Journal of Non-Crystalline Solids 551 (2021) 120415

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

Identification of surface active components in glass forming melts by thermodynamic model

Mária Chromčíková^{a,b,*}, Branislav Hruška^c, Roman Svoboda^d, Marek Liška^{a,b}, Aleksandra Nowicka^c, Els Bruneel^e, Klaartje De Buysser^e

^a VILA – Joined Glass Centre of the IIC SAS, TnUAD, FChPT STU, Študentská 2, SK-911 50 Trenčín, Slovakia

^b Institute of Inorganic Chemistry of Slovak Academy of Sciences, Bratislava, Dúbravská cesta 9, SK-845 36, Slovakia

^c FunGlass, Alexander Dubček University of Trenčín, Študentská 2, SK-911 50 Trenčín, Slovakia

^d Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10 Pardubice, Czech Republic

e Department of Chemistry, Gent University, Krijgslaan 281 S3, Gent 9000, Belgium

ARTICLE INFO

Keywords: Surface tension Sessile and pendant drop Thermodynamic model Surface active components

ABSTRACT

Nine compositional series of $15(Na_2O, K_2O)$ •10(CaO, ZnO)•75(ZrO₂, SiO₂) glass-forming melts were studied, all with the ZrO₂ content of 0, 1, 3, 5 and 7 mol.%. The investigated glass compositions were obtained by equimolar substitutions ZrO₂ / SiO₂, ZnO / CaO and K₂O / Na₂O. Surface tension of studied glassforming melts was determined by the sessile and pendant drop profile numerical analysis in the temperature range (1250 - 1500) °C. The experimental values of melt density were used. The linear temperature dependence of surface tension was observed for all samples with only small differences between values obtained from sessile and pendant drop profiles. The Shakhmatkin and Vedishcheva thermodynamic model (TDM) was evaluated for each glass melt at temperature of 1400 °C. The total number of 36 components was described by the multilinear function of equilibrium amount. The surface tension was described by the multilinear function of equilibrium amounts of statistically independent non-negligible components of the TDM. The surface active components were identified by negative values of their coefficients. Such way the N3S8 and C2ZrS4 were identified as "strongly" surface active and NCS5 and KS4 as probably surface active. Regarding the oxide compositional point of view, the surface tension was mostly influenced by ZnO (increase with the addition of the oxide).

Introduction

The influence of surface tension accompanies the process of glass production from the glass melting, through the refinement, to the shaping of the product [1]. Moreover the glass resistance against weathering and corrosion (e.g. in dishwashing machines) depends on the glass composition and properties of its surface [2–8]. The chemical composition of the glass surface is different to bulk, because there is higher concentration of surface active components (so called surfactants). Surfactants may be identified by strong negative correlation between their concentration in the bulk and the value of surface tension. In contrast, the surface tension enhancing components have a lower concentration in the surface layer than in the bulk. Oxides like MgO, ZnO, BaO, ZrO₂, and Li₂O generally increase the surface tension of glassforming melts, other oxides, mainly K₂O, PbO and B₂O₃, decrease it. Even a very small concentration of some oxides, especially $V_2O_5,\,Cr_2O_3,\,MoO_3$ or WO_3 intensively reduces the surface tension of the glassforming melts [9–15].

The true chemical composition of the glass bulk may be obtained by the proper thermodynamic model, i.e. the oxide glassforming melt can't be seen as a mixture of oxides but as an equilibrium solution of system components formed by the reaction of oxides. In the thermodynamic model of Shakhmatkin and Vedishcheva (TDM, so called associated solutions model) [16–19], the glassforming melt is considered to be an equilibrium ideal mixture containing unreacted oxides and components formed by their interaction. The stoichiometry of system components is given by the compounds found in the particular equilibrium phase diagrams. The model of Shakhmatkin and Vedishcheva uses the molar Gibbs energies of system components, analytical oxide composition, and glassforming melt temperature as input data. For glasses the glass transition temperature is used. One of the advantages of this model is that it does not require any adjustable parameters. The molar Gibbs

* Corresponding author.

https://doi.org/10.1016/j.jnoncrysol.2020.120415

Received 17 June 2020; Received in revised form 26 August 2020; Accepted 2 September 2020 0022-3093/ © 2020 Elsevier B.V. All rights reserved.

E-mail address: maria.chromcikova@tnuni.sk (M. Chromčíková).

Table. I

Analyzed composition (mol.%) of xNa₂O•(15-x)K₂O•yCaO•(10-y)ZnO•zZrO₂•(75-z)SiO₂ glasses, and surface tension at 1400 °C obtained from sessile (γ_{ses}) and pendant drop profile (γ_{pen}).

x	Y	z	Glass abbrev.	Na ₂ O	K ₂ O	CaO	ZnO	ZrO_2	SiO_2	$\gamma_{ses}\pm4~/$	$\gamma_{pen} \pm 4 \; / \;$
										mN. <i>m</i> ^{- 1}	mN. <i>m</i> ^{- 1}
15	10	0	NCZ0	15.30	-	9.22	-	-	75.48	271	275
15	10	1	NCZ1	13.86	-	10.69	-	0.93	74.52	274	279
15	10	3	NCZ3	13.42	-	10.19	-	2.86	73.53	280	284
15	10	5	NCZ5	14.99	-	10.00	-	4.87	70.14	283	288
15	10	7	NCZ7	14.07	-	9.78	-	6.77	69.38	288	292
0	10	0	KCZ0	-	14.98	8.42	-	-	76.60	190	193
0	10	1	KCZ1	-	14.29	8.44	-	1.02	76.25	191	194
0	10	3	KCZ3	-	15.41	10.08	-	3.28	71.23	195	196
0	10	5	KCZ5	-	15.44	10.06	-	4.92	69.58	205	210
0	10	7	KCZ7	-	14.74	9.33	-	7.32	68.61	212	210
15	0	0	NzZ0	14.80	-	-	9,90	-	75.30	286	288
15	0	1	NzZ1	15.04	-	-	9,41	1.03	74.52	295	301
15	0	3	NzZ3	15.29	-	-	11.04	3.19	70.48	304	307
15	0	5	NzZ5	14.77	-	-	9.01	4.90	71.32	311	313
15	0	7	NzZ7	14.18	-	-	9.89	6.54	69.39	312	316
0	0	0	KzZ0	-	15.74	-	8.47	-	75.79	222	219
0	0	1	KzZ1	-	14.93	-	10.49	0.97	73.61	233	235
0	0	3	KzZ3	-	14.20	-	9.86	2.80	73.14	246	253
0	0	5	KzZ5	-	16.00	-	10.44	4.91	68.65	255	258
0	0	7	KzZ7	-	15.63	-	10.69	7.06	66.62	-	-
7.5	10	1	NKCZ1	7.64	7.36	8.61	-	0.95	75.44	277	280
7.5	10	3	NKCZ3	7.54	7.44	8.84	-	2.86	73.32	280	284
7.5	10	5	NKCZ5	7.74	6.89	9.97	-	5.12	70.28	287	291
7.5	10	7	NKCZ7	7.66	7.01	9.98	-	7.18	68.17	292	296
7.5	0	1	NKzZ1	7.45	7.41	-	10.08	0.98	74.08	284	290
7.5	0	3	NKzZ3	7.30	7.06	-	9.63	2.61	73.40	291	294
7.5	0	5	NKzZ5	7.66	7.13	-	10.92	5.22	69.07	296	299
7.5	0	7	NKzZ7	7.83	7.00	-	11.03	7.54	66.6	300	301
15	5	1	NCzZ1	13.51	-	4.80	4.58	0.89	76.22	301	301
15	5	3	NCzZ3	13.72	-	4.72	5.01	2.71	73.84	306	307
15	5	5	NCzZ5	15.78	-	5.13	5.58	5.42	68.09	308	311
15	5	7	NCzZ7	15.78	-	5.11	5.43	7.4	66.29	314	318
0	5	1	KCzZ1	-	15.81	5.03	5.27	1.01	72.88	257	259
0	5	3	KCzZ3	-	13.95	4.47	4.95	2.66	73.97	264	267
0	5	5	KCzZ5	-	13.64	4.97	5.48	5.20	70.72	273	277
0	5	7	KCzZ7	-	13.88	4.98	5.43	7.25	68.48	-	-
7.5	5	1	NKCzZ1	8.22	8.01	4.40	5.40	1.05	72.92	275	279
7.5	5	3	NKCzZ3	6.61	6.96	4.41	4.81	2.58	74.63	283	289
7.5	5	5	NKCzZ5	7.82	7.18	5.18	5.63	5.35	68.85	294	294
7.5	5	7	NKCzZ7	7.86	6.99	5.00	5.53	7.40	67.22	-	-

energies of system components can be found in various thermodynamic databases. In our case, the FACT thermodynamic database was used [20,21].

A number of methods are known for measuring the surface tension of liquids. The most common methods are based on the analysis of sessile or pendant drop profile [22–27]. The principle of these methods is based on the regression analysis of the droplet profile based on the numerical integration of the Laplace equation [28–32].

The main aim of the present work is identifying of surface active components of studied glassforming system by analysis of surface tension dependence on equilibrium molar amounts of TDM components.

Experimental part

Nine compositional series of Na₂O-K₂O-CaO-ZnO-ZrO₂-SiO₂ glassforming melts were studied: xNa_2O •(15-x)K₂O•yCaO•(10-y)ZnO• $zZrO_2$ • (75-z)SiO₂ (x = 0, 15; y = 0, 10; z = 0, 1, 3, 5, 7). Abbreviation of glasses is summarized in Table I. The proposed compositions are based on equimolar substitutions Na₂O/K₂O, CaO/ZnO, and ZrO₂/SiO₂.

The glass batches were prepared by mixing of powdered carbonates and oxides of analytical grade purity. The glasses were melted for 2-3 h in the Pt-20%Rh crucible in a super-kanthal furnace at temperature of (1500–1600) °C in ambient atmosphere. Repeated manual stirring of the melt ensured the homogeneity. The melt was then poured onto a stainless steel plate. The samples were annealed in a muffle furnace for one hour at 550 °C, after which the furnace was switched off and the samples were allowed to cool down to the laboratory temperature. Approximately 200 gs of glass was melted for each glass composition. The glassy character of all samples was checked by XRD analysis. Chemical composition of the studied glasses was determined, after their decomposition by the mixture of HF and HClO₄, by the inductively coupled plasma optical emission spectroscopy (VARIAN - Vista MPX / ICP-OES). Chemical composition of studied glasses is summarized in Table I.

The principle of Archimedes law was used to determine the density, ρ , of the glassforming melts by the double weighing of a platinum sphere in the air and in the melt. Obtained density temperature dependence was linear for all studied melts, e.g. $\rho = a + b$ T. The a and b values are summarized in the Table II together with the standard deviation of approximation obtained by linear regression analysis.

Sessile drops were prepared from the glass cubes of approximate $(3 \times 3 \times 3) \text{ mm}^3$ dimensions placed on glassy carbon plate (Sigradur G[®]) in the atmosphere of pure nitrogen. Pendant drops were obtained by melting of the T-shape glass samples suspended in the platinum wire ring. The drop profile was recorded by the microscope CCD camera (Leitz Wetzlar Germany, type: 050–054:001 No.589) and digitized using the Lucia[®] or NIS Elements[®] software (LIM, s.r.o., Prague). The temperature at which the symmetric drop shape was reached during the sample heating at 5 °C/min was chosen as the starting temperature for recording of the drop profile. Some samples were excluded due to

Table. II

Melt density at 1400 °C, molar volume (V_m), coefficients and standard deviation of approximation, s_{apr} , of the linear temperature dependence of glassforming melt density ($\rho = a + b$ ·T, where T is temperature in °C).

Glass	ρ (1400 °C) /	V _m (1400 °C) /	a / g•cm ⁻³	$-10^{4}.b / g \cdot cm^{-3} \cdot C^{-1}$	$10^4.s_{apr} / g \cdot cm^{-3}$
	- 3	am ³ .ma1 ⁻¹			
NC70	2 2026		2 4220	0.011	2 1 0
NCZ0	2.3020	20.000	2.4338	0.911	3.18
NCZ1	2.3458	25./93	2.5641	1.530	21.00
NCZ5	2.4124	25.591	2.4030	0.339	1.23
NCZ3	2.4/94	25.420	2.3930	1.240	5.77
KCZ0	2.3324	20.303	2.7222	1.340	7.02
KCZ0	2.2052	20.301	2.4073	1.320	2.45
KCZ1	2.3192	28.141	2.4003	2 110	32.00
KCZ5	2.3040	20.100	2.0030	1.060	52.00
KCZ7	2.4410	27.875	2.3636	2 910	24 70
NzZ0	2.3020	25.860	2.5051	1.030	1 65
NzZI	2.4130	25.000	2.5555	1.030	12 30
Nz73	2.4770	25.590	2.0402	1.230	20.20
NzZ5	2.5250	25.370	2.0011	1.550	25.20
Nz77	2.5700	25.282	2.7 902	1.330	7 43
K770	2.0000	28 150	2.6322	1.330	9 30
KzZ1	2.3092	27 965	2.6322	1.720	6.00
K773	2.1321	27.830	2.0210	1.700	123
KzZ5	2 5482	27.810	2.8102	1.870	8 94
K777	2 5990	27 760	2.8308	1.650	9.55
NKC71	2.3232	27.115	2.0000	1.000	14 40
NKCZ3	2 3746	27.043	2.5311	1.120	12.40
NKCZ5	2.4604	26 587	2.6156	1.140	8 49
NKCZ7	2.5130	26.563	2.7308	1.550	6.55
NKzZ1	2.4414	26.836	2.5808	0.988	5.02
NKzZ3	2.6374	25 149	2.6477	1 090	6.68
NKzZ5	2.5798	26.468	2.7766	1.430	5.36
NKzZ7	2.6388	26.425	2.8617	1.580	4.29
NCzZ1	2.3926	25 782	2.5202	0.914	11.50
NCzZ3	2.4544	25.641	2.6006	1.040	10.50
NCzZ5	2.5340	25.567	2.7283	1.400	16.10
NCzZ7	2.6056	25.335	2.8108	1.460	4.51
KCzZ1	2.3558	28.456	2.5007	1.030	7.08
KCzZ3	2.4236	27.809	2.6021	1.260	7.73
KCzZ5	2.5290	27.281	2.5461	1.150	5.32
NKCzZ1	2.3770	27.181	2.5072	0.948	2.35
NKCzZ3	2.7610	23.564	2.6031	1.150	9.25
NKCzZ5	2.5364	26.438	2.7813	1.740	15.70
NKCzZ7	2.5676	26.588	2.8045	1.660	7.83

crystallization.

The values of surface tension were obtained by minimization of the sum of squares of deviations between the experimental and calculated drop profile. The calculated drop profile was obtained by the numerical integration of the Laplace equation using the experimental density value. The own program KVAREG (in FORTRAN) was used [30]. The coordinates of individual points of the droplet profile (Figs. 1,2) and the value of glass-forming melt density at the particular temperatures

(obtained by linear interpolation of measured temperature dependence of the density of investigated melt) were used as the input data. The drop profiles were analyzed over the temperature range (1250–1500) $^{\circ}C$ [33].

For comparison the approximate surface tension values, γ^{apr} , were calculated by the commonly used formula proposed by Dorsey [34,35]:

$$\gamma^{apr} = g\rho r^2 (0.052/f - 0.12268 + 0.0481f) \tag{1}$$

with

$$f = (r_{45} - h_{45})/r - -0.04142 \tag{2}$$

where g is the gravity acceleration, ρ - density, r - the drop equatorial radius, and r_{45} and h_{45} are the drop radius and height from the level of 45° tangent (see Fig. 3).

Results and discussion

Chemical composition of the studied glasses measured by the inductively coupled plasma optical emission spectroscopy is summarized in the Table I. The differences between theoretical and real compositions reaching typically (1–2) mol.% were found to be acceptable. These differences are probably caused by volatilization of the alkaline oxides.

Obtained density temperature dependence was linear for all studied melts, e.g. $\rho = a + b$ •T. The a and b values are summarized in the Table II together with the standard deviation of approximation indicating the almost ideal linearity (on the level of measurement experimental error). Moreover, the density and molar volume at 1400 °C are reported in the Table II. Significant increase in density caused by the ZrO₂/SiO₂ substitution was identified. It can be also stated that the densities of potassium glasses are lower than the densities of analogous sodium glasses. This is a result of significant increase of molar volume caused by K₂O/Na₂O substitution. On the other hand, the densities of zinc glasses are higher than the densities of analogous calcium glasses.

The experimental values of surface tension obtained for sessile and pendant drop are compared in Table III for five- and six-component glassforming melts. On the basis of repeated measurements the mean experimental error was estimated on the level of 4 mN. m^{-1} . Moreover the approximate values obtained for sessile drop using the Dorsey's method (Eqs.(1-2)) are reported. By comparing the surface tensions obtained by the method of sessile and pendant drop, we can confirm that both methods are sufficiently accurate. The surface tension values obtained from the pendant drop profile are systematically higher (on the level of 1-2 relative%) than corresponding values obtained from sessile drop profile. It should be emphasized that the correctness of the sessile drop method is also conditioned by the horizontality of the substrate, guaranteeing the rotational symmetry of the droplet. This factor was partially eliminated by separately evaluating the left and right profiles of the drop and using of the mean value for surface tension evaluation. Thus, the experimentally more difficult method of

Fig. 1. Sessile drop profile (NCZ1) a) captured by a digital camera, b) after processing with LUCIA G software.

Fig. 2. Pendant drop profile (KzZO) a) captured by digital camera, b) after processing by LUCIA G software.

Fig. 3. Coordinates used for the Dorsey's approximate method Eqs. (1, (2)).

Table. III

Experimental values of melt density ρ at temperature t, comparison of surface tension values determined from the sessile (γ_{ese}^{exp}) and pendant (γ_{pen}^{exp}) drop profile, and calculated by Dorsey's method (γ_{ese}^{ayr}) , for 5- and 6-component glasses.

Glass	T/C	$ ho/g.~cm^{-3}$	$\gamma_{ses}^{exp}/mN.~m^{-1}$	$\gamma^{apr}_{ses}/mN.~m^{-1}$	$\gamma_{pen}^{\exp}/mN.~m^{-1}$
NKCZ1	1371	2.3309	279	280	282
NKCZ3	1372	2.3796	280	284	285
NKCZ5	1353	2.4618	289	293	294
NKCZ7	1353	2.5216	294	296	300
NKzZ1	1371	2.4451	285	291	291
NKzZ3	1373	2.4980	293	296	295
NKzZ5	1396	2.5767	296	301	299
NKzZ7	1355	2.6486	303	308	304
NCzZ1	1371	2.3940	303	306	303
NCzZ3	1371	2.4587	306	309	308
NCzZ5	1350	2.5368	310	313	314
NCzZ7	1352	2.6129	316	317	320
KCzZ1	1373	2.3586	257	261	260
KCzZ3	1373	2.4296	265	269	270
KCzZ5	1381	2.3855	274	278	278
NKCzZ1	1372	2.3768	275	277	280
NKCzZ3	1373	2.4458	285	289	291
NKCzZ5	1350	2.5465	296	300	297

pendant drop appears to be more reliable. Moreover, it can be seen that the approximate Dorsey's values are little bit higher than the values obtained from sessile drop profile and little bit lower than the values obtained from pedant drop profile.

The linear temperature dependence of the surface tension determined by the sessile and pendant drop method was found for all glass compositions. The coefficients of the linear dependence ($\gamma = A + B$ •T) are summarized in the Table IV together with the standard deviation of approximation.

It can be seen (Table IV) that the surfaces tension monotonously increases by the equimolar substitution of ZrO₂ for SiO₂. Moreover, significant decrease in surface tension was observed by increasing the content of potassium oxide K2O by the equimolar Na2O/K2O substitution. However, in the first step (i.e. decreasing the Na₂O content from 15 mol.% to 7.5 mol.%) the change of surface tension is for glasses containing 10 mol.% CaO almost negligible (i.e. NCZi versus NKCZi, i \equiv 1,3,5,7). On the other hand the effect the equimolar CaO/ZnO substitution is not monotonous. In the first step (decreasing of CaO content from 10 mol.% to 5 mol.%) the surface tension significantly increases (e.g. KCZi versus KCzZi, $i \equiv 1,3,5,7$) while in the second step (decreasing of CaO content from 5 mol.% to 0 mol.%) the surface tension significantly decreases (e.g. KCzZi versus KzZi, i \equiv 1,3,5,7). Thus on the level of oxide composition the compositional dependence of surface tension cannot be simply quantified. This can be explained by the fact, that surface active are not the single oxides but their compounds.

Thermodynamic model of Shakhmatkin and Vedishcheva was used to investigate the compositional dependence surface tension. Molar Gibbs energies of the components needed as input data for the TDM were obtained from the FACT database. The own JaneDove FORTRAN program was used to calculate equilibrium composition for each glass melt at 1400 °C. The total number of 36 system components was considered. The following ten components were found with negligible equilibrium molar abundance in all glasses: K₂O, Na₂O, C3S (3CaO.3SiO₂), N2S (2Na₂O.SiO₂), N3S2 (3Na₂O.3SiO₂), C6Zr19 (6CaO.19ZrO₂), K2S (2K₂O.SiO₂), N5S (5Na₂O.SiO₂), NZn (Na₂O.ZnO), N4C3S5 (4Na₂O.3CaO.5SiO₂). Threshold of 5.10⁻⁷ mol was applied for quantification of significant species abundance. Thus, only 26 components were present with not negligible equilibrium amount - these are summarized in Table V. Correlation analysis found the high positive correlations between equilibrium molar amounts of following system components:

CaO - C2S - C3S2 - CS - only C2S was considered in regression analysis (to avoid the singularity), i.e. C2S represents the equilibrium mixture of CaO, C2S, C3S2, and CS;

ZnO – Zn2S – only ZnO was considered in regression analysis;

ZrO2 – ZrS – only ZrO2 was considered in regression analysis;

CZr - C3ZrS2 - only CZr was considered in regression analysis;

KS2 - KS4 - KS - only KS4 was considered in regression analysis;

NC2S3 – NC3S6 – NC2S2 – NCS – only NC2S3 was considered in regression analysis;

NS2 – N3S8 – NS – only N3S8 was considered in regression analysis. The surface tensions for sessile and pendant drop were described by multilinear regression equation:

$$\gamma = \sum_{i=1}^{13} a_i n_i \tag{3}$$

Multilinear regression analysis was used for obtaining the estimates of the a_i (i = 1, 2...13) parameters together with their standard deviations. The statistical significance of estimates was determined on the

Table. IV

Coefficients and standard deviation of approximation, s_{apr} , of the linear temperature dependence of surface tension measured by sessile and pendant drop method ($\gamma = A + B \cdot T$, where T is temperature in °C).

Glass	A _{ses} / mN•m $^{-1}$	$-10^3 \cdot B_{ses} / mN \cdot m^{-1} \cdot C^{-1}$	s_{apr} / mN•m $^{-1}$	A_{pen} / mN•m $^{-1}$	-10^3 ·B _{pen} / mN·m $^{-1}$ · °C $^{-1}$	$\rm s_{apr}$ / mN•m $^{-1}$
NCZ0	460	134	0.65	488	152	1.34
NCZ1	411	98	0.61	424	103	1.09
NCZ3	405	89	0.17	421	98	0.62
NCZ5	394	79	0.39	372	60	0.38
NCZ7	401	81	0.06	427	96	1.24
KCZ0	271	58	0.41	277	60	0.80
KCZ1	284	66	0.68	324	93	1.02
KCZ3	278	59	0.48	303	76	0.23
KCZ5	304	71	0.40	288	56	0.99
KCZ7	336	89	0.00	275	45	0.00
NzZ0	413	91	0.48	420	94	1.30
NzZ1	398	73	0.63	404	73	0.98
NzZ3	409	75	0.64	409	73	0.82
NzZ5	374	45	0.11	397	60	0.33
NzZ7	419	77	0.61	439	88	0.49
KzZ0	474	180	1.99	476	184	2.24
KzZ1	450	155	1.96	540	218	1.40
KzZ3	530	202	2.41	506	181	0.01
KzZ5	430	125	1.55	451	138	0.19
NKCZ1	353	55	0.41	362	59	0.15
NKCZ3	337	41	0.60	358	53	0.15
NKCZ5	333	32	0.41	371	57	0.66
NKCZ7	361	49	0.65	406	79	0.40
NKzZ1	367	59	0.68	360	50	0.23
NKzZ3	357	47	0.49	365	51	0.06
NKzZ5	405	78	0.18	387	63	0.00
NKzZ7	387	63	0.31	387	62	0.31
NCzZ1	376	53	0.39	406	75	0.68
NCzZ3	366	43	0.59	395	63	0.44
NCzZ5	391	59	0.92	400	64	0.33
NCzZ7	383	49	0.16	390	52	0.12
KCzZ1	323	47	0.81	338	56	0.27
KCzZ3	340	55	0.52	362	67	0.99
KCzZ5	360	62	0.24	336	42	0.00
NKCzZ1	343	48	1.11	356	55	0.06
NKCzZ3	368	61	0.27	357	48	0.65
NKCzZ5	359	47	0.28	383	63	0.58

Table. V

TDM components with not negligible equilibrium abundance. Components with uncorrelated abundance in studied glasses are numbered and emphasized by bold.

Table.	VI
--------	----

Results of the multilinear regression analysis (Eq. (3)), s_{apr} - standard deviation
of approximation, r - correlation coefficient, F - Fischer's F-statistics. Surface
active components are emphasized by bold characters.

No.	Stoichiometry	Abbreviate	No.
			uncorrel.
1.	CaO	CaO	1.
2.	SiO ₂	SiO ₂	2.
3.	ZnO	ZnO	3.
4.	ZrO_2	ZrO ₂	4.
5.	C2S	2CaO.SiO ₂	
6.	C2ZnS2	2CaO.ZnO ₂ .2SiO ₂	5.
7.	C3S2	3CaO.2SiO ₂	
8.	CS	CaO.SiO ₂	
9.	CZr	CaO.ZrO ₂	6.
10.	KS2	K ₂ O.2SiO ₂	
11.	KS4	K ₂ O.4SiO ₂	7.
12.	KS	K ₂ O.SiO ₂	
13.	NC2S3	Na ₂ O.2CaO.3SiO ₂	8.
14.	NC3S6	Na ₂ O.3CaO.6SiO ₂	
15.	NCS5	Na ₂ O.CaO.5SiO ₂	9.
16.	NS2	Na ₂ O.2SiO ₂	
17.	N2CS3	2Na ₂ O.CaO.3SiO ₂	10.
18.	N3S8	3Na ₂ O.8SiO ₂	11.
19.	Zn2S	2ZnO.SiO ₂	
20.	ZrS	ZrO ₂ .SiO ₂	
21.	NS	Na ₂ O.SiO ₂	
22.	C2ZrS4	2CaO.ZrO ₂ .4SiO ₂	12.
23.	C3ZrS2	3CaO.ZrO ₂ .2SiO ₂	
24.	CZr4	CaO.4ZrO ₂	13.
25.	NC2S2	Na ₂ O.2CaO.2SiO ₂	
26.	NCS	Na ₂ O.CaO.SiO ₂	

Comp.	Value	γ_{ses} / mN.m ^{- 1} .mol ⁻¹	$\gamma_{\rm pen}$ / mN.m ^{- 1} .mol ⁻¹
CaO	a ₁	-	-
SiO_2	a ₂	418 ± 19	424 ± 19
ZnO	a ₃	448 ± 66	441 ± 66
ZrO_2	a4	445 ± 93	451 ± 94
C2ZnS2	a ₅	$22\ 710\ \pm\ 2\ 682$	$22\ 635\ \pm\ 2\ 707$
CZr	a ₆	-	-
KS4	a ₇	$-1\ 311\ \pm\ 152$	-1328 ± 153
NC2S3	a ₈	76 185 ± 9 576	79 858 ± 9 666
NCS5	a9	-5112 ± 983	-5359 ± 992
N2CS3	a ₁₀	-	-
N3S8	a ₁₁	-37538 ± 8040	$-38\ 167\ \pm\ 8\ 115$
C2ZrS4	a ₁₂	$-32\ 096\ \pm\ 11\ 387$	$-34\ 226\ \pm\ 11\ 494$
CZr4	a ₁₃	-	-
	$s_{apr} / mN.m^{-1}$.	7.76	7.83
	R	0.99	0.99
	F	5 100	5 122

basis of the Student's t-statistics at 95% significance level. The overall statistical quality of regression equation was characterized by standard deviation of approximation s_{apr} . The obtained results are summarized in Table VI. Only the statistically significant components were taken into account (a_1 , a_6 , a_{10} , and a_{13} were statistically not significant). The surface active components were identified by negative a_i values. Such way the N3S8 and C2ZrS4 were identified as "strongly" surface active and NCS5 and KS4 as probably surface active (due to one order lover

Fig. 4. Experimental versus calculated (Eq. (3), Table VI) values of surface tension for sessile and pendant drop (points). The γ - exp = γ - clc is represented by the full line. Dotted lines represent the 95% confidence limit.

absolute a_i value). It is worth noting that KS4 represents the equilibrium mixture of KS2, KS4, and KS with strongly positive correlated equilibrium abundance. Similarly N3S8 represents a mixture of NS2, N3S8, and NS. The experimental and calculated values are compared in Fig. 4. It can be seen that the results for pendant and sessile drop are practically equivalent. The standard deviation of approximation approaches the level of experimental error in both cases.

Conclusions

Surface tension of glasses with compositions of xNa_2O •(15-x) K_2O •yCaO·(10-y)ZnO·zZrO₂(75-I)SiO₂ (x = 0, 15; y = 0, 10; z = 0, 1, 3, 5, 7) were measured over the (1250–1500) °C temperature range by the sessile and pendant drop methods using the melt density value obtained by independent experiment. Linear temperature decrease of the measured surface tension was found for all studied glass melts. On the level of oxide composition the compositional dependence of surface tension cannot be simply quantified. This can be explained by the fact, that surface active are not the single oxides but their compounds.

The compositional dependence of the surface tension was described as multilinear function of equilibrium molar amounts of not negligible and uncorrelated components of Shakhmatkin and Vedishcheva thermodynamic model with the accuracy on the level of experimental error. Such way the N3S8 (representing the equilibrium mixture of NS2, N3S8, and NS) and C2ZrS4 were identified as "strongly" surface active and NCS5 and KS4 (representing the equilibrium mixture of KS2, KS4, and KS) as probably surface active.

Author statement

Maria Chromčíková, Branislav Hruška Roman Svoboda, Marek Liška, Aleksandra Nowicka, Els Bruneel, Klaartje De Buysser - performed experiments and, analysed data and co-wrote the paper.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by The Slovak Grant Agency for Science under grant No. VEGA 2/0091/20, VEGA 1/0064/18, APVV SK-PL-18–0062 and the project centre for Functional and Surface Functionalized Glass (CEGLASS), ITMS code is 313011R453, operational program Research and innovation, co-funded from European Regional Development Fund.

References

- J. Hlaváč, Glass science the technology of glass and ceramics, Elsevier S.Co. (1983).
- [2] V. Petrušková, P. Vrábel, P. Šimurka, P. Šajgalík, M. Maryška, Surface damage of two different wineglasses during dishwashing process, Ceramics Silikáty 51 (2007) 57–66.
- [3] L. Ao, H. Yanhong, L. Zhaogang, Z. Xiaowei, et al., The effect of mixed La-Y doping on water resistance of phosphate glass, J. Non-Cryst. Sol. 527 (2020) 119727.
- [4] S. Nisha, H.H. Seung, N. Dien, et al., Influence of acid leaching surface treatment on indentation cracking of soda lime silicate glass, J. Non-Cryst. Sol. 543 (2020) 120144.
- [5] A. Černá, B. Hruška, D. Tokarčíková, et al., Optical microscopy, Raman spectroscopy, and AFM study of heavy weathered surface of barium crystal glass, Chem. Pap. 72 (2018) 2153–2158.
- [6] M. Parchovianský, I. Petríková, G.S. Barroso, D. Galusková, G. Motz, D. Galusek, Corrosion and oxidation behavior of polymer derived ceramic coatings with passive glass fillers on aisi 441, Ceramics-Silikaty 62 (2018) 146–157.
- [7] M. Hujová, M. Vernerová, Influence of fining agents on glass melting: a review, part 1, Ceramics - Silikaty 61 (2017) 2–8.
- [8] M. Hujová, M. Vernerová, Influence of fining agents on glass melting: a review, part 2, Ceramics - Silikaty 61 (2017) 1–10.
- [9] J.E. Shelby, Introduction to Glass Science and Technology, Cambridge: The Royal Society of Chemistry, 1997, p. 244 p.
- [10] O. Gedeon, Origin of glass fragility and Vogel temperature emerging from Molecular dynamics simulations, J. Non-Cryst. Sol 498 (2018) 109–117.
- [11] M.B. Volf, Chemie skla. 1.vyd. Praha SNTL, 1978, p. 470 p.
- [12] M.B. Volf, Sklo Ve Výpočtech, 1.vyd. Praha SNTL, 1984, p. 332 p.
- [13] I. Fanderlik, Vlastnosti Skiel, 1.vyd. Praha SNTL, 1984, p. 313 p.
- [14] A. Merrington, E. Richardson, Proc. Phys. Soc 59 (1) (1947) 1–13.
- [15] W. Bond, D.A. Newton, Lond. Edin. Dublin Philos, Mag. J. Sci. Ser 7 (30) (1928) 794–800 5.
- [16] B.A. Shakhmatkin, N.M. Vedishcheva, M.M. Shultz, A.C. Wright, The thermodynamic properties of oxide glasses and glass-forming liquids and their chemical structure, J.Non-Cryst. Solids 177 (1994) 249–256.
- [17] N.M. Vedishcheva, B.A. Shakhmatkin, M.M. Shultz, A.C. Wright, The thermodynamic modelling of glass properties: a practical proposition, J.Non-Cryst. Solids. 196 (1996) 239–243.
- [18] M. Chromčíková, A.A. Osipov, L.M. Osipova, et al., Thermodynamic model and Raman spectra of binary barium borate glassforming melts, J.Therm. Anal. Calorim (2020), https://doi.org/10.1007/s10973-020-09329-z.
- [19] B. Hruška, R. Dagupati, M. Chromčíková, et al., Structure and Raman spectra of binary barium phosphate glasses, J.Therm. Anal. Calorim (2020), https://doi.org/ 10.1007/s10973-020-09328-0.
- [20] http://www.crct.polymtl.ca/fact/ (2020). Accessed 18 April 2020.
- [21] http://www.sciglass.info (2020). Accessed 02 Jul 2020.
- [22] J. Eggers, Rev. Mod, Phys 69 (3) (1997) 865-929.
- [23] J. Eggers, E. Villermaux, Physics of liquid jets, Rep. Prog. Phys 71 (2008) 036601.
- [24] J. Drelich, C. Fang, C.L. White, Measurement of interfacial tension in fluid-fluid systems, encyclopedia of surface and colloid science, 2nd ed., 4, CRC Press, Boca Raton, 2006. Ch.
- [25] A.M. Worthington, Proc. R. Soc, Lond 32 (1881) 362–377.
- [26] A.M. Worthington, Philos, Mag 19 (5) (1885) 46–48.

6

Journal of Non-Crystalline Solids 551 (2021) 120415

- [27] A. Ferguson, Philos, Mag 23 (6) (1911) 417–430.
- [28] A. Kalantarian, S.M.I. Saad, A.W. Neumann, Accuracy of surface tension measurement from drop shapes, The role of image analysis, Adv. Colloid Interface Sci. 199–200 (2013) 15–22.
- [29] J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry, J. Colloid Interface Sci. 454 (2015) 226–237.
- [30] J. Wei, Y. Zhang, Application of sessile drop method to determine surface free energy of asphalt and aggregate, J. Test. Eval. 40 (2012) 20120060.10.1520/ JTE20120060.
- [31] R. Madrid, F. Garza, J. Kirk, H. Luong, L. Snowden, J. Taylor, B. Vizena,

Comparison of the lateral retention forces on sessile, pendant, and inverted sessile drops, Am. Chem. Soc. 35 (2019) 2871–2877.

- [32] R. Tadmor, S. Tang, Ch.W.Yao Sirui, S. Gulec, S. Yadav, Comment on "comparison of the lateral retention forces on sessile, pendant, and inverted sessile drops", Am. Chem. Soc. 36 (2020) 475–476.
- [33] J. Kraxner, M. Liška, R. Klement, M. Chromčíková, Surface tension of borosilicate melts with the composition close to the E-glass, Ceramics Silikáty 53 (2009) 141–143.
- [34] J.F. Padday, Surface Tension, E. Matijevic, F. Eirich (Eds.), Eds, Wiley-Interscience, 1969.
- [35] N.E. Dorsey J. Wash, Acad, Sci 18 (1928) 606.