
Journal of Advanced Research 25 (2020) 191–203
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Event-based fractional order control
https://doi.org/10.1016/j.jare.2020.06.024
2090-1232/� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

q Peer review under responsibility of Cairo University.
⇑ Corresponding author at: Technical University of Cluj-Napoca, Automation Department, Memorandumului 28, Cluj-Napoca, Romania.

E-mail addresses: Isabela.Birs@aut.utcluj.ro (I. Birs), Ioan.Nascu@aut.utcluj.ro (I. Nascu), ClaraMihaela.Ionescu@ugent.be (C. Ionescu), Cristina.Muresan@aut
(C. Muresan).
Isabela Birs a,b,c, Ioan Nascu a, Clara Ionescu b,c, Cristina Muresan a,⇑
a Technical University of Cluj-Napoca, Automation Department, Memorandumului 28, Cluj-Napoca, Romania
bGhent University, Department of Electromechanical, Systems and Metal Engineering, Research Lab on Dynamical Systems and Control, Tech Lane Science Park 125,
9052 Ghent, Belgium
c Flanders Make, EEDT - Decision and Control Group, Tech Lane Science Park 131, 9052 Ghent, Belgium

g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 16 April 2020
Revised 3 June 2020
Accepted 27 June 2020
Available online 3 July 2020

2010 MSC:
26A33
60G22
90C32

Keywords:
Fractional calculus
Fractional order control
Event-based control
a b s t r a c t

The present study provides a generalization of event-based control to the field of fractional calculus, com-
bining the benefits brought by the two approaches into an industrial-suitable control strategy. During
recent years, control applications based on fractional order differintegral operators have gained more
popularity due to their proven superior performance when compared to classical, integer order, control
strategies. However, the current industrial setting is not yet prepared to fully adapt to complex fractional
order control implementations that require hefty computational resources; needing highly-efficient
methods with minimum control effort. The solution to this particular problem lies in combining benefits
of event-based control such as resource optimization and bandwidth allocation with the superior perfor-
mance of fractional order control. Theoretical and implementation aspects are developed in order to pro-
vide a generalization of event-based control into the fractional calculus field. Different numerical
examples validate the proposed methodology, providing a useful tool, especially for industrial applica-
tions where the event-based control is most needed. Several event-based fractional order implementa-
tion possibilities are explored, the final result being an event-based fractional order control methodology.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
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Introduction

Fractional calculus is a powerful tool with multiple applications
in science and engineering. The main feature lies in the ability to
accurately capture physical phenomena in a more natural and gen-
eralized manner than other available mathematical tools. Frac-
tional applications spread through a multitude of fields such as
physics, chemistry, mathematics, statistics, acoustics, engineering
from both control and modeling point of views, providing excellent
results through elegant mathematical solutions [1–4]. Its full
potential is yet to be grasped by the scientific community through
the multitude of papers emerging every year proving wide applica-
bility of fractional calculus with uplifting results.

From the engineering perspective, fractional calculus has gener-
alized the degrees of freedom of control possibilities and has revo-
lutionized the modeling of memory based structures [5]. The
ubiquity of the fractional order memory system gives a structure
that is more concise in form, but encapsulates a great accuracy of
complex dynamics [6]. The main contribution of fractionalization
in the control field consists of the generalization of the popular
Proportional Integral Derivative (PID) controller. The resulting
strategy has been proven to be superior to its integer order
instance. The obtained closed loop system featuring fractional
order control has been proven to have increased time domain per-
formance, stability, robustness and flexibility from the frequency
response perspective [7–9]. Its diverse benefits contribute to the
enhancement of multiple control possibilities such as the fractional
order Internal Model Control (IMC) strategy, fractional order filter
integration to available integer-order structures, fractional order
Linear Quadratic Regulator (LQR), etc [10–13].

The present work focuses on introducing fractional calculus in a
control branch that has not been previously explored from this
perspective: the event-based control strategy. Event-based control
is a relatively novel concept that triggers the computation of a new
control signal through events, in comparison to classical controller
implementations that trigger time based changes in the control
signal [14,15]. The strategy is mostly beneficial for processes that
have limited resources such as CPU, bandwidth allocation and
reduced energy demand [16,17]. All of these features show the
necessity of the event-based strategy in today’s industrial settings
[18]. Furthermore, cloud control systems are becoming more pop-
ular, the industry being the main beneficiary of such an approach
that externalizes automatic control, providing a versatile solution
that could be easily debugged and adapted [19,20]. Event-based
control combined with cloud implementations is another powerful
tool for the future of industrial control. The aim of the study is to
introduce all the benefits provided by fractional order control into
the event-based strategy, offering multiple possibilities to exploit
these advantages to benefit the current industrial need.

The contribution of the current work to the fractional calculus
field is the engineering applicability of this numerical tool into
event-based control strategies. The theoretical background for
event-based fractional order controllers is proposed and several
implementation options are explored. The method is validated
for the general fractional order PID controllers using varied numer-
ical examples. Furthermore, the proposed approach is compared
with classical, non-event based, discrete-time approaches showing
the efficiency of the methodology as well as the benefits regarding
the control effort.

The paper is structured as follows: Section 2 presents a brief
familiarization with fractional calculus in control applications as
well as current trends in fractional order control implementations;
Section 3 is focused on existing event-based control approaches
and provides a solid motivation of its usage in industry; Section 4
details the proposed event-based fractional order control strategy,
theoretical aspects and implementation guidelines; Section 5 pre-
sents four numerical examples centered around the fractional
order PID controller implemented using the proposed event-
based strategy; while Section 6 concludes the paper. In addition,
Appendix A provides the event-based fractional order control algo-
rithm in a programming fashion.

Fractional calculus in control applications

Fundamentals of fractional calculus

Fractional calculus is a generalization of differentiation to any
arbitrary order. The limit that integration and differentiation
orders are limited to integer numbers is removed, creating a new
branch of mathematics known as non-integer (fractional) calculus.
The differintegral operation is generalized into the fundamental
operator Da

t , where a 2 R is the fractional order [21].
The most common mathematical definition of the fractional

order operator is given by Riemann–Liouville [22–24] as

aD
�a
t M tð Þ ¼

Z x

a

t � sð Þa�1

C að Þ M
�
sð Þds; ð1Þ

where D represents an integral for negative order and a derivative
for the positive case from an arbitrary fixed base point a, and
C að Þ is Euler’s Gamma function [25].

Another possibility to express the fractional differintegral oper-
ation is the Grunwald–Letnikov formula [25,26]

aD
a
t M tð Þ ¼ lim

h!0
h�a X

06j61
�1ð Þj a

j

� �
M t � jhð Þ; ð2Þ

where a
j

� �
represents the fractional binomial coefficient.

Applying the Laplace transform on the fractional differintegral
of order a gives

L D�a
t f tð Þ� � ¼ s�aF sð Þ ð3Þ

L Da
t f tð Þ� � ¼ saF sð Þ ð4Þ

where F sð Þ ¼ L f tð Þf g and s the Laplace complex variable.
The connotations of (3) and (4) in automatic control are the

extensions of the integer-order PID controller to its fractional order
generalization denoted by

C sð Þ ¼ kp 1þ ki
sk

þ kdsl
� �

ð5Þ

where kp is the proportional gain, ki and kd are the integral and
derivative terms, k is the fractional order of integration and l is
the fractional order of differentiation. For the particular case k ¼ 1
and l ¼ 1, the controller from (5) denotes the classical, integer
order, PID controller. As can be seen from the form of the fractional
order PID controller, the fractional orders of k and l lead to a more
flexible structure than its integer order particularity. The PID gener-
alization is capable of solving a wider and more restrictive set of
performance specifications, having the shape of the popular PID
controller, but with more power and pliability. Hence, a performing
control option becomes available that proves better time response,
increased stability, robustness and versatility [7,8,27,28].

Implementation possibilities of fractional order control

Analog implementation possibilities of this type of control are
scarcely available, most of them based on fractance circuits [29].
Continuous controller implementation requires electronic compo-
nents that are mostly suitable for integer order transfer functions.
Some works such as [30–35] tackle analog fractional devices using
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electronic systems. However, these devices are difficult to tune and
also provide some restrictions.

An alternative method to implement a fractional order con-
troller is to approximate it using finite-dimensional integer-order
transfer functions. The aim of this approach is to capture the effects
of fractional order operators through integer order transfer func-
tions, both in the continuous and discrete-time domains. The focus
of this paper lies on the discrete-time representation of the frac-
tional operator. A manifold of discrete-time approximations have
been studied among the years. The main advances can be classified
into indirect and direct discrete-time mappers [36–39].

Indirect discrete-time fractional order approximations are
methods that describe the dynamics of a fractional operator
through high-order integer transfer functions in the Laplace
domain [7,23,40,41]. The fractional dynamics are captured through
the usage of high order transfer functions, that are further dis-
cretized using already available integer order discrete-time map-
pers. A wide variety of approximation methods are available,
providing reliability through certain aspects, such as Continued
Fraction Approximations, Oustaloup Filter Approximation, Modi-
fied Oustaloup Filter, etc. Since the Laplace representation of the
fractional-order operator sa is a straight line in both magnitude
and phase plots, finding a finite order filter that fits the straight line
is impossible. However, it is possible to approximate over a fre-
quency range of interest xb;xhð Þ [42].

Direct discrete-time mappers use a single step approximation
to map the fractional differintegral operation directly to the
discrete-time domain [43]. Available studies introduce different
approaches such as frequency fitting of the discrete-time model
to the response of the fractional order term [44,45] or recursion
based formulas [46]. Two direct discrete-time mappers relevant
for the present study are introduced in [46], both of them based
on the Tustin formula as the generating function with a sampling
time Ts

sa � 2
Ts

1� z�1

1þ z�1

� �a

: ð6Þ

The first mapper is based on the Muir recursion scheme. For a pos-
itive order of differintegration, a > 0, the formula is introduced in
[46] as

sa ¼ 2
Ts

� �a 1� z�1

1þ z�1

� �a

¼ 2
Ts

� �a

lim
n!1

An z�1;a
� �

An z�1;�að Þ ; ð7Þ

where An z�1;a
� �

is a polynomial computed as

A0 z�1;a
� � ¼ 1;

An z�1;a
� � ¼ An�1 z�1;a

� �� cnznAn z�1;a
� � ð8Þ

where cn ¼ a
n if n is odd, or cn ¼ 0 if n is even. Eq. (8) computes the

fifth order polynomial A5 z�1;a
� �

as

A5 z�1;a
� � ¼ � 1

5az
�5 þ 1

5a
2z�4 � 1

3aþ 1
15a

3
� �

z3þ
þ 2

5a
2z�2 � az�1 þ 1:

ð9Þ

The second direct mapper of interest throughout this study is the
Continued Fraction Expansion (CFE) of the Tustin formula devel-
oped by [46]

sa ¼ 2
Ts

� �a

CFE
1� z�1

1þ z�1

� �a
( )

p;q

¼ 2
Ts

� �a Pp z�1
� �

Qq z�1ð Þ ; ð10Þ

where CFE denotes the function generated by applying the Contin-
ued Fraction Expansion, p and q are the orders of approximation,
while Pp z�1

� �
and Qq z�1

� �
are polynomials in the z�1 variable. For

p ¼ q ¼ 5, the fifth order polynomials needed by the CFE approxi-
mation are computed as
P5 z�1
� � ¼ �a5 þ 20a3 � 64a

� �
z�5 þ �195a2 þ 15a4 þ 225

� �
z�4þ

þ �105a3 þ 735a
� �

z�3 þ 420a2 � 1050
� �

z�2 � 945az�1 þ 945;
Q5 z�1

� � ¼ a5 � 20a3 þ 64a
� �

z�5 þ �195a2 þ 15a4 þ 225
� �

z�4þ
þ 105a3 � 735a
� �

z�3 þ 420a2 � 1050
� �

z�2 þ 945az�1 þ 945:

ð11Þ

The fifth order discrete time approximations from (7) and (10) based
on the integer order Tustin formula should be sufficient for most
applications. These approximations will be used further to directly
map the fractional order sa into the discrete-time domain with the
purpose of creating the event-based fractional order control theory.
Event-based control

Context awareness

The fourth industrial revolution, known as Industry 4.0, inte-
grates the latest scientific advances of the 21st century into the
architecture of traditional manufacturing plants. State of the art
smart manufacturing systems and technologies take the industrial
setting a step further into the future. Human intervention is dimin-
ished by improved automation technologies featuring state machi-
nes, self-monitoring and abilities to perform machine to machine
communication. The emerging Internet of Things (IOT) protocol
is the principal constituent in the smart manufacturing trend, cre-
ating connected networks of distributed systems [47].

The new industrial cloud architectures are equipped with a
wide range of sensors and actuators creating a widespread net-
work that gathers and shares data. Decisions are autonomously
taken by interpreting the available information [48]. However, an
overflow of unnecessary data leads to an overburden of the band-
width and wireless network sharing. Introducing the context
awareness modules into the smart manufacturing process enables
the interpretation and filtering of the gathered information as well
as performing decisions regarding its relevance [49]. The main idea
is to process data in the lower levels of the system and forwarding
the contextual information to the upper layers of the architecture.
There are four main layers of the context management, as pre-
sented in Fig. 1.

Each objective of the system is analyzed and a context map is
creating based on regression data. The contextmap determines var-
ious sets of input and output pairs that are particularly useful in
reaching the objective (with green), pairs that are layabout for
reaching the goal (with orange) or the pairs that hinder the main
objective (with red). The next step involves an analysis of the pro-
cess with respect to the previously defined sets and identifying
events. These events will ultimately lead to a new context, with dif-
ferent pairs than the previous, by triggered the computation of a
new set of control parameters in order to reach the main objective.

From the control engineering point of view, the natural solution
of the context awareness paradigm lies in the event-based control
methodology. The system’s context is mapped based on some pre-
defined conditions for reaching a certain objective, specific to the
controlled process.

Even if traditional sampled data control, known as Riemann
sampling, is the standard tool for implementing computer control,
there are severe difficulties when dealing with systems having
multiple sampling rates or systems with distributed computing
[50]. With multi-rate sampling, the complexity of the system
depends critically on the ratio of the sampling rates. For distributed
systems, the theory requires that the clocks are synchronized.
However, in networked distributed systems, current research
revolves around solving problems such as sampling jitter, lost sam-
ples and delays on computer controlled systems [51]. Event based
sampling, also known as Lebesgue sampling, is a context aware
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alternative to periodic sampling [52]. Signals are then sampled
only when significant events occurs, such as when a measured sig-
nal exceeds a limit or when an encoder signal changes. Event based
control has many conceptual advantages. Control is not executed
unless it is required, control by exception. For a camera based sen-
sor it could be natural to read off the signal when sufficient expo-
sure is obtained. Event based control is also useful in situations
when control actions are expensive, for example when controlling
manufacturing complexes, and when it is expensive to acquire
information like in computer networks [53].

A severe drawback with event based systems is that very little
theory is available. All sampled systems, periodic as well as event
based, share a common property that the feedback is intermittent
and that control is open loop between the samples. After an event,
the control signal is generated in an open loop manner and applied
to the process. In traditional sampled-data theory the control signal
is simply kept constant between the sampling instants, a scheme
that is commonly called a zero order hold (ZOH). In event based sys-
tems, the generation of the open loop signal is an important issue
and the properties of the closed loop system depends critically on
how the signal is generated [53]. There has not beenmuch develop-
ment of theory for systems with event based control, compared to
the widely available strategies developed for periodic control.

Mathematical analysis related to the efficiency of the Lebesgue
sampling algorithms has been realized by [53]. The study compares
the performance of Riemann sampling to event based sampling
and shows that the latter gives a better performance, even if the
variable sampling theory is still in its infancy.

Industrial benefits

Successful industrial event based applications have been
reported during recent years in works such as [14,54,55] spanning
on a manifold of industrial processes from the simple tank level
control [56] to microalgae cultures in industrial reactors [57,58].

Event-based or event-driven control is a strategy based on vari-
able sampling of the control action. The concept is best explained
in contrast to the classical, non-event based, discrete-time imple-
mentation. The latter implies the realization of the discrete-time
controller using a control signal computed every Ts seconds, with-
out exceptions. For step references, the control signal varies while
the system is in the transient regime, afterwards the control vari-
able is constant for most processes. The only exception to this is
the presence of unwanted disturbances, when the control action
tries to bring the system back to the steady-state regime. Hence,
the control variable changes during the transient regime until
the process variable reaches the desired reference or when reject-
ing disturbances, while for the other time slots it is constant. How-
ever, discrete-time control implementations compute a new value
for the control signal every Ts seconds. It is obvious that the
approach is inefficient and that the control effort can be reduced
to the periods of time when the process variable is outside the
steady-state boundaries. The efficiency problem is solved in an ele-
gant manner by the introduction of event-based control
approaches that allow the computation of a new control signal
with variable sampling, removing the stress on the control circuit
for unnecessary computations.

Event-based control introduces multiple benefits such as CPU
resource optimization by limiting the number of times the control
signal is computed. This allows the sharing of the CPU with other
processes in distributed architectures and also improves energy
efficiency in a control scheme [14,59].

Another trend in industrial control [19] is industrial cloud com-
puting. The concept externalizes the process computer to a cloud-
based implementation. For complex control necessities, the control
signal can be computed into the cloud by a powerful computer,
shared with other processes. This approach reduces the cost and
removes the necessity of powerful process computers. Event-
based strategies are useful in this scenario through the reduced
bandwidth allocation [19,60].

Basic principles

Fig. 2. presents a schematic of the event-based implementation
concept.

The process data is acquired with the sampling time hnom, which
is a constant value, chosen in a similar fashion as the sampling per-
iod in classical discrete-time implementations. The data is trans-
ferred into the event detector, whose sole purpose is to determine
whether to trigger an event. The event detector can be customized
with any rule that optimizes the control process [18,61].

One of the most popular event triggering rule is focused on the
error variation between a predefined interval �DeDe½ �
j e tð Þ � e t � hactð Þ jP De; ð12Þ
where hact is the elapsed time since the triggering of the previous
event, e t � hactð Þ is the error at the previous event triggering
moment and e tð Þ is the error at the current moment. Note that
the error signal at the present moment t is computed using
e tð Þ ¼ Y tð Þ � Ysp tð Þ, where Y tð Þ is the current process variable and
Ysp tð Þ is the setpoint value.

Another popular event detection condition is the maximum
allowed time between two consecutive events, known throughout
literature as the safety condition. The maximum time is denoted by
hmax, while the elapsed time since the previous event is hact [62].
The safety condition can be expressed as

hact P hmax: ð13Þ
The triggering of an event employs the control input generator to
compute a new value for the control signal. The control input gener-
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ator encapsulates the chosen method to solve the control task. Since
the action of the event-based implementation is triggered with a
variable sampling hact , the controller should be a discrete-time rep-
resentation and the sampling time parameter for the discretization
must be a variable parameter in the event-based implementation.

The variable sampling time is the challenge in extending the
event-based control strategy to the fractional domain.

Event-based integer order control

A brief exemplification of the discrete-time model of the con-
troller inside the control input generator is realized for the integer
order PID controller. The transfer function is provided in (5) for the
particularity k ¼ l ¼ 1. The PID control signal in the Laplace
domain can be computed using

U sð Þ ¼ kp bYsp sð Þ � Y sð Þ� �þ kpki
s

Ysp sð Þ � Y sð Þ� �
þ kpkds cYsp sð Þ � Y sð Þ� �

; ð14Þ
where b and c represent weighting factors of the setpoint value for
the proportional and derivative actions.

Denoting e tð Þ ¼ Ysp tð Þ � Y tð Þ; eb tð Þ ¼ bYsp tð Þ � Y tð Þ and ec tð Þ ¼
cYsp tð Þ � Y tð Þ and splitting the control law into three individual
signals: proportional up sð Þ, integral ui sð Þ and derivative ud sð Þ gives
up sð Þ ¼ kpeb sð Þ;
ui sð Þ ¼ ki

s e sð Þ;
ud sð Þ ¼ kpkdsec sð Þ:

ð15Þ

The discrete-time PID control law can be computed as the sum of
the three individual signals into their discrete-time approximation.
Using the Tustin method from (6) where a ¼ 1 and replacing
s ¼ 2

hact
1�z�1

1þz�1 in the individual components from (15) gives

up kð Þ ¼ kpeb kð Þ;
ui kð Þ ¼ hact

ki
2 e kð Þ þ e k� 1ð Þð Þ þ ui k� 1ð Þ;

ud kð Þ ¼ 1
hact

2kd ec kð Þ � ec k� 1ð Þ� �� ud k� 1ð Þ:
ð16Þ

where ui k� 1ð Þ is the previously computed integral component and
ud k� 1ð Þ is the previous derivative component. A previous compu-
tation refers to the moment of the last event. Note that the discrete
sampling time, Ts, has been replaced by hact which is the variable
sampling time.

Eq. (16) gives the control law of the PID controller with variable
sampling time. Following this model, other controllers such as the
integer order IMC can be discretized and implemented inside the
control input generator, as long as the sampling time is kept as a
variable. In addition, the discretization method is not limited to
Tustin, any viable discrete-time mapper can be used.
Event-based fractional order control

Proposed implementation methodology

The theoretical contribution of the present study is the general-
ization of the available event-based control strategy into the frac-
tional order field. The challenge lies in the isolation of the sampling
time and introducing its variability in the fractional order discrete-
time approximation. There is not any specialized literature avail-
able that explores the possibilities of implementing fractional
order controllers in the control input generator.

The development of the discrete fractional order control actions
is based on fractional order direct discrete-time mappers. For an in
depth analysis, both the Muir recursive and CFE discrete-time
approximations from (7) and (10) will be used to compute
discrete-time equivalent controllers. The aim in studying both dis-
crete time mappers is to prove that any direct mapper whose sam-
pling time can be isolated from the rest of the function can be
successfully used in fractional order event-based implementations.

The event-based implementation of the fractional order PID con-
troller from (5)with k;l 2 0;1ð Þwill be exemplified further. Follow-
ing thismodel, any fractional order controller can be discretized and
implemented in the fractional order control signal generator.

The fractional order control law is written as a sum of the three
individual components as Uf sð Þ ¼ ufp sð Þ þ ufi sð Þ þ ufd sð Þ, with
ufp sð Þ;ufi sð Þ and ufd sð Þ being the proportional, integer and derivative
fractional order control signals. Hence, generalizing (15) gives

ufp sð Þ ¼ kpeb sð Þ;
ufi sð Þ ¼ kpki

sk e sð Þ;
ufd sð Þ ¼ kpkdslec sð Þ:

ð17Þ

Both direct discrete-time approximations based on the Muir recur-
sion or on the Continued Fraction Expansion approximate the frac-
tional order term sa to a transfer function of the form

sa � 2
Ts

� �a anz�n þ an�1z�nþ1 þ . . .þ a0
bnz�n þ bn�1z�nþ1 þ . . .þ b0

¼ 2
Ts

� �a Nn z�1
� �

Dn z�1ð Þ : ð18Þ

For the Muir recursion mapper of sa the polynomials are
Nn z�1

� � ¼ An z�1;a
� �

and Dn z�1
� � ¼ An z�1;�a� �

, while for the CFE
mapper the polynomials are Nn z�1

� � ¼ Pn að Þ and Dn z�1
� � ¼ Qn að Þ.

The sampling time has been isolated from the rest of the model
and will be treated as a variable in the event-based implementation.
The Nn z�1

� �
and Dn z�1

� �
can be computed only once and will remain

the same for every iteration through the control signal generator.
Furthermore, the fractional order terms will be treated sepa-

rately and approximated to the discrete-time domain using the
generalized formula from (18). The fractional order proportional



Table 1
Event-based implementation parameters.

Parameter Type Description

hnom custom nominal sampling time
hmax custom safety condition trigger time
De custom maximum error variation
b custom proportional action setpoint weighting factor
c custom derivative action setpoint weighting factor

hact variable elapsed time since the previous event
es variable previous error value
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component is identical to the integer-order PID proportional term
since it does not introduce any fractional order operation

ufp kð Þ ¼ kpeb kð Þ: ð19Þ

The fractional order integral term can be rewritten 1
sk ¼ s1�k

s such that
the direct discretization of sa respects the a > 0 requirement.
Hence, the discrete-time transfer function of the fractional order
integral component is computed using the Tustin formula for the
1=s term and a direct nth discrete-time formula for the s1�k term,
where 1� k > 0; k 2 0;1ð Þ
1
sk

¼ 1
s
s1�k ¼ Ts

2
1þ z�1

1� z�1

2
Ts

� �1�k Nn z�1
� �

Dn z�1ð Þ : ð20Þ

After expanding (20), the recurrence formula of the fractional order
integral component is obtained as

ufi kð Þ ¼ 2
hact

� 	�k kpki
d0

Efin kð Þ � 1
d0
Ufin kð Þ;

Efin kð Þ ¼ n0e kð Þ þ n0 þ n1ð Þe k� 1ð Þ þ n1 þ n2ð Þe k� 2ð Þþ
þ . . .þ nn�1 þ nnð Þe k� nð Þ þ nne k� nþ 1ð Þð Þ;

Ufin kð Þ ¼ d1 � d0ð Þufi k� 1ð Þ þ d2 � d1ð Þufi k� 2ð Þþ
þ . . .þ dn � dn�1ð Þufi k� nð Þ � dnufi k� nþ 1ð Þð Þ;

ð21Þ

where e k� nð Þ is the previous nth error signal and ufin k� nð Þ is the
previous nth fractional order integral control action.

The fractional order derivative component is obtainedby directly
replacing sl;l 2 0;1ð Þ with any direct discrete-time mapper

ufd kð Þ ¼ 2
hact

� 	l kpTd
d0

Efdn kð Þ � 1
d0
Ufdn kð Þ;

Efdn kð Þ ¼ n0ec kð Þ þ n1ec k� 1ð Þ þ . . .þ nnec k� nð Þ;
Ufdn kð Þ ¼ d1ufd k� 1ð Þ þ d2ufd k� 2ð Þ þ . . .þ dnufd k� nð Þ;

ð22Þ

where ec k� nð Þ is the previous nth error value whose setpoint value
is pondered with the c weighting factor and ufd k� nð Þ is the previ-
ous nth fractional order derivative control value.

The fractional order PID exemplified in this section stands as a
basis to any fractional order event based implementation. For
example, for a fractional order IMC implementation, a similar
approach can be employed. It is also possible to treat all the effects
of the fractional order controller as one, but this is a reliable
approach only when dealing with a single fractional-order operator
inside the controller.

Another important aspect worth specifying is the fact that the
actual tuning of the fractional order controller is a completely
independent process from the event-based implementation. Frac-
tional order controllers can be tuned using any available method.
The present algorithm completes the fractional order controller’s
implementation by offering a direct discretization possibility and
a fractional order event based implementation. The controller
should be tuned accordingly, by imposing any performance speci-
fication as for a non-event based implementation [63–65].

Implementation guidelines

In an event-based control implementation, there are also some
parameter choices that need to be done, apart from determining
the direct discrete-time transfer function of the fractional order
operators. The parameters that need to be customized depending
upon the particularities of the process to be controlled are the nom-
inal sampling time hnom, the maximum allowed time between two
consecutive events hmax and the error variation threshold De. The
other parameters of the event-based implementation are purely
implementation variables, independent of the process. It is impera-
tive that the parameters are used correctly inside the event detector
and the control input generator for an efficient implementation. For
an easy and quick reference, Table 1 provides a centralization of the
parameters as well as some brief clarifications.

b and c are weighting factors denoting the importance of the
setpoint value in computing the error amount used to compute
the fractional order proportional and derivative actions, respec-
tively. The terms belong to the 0;1ð � interval. If there are no error
weighting requirements of the fractional order control strategy
or a simple implementation is desired, both terms should be cho-
sen b ¼ c ¼ 1.

The nominal sampling time choice hnom is identical to the sam-
pling time in any discrete-time implementation. Shannon’s theo-
rem should be respected.

The maximum allowed time between events is denoted through
hmax, which is a multiple of hnom. This is effective in implementing
the safety condition. Choosing hnom ¼ hmax in an event-based imple-
mentation leads to a pure discrete-time effect, eliminating all the
benefits brought by the event-based approach. Hence, hmax should
always be greater than hnom. The greater the value, the better the
control signal computation is optimized, especially in the steady
state regime. However, special attention should be given to choice
of this parameter such that the safety condition is not completely
eliminated. As a starting point, one should base the hmax choice on
the dominant time constants of the process. Trial and error is also a
viable option, as well as this possibility exists.

The previous error value is denoted by es in the available event-
based literature [62]. Note that this error cannot include any
weighting factor, in comparison to the error values used to com-
pute the fractional order proportional and derivative gains respec-
tively. The es variable stores the error at the previous event. Note
that this value should be updated for every iteration of the control
input generator. The value of es is used inside the event detector to
check if an event should be triggered due to the error variation. The
condition is usually written as e kð Þ � esð Þ 2 �De;De½ �. The �De;De½ �
interval is composed by a predefined maximum error threshold.
As a guideline, De should be chosen as a small percentage, usually
between 1–5% to the desired setpoint value.

The parameter hact is a variable that stores the actual time
elapsed since the previous event. The value should be updated
every hnom seconds whether an event is triggered or not. The
formula that increments hact can be written as hact ¼ hact þ hnom,
making hact another multiple of hnom. Note that hact should be reset
to 0 at the triggering of an event. The purpose of hact is to determine
if the safety condition is met.
Numerical examples

The proposed event-based fractional order strategy is validated
using numerical simulations targeting a wide range of processes from
the simple first order plus dead time to a complex fractional order
transfer function. The strategy is validated using fractional order
PID controller case study. The case studies are intended to show
the fractional order control versatility of the proposed methodology
as well as to analyze its efficacy for a class of relevant processes.

All the controllers used in the numerical examples have been
previously tuned using different fractional order methodologies.



Fig. 3. A fractional order PI controller applied to a FOPDT process.
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The tuning procedure of each controller is irrelevant in proving the
efficacy of the event based fractional order implementation. Both
the Muir and CFE discrete-time approximations are tested with
identical event-based implementation parameters in order to show
the validity of any direct mapper for the present strategy and to
asses the better discrete-time mapper choice for every example.
Three implementation scenarios are performed and analyzed for
every numerical example. The first test case analyzes the perfor-
mance of the closed loop system obtained with the fractional order
controller for a pure discrete-time implementation with the Muir
recurrence-based direct discrete-time mapper from (7) and the
CFE direct discrete-time mapper from (10). The test scenario vali-
dates the discrete-time fractional order controller on the selected
process. The second and third test cases validate the proposed
event-based fractional order control strategy, focusing on compar-
ing the pure discrete-time realization of the fractional order con-
troller to its event-based implementation.

First order plus dead time

For the first order plus dead time (FOPDT) model from

H sð Þ ¼ 1
4sþ 1

e�s ð23Þ

a fractional order PI controller is computed by imposing a set of fre-
quency domain specifications targeting the gain crossover fre-
quency wgc ¼ 0:2 rad=s, the phase margin /m ¼ 44� and a certain
degree of robustness to gain variations. The controller that meets
these frequency domain constraints is

C sð Þ ¼ 0:0021 1þ 162:6923
s0:833

� �
: ð24Þ

The Muir and CFE 5th order discrete-time mappers from (9) and
(11) are used to compute the discrete-time approximation of the
fractional order PI controller. The same sampling time Ts ¼ 0:001
is used for both discretizations. The pure discrete-time implementa-
tion of the closed loop with every discrete-time controller is pre-
sented in Fig. 3a. The Muir and CFE approximations lead to a
similar closed-loop system response.

The event-based fractional order PI implementation based on the
Muir scheme is shown in Fig. 3b, while the CFE approximation is
given in Fig. 3c. The implementation parameters are b ¼ c ¼ 1 for
simplicity. The nominal sampling time is chosen such as
hnom ¼ Ts ¼ 0:001 s and the safety condition time as hmax ¼ 0:02 s,
20 times larger than hnom, while the error threshold is De ¼ 0:0005.
The parameters are identical for both the Muir and CFE implementa-
tions. The simulations clearly show the cause of the control signal
computations. It can be seen that in the transient response, the error
triggered control prevails, whereas the safety condition is employed
mostly in the steady-state regime. Both event-based fractional order
implementations can be successfully used on the FOPDT process.
However, during the 70 s duration of the tests, the Muir based con-
troller computes the control signal 5824 times, the CFE controller
6508 times, improving the discrete-time control strategy which com-
putes the control signal 70000 times.

Second order transfer function

The second order transfer function (SOTF) chosen as the second
numerical example

H sð Þ ¼ 78:35
s2 þ 1:221sþ 822

ð25Þ

represents the dynamics of a smart beam. For the SOTF process a
fractional order PID controller is tuned in [66] using an experimen-
tal optimization procedure. The obtained controller is
C sð Þ ¼ 0:0288 1þ 3:4722
s0:1039

þ 28:743s0:822
� �

: ð26Þ

Fig. 4a shows the impulse response of the SOTF process with the
classical discrete-time implementation of the fractional order PID
controller with Ts ¼ 0:001 s. The dynamics of the output variable
are similar for both approaches.

Fig. 4b shows the event-based fractional order PID controller
discretized using the Muir recursion formula. The output of the
closed loop system with the event-based controller is similar to
the non-event-based Muir controller. The implementation parame-
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ters are chosen as follows: b ¼ c ¼ 1;hnom ¼ Ts ¼ 0:001 s; hmax ¼
0:005 s - 5 times greater than hnom andDe ¼ 10�4. The error threshold
is chosen based on the amplitude of the closed-loop system response
from Fig. 4a. The CFE event-based implementation is depicted in
Fig. 4c. The process stabilizeswith the same settling time as theMuir
scenario. However, it can be observed that the amplitude of the out-
put is 10 times larger using the CFE approximation, for the same
event-based implementation parameters as in the Muir case.

From the control effort perspective, the Muir mapper computes
the control signal value 368 times, the CFE controller 494 times,
while the classical discrete-time controller command is evaluated
700 times for the 0.7 s in which the tests were performed. It can
Fig. 4. A fractional order PID controller applied to a SOTF process.
be stated that for this numerical example, the Muir based con-
troller is the better choice both from the performance and the con-
trol optimization criteria.

Second order plus time delay

A Vertical Take-Off and Landing Platform is modeled through
the second order plus time delay (SOPTD) transfer function

H sð Þ ¼ 22:24
s2 þ 0:6934sþ 5:244

e�0:8s: ð27Þ
The same tuning methodology as for the FOPDT numerical example
is employed which tunes a robust fractional order PI controller that
offers an open-loop system with a gain crossover frequency
xgc ¼ 0:4 rad=s and a phase margin /m ¼ 75�

C sð Þ ¼ 0:0422 1þ 492:2867
s0:9288

� �
: ð28Þ

Additional details regarding the real-life process and the control
strategy can be found in [67].

Fig. 5a shows the closed-loop system response with the
discrete-time Muir mapper and the CFE direct approximation using
the sampling time Ts ¼ 0:005 s. It can be seen that the dynamics of
the closed-loop system are similar for the classical implementation
of the controllers.

The implementation particularities of the event-based fractional
order controller are b ¼ c ¼ 1 for simplicity, hnom ¼ Ts ¼ 0:005 s;
hmax ¼ 0:2 s - 20 times larger than the nominal value and
De ¼ 0:01, representing 1% of the unit step reference value.

The closed-loop response of the event-based fractional order PI
controller approximated using the 5th order Muir recursion from
(9) is displayed in Fig. 5b. In the command signal plot it can be seen
the different types of events triggered to compute the control
value. The error threshold events are more prominent during the
transient response, while the safety condition triggers the control
value computation mostly in the steady-state regime. As can be
seen in the figure, the event-based implementation obtains similar
closed-loop system performance as the classical implementation.

Furthermore, Fig. 5c shows the closed loop response of the
event-based controller with the CFE approximation. The system
reaches its steady-state value with the same sampling time as in
the Muir approximation from Fig. 5b. However, the amplitude is
increased from 1 to approx. 1.5. Since the dynamics of the system
with the event-based controller differ from the classical approxi-
mation, an in-depth investigation is realized in Fig. 6 that analyzes
the effects of the event-based parameters on the system’s
response. More restrictive parameters are imposed in order to ver-
ify if the event-based strategy is able to obtain a similar result as
the one obtained with the Muir recursion. The implementation
from Fig. 5c uses a hmax value which is 20 times greater than the
nominal sampling time. The parameter hmax is varied to be 10 times
and 5 times greater than hnom ¼ 0:005 s and the results are dis-
played in Fig. 6. It can be observed that lowering the hmax value
leads to a better closed loop system response. For the current case
study, it can be stated that the Muir approach provides better
closed-loop system performance than the CFE implementation,
for the same fractional order event-based parameters.

The validation of the control strategy developed in [67] for the
SOPDT experimental platform involves the experimental endorse-
ment of the fractional order PI controller for reference tracking,
disturbance rejection and robustness. In order to validate the pro-
posed Muir event-based control strategy for the real-life test sce-
narios, disturbance rejection and robustness assessment are also
taken into consideration.

Fig. 7 presents the closed loop response of the experimental
platform equipped with the event-based fractional order PI con-
troller. A 0.2 disturbance, representing 20% from the steady state



Fig. 5. A fractional order PI controller applied to a SOPTD process.

Fig. 6. Closed-loop system performance analysis for varying parameters of the
event-based CFE implementation.

Fig. 7. Closed-loop system performance analysis for disturbance rejection of the
event-based Muir implementation.

Fig. 8. Closed-loop system performance analysis for robustness of the event-based
Muir implementation.
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value, is introduced at moment t = 20 s. The event-based imple-
mentation parameters b ¼ c ¼ 1;hnom ¼ Ts ¼ 0:005 s; hmax ¼ 0:2 s
and De ¼ 0:01 are the same as the ones used in Fig. 5. It can be seen
that the output converges to the desired set point value, rejecting
the disturbance. The event detector generates mostly process out-
put events during the transient regime, which is to be expected
from the event based implementation.

Fig. 8 targets the validation of the event based fractional order
controller in a robustness test scenario. The fractional order con-
troller from (28) has been tuned in [67] with respect to the iso-
damping condition, ensuring a certain degree of robustness of
the closed loop system to gain variations. Hence, the gain of the
SOPDT process from (27) is altered by 30% and the response of
the closed loop system to a unit step reference is analyzed. The test
is identical to the one used to generate Fig. 5b, featuring the same
event based implementation parameters. Comparing the nominal
and the altered process responses, it can be easily observed that
the settling time is increased from 6 to 10 s, as well as the over-
shoot soaring from approx. 10% to 40%. However, the event-
based fractional order PI controller has a robust behavior, despite
the large process’ gain modification.



Fig. 9. A fractional order PD controller applied to a FOTF process.
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The tests performed in Figs. 7 and 8 show that the event based
fractional order control strategy keeps the closed loop characteris-
tics obtained through the discrete time implementation, such as
disturbance rejection capabilities and robustness to gain variations.
It is important to emphasize that an event based fractional order
implementation does not aid in introducing a robust character of
the closed loop system, being truthful to the already existing fea-
tures of the controller implemented in the control input generator.

Fractional order transfer function

The last case study is focused on proving the applicability of the
proposed event-based strategy to complex fractional order (FOTF)
models. The transfer function

H sð Þ ¼ 0:1
s 0:005682s1:7263 þ 0:11031s0:8682 þ 1ð Þ ð29Þ

describes the braking effect of a non-Newtonian fluid, such as blood,
on a transiting submersible. The main applicability of the study
from [68], where the model and control have been developed, is
in targeted drug delivery biomedical applications. One of the main
request of the physical submersible is energy efficiency. This partic-
ular example is highly relevant to the proposed event-based frac-
tional order methodology in order to show that the method can
be useful to reduce computational effort in complex applications
where energy efficiency is paramount. The control of the sub-
mersible’s position is done using the fractional order PD controller

C sð Þ ¼ 65:0028 1þ 0:0305s0:6524
� �

: ð30Þ
Fig. 9a shows the response of the system with the classical

discrete-time implementations using 5th order Muir compared to
the CFE direct mapper with Ts ¼ 0:001 s. In order to be true to
the real process, the control signal that represents a PWM duty
ratio is saturated between 0;1½ �. Hence, the event-based fractional
order control strategy is tested on another real life situation where
the control signal range is limited. It can be seen that the dynamics
of the closed-loop system are similar for the three discrete-time
implementations.

The implementation parameters for the event-based Muir and
CFE controllers are b ¼ c ¼ 1; hnom ¼ Ts ¼ 0:001 s; hmax ¼ Ts ¼
0:005 s - 5 times greater than hnom and De ¼ 0:01 representing 1%
of the desired reference value. The closed-loop system responses
using the event-based fractional order controllers with the Muir
and CFEmappers are shown in Fig. 9b and c, respectively. Both con-
trollers obtain similar responses as their non-event-based imple-
mentation. However, it can be clearly observed that the Muir
realization of the discrete-time fractional order PD controller is the
better choice.

From the control effort perspective, the Muir approximation
computed the command value 380 times,whereas the CFE approach
computed it 473 times. Both implementations reduce the 1500num-
ber of computations realized with the non-event-based controller,
bringing an improvement of more than 70% to the control effort.

Conclusion

The paper presents the theoretical background and the valida-
tion of a novel control strategy that combines the benefits of com-
plex fractional order controllers with event-based
implementations. The method is based on direct discrete-time
mappers of fractional order operators. The theoretical aspects are
presented for the fractional order PID controller, but any fractional
order approach can be adapted given the provided guidelines. The
study is validated using four numerical examples targeting various
types of plants and all the fractional order PID controller variations.
The methodology has been successfully validated on every case
study using various direct discrete-time mappers, showing the
implementation versatility of the entire concept. For all four case
studies, both the Muir and CFE direct mappers obtained a similar
closed-loop performance as classical discrete-time implementa-
tions with a reduction of the control effort by at least 70% in every
scenario. For all the chosen test cases, the Muir recursion based
approximation provided a better closed-loop system response than
the CFE approach.

The proposed methodology is most beneficial in industrial set-
tings, where resource optimization and energy efficiency can dras-
tically reduce the costs of various plants, as well as component
wear over time.
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