) ETEC 

strains. In the first part of chapter 3, the structure, receptor binding and the mechanism 

of action of both LT and the closely related cholera toxin (CT) are described. In the 

second part of chapter 3, the immunomodulatory effect of both toxins is reviewed 

with the focus on their influence on the different leukocyte populations. 
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Chapters 4 to 10 present the experimental work of this thesis. The objective 

was to answer the following questions : 

 

• Are F4 fimbriae a good vaccine candidate to be used in a mucosal vaccine 

against an F4+ ETEC infection ? 

 

• Are F4 fimbriae or the F4 fimbrial adhesin FaeG able to induce an antibody 

response against a coupled/fused heterologous antigen/peptide following oral 

immunization of pigs ? 

 

• Can the oral co-administration of the carrier-antigen/peptide complex with CT 

improve the heterologous antigen/peptide-specific immune response ? 

 

In order to use F4 fimbriae or FaeG subunits in an oral vaccine against F4+ 

ETEC, it is necessary to determine the conservation of the adhesin subunit. Therefore, 

in chapter 4 the faeG sequence was determined of 21 F4ac+ E. coli field isolates from 

piglets with diarrhoea and subsequently compared with these of the reference strain 

GIS26 and previously reported faeG sequences from F4ab+, F4ac+ and F4ad+ strains. 

The FaeG amino acid sequence was 96-100% homologous within each F4 serotype, 

but only 92% and 88% when the F4ab and F4ad serotypes were compared with the 

F4ac serotype. In addition, antibodies induced by purified GIS26 F4ac fimbriae 

immunization were able to inhibit binding of all 21 F4ac+ E. coli field isolates. 

Further characterization of purified F4 fimbriae of GIS26 revealed the presence of 

flagellin and the multimeric character of the FaeG adhesin. This multimeric character 

was also found in 20 of the 21 F4ac+ E. coli field isolates. In conclusion, the results of 

the experiments reported in this chapter support the usefulness of GIS26 F4 fimbriae 

in an oral vaccine against F4+ E. coli infections. 

In chapter 5, the fimbriae-specific systemic and mucosal immune response 

following infection with F18+ VTEC (strain 107/86) was compared with the response 

following an infection with the F4+ ETEC strain GIS26. These strains differ in both 

their virulence factors : the F4+ ETEC strain has a major subunit as adhesin and 

secretes heat-labile enterotoxin (LT), whereas the F18+ VTEC strain has a minor 

subunit as adhesin and secretes the shiga-like toxin II variant (SLT-IIv).  Weaned 
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F18-seronegative F18-receptor positive piglets were infected with the F18ab positive 

strain and weaned F4-seronegative F4-receptor positive (F4R+) piglets with the F4+ 

strain. The peak excretion of bacteria was 2 days post primary infection (dpi) 

following the inoculation with the F4+ ETEC strain and between 3 and 5 dpi after the 

F18+ VTEC inoculation. ELISPOT assays enumerating the fimbriae specific IgM, IgA 

and IgG antibody secreting cells (ASCs) revealed high numbers of fimbriae-specific 

IgM ASCs in the spleen 4 dpi with both strains. F18-specific IgM ASCs were present 

4 dpi in the mesenteric lymph nodes and from 7 dpi onwards in the Peyer’s patches, 

whereas F4-specific IgM ASCs were detected in the mesenteric lymph nodes and the 

Peyer’s patches 4 dpi. Besides the faster induction of an immune response following 

F4+ ETEC infection compared with F18+ VTEC infection, the switch from IgM to 

IgA and IgG was also earlier following the F4+ ETEC infection. F4-specific IgA and 

IgG ASCs were detected from day 4 onwards, together with F4-specific IgA 

antibodies in serum and intestinal contents. F18-specific IgA and IgG ASCs and F18-

specific IgA in serum and intestinal contents were found 11 dpi. The results of this 

study suggest that the multimeric adhesin character of F4 fimbriae and/or the 

immunomodulatory effect of LT enterotoxin may accelerate the mucosal immune 

response in the F4+ ETEC infected piglets.  

Chapter 6 describes the usefulness of a real-time biomolecular interaction 

analysis system (BIAcore® 3000), based on the principles of surface plasmon 

resonance (SPR) for the study of the interaction of F4 fimbriae and porcine 

enterocytes. Using this system, F4 fimbriae were found to interact with F4R+ porcine 

enterocytes, whereas no interaction was observed with enterocytes that were typed 

F4R- or weakly F4R+ based on an in vitro adhesion assay. Since the flow rate in the 

biosensor resembles the in vivo intestinal flow better as compared to the in vitro 

adhesion assay, it is likely that the biosensor can better mimic the in vivo situation. 

Furthermore, this method offers new opportunities to analyse the receptor-binding 

capacity of an F4-antigen conjugate or to screen therapeutics for prevention of ETEC 

adhesion. 

 The potential of F4 fimbriae to act as a mucosal carrier molecule for the model 

antigen human serum albumin (HSA), was examined in chapter 7. Oral immunization 

of pigs with glutaraldehyde coupled HSA molecules (HSA/HSA complexes; 

HSA/HSA group) did not result in the induction of a HSA-specific immune response, 
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in contrast to oral co-administration of HSA/HSA with CT (HSA/HSA/CT group). 

These results showed that CT acts as a mucosal adjuvant in pigs, which is in 

accordance with the reported CT adjuvant effect in other animals. Glutaraldehyde-

conjugation of HSA to purified F4 fimbriae resulted in F4/HSA complexes that were 

able to bind the F4R. Oral immunization of F4-HSA in F4R+ pigs (F4/HSA group) 

induced a HSA-specific immune response, however this immunization did not result 

in the detection of HSA-specific antibodies. Indeed, intramuscular HSA immunization 

induced a secondary response in the F4/HSA immunized pigs (F4/HSA group), as 

compared to a primary response in HSA/HSA immunized animals (HSA/HSA group). 

These data indicated that F4 fimbriae could function as a mucosal carrier to a 

chemically coupled heterologous antigen. In addition, oral co-administration of F4-

HSA with CT (F4/HSA+CT group) to F4R+ pigs induced HSA-specific antibodies in 

serum and saliva that were significantly higher than these in the F4/HSA and the 

HSA/HSA+CT groups. The high HSA-specific response seems to be due to a 

complementary effect of F4-mediated binding of HSA to F4R+ enterocytes and the 

mucosal adjuvanticity by CT since a significantly lower HSA-specific antibody 

response is observed following oral immunization of F4R- pigs with F4/HSA and CT. 

This combined use of CT as mucosal adjuvant and F4 fimbriae as mucosal carrier 

system could open new perspectives in the development of vaccines against F4+ 

ETEC and other enteropathogens in pigs. 

In chapter 8, it was determined if altered interaction of F4 fimbriae with the 

FaeG-specific monoclonal antibody (MAb) IMM01 correlated with an altered 

bioactivity of F4 fimbriae. Hereto, purified F4 fimbriae were first treated in conditions 

that are known to alter protein folding. Indeed, the F4R-binding and FaeG 

multimerization of purified F4 fimbriae was observed to be reduced following 

incubation with SDS at concentrations of 1.5 % or higher and at temperatures of 85°C 

or higher. Incubation of purified F4 fimbriae at pH 4 or lower resulted in a reversible 

conformational change that became irreversible and stabilised in the presence of 0.05 

% SDS, a concentration that did not affect the F4 fimbrial bioactivity at neutral pH. 

The altered bioactivity of treated F4 fimbriae correlated with optical density 

determined in ELISA using the FaeG-specific MAb IMM01. This fast and sensitive 

assay opens new perspectives to analyse the FaeG conformation following refolding 

of recombinant protein, the release of bioactive FaeG from microcapsules and the 

production of appropriate oral F4 subunit vaccines. 
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In chapter 9, the gene of the F4-fimbrial adhesin FaeG of the pathogenic F4+ 

ETEC strain GIS26 was cloned in the pET30Ek-LIC vector and expressed with an N-

terminal His- and S-tag in the cytoplasm of BL21(DE3). Recombinant FaeG (rFaeG) 

subunits were isolated from insoluble cytoplasmic aggregates and refolded into a 

native-like F4R-binding conformation using SDS. The presence of conformational 

epitopes was confirmed by ELISA and the ability to bind the F4R was confirmed by 

inhibiting the adhesion of F4+ ETEC to F4R+ villi with increasing concentrations of 

native-like SDS-refolded rFaeG subunits, in contrast to urea-refolded rFaeG. The 

rFaeG subunits appear as monomers, whereas the purified F4 fimbriae are multimers. 

Oral immunization of newly weaned piglets with native-like rFaeG induced a mucosal 

and systemic FaeG-specific immune response, whereas oral immunization with ureum 

refolded rFaeG did not induce FaeG-specific ASCs. In agreement, SDS-refolded 

rFaeG immunized pigs showed a significantly reduced F4+ E. coli excretion from 2 

till 5 days following challenge infection. However, improvement of stability and 

immunogenicity of (SDS-refolded) rFaeG will be necessary since rFaeG 

immunization resulted in a lower F4-specific response compared to immunization 

with purified F4 fimbriae. Furthermore, the N-terminal fusion of a His- and S-tag was 

not detrimental for binding the F4R, supporting the use of FaeG as mucosal carrier. 

Indeed, oral immunization of pigs with SDS-refolded rFaeG resulted in the production 

of His-S-tag specific antibodies as determined in Western blot. In conclusion, oral 

immunization with a native-like refolded recombinant FaeG fimbrial adhesin subunit 

of Escherichia coli induces a mucosal and systemic FaeG-specific immune response 

and rFaeG functions as a mucosal carrier inducing antibodies against a fused His-S-

tag peptide. 

Chapter 10 describes the results of oral co-administration of rFaeG and CT, to 

improve the immune response against FaeG and the N-terminally fused His-S-tag. 

Oral immunization of pigs with rFaeG and CT significantly enhanced the immune 

response against the heterologous peptide since significantly higher His-S-tag-specific 

antibodies were detected. In addition, the co-administration improved the FaeG-

specific humoral and cellular immune response and significantly reduced the fecal F4+ 

E. coli excretion following challenge infection as compared to rFaeG-immunized 

pigs. In conclusion, the results of this study show that fimbrial adhesins can be used as 

mucosal carrier for inducing an immune response against peptides, which normally 

are not immunogenic following oral administration.  
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 The experiments in the current thesis demonstrated the multimeric character, 

the stability and the conservation of the F4 fimbrial adhesin FaeG, which make it very 

immunogenic and a good mucosal vaccine candidate against F4+ ETEC infections. 

The main statement of the present work is that both purified F4 fimbriae and rFaeG 

have the potential to function as a mucosal carrier, inducing an antibody response 

against a coupled or fused heterologous antigen or peptide following oral 

immunization. However, the potential of rFaeG to function as a mucosal carrier to an 

antigen needs to be confirmed in further experiments. These F4- and rFaeG-based 

mucosal carrier systems, although restricted to F4R+ pigs, enable to study the 

potential of enterocyte-targeting of antigens to induce a mucosal antigen-specific 

immune response, which perhaps could be an alternative to M-cell-targeting of 

antigens.  
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Samenvatting 

 
 Darminfecties vormen nog steeds een belangrijke oorzaak van ziekte bij mens 

en dier. Fimbriae zorgen voor de binding van bacteriën aan gastheerweefsel en zorgen 

zo de eerste stap in de pathogenese. Zo binden bijvoorbeeld F4 fimbriae van F4+ 

enterotoxigene Escherichia coli (ETEC) aan F4-receptoren op dunne darm 

enterocyten van varkens, wat resulteert in kolonisatie van de dunne darm. Vervolgens 

zullen F4+ ETEC hitte-labiele (LT) en hitte-stabiele (ST) enterotoxines secreteren die 

diarree veroorzaken. Het belang van fimbriae in de pathogenese leidt tot de 

voortdurende ontwikkeling van nieuwe methoden om binding van fimbriae aan hun 

specifieke receptor op gastheercellen te blokkeren. 

 

 Hoofdstuk 1 geeft een overzicht van de meest voorkomende fimbriae van 

pathogene E. coli stammen bij mens en dier. Dit overzicht richt zich voornamelijk tot 

de verschillen in fimbriële structuren, het gebruik van fimbriae in systemische en 

mucosale immunisaties tegen pathogenen met fimbriae als virulentiekenmerk en het 

gebruik van fimbriae als dragermoleculen. F4 fimbriae verschillen van de meeste 

andere fimbriae doordat het F4 fimbrieel adhesine FaeG tevens de meest 

voorkomende subeenheid is van de fimbriae. Daarenboven resulteert orale 

immunisatie van varkens met F4 fimbriae in inductie van een FaeG-specifieke 

immuunrespons die varkens beschermt tegen een F4+ ETEC infectie. Dit is een 

opmerkelijke bevinding aangezien orale immunisatie met oplosbare niet-

vermenigvuldigende antigenen meestal leidt tot de inductie van orale tolerantie, wat 

de ontwikkeling van mucosale vaccins belemmert. Deze unieke eigenschappen van F4 

fimbriae brengen dan ook de vraag naar voor of F4 fimbriae of het F4 fimbrieel 

adhesine FaeG in staat is te werken als een dragermolecule die een immuunrespons 

kan induceren tegen een chemisch of genetisch gekoppeld heteroloog antigeen of 

peptide. 

 

 Hoofdstuk 2 geeft een overzicht van de huidige kennis in verband met de 

genetische configuratie van het F4 fimbrieel operon fae, de regulatie van de expressie 

van de verschillende fimbriële subeenheden en de biogenese van de fimbriële 
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structuur. Bijkomend worden gelijkenissen en verschillen tussen F4 en andere goed 

bestudeerde fimbriële systemen bediscussieerd. 

 

 Naast fimbriae fungeren enterotoxines als tweede virulentiefactor van 

pathogene (F4+) ETEC stammen. In het eerste gedeelte van hoofdstuk 3 worden de 

structuur, de receptorbinding en het werkingsmechanisme van zowel LT als het sterk 

gelijkende cholera toxine (CT) beschreven. In het tweede gedeelte van hoofdstuk 3 

wordt een overzicht gegeven van de immunomodulerende effecten van beide 

bacteriële toxines, waarbij vooral aandacht besteed wordt aan hun invloed op 

verschillende populaties witte bloedcellen. 

 

 De hoofdstukken 4 tot 10 stellen het experimenteel gedeelte van deze thesis 

voor. Deze thesis had tot doelstelling volgende vragen te beantwoorden : 

• Zijn F4 fimbriae goede antigenen om te gebruiken in een mucosaal vaccin 

tegen een F4+ ETEC infectie ? 

• Zijn F4 fimbriae of het F4 fimbriële adhesine FaeG in staat te werken als 

mucosaal dragermolecule die na orale immunisatie van varkens een 

antistoffenrespons kan induceren tegen een chemisch of genetisch gekoppeld 

antigeen of peptide ? 

• Kan gelijktijdige toediening van het drager-antigeen/peptide complex met CT 

de heterologe antigeen/peptide-specifieke immuunrespons verbeteren ? 

 

Vooraleer F4 fimbriae of FaeG subeenheden in een oraal vaccin tegen F4+ 

ETEC te gebruiken, is het noodzakelijk te onderzoeken of het adhesine geconserveerd 

is. Hiervoor werd in hoofdstuk 4 de faeG sequentie van 21 F4ac+ E. coli veldisolaten 

van biggen met diarree bepaald en nadien vergeleken met deze van de referentiestam 

GIS26 en eerder gerapporteerde faeG sequenties van F4ab+, F4ac+ en F4ad+ E. coli 

stammen. De FaeG aminozuursequentie was 96-100% identiek binnen elke F4 

variant, maar enkel 92% en 88% wanneer de F4ab en de F4ad varianten werden 

vergeleken met F4ac. Tevens kunnen antistoffen die geïnduceerd werden met 

gezuiverde GIS26 F4ac fimbriae de binding van alle 21 F4ac+ E. coli veldisolaten 

verhinderen. Verdere karakterisatie van gezuiverde F4 fimbriae van GIS26 toonde de 

aanwezigheid van flagelline aan evenals het multimeer karakter van het FaeG 
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adhesine. Dit multimeer karakter werd ook gevonden in 20 van de 21 F4ac+ E. coli 

veldisolaten. De resultaten van de experimenten die in dit hoofdstuk worden 

beschreven suggereren het gebruik van GIS26 F4 fimbriae in een oraal vaccin tegen 

F4+ E. coli infecties. 

 

In hoofdstuk 5 werd de fimbriae-specifieke systemische en mucosale 

immuunrespons na een F18+ verotoxigene E. coli (VTEC) (stam F107/86) infectie 

vergeleken met de respons na een infectie met de F4+ ETEC stam GIS26. De F4+ 

ETEC en de F18+ VTEC stam verschillen in hun beide virulentiefactoren : de F4+ 

ETEC stam heeft een major subeenheid als adhesine en expresseert het hitte-labiel 

enterotoxine (LT), terwijl de F18+ VTEC stam een minor subeenheid als adhesine 

heeft en de shiga-achtige toxine II variant (SLT-IIv) secreteert. Gespeende F18-

seronegatieve F18-receptor positieve biggen werden geïnfecteerd met de F18ab 

positieve stam en gespeende F4-seronegatieve F4-receptor positieve (F4R+) biggen 

met de F4+ stam. Een maximale excretie van bacteriën werd waargenomen 2 dagen na 

infectie (dpi) bij de F4+ ETEC stam en tussen 3 en 5 dagen na F18+ VTEC inoculatie. 

ELISPOT testen om het aantal fimbriae-specifieke IgM, IgA en IgG antistoffen 

secreterende cellen (ASCs) na te gaan, tonen hoge aantallen fimbriae-specifieke IgM 

ASCs in de milt 4 dpi bij beide stammen. F18-specifieke IgM ASCs waren aanwezig 

4 dpi in de mesenteriale lymfeknopen (MLN) en vanaf 7 dpi in de Peyerse platen 

(PP), terwijl F4-specifieke IgM ASCs gedetecteerd werden in de MLN en de PP op 4 

dpi. Naast de snellere inductie van een immuunrespons na F4+ ETEC infectie in 

vergelijking met F18+ VTEC infectie was er ook een snellere omschakeling van IgM 

naar IgA en IgG na F4+ ETEC infectie. F4-specifieke IgA en IgG ASCs werden 

gedetecteerd vanaf 4 dpi, samen met F4-specifieke IgA antilichamen in sera en 

darminhouden. F18-specifiek IgA en IgG ASCs en F18-specifieke IgA werden 11 dpi 

gevonden in sera en darminhouden. De resultaten van deze studie suggereren dat het 

multimeer voorkomen van het adhesine in F4 fimbriae en/of het 

immunomodulatorisch effect van LT enterotoxine de mucosale immuunrespons 

mogelijks versnelt in de F4+ ETEC geïnfecteerde biggen. 

 

Hoofdstuk 6 beschrijft de mogelijkheid van een ‘real-time’ biomoleculair 

interactie analysesysteem (BIAcore® 3000), gebaseerd op de principes van 
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oppervlakte plasmaresonantie, voor de studie naar de interactie van F4 fimbriae en 

varkens enterocyten. Een binding van F4R+ enterocyten aan F4 fimbriae kon worden 

waargenomen met dit systeem, maar er werd geen interactie gevonden tussen F4 

fimbriae en enterocyten die als F4R- of zwak F4R+ werden bestempeld in een in vitro 

adhesie test. Aangezien de vloeistofstroom in de biosensor deze van de in vivo situatie 

meer benadert dan de in vitro test is het mogelijk dat de biosensor de in vivo situatie 

beter nabootst. Bovendien biedt deze methode nieuwe mogelijkheden om de receptor-

bindingscapaciteit van een F4 conjugaat te analyseren of om geneesmiddelen te 

zoeken voor de preventie van ETEC adhesie. 

 

De mogelijkheid van F4 fimbriae om te werken als mucosale dragermolecule 

voor het modelantigeen humaan serum albumine (HSA) werd onderzocht in 

hoofdstuk 7. Orale immunisatie van varkens met glutaraldehyde gekoppelde HSA-

moleculen (HSA/HSA complexen, HSA/HSA groep) resulteerde niet in de inductie 

van een HSA-specifieke immuunrespons, in tegenstelling tot een gelijktijdige orale 

toediening van HSA/HSA met CT (HSA/HSA+CT groep). Deze resultaten toonden 

dat CT werkt als mucosaal adjuvant in varkens, wat in overeenstemming is met het 

beschreven adjuvant effect in andere dieren. Glutaaraldehydeconjugatie van HSA aan 

gezuiverde F4 fimbriae resulteerde in F4/HSA complexen die in staat waren te binden 

aan de F4R. Orale immunisatie van F4R+ varkens met F4/HSA (F4/HSA groep) 

induceerde een HSA-specifieke immuunrespons, hoewel deze immunisatie niet 

resulteerde in de inductie van HSA-specifieke antistoffen. Inderdaad, intramusculaire 

HSA immunisatie induceerde een secundaire immuunrespons in de F4/HSA 

geïmmuniseerde varkens (F4/HSA groep), terwijl een primaire respons werd 

geobserveerd in de oraal HSA/HSA geïmmuniseerde dieren (HSA/HSA groep). Deze 

gegevens tonen aan dat F4 fimbriae zouden kunnen werken als een mucosaal 

dragermolecule voor chemisch gekoppelde heterologe antigenen. Bovendien leidde de 

gelijktijdige orale immunisatie van F4R+ varkens met F4/HSA en CT (F4/HSA+CT 

groep) tot de inductie van HSA-specifieke antistoffenresponsen in serum en speeksel 

die significant hoger waren dan deze in de F4/HSA en de HSA/HSA+CT groepen. De 

hoge HSA-specifieke respons lijkt een gevolg te zijn van een complementair effect 

van F4-afhankelijke binding van HSA aan F4R+ enterocyten en de mucosale adjuvant 

eigenschappen van CT aangezien een significant lagere HSA-specifieke antistoffen 

respons werd waargenomen na orale immunisatie van F4R- varkens met F4/HSA en 
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CT. Het gelijktijdige gebruik van CT als mucosaal adjuvant en F4 fimbriae als 

mucosale dragermolecule zou nieuwe mogelijkheden kunnen openen in de 

ontwikkeling van vaccins tegen F4+ ETEC en andere enteropathogenen in varkens. 

 

In hoofdstuk 8 werd onderzocht of een veranderde interactie van F4 fimbriae 

met het FaeG-specifieke monoklonaal antilichaam (MAb) IMM01 in verband staat 

met een veranderde bioactiviteit van F4 fimbriae. Hiervoor werden gezuiverde F4 

fimbriae eerst behandeld in condities die gekend zijn de opvouwing van eiwitten te 

veranderen. De F4R-binding en FaeG multimerizatie van gezuiverde F4 fimbriae was 

gereduceerd na incubatie met SDS aan een concentratie van 1.5% of hoger en een 

temperatuur van 85°C of hoger. Incubatie van gezuiverde F4 fimbriae bij pH 4 of 

lager resulteerde in een reversibele conformationele verandering die irreversibel werd 

in de aanwezigheid van 0.05% SDS, een concentratie die geen effect heeft op de F4 

fimbriële bioactiviteit bij neutrale pH. De veranderde bioactiviteit van behandelde F4 

fimbriae staat in verband met de optische densiteit bepaald in een ELISA die gebruik 

maakt van het FaeG-specifieke MAb IMM01. Deze snelle en gevoelige test opent dan 

ook mogelijkheden voor de analyse van FaeG-opvouwing na heropvouwing van 

recombinant eiwit, de vrijstelling van bioactief FaeG uit microcapsules en de 

productie van orale F4 subeenheid vaccins. 

 

In hoofdstuk 9 werd het gen van het F4 fimbrieel adhesine FaeG van de 

pathogene F4+  ETEC stam GIS26 gekloneerd in de pET30Ek-LIC vector en 

geëxpresseerd met een N-terminale His- en S-staart in het cytoplasma van 

BL21(DE3). Recombinant FaeG (rFaeG) subeenheden werden geïsoleerd uit 

onoplosbare cytoplasmatische aggregaten en heropgevouwen gebruik makend van 

SDS in een natief-achtige F4R-bindende conformatie. De aanwezigheid van 

conformationele epitopen in deze natief SDS-heropgevouwen rFaeG subeenheden 

werd bevestigd in ELISA en de mogelijkheid te binden aan de F4R werd bevestigd 

door inhibitie van adhesie van F4+ ETEC aan F4R+ villi met toenemende 

concentraties natief SDS-heropgevouwen rFaeG subeenheden. Anderzijds bleek 

ureum-heropgevouwen rFaeG niet aan de F4R te kunnen binden. De rFaeG 

subeenheden komen voor als monomeren, waar de gezuiverde F4 fimbriae 

multimeren zijn. Orale immunisatie van gespeende biggen met natief-achtig (SDS-

heropgevouwen) rFaeG induceerde een mucosale en systemische FaeG-specifieke 
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immuunrespons, terwijl orale immunisatie met ureum-heropgevouwen rFaeG geen 

FaeG-specifieke ASC induceerde. Tevens kon worden vastgesteld dat varkens die 

geïmmunizeerd werden met SDS-heropgevouwen rFaeG een significant verlaagde 

F4+ E. coli uitscheiding vertoonden van 2 tot 5 dagen na de challenge infectie. 

Verbetering van de stabiliteit en immunogeniciteit van (SDS-heropgevouwen) rFaeG 

is echter noodzakelijk aangezien deze na immunisatie aanleiding geven tot een lagere 

F4-specifieke antistoffenrespons in vergelijking met gezuiverde F4 fimbriae. 

Bovendien bleek de N-terminale fusie van een His- en S-staart niet schadelijk voor 

binding aan de F4R, wat het gebruik van rFaeG als mucosale dragermolecule 

suggereert. Inderdaad, orale immunisatie van varkens met SDS-heropgevouwen 

rFaeG resulteerde in de productie van His-S-staart-specifieke antistoffen zoals werd 

aangetoond in Western blot. Samenvattend stellen de resultaten van deze studie dat 

orale immunisatie van F4R+ biggen met natief-achtig heropgevouwen rFaeG een 

mucosale en systemische FaeG-specifieke immuunrespons induceert en dat rFaeG kan 

werken als mucosale dragermolecule die antistoffen induceert tegen een genetisch 

gekoppeld His-S-peptide. 

 

Hoofdstuk 10 beschrijft de resultaten van een gelijktijdige orale toediening 

van rFaeG en CT aan F4R+ biggen om de immuunrespons tegen FaeG en het N-

terminaal gekoppelde His-S-peptide te verbeteren. Orale immunisatie van varkens met 

rFaeG en CT verbeteren de immuunrespons tegen het heterologe peptide aangezien 

significant hogere His-S-staart-specifieke antistoffen werden gedetecteerd. Bijkomend 

werd er opgemerkt dat de gelijktijdige toediening van rFaeG en CT een verbeterde 

FaeG-specifieke humorale en cellulaire  immuunrespons tot gevolg had, alsook een 

significant verlaagde uitscheiding van F4+ E. coli na een challenge infectie in 

vergelijking met rFaeG geïmmunizeerde varkens. De resultaten van deze studie 

bevestigen dat fimbriële adhesines kunnen gebruikt worden als mucosale 

dragermolecule om een immuunrespons op te wekken tegen peptiden die normaal niet 

immunogeen zijn na orale toediening. 

 

Het laatste hoofdstuk van dit proefschrift (Hoofdstuk 11) omvat de algemene 

discussie van de resultaten. De experimenten tonen het multimeer karakter, de 

stabiliteit en de conservatie van het F4 fimbrieel adhesine FaeG, waardoor het zeer 

immunogeen is en mogelijkheden biedt voor vaccins tegen F4+ ETEC infecties. Het 
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belangrijkste besluit van het voorgestelde werk is dat zowel gezuiverde F4 fimbriae 

als rFaeG de capaciteit hebben te werken als een mucosale dragermolecule die in staat 

is na orale immunisatie een antistoffenrespons te induceren tegen een chemisch of 

genetisch gekoppeld heteroloog antigeen of peptide. Verder experimenteel onderzoek 

is echter nodig om de capaciteit van rFaeG als een mucosale dragermolecule voor 

antigenen aan te tonen. Deze mucosale dragersystemen gebaseerd op F4 en rFaeG, die 

weliswaar beperkt zijn tot varkens die tot het F4R+ fenotype behoren, geven de 

mogelijkheid om de toepasbaarheid te onderzoeken van het richten van antigeen naar 

enterocyten en vervolgens een mucosale antigeen-specifieke immuunrespons op te 

wekken. Dit zou mogelijks een alternatief kunnen zijn voor het richten van antigenen 

naar M-cellen.  
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