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The liaison between photonics and computing is a pillar of
modern optics and subject of cutting-edge research for
more than half a century. As in many scientific disciplines,
high-performance computational methods have become
essential for describing, designing, interpreting and ulti-
mately predicting an optical system’s behaviour, and today
the wide availability of high-performance photonic com-
ponents is testimony of how computing has boosted the
field of photonics. At the same time, photonic architectures
offer fascinating possibilities for carrying out computa-
tions scaling beyond today’s computing hardware. This
establishes an almost uniquely reciprocal relationship
between photonics and computing.

The interest in photonics for computing and computing for
photonics is currently exploding despite decades of research
activities.As theperformanceof standarddigital computers is
levelling out, new concepts such as neural networks (NNs) or
combinatorial optimization in the form of Ising and XY ma-
chines lead the way to new frontiers in information process-
ing and are already being explored with profound
commercial relevance. These evolving concepts differ signif-
icantly from conventional computing paradigms, and the
quest for new, better suited types of computing hardware is
accelerating with photonics offering outstanding opportu-
nities. Simultaneously, high-performance off-the-shelf com-
puters can now model and design increasingly complex
photonic devices and systems in great detail and accuracy.
These developments have created unique conditions: pho-
tonics is a promising technology for the next generation of
computing hardware, and at the same time, the recent
progress of digital computers has enabled design, modelling
and development of a new class of photonic devices and
systems with unprecedented complexities.

Many demonstrations of computing schemes based on
photonic systems have by now achieved seminal status
within the optics community: this includes computational
Fourier optics [1], the optical Hopfield network [2], NNs [3],
digital photonic computing architectures [4], as well as the
emulation and minimization of Ising and XY Hamiltonians
[5]. For the most part, powerful computational concepts

require nonlinearities, and the inverse design of such
systems [6, 7] has significantly advanced thanks to adjoint
methods [8]. This special issue on “photonics for computing
and computing for photonics” provides a snapshot of the
growing reciprocal relationship between photonics and
computing through review and research articles.

Abdollahramezani et al. [9] review thepotential ofmeta-
optics for analogue optical computing, while Stark et al. [10]
and Ferreira de Lima et al. [11] provide overviews of the field
ofNNsby, respectively, focussing onpotential opportunities
for integrating photonic NNs and a primer on silicon neu-
romorphic processors. Mengu et al. [12] report misalignment
resilient diffractive optical networks, Dinc et al. [13]
demonstrate computer generated optical volume elements
fabricated by additive manufacturing, while Ahmed et al.
[14] discuss integrated photonic Fourier transformations for
optical convolutions towards efficient and high-speed NNs.
Romeira et al. [15] investigate nano light-emitting diodes
(nano-LEDs) for energy-efficient and gigahertz-speed spike-
based subwavelength neuromorphic photonic computing,
Estébanez et al. [16] accelerate photonic computing by
bandwidth enhancement of a time-delay reservoir, while
Andreoli et al. [17] report their findings for Boolean learning
under noise perturbations in hardware NNs. Gershenzon
et al. [18] establish an exact mapping between a laser net-
work’s loss rate and the classical XY Hamiltonian by laser
loss control, Miri et al. [19] extend the field by optical Potts
machines using networks of three-photon down-conversion
oscillators, while Kalinin et al. [20] introduce new concepts
for polaritonic XY-Ising Machines enabling long range
coupling. Parto et al. [21] discuss nanolaser-based optical
spin emulators, while Pierangeli et al. [22] introduce noise-
enhanced spatial-photonic Ising machines. Finally, Chris-
tensen et al. [23] use predictive and generative machine
learning models for photonic crystals.

In conclusion, this special issue provides introductions,
reviews and current research articles covering the diverse
interactions between photonics and computing with a focus
on photonic NNs, photonic XY and Ising machines and the
utilization of NNs for the design of photonic components.
We hope that this collection of articles serves as inspiration
for students and young as well as established researchers.
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