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Abstract

Unifying approaches by amongst others Archimedes, Kepler, Goldberg, Caspar
and Klug, Coxeter, and Conway, and extending on a previous formalization
of the concept of local symmetry preserving (lsp) operations, we introduce a
formal definition of local operations on plane graphs that preserve orientation-
preserving symmetries, but not necessarily orientation-reversing symmetries.
This operations include, e.g., the chiral Goldberg and Conway operations as
well as all lsp operations. We prove the soundness of our definition as well as
introduce an invariant which can be used to systematically construct all such
operations. We also show sufficient conditions for an operation to preserve
the connectedness of the plane graph to which it is applied.

1 Introduction

Symmetry preserving operations on polyhedra have a long history – from Plato
and Archimedes to Kepler [Kep19], Goldberg [Gol37], Caspar and Klug [CK62],
Coxeter [Cox71], Conway [CBG08], and many others. Notwithstanding their utility,
until recently we had no unified way of defining or describing these operations
without resorting to ad-hoc descriptions and drawings. In [BGS17] the concept of
local symmetry preserving operations on polyhedra (lsp operations for short) was
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introduced. These replace each chamber in the barycentric subdivision of a polyhe-
dron with the same patch, which results in a new polyhedron while preserving the
original symmetries. This established a general framework in which the class of
all lsp operations can be studied, without having to consider individual operations
separately. It was shown that many of the most frequently used operations on
polyhedra fit into this framework.

However, some notable operations were not included. Most Goldberg opera-
tions and some of the extended Conway operations – like snub (see Figure 1), gyro,
propeller, etc. – are chiral, so they only preserve orientation-preserving symmetries.
In order to also cover these, we can generalize lsp operations by decorating double
chambers instead of single chambers, similar to what Goldberg did in [Gol37]
for Goldberg operations. We call these local orientation-preserving symmetry pre-
serving (lopsp) operations. In this paper, we formalize this approach for lopsp
operations as [BGS17] did for lsp operations.

→

Figure 1. The Conway operation snub applied to the cube, resulting in the
Archimedean solid called snub cube.

In the remainder of this section we introduce a combinatorial characterization
of plane graphs and the concept of chamber systems. These allow us to define lopsp
operations in Section 2. We prove that each lopsp operation can be represented by a
double chamber patch, but in contrast to the single chamber patch of a lsp operation,
this one is not necessarily unique. We introduce the double chamber decoration
of an lopsp operation, which can be easily constructed from the double chamber
patch but is independent of the chosen patch, and therefore unique for each
lopsp operation. After some auxiliary results, we prove that the double chamber
decoration is an invariant for equivalent lopsp operations. This makes it possible
to identify a lopsp operation with its double chamber decoration. In Section 3 we
give a combinatorial characterization of double chamber decorations independent
of the corresponding lopsp operation, and identify the double chamber decorations
of 2-connected and 3-connected lopsp operations. Such a characterization is one of
the first steps towards constructing a generation algorithm for lopsp operation as
was done in [GCC20] for lsp operations. Finally, we prove that 2-connected resp.
3-connected lopsp operations preserve 2-connectivity resp. 3-connectivity, which
makes it possible to see 3-connected lopsp operations as operations on polyhedra.
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1.1 Plane graphs and chamber systems

In this paper, we will consider a plane graph as a rotation system on the set of
directed edges.

Definition 1.1. A plane graph G is a triple (E,σ,θ) where E is a set of directed
edges, σ is a permutation of E and θ is a fixed-point-free involution of E.

This definition is equivalent to the more informal way of working with plane
graphs. The permutation σ(e) gives the next edge with the same source vertex as
e in clockwise direction, and θ (e) gives the inverse edge of e. Note that the set of
vertices is not explicitly defined, but can be retrieved as the set of orbits of 〈σ〉.
The orbit corresponding to a vertex v is the set of edges with source v. The faces
correspond to orbits of 〈σθ 〉, i.e. the set of edges with the face to its left. The size
of a face is the size of its corresponding orbit.

Every plane graph G has an associated chamber system CG [DH87]. This
chamber system is obtained by constructing a barycentric subdivision of G, i.e.
subdividing each edge by one vertex in its center, adding one vertex in the center
of each face, and adding edges from each center of a face to its vertices and centers
of edges. In CG , each vertex v has a type t(v) ∈ {0, 1, 2}, indicating the dimension
of its corresponding structure in G. Each edge e has the type t(e) of the opposite
vertex in an adjacent triangles. A chamber system CG is a plane triangulation.

We call a pair of chambers sharing a type-0 edge a double chamber. Each
chamber of CG is contained in exactly one double chamber.

Figure 2. The chamber system of the cube. Edges of type 0 are thin red, edges of type
1 are green and edges of type 2 are bold black. The green and black lines form the
boundaries of the double chambers. The types of vertices can be derived from the
incident edges.
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1.2 Chiral operations

An example of the construction of a chiral Goldberg operation is given in Fig-
ure 3. A quadrangular double chamber patch v1, v0, v2, v′0 consisting of the triangles
v1, v0, v2 and its counterpart v1, v′0, v2 is cut out of the hexagonal lattice H. Given
a plane graph G with chamber system CG , we can glue this patch into each double
chamber of CG . The result is a plane graph G′ with the same orientation-preserving
symmetries as G, but not necessarily the same orientation-reversing symmetries.

v2

v0

v′0

v1

Figure 3. The double chamber patch of a chiral Goldberg operation, with a simple
path P in dashed lines.

The symmetries of the hexagonal lattice ensure that after cutting and gluing the
patch everything still fits together. But in order to have a combinatorial approach
to the operations, we prefer to cut over a simple path P in CH instead of cutting
through edges and faces in arbitrary places. We will prove in Lemma 2.4 that it is
always possible to find such a path.

It would be easy if we could split the double chamber patch into two separate
triangles such that each triangle corresponds to the single chamber patch of an lsp
operation [BGS17], and decorate each of the two types of chambers of CG with
one of these two patches. Unfortunately, this is not always possible. In Figure 4,
such an example is given. This is a double chamber patch for the lopsp operations
snub.

2 Lopsp operations

We define lopsp operations in a similar way to lsp operations, but instead of
decorating each chamber with a single chamber patch, we will decorate double
chambers.

Definition 2.1. Let T be a connected tiling of the Euclidean plane with chamber
system CT , and let v0 and v2 be points in the Euclidean plane such that v0 is the
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v2

v0 v′0v1

Figure 4. A double chamber patch for snub (see Figure 1).

center of a rotation ρv0
by 120 degrees in clockwise direction that is a symmetry

of T and v2 is the center of a rotation ρv2
by 60 degrees in clockwise direction

that is a symmetry of T .
We call (T, v0, v2) a local orientation-preserving symmetry preserving operation,

lopsp operation for short.

Let v′0 = ρv2
(v0). The rotation ρv1

= ρv2
◦ρv0

is a rotation by 180 degrees with
center v1, and v′0 = ρv1

(v0).
In contrast to lsp operations, there is no obvious way to apply lopsp operations.

We want to cut out the double chamber patch v2, v0, v1, v′0 and glue it into each
double chamber, but the straight lines between these vertices do not always coincide
with edges of CT , and if we allow other cut-paths there are multiple possibilities
(see Figure 5).

v2

v0 v′0v1

Figure 5. Another double chamber patch for snub (see Figure 1).

It is not difficult to imagine that no matter how we cut out this patch, the
result after glueing them together will be the same. If we choose another path
between v1 and v0 or between v0 and v2, we have to adapt the path between v1
and v′0 resp. v′0 and v2 accordingly, and the changes will cancel each other out
when we glue the patches together. This suggests that if we identify the vertices
and edges on the border v1, v0, v2 of the patch with the vertices and edges on the
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border v1, v′0, v2, the result is a triangulation of the sphere invariant under the
chosen path. In Figure 6 the resulting triangulation for the snub operation is given.
We can even construct this triangulation without choosing a path.

v2v0v1

Figure 6. The double chamber decoration of snub (see Figure 1), with the simple
path corresponding to the double chamber patches of Figures 4 and 5 in dashed resp.
dotted lines.

For CT = (E,σ,θ), consider the quotient set E = E/〈ρv0
,ρv2
〉. With e the

equivalence class of e in E, we define

σ(e) = σ(e),

θ (e) = θ (e),

t(e) = t(e).

Definition 2.2. The plane graph (E,σ,θ ) described above together with labeling
function t : E → {0,1,2} and special vertices v0, v1 and v2 is called the double
chamber decoration of the lopsp operation (T, v0, v2).

Since for all e1, e2 ∈ E with e1 = e2 there exists a symmetry ρ ∈ 〈ρv0
,ρv2
〉

with ρ(σ(e)) = σ(ρ(e)), ρ(θ(e)) = θ(ρ(e)) and ρ(t(e)) = t(ρ(e)) such that
ρ(e1) = e2, it is easy to prove that σ, θ and t are well-defined and (E,σ,θ) is
indeed a plane graph. Although we defined the labeling function t only on edges,
the types of vertices can be easily derived from the types of its incident edges.

Lemma 2.3. The double chamber decoration of a lopsp operation is a plane triangu-
lation.

Proof. Since CT is a triangulation, we know that (σθ )3(e) = e for all edges e ∈ E.
It follows immediately that (σθ )3(e) = e for all edges e ∈ E. Since

t(σθ (e)) = t(σθ (e)) 6= t(θ (e)) = t(e) = t(e),

it is impossible that σθ(e) = e or (σθ)2(e) = e. Therefore, the size of each orbit
of 〈σθ 〉 is 3, which means that all the faces are triangles.
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Now that we obtained the double chamber decoration D without choosing a
cut-path, we can choose a path in D instead of CT . This is easier to do, because
we do not have to take the symmetries into account. We can always find a path
along the edges of CT , without crossing through edges or faces.

Lemma 2.4. If D is the double chamber decoration of a lopsp operation, there exists
a simple path P between v1 and v2 through v0.

Proof. Since D is a plane triangulation, it is 3-connected and therefore also 2-
connected. It stays 2-connected if we temporarily add a vertex w with edges to v1
and v2. By Menger’s theorem [Men27], there exist two disjoint paths between w
and v0. This is only possible if there are disjoint paths from v1 to v0 and from v0
to v2.

We apply a double chamber decoration D to a plane graph G by cutting D open
along the simple path P from the lemma above, which is the subdivided patch
v1, v0, v2, v′0 that we glue into each double chamber of G. Instead of cutting and
gluing, we can describe this application combinatorially.

Denote the set of directed edges on the path from v2 to v0 by P2, and their
inverses by P ′2. Denote the set of directed edges on the path from v1 to v0 by P1,
and their inverses by P ′1.

There is a one-to-one correspondence between the directed edges of a plane
graph G = (E,σ,θ ) and the double chambers of CG , where each edge e corresponds
to the double chamber ce immediately to its left. The operations s1(ce) = cθ (e) and
s2(ce) = cσ−1θ (e) correspond to traversing the cyclic order around vertices of type
1 resp. 2. We call the set of double chambers of G along with s1 and s2 the double
chamber system of G.

v0
v1

v2

P ′2

P2

P ′1

P1

Figure 7. A double chamber decoration with simple path P.

Definition 2.5. Given a plane graph G with double chamber system C and a double
chamber decoration D = (E,σ,θ) with simple path P satisfying Lemma 2.4, the
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application of (D, P) to G results in a plane graph DP(G) = (E × C ,σP ,θP) with
σP((e, c)) = (σ(e), sP,e(c)) and θP((e, c)) = (θ (e), sP,e(c)) where

sP,e =



























s2 if e ∈ P2

s−1
1 if e ∈ P1

s−1
2 if e ∈ P ′2

s1 if e ∈ P ′1
1 else

It is possible that there is more than one simple path that satisfies Lemma 2.4.
We still have to prove that the result of the operation does not depend on the
chosen path P. We will do that in Theorem 2.7, but we first introduce some new
terminology.

Given a double chamber decoration D with two simple paths P and Q satisfying
Lemma 2.4, consider the subgraph of CD consisting of all the edges in P and Q (see
Figure 8 for an example). In order to avoid confusion, we will refer to the faces of
this subgraph as regions. With each directed edge e of CD we associate exactly one
region Re. If e is an edge in P or Q we choose the region at the left-hand side of e,
and for all other edges we choose the containing region. A region path R0, . . . , Rn
is a sequence of regions such that for each i < n there exists an edge ei ∈ Q \ P
such that ei is associated with Ri and θ (ei) is associated with Ri+1. A region path
corresponds to the operation r1 ◦· · ·◦ rn with ri = sQ,ei

. Two region paths are called
equivalent if they correspond to the same operation.

v0
v1

v2

Figure 8. The regions of the double chamber decoration of snub (see Figure 6) with
two simple paths.

Lemma 2.6. Given a double chamber decoration D with two simple paths P and
Q satisfying Lemma 2.4, there exists a region RP,Q such that there is a region path
between RP,Q and a region incident to v2 with an associated operation of the form
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sk
2, and a region path between RP,Q and a region incident to v1 with an associated

operation of the form sl
1.

Proof. Choose a region path R = R0, . . . , Rn with R0 incident to v1 and Rn incident
to v2 and associated operation r = r1 · · · rn. Such a region path exists because P
contains no cycles, so all regions are connected. If we add one vertex in each region
and one vertex on each edge in Q, and an edge between a vertex in a region and a
vertex on an edge if the edge is in the border of the region, this region path induces
a path on these edges in a canonical way, and each operation ri corresponds to an
intersection of R and Q. An example is given in Figure 9.

v0
v1

v2

P

Q
R

(a)

R

ri

Q t

r j

ra

Qs

rb

(b)

Figure 9. Examples of region paths

We will prove that if ri and r j correspond to two intersections of R and Q t with
t ∈ {1,2} that are consecutive on Q t , then ri+1 · · · r j−1 is the identity operation.
For j = i + 1 this is obvious. Suppose j > i + 1. The subpath of Q t between ri and
r j together with the region path between ri and r j forms a closed cycle. If there
is an intersection with Qs in ra with a = i + 1, there will be another intersection
in rb with a < b < j and rb = r−1

a , as illustrated in Figure 9. We can assume by
induction that ra · · · rb = rarb = 1. If b < j − 1, we can repeat this for a = b+ 1
until b = i + 1 and thus ri+1 · · · r j−1 = 1.

Take m so that rm ∈ {s1, s−1
1 } and ri ∈ {s2, s−1

2 } for all i > m. If Q2 crosses R
in ra with 1 < a < m and ri ∈ {s1, s−1

1 } for i < a, it will cross again in rb with
a < b < m, and ra · · · rb = 1. We can repeat this as long as there is an rc ∈ {s2, s−1

2 }
with b < c < m, until r1 · · · rm = sk

1. Since rm+1 · · · rn = sl
2, the region between rm

and rm+1 satisfies the conditions of RP,Q.

We are now ready to prove that the application of a double chamber decoration
D = (E,σ,θ) to a graph G with double chamber system C is independent of the
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chosen simple path P. In order to do that, we will construct an isomorphism
between the plane graphs DP(G) and DQ(G), with Q another simple path satisfying
Lemma 2.4. By choosing the region RP,Q, we fix canonical points RP,Q × C that will
be invariant under this isomorphism.

Theorem 2.7. Given a plane graph G with double chamber system C and a dou-
ble chamber decoration D = (E,σ,θ) with two simple paths P and Q satisfying
Lemma 2.4, there exists an isomorphism between DP(G) and DQ(G).

Proof. Choose a region RP,Q satisfying Lemma 2.6 and consider the function

f : E × C → E × C : (e, c) 7→ (e, sP,Q,e(c))

with sP,Q,e the operation associated with a region path from RP,Q to Re. We will first
prove that f is a homomorphism between DP(G) and DQ(G). Since

σ( f ((e, c))) = σ((e, sP,Q,e(c))) = (σ(e), sQ,esP,Q,e(c))

f (σ((e, c))) = f ((σ(e), sP,e(c))) = (σ(e), sP,Q,σ(e)sP,e(c)),

θ ( f ((e, c))) = θ ((e, sP,Q,e(c))) = (θ (e), sQ,esP,Q,e(c))

f (θ ((e, c))) = f ((θ (e), sP,e(c))) = (θ (e), sP,Q,θ (e)sP,e(c)),

we only have to prove that sQ,esP,Q,e = sP,Q,σ(e)sP,e.
Consider the case sP,e = 1. The operation sP,Q,σ(e), corresponding to a region

path from RP,Q to Rσ(e), is equal to sP,Q,e followed by the operation corresponding
to the region path crossing e, which is sQ,e. Therefore, sP,Q,σ(e)sP,e = sQ,esP,Q,e.

If sP,e = s1, there is a region path from RP,Q to Re consisting of a region path
from RP,Q to a region R1 incident to v1, corresponding to operation sk

1, followed by
a region path from R1 to Re, corresponding to operation r. Since e ∈ P ′1, the region
path from R1 to Re can follow the left-hand side of P1. The region path from RP,Q
to σ(e) starts with the same region path to R1. We can now follow the region path
along the right-hand side of P1 to Rσ(e), corresponding to operation r ′, after we
go around v1 which corresponds to operation s−1

1 . In Figure 10, we see that r ′ is
equal to r followed by sQ,e. Therefore,

sP,Q,σ(e)sP,e = r ′s−1
1 sk

1s1 = sQ,ersk
1 = sQ,esP,Q,e.

For sP,e equal to s−1
1 , s2 and s−1

2 , the proof is similar.
Suppose f ((e, c)) = f ((e′, c′)), i.e. (e, sP,Q,e(c)) = (e′, sP,Q,e′(c′)). It follows

immediately that e = e′, and since sP,Q,e is a permutation we have that c = c′. Thus
(e, c) = (e′, c′) and f is injective. For each (e, c) ∈ E × C , f ((e, s−1

P,Q,e(c))) = (e, c),
and thus f is surjective.

Since f is a bijective homomorphism, it is an isomorphism between DP(G) and
DQ(G).
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e

RP,Q

sk
1r

r ′

e

RP,Q

sk
1r

r ′

e

RP,Q

sk
1r

r ′

Figure 10. Some examples for sP,e = s1

3 Double chamber decorations

In the previous section we constructed the double chamber decoration for a
given lopsp operation. This double chamber decoration contains all the necessary
information in order to apply the decoration to an embedded graph, but does not
depend on the tiling T or the simple path P chosen to define and apply the lopsp
operation. Since two lopsp operations are equivalent if and only if they have the
same double chamber decoration, it is easier to work with the double chamber
decorations directly instead of deriving them from lopsp operations. But in order
to do that, we need a full characterization of these graphs. This is similar to what
we did for lsp operations in [GCC20].

Theorem 3.1. A plane triangulation D with vertex set V and edge set E, together
with a labeling function t : V ∪ E→ {0, 1, 2} and three special vertices v0, v1, v2 is a
double chamber decoration of a lopsp operation if and only if

1. for each edge e = (v, w), {t(e), t(v), t(w)}= {0,1,2}

2. for each vertex v with t(v) = i, the types of the edges incident to v are alter-
nating between j and k with {i, j, k}= {0,1, 2}

3. for each vertex v different from v0, v1, v2

t(v) = 1 ⇒ deg(v) = 4

t(v) 6= 1 ⇒ deg(v)> 4

and

t(v0), t(v2) 6= 1

deg(v0), deg(v2)≥ 2

t(v1) = 1 ⇒ deg(v1) = 2

t(v1) 6= 1 ⇒ deg(v1)≥ 4

Proof. It is easy to verify that the double chamber decoration of a lopsp operation
satisfies these properties.
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Given a graph D that satisfies the properties, there exists a simple path P
between v1 and v2 through v0, since the proof of Lemma 2.4 holds for all plane
triangulations. We can cut D open along this path to get a subdivided patch D′,
and glue this patch into each double chamber of the hexagonal lattice H. The
result will be a chamber system CT of a tiling T .

We will now prove that the type-2 subgraph of D′, consisting of all type-2
edges, is connected. Let u and v be two vertices in the type-2 subgraph. Since
every face of D′ is a cycle, D′ is 2-connected. Menger’s theorem [Men27] gives
us that there exist two vertex-disjoint paths between u and v. Since all faces of
D′ except for the outer face are triangles, these two paths form a cycle with only
triangles on the inside. Since u is in the type-2 subgraph, it has type 0 or 1, and
there is an edge (u, u′) of type 2 on or in the cycle. If u′ 6= v, we can do the same
for vertices u′ and v, and we can choose a cycle that contains less triangles than
the previous one. By induction, there exists a path between u and v in the type-2
subgraph of D′.

Given vertices u and v in the type-2 subgraph of CT , there exists a sequence of
chambers C0, . . . , Cn of H such that two consecutive chambers Ci and Ci+1 share
one side, and u is contained in C0 and v in Cn. Since there are at least two vertices
on each side of D′, and they are not both of type 2, at least one of them is in the
type-2 subgraph of CT . Thus, there is a type-2 path between u and v that passes
through all chambers in the sequence C0, . . . , Cn, and the type-2 subgraph of CT is
connected. It follows immediately that T is connected too.

We can choose the vertices of one double chamber of CH in T as v0, v1, v′0
and v2. Now (T, v0, v2) satisfies Definition 2.1 of a lopsp operation, and the double
chamber decoration of this lopsp operation is D.

We call a lopsp operation and the corresponding double chamber decoration
k-connected if it is derived from a k-connected tiling T . For the following results,
we need a lemma from [GCC20], which we will repeat here without proof.

Lemma 3.2. A plane graph G is
1. 2-connected if and only if CG contains no type-1 cycles of length 2.

2. 3-connected if and only if G is 2-connected and CG contains no non-empty
type-1 cycles of length 4.

Theorem 3.3. If G is a k-connected plane graph with k ∈ {1,2,3} and O is a
k-connected lopsp operation, then O(G) is a k-connected plane graph.

Proof. Suppose O is derived from a tiling T as in Definition 2.1.
For k = 1, we know that T and G are connected, and it follows easily that

O(G) is connected too.
For k = 2, we will prove that O(G) is 2-connected. A type-1 cycle of length 2 in

CO(G) is either completely contained in an area that was one double chamber of CG
before it was subdivided by O, or it is split between two areas of adjacent double
chambers. Both cases cannot appear, as for any double chamber (resp. any pair of
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adjacent double chambers) of CG there is an isomorphism between the area of this
double chamber (resp. two double chambers) in CO(G) and the corresponding area
in T , and T is connected and thus has no type-1 cycles of length 2. This implies
that CO(G) contains no type-1 cycles of length 2.

For k = 3, we will prove that O(G) is 3-connected. Consider a type-1 cycle C
with edges e1, . . . , en in CO(G). Let C1, . . . , Cn be a sequence of double chambers of
CG such that ei is contained in the area of Ci for 1 ≤ i ≤ n. If Ci = Ci+1, we can
remove Ci from the sequence. This results in the reduced sequence C1, . . . , Cm.

If C has length 2, then m ≤ 2. Thus, the cycle is contained in one or two
neighboring areas, and it should be present in the tiling T too, which is impossible.

If C has length 4, then m ≤ 4. Thus, the cycle is contained in the areas of at
most 4 double chambers of CG , and each double chamber has at least one vertex or
edge in common with the previous and next one, but not the same for both of them.
We will now construct a type-1 cycle in CG though these chambers. Depending on
the position of the common elements in each double chamber, we choose type-1
edges of CG as in Figure 11.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 11. The thick red vertices and edges are the ones in common with the previous
and next double chambers. The dashed green edges are part of the chosen cycle. The
choice between (e) or (f) and (i) or (j) depends on the choice in the double chamber
below (the cycle has to be connected).

This results in at most 4 edges that form a type-1 cycle or single edge C ′ in
CG. In Figure 11 we choose two edges, but since v0 and v′0 are of the same type,
the path between them on the cycle C has to be at least of length 2 too. If C ′ is a
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type-1 cycle, it has to be empty since G is 3-connected. Thus, the situation is as in
Figure 12.

The type-1 cycle C in CO(G) is completely contained in the areas of double
chambers of CG adjacent to C ′. The only situation where this would not necessarily
imply a type-1 cycle in CT is when C is a cycle of length 4 surrounding a type-2
vertex. This implies that C passes though 3 or 4 areas corresponding to double
chambers of CG, as illustrated in Figure 12. There are at least two areas that
contain only one edge of C . But since all the areas are isomorphic, it is easy to see
that this is impossible.

(a) (b) (c)

Figure 12. The type-1 cycle C ′ with adjacent double chambers.

This theorem is particularly interesting for k = 3, for which it says that 3-con-
nected lopsp operations are operations on polyhedra.
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