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Samenvatting

We gebruiken onze smartphone om berichten te verzenden en foto’s te nemen,
we verzenden en ontvangen e-mails, onze activity tracker registreert onze
dagelijkse activiteit en beweging, . . . Deze en vele andere apparaten die in
ons leven geïntegreerd zijn, creëren continu nieuwe data. Een deel van deze
data, zoals e-mails en foto’s, kunnen voor ons echt waardevol zijn. We willen
er dan ook voor zorgen dat deze niet verloren gaan. Daarom hebben veel
mensen een back-up van hun bestanden op een harde schijf of in de cloud,
via diensten zoals Dropbox en iCloud. Opslag in de cloud heeft verschillende
voordelen. Enerzijds kan je bestanden openen op elk toestel dat verbonden
is met het internet, aan de hand van een login. Anderzijds zijn bestanden
in de cloud ook beschermd tegen lokale fouten, zoals het falen van je harde
schijf. Bestanden opslaan in de cloud heeft natuurlijk ook een prijs. Opslag
tot 200GB op iCloud kost ongeveer 3$ per maand.

In een organisatie zijn er, naast de activiteiten van haar werknemers,
veel meer mogelijkheden voor het genereren van nieuwe data. Interne e-mails,
documenten, contracten, conversaties en de details van alle producten moeten
worden opgeslagen voor eventueel later gebruik of voor een audit. In veel
organisaties moeten zelfs de telefoongesprekken en videochats worden opges-
lagen voor bewakingsdoeleinden. Deze bedrijven kunnen ook het gebruik van
hun producten registreren om betere services te bieden. Zo zouden Amazon
en Coolblue bijvoorbeeld bijhouden naar welke producten hun gebruikers
kijken op hun webpagina en op andere webpagina’s, om aan de hand van deze
informatie gerichte advertenties te tonen. Nu moet al deze data ergens worden
opgeslagen waar het gemakkelijk toegankelijk is én beschermd is tegen lokale
storingen. De waarde van deze nieuwe entiteit ’data’ is de afgelopen decennia
erkend en er wordt gezegd dat data het goud van deze generatie is. Veel
grote bedrijven zoals Google en Facebook genereren het grootste deel van hun
inkomen door de gegevens van hun gebruikers te gebruiken voor advertenties.
In dit proefschrift kijken we naar een veilige opslag van deze waardevolle
entiteit tegen lage kosten. Analoog zou je kunnen zeggen dat we kijken naar
enkele aspecten van het voorraadbeheer van het goud van onze generatie.

In dit proefschrift onderzoeken we de prestatie van data back-ups op
cloud services aan de hand van stochastische modellen. Gebruikers genereren
nieuwe data die nadien worden overgedragen en opgeslagen in de vorm van
pakketten. Deze pakketten moeten zo snel mogelijk na het creëren ervan



x Samenvatting

opgeslagen worden. De stochastische modellen omvatten de onzekerheden
van onderliggende componenten, zoals de hoeveelheid tijd die nodig is om
de opslagoperaties uit te voeren en de onzekere manier waarop nieuwe data
gegenereerd wordt. Dit proefschrift heeft voornamelijk als doel om de perfor-
mantie van deze opslagoperaties te evalueren, en om de afhankelijkheid tussen
de verschillende parameters van dataopslag te kwantificeren. Het berekenen
van deze prestatiematen helpt ons in het optimaliseren van de performantie
van de operaties waarbij we verzekeren dat ze gedaan worden tegen een
degelijke kost.

Naast het bestuderen van data back-ups, analyseren we ook de perfor-
mantie van streaming algoritmes op Virtual Reality (VR) headsets. VR
headsets worden gebruikt om gebruikers een meeslepende digitale beleving te
geven wanneer ze (bijvoorbeeld) naar een film kijken of een videospel spelen.
In dit proefschrift analyseren we het gedrag van gebruikers die kijken naar een
3600 video en stellen we een Quality of Experience (QoE) bewust algoritme
voor. Hierbij wordt enkel dat deel van de video in het gezichtsveld van de
gebruiker, genoemd de Field of View, verzonden met de hoogste kwaliteit.
Het algoritme dat we voorstellen houdt rekening met de onzekerheden bij het
voorspellen van toekomstige posities van het hoofd van de gebruiker, evenals
met de onbetrouwbaarheid van het netwerk. Het algoritme selecteert dan
de meest geschikt sectie van de video om te verzenden. Het voornamelijkste
doel van het algoritme is het vooraf ophalen van de toekomstige video secties
wanneer de netwerk condities goed zijn, om zo de impact van de netwerk
variaties te verminderen.

Beide onderzoeksonderwerpen omvatten een gemeenschappelijk thema,
namelijk het meten van de prestatie en het garanderen van een hoge
QoS/QoE, rekening houdend met de onzekerheden van de onderliggende
processen en de bijhorende kosten.

Na een inleidend hoofdstuk ontwerpen we in Hoofdstuk 2 een stochastisch
model voor het opslaan van data op cloud services. We includeren het
‘batch service’ karakter van de datatransmissie en de onzekerheid van de
bedieningstijden die vereist is om inkomende data te verwerken binnen het
model. Met behulp van dit model, kunnen we de distributie van de QoS
prestatiematen berekenen zoals de age of data en de backlog size. Aan
de hand van deze resultaten formuleren we vervolgens een optimalisatie
probleem om de optimale opslagparameters te berekenen. Het doel van dit
optimalisatieprobleem is om de kost voor het uitvoeren van deze operaties te
minimaliseren. De QoS eisen zoals de limiet op de backlog size en de age of
data, zijn geformuleerd als de beperkingen van dit optimalisatie probleem.

In Hoofdstuk 3 analyseren we in meer detail het gedrag van een van de
meest cruciale prestatiematen: de age of data. Na het berekenen van de
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probabiliteitsgenererende functie (PGF) van de age of data, gebruiken we de
dominante singulariteiten analyse om meer inzicht te krijgen in de prestatie
van dataopslag systemen. Tenslotte gebruiken we deze resultaten om een de
optimale trigger tijd te berekenen voor opslagsystemen met een ingebouwd
trigger mechanisme.

Sommige oplossingen leggen strenge beperkingen op de age of data, en
het verzekeren van de age of data binnen de opgelegde grenzen kan net
cruciaal zijn voor QoS objectieven. Daarom onderzoeken we in Hoofdstuk 4
een model met een drempelwaarde op de tijd sinds de vorige back-up. Het
model bestudeerd in Hoofdstuken 2-3 en het model in Hoofdstuk 4 hebben
enkele belangrijke verschillen die leiden tot verschillende voordelen, gebaseerd
op de wensen van de opslag provider. Bijvoorbeeld, het model bestudeerd
in Hoofdstuk 4 omvat een drempelwaarde op de tijd sinds de vorige back-up
binnen het model. Het model bestudeerd in Hoofdstuken 2-3 daarentegen,
houdt rekening met (probabilistische) herstart-voorwaarden en heeft een lagere
computationele complexiteit. Met behulp van beide modellen zijn we in staat
om de sensitiviteit te meten van de prestatie van de opslagoperaties op de
opslagparameters die het back-up schema bepalen.

In Hoofdstuk 5 stellen we een streaming algoritme op VR headsets voor.
We doen een experiment waar we het gedrag bijhouden van een gebruiker
tijdens het bekijken van een 3600 videos op een headset. Met behulp van deze
analyse bouwen we een hoofdbeweging voorspellingsmodel. Voorts wordt het
draadloos netwerk waarover de video wordt verzonden gemodelleerd als een
Markov proces. Elke toestand in het Markov proces definieert de beschikbare
bandbreedte, alsook de prestatiekost in die condities. Dit algoritme, gebaseerd
op een Markov Decision Process (MDP), bepaalt welk videofragment moet
worden gedownload om een hoge QoE voor de gebruikers te garanderen tegen
een redelijke kost. Het voornamelijkste doel van dit werk is de balans bewaren
tussen het resource verbruik (netwerk en batterij) en de QoE (kwaliteit
van de video voor gebruikers), en het voorstellen welk stuk van de video te
downloaden om te zorgen dat deze balans wordt behouden.
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Summary

Most of our daily activities result in the generation of new data in some way.
Our mobile phones are used to send messages and click pictures, we send and
receive emails, our health devices log our activities and exercises, and many
other devices which have integrated in our lives, generate data. Some of this
data such as emails and photos might be really valuable to us and we would
want to ensure that it is not lost. Therefore, many individuals keep a backup
of their files on hard drives or on a cloud service such as Dropbox, iCloud
etc. Storage using a cloud service has an advantage that those files can be
accessed by login from any device connected to the internet. It also ensures
safety from local failures, that is, if your hard disk fails all the files stored
on it are lost permanently. In cloud storage, files are replicated to ensure
safety from such failures. However, these storage features come at a price,
for instance storage of 200GB on iCloud comes at a price of about 3$ per month.

In an organisation, in addition to the activities of its employees, there
are many more avenues of new data generation. Internal emails, documents,
client contracts and conversations as well as the details of all the products have
to be stored for possible later use or an audit. In many organisations, even the
phone calls and video chats have to be stored for monitoring purposes. These
businesses may also log the usage of their products to provide better services.
For example, websites like Amazon and Coolblue track what their users view
on their webpage as well as other webpages they visit on the internet to show
targeted advertisement. Now all this data needs to be stored somewhere
where it is easily accessible and safe from local failures. The value of this
new entity ’data’ has been recognized in the past decades and it is said that
data is the new oil of this generation. Many big corporations such as Google,
Facebook generate a majority of their income by using data of their users for
advertisement. In this dissertation, we are looking at a safe storage of this
valuable entity at a low cost. Analogously, one could say we are looking at
some aspects of the inventory management of the new oil of our generation.

In this dissertation, we investigate the performance of data backups on
cloud storage using stochastic models. New data is generated by the users
which is transferred and stored in the form of packets. Moreover, these data
packets should be stored as quickly as possible after creation. The models
capture the uncertainties in the underlying components such as the amount
of time it takes to complete storage operations as well as the randomness in
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the way new data is generated which needs to be stored. The main goal of
this dissertation is to evaluate the performance of these backup operations
and quantify their dependence on the different parameters of data storage.
Computing these measures helps us in optimizing the performance of these
operations while ensuring that they are done at a reasonable cost.

In addition to data backups, we also investigate the performance of streaming
algorithms on Virtual Reality (VR) headsets. VR headsets are used to provide
an immersive digital experience to its users ranging from watching movies,
gaming to virtual tours. In this dissertation, we analyze the behavior of users
watching a 3600 movie and propose a Quality of Experience (QoE) aware
streaming algorithm. Videos streamed on these headsets are transmitted such
that only the portion of video in the view of the user, called the Field of
View, is in the highest quality. The algorithm we propose takes into account
the uncertainties of predicting the future head positions of a user as well
as the unreliability of the network. The algorithm then proposes the most
appropriate section of the video for future transmission. The main goal is to
pre-fetch the expected future video sections when the network conditions are
good to mitigate the impact of network variations.

Both these research topics have a common theme, which is to compute
the performance and ensure a high QoS/QoE while taking into account the
unreliability of the underlying processes and their costs.

In the first part, we build a stochastic model of data storage using cloud
storage services. We include the batch service nature of data transmission,
and the uncertainty of the service time required to serve incoming data within
the model. Using this model, we are able to compute the distribution of
the Quality of Service (QoS) measures of the data storage processes such as
age of data and backlog size. Further, using these results we formulate an
optimization problem to compute the optimal storage parameters. In this
optimization problem, the objective is to minimize the cost of performing
these operations. Moreover, the QoS requirements such as a limit on backlog
size and age of data are formulated as the constraints of this problem.

We further investigate the behavior of one of the crucial performance
measures, the age of data, in more depth. After computing the probability
generating function (PGF) of this measure, we use dominant singularity
analysis to gain insight into the performance of storage systems. We then
utilize these results to compute the optimal time trigger for storage processes
which have an inbuilt trigger mechanism.

Some storage solutions enforce strict limits on the age of data, and en-
suring the age of data is within the limits may be crucial to their QoS
objectives. Therefore, in further chapters we investigate a model where a
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threshold on the time since the last backup is included within the model. The
model studied in chapter 2-3 and chapter 4 have some key differences which
provide different advantages based on the aim of the storage provider. For
instance, the model studied in chapter 4 includes a threshold on the time
since last backup within the model. While, the model studied in chapter
2-3 implements probabilistic restarting conditions and has a much smaller
computational complexity. Using either of these models, we are able to
compute the sensitivity of the performance of storage operations on the
storage parameters which determine the backup schedule.

In the last part of the dissertation, we propose a streaming algorithm
on VR headsets. We perform an experiment where we log the user behavior
while watching 3600 videos on a headset. Using this analysis we build a head
movement prediction model. Further, the wireless network over which the
videos are transmitted is modelled as a Markov process where each state
defines the available bandwidth as well as the cost of performing operations
in those conditions. This Markov Decision Processes (MDP) based algorithm
determines which part of the video should be downloaded to ensure the user
experiences high service quality at a reasonable cost. The main goal of this
work is to ensure a balance between the resource usage (battery and network)
and Quality of Experience (Quality of the video shown to the user) and
to propose which part of the video to download to ensure this balance is
maintained.
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1
Introduction

Until a couple of decades ago, setting up a new business, which required an IT
branch, was an extremely challenging task. The whole setup of infrastructure
had to be implemented independently by each company and maintained indi-
vidually using their own resources and man power. In 2006 the whole industry
was revolutionized when the concept of cloud infrastructure was introduced.
This infrastructure service was introduced by Amazon as Amazon Elastic com-
pute cloud (Amazon EC2) service [6] which offered infrastructure for computing
on demand. With the vision of cloud services, in particular IAAS (Infrastruc-
ture As A Service) (see [7]), this service was opened to other companies for a fee.
In a short period, this division became a major revenue generator for Amazon.
For instance, in the fourth quarter of 2019, Amazon Web Services (AWS) [8]
generated 9.95 Billion $ in sales for Amazon, about 34% higher than previous
year [9]. In the past few years, Microsoft, Google, IBM and other companies
have introduced their own platforms for such services. However, Amazon still
accounts for about 33% of the market share of the whole industrial revenue,
about twice the size of the second largest provider Microsoft Azure [10]. Other
big corporations such as IBM [11] also offer their platforms for IAAS.

1.1 Overview of cloud services industry
Overtime, this cloud services industry has grown into a 325.1 Billion $ industry
in 2018 and expected to grow up to 528 Billion $ by 2022 [12]. With the
introduction of this new technology, setting up an IT infrastructure has
become quick, easy and cost effective. The companies can now just enter into
a service contract with these providers and use standard protocols to run
and manage their operations. Most importantly, the cloud service providers
guarantee a high Quality of Service (QoS) as a part of the contract. To
ensure that such high QoS standards are maintained, they actively manage
and maintain the whole cloud infrastructure internally. A downtime/failure
of the setup can result in heavy economic losses for such companies, for
example see [13]. Therefore, keeping the infrastructure running is of utmost
priority to them. Cloud management is therefore one of the top researched
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areas of computing, for example see [14, 15, 16]. For a company, it is
very convenient and reassuring that they do not have to worry about the
intricacies of the infrastructure management and can focus on their business
development. Moreover, their engineers do not have to spend days and weeks
reinventing the wheel by setting up the infrastructure locally for their company.

One of the challenging aspects of today’s world is the reduction of green house
gas emission. It has been estimated that about 2% of the green house gas
emission is generated from the ICT industry. The US Environment protection
Agency also estimates that about 1.5% of the total power produced in the US
was used for Data center computing [17]. Therefore, by pooling the resources
and having a common infrastructure setup improves the utilization of resources
which leads to reduction of energy usage. Studies such as [18] have analyzed
that the requirement of data storage technologies will grow exponentially and
may grow to as high as 40 ZB by 2020 from 1.8 ZB in 2011. With this rapid
increase machines need to schedule data backup processes efficiently and cost
effectively.

By pooling the resources, the cloud service providers are able to provide
some remarkable benefits of data safety which would not be possible with local
storage (see [19]). Some of the main ideas of this technology include

• Replication : Companies want to ensure that the data they store is safe.
To avoid data loss in case of a failure, multiple copies of data are main-
tained on different machines across different hard drives and tapes as
a safeguard mechanism. That is, when an image is stored, a couple of
more copies of this image will be stored on different hard drives. Data
centers are able to provide this replication at a much higher safety level
and security. Since they are located at multiple locations across different
countries, the extra copies of data can be stored on different continents
entirely to provide safety in case of a natural calamity.

• Ease of setup : Customers are charged a fee based on the space they use
and how often these services are used. To access the data stored on the
cloud infrastructure, standard protocols have been implemented to do a
very wide range of tasks and operations which fulfil most of the industry
requirements.

• Service on demand : Data centers consist of many small machines oper-
ating from a single area. It would be unwise to keep all these machines
running at all times. Therefore, the number of machines in operation
is determined by the ongoing demand. This feature truly captures the
essence of resource pooling which improves the resource utilization of all
the machines. By switching off servers when there are few users, the
energy consumption of operating the servers and cooling is reduced.

• Availability : Customers can decide how critical it is for them to be
able to access the data all the time. Since all the machines are not



1.1 Overview of cloud services industry 3

operational all the time, all the data may not be accessible 100% of the
time. Therefore, customers are given an option to select the availability
from 95%, 99%, 99.99% etc. The common terminology used is the number
of 9s of availability, i.e., five 9 availability implies data is available for at
least 99.99999% of the time [20]. The data center then has to manage its
operations that it can ensure this level of availability in the long run.

• Cost of usage : As stated earlier, these companies charge their customers
for the amount of space utilized (amount of data stored). Additionally,
they also charge for the number of times their infrastructure is requested
for a new operation.

In the past few years, organizations have moved from local storage systems
to cloud storage systems. Moreover, new businesses are building their infras-
tructure using the services of public cloud system providers. The security
provided by data replication at geographical level is something most small
or medium enterprises can not afford to implement. Amazon publishes case
studies listing its users, [21], which contains some well known new companies
such as Coursera [22], Netflix [23], Airbnb [24], Spotify [25]. It also contains
some well established companies such as General Electric [26], Hitachi [27],
NASA [28], SAP [29] and Ubisoft [30]. This range and variety of users of
cloud services of Amazon alone highlights the scale at which cloud storage
is being adopted by the industry in a span of less than a decade. Therefore,
the majority of the data generated in future is expected to be stored on cloud
storage infrastructure (see [31]).

Cloud storage industry was worth US$25.171 billion in 2017 and is ex-
pected to be worth US$92.488 billion in 2022 [32]. This growth has been
driven by the huge volume of data that is being generated every day (see
[33]). Recently, studies have shown that this amount is continuing to grow
exponentially. A study by the international data corporation ( see [34]) has
estimated that the amount of data generated would reach 163ZB by 2025
which is approximately 10 times the data generated in 2016. Industries
have started adopting public clouds for storage and operations. Therefore,
it is important to study and analyze cloud infrastructure systems and processes.

Running operations on the cloud comes with a lot of ease and speed.
However, one has to be careful of the costs involved. It is cheaper to run
operations on the cloud than setting up their own infrastructure for a medium
sized enterprise. However, it still costs a few million dollars to run such
operations. In this dissertation we focus on the cloud backups which alone is
a multi-Billion $ industry [32]. As stated earlier, the companies are not only
charged for the amount of data stored, but also for the number of times the
cloud infrastructure is requested for a new operation. Therefore, to be able to
run operations smoothly and at a reasonable cost, it is critical to design and
schedule these operations. At the same time we need to ensure a good QoS at
this reasonable cost.
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Figure 1.1: Components of the backup process

1.2 Data backups
A cloud data backup process in an organization involves several components as
illustrated in Figure 1.1. This setup is commonly used across the industry to
perform their cloud data backups, such as backup services offered by company
[35]. Generally, the cloud infrastructure services are provided by an external
organization such as [8, 10]. Data is stored in form of packets and the backup
process as a whole include moving these packets on the infrastructure of cloud
service provider as well as creating a replica of the packets. Performing data
backups utilizes three major components, one on the side of the organization,
and two on the cloud service provider.

• Backup server: The organization which rents the computing services of
the data center, has a dedicated node to perform the communication
and backup operations for the whole organization. Therefore, all the
computers and storage nodes communicate to the cloud service provider
through this node. When data is available to be uploaded to cloud, this
backup server decides when a backup operation needs to be done. An
operation request is sent to the cloud infrastructure when an operation
is desired by the backup server.

• Namenode: The namenode manages all the requests that need to be
run on the cloud infrastructure, including the requests from the backup
servers. This node monitors the health of the infrastructure and all the
components involved. If a failure is detected, necessary operations are
taken by the name node. For instance, if it is detected that a storage node
has failed which increases the risk of data loss, the namenode initiates
a restoration of all the data stored on that node onto other disks. Such
actions are crucial to ensure replication and availability standards of the
cloud infrastructure.

• Storage nodes: These nodes are the actual storage points of the data
packets requested to be stored. These storage nodes have to be arranged
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in a topology which has to be accounted for in the storage of replicas.
This is done to reduce the risk of data loss due to common failures.
For example, say six storage nodes are stored on a single rack which is
powered by a single source. In case of power failure, all the six nodes will
be lost. Therefore, replicas of data stored on the disks of this rack should
be stored on a another rack with a different power source.

Briefly put, when the data backup server wants to store data, it sends
a write request to the name node of the cloud service. The name node
knows the health of all the storage nodes, their remaining capacity as well
as their topology. By looking at this information, the name nodes selects
the appropriate storage nodes and sends their IP addresses to the data
backup server. The backup server can then upload data to those storage
nodes. As data is written to these nodes, creation of replicas of these data
packets is initiated in the background under the governance of namen-
ode. Data packets are said to have been successfully written once the data
packets as well as their replicas have been successfully written to storage nodes.

Note: Not all data centers/ cloud service providers use replications to
ensure data safety. A lot of them use Reed Solomon coding ( RS coding) or
similar coding techniques to reduce the storage overhead. In these method-
ologies, a few parity packets are generated using the original data packets
and stored on different machines. As long as a minimum number of packets,
defined by the coding method used, are not lost, the original data can be
restored. For example, if RS 9/13 coding is used, then when 9 packets are
stored, 4 extra parity packets are generated. The original 9 packets can always
be obtained as long as any of the 9 packets out of the total 13 packets can be
obtained. This reduces the storage overhead because instead of storing 3 times
the number of total packets, we now have to store only about 1.44 times the
total number of packets in the above example. The final storage overhead in a
general backup scenario would depend on the choice of coding method used.

1.2.1 Costs involved

Our primary aim is to model and optimize the performance of the backup
server, therefore we will focus on its operations and the costs incurred due
to these operations. The backup server does three main operations on the
cloud server. It decides when to perform backup operations and sends the
operations requests to the namenode of the cloud server. It also performs
the transfer of data packets to the storage nodes. The cloud service provider
charges both for the number of operation requests the name node receives as
well as the amount of data stored on the data nodes. However, these are only
the economic costs involved. These backup operations have to be scheduled
and operated such that the security of data packets is ensured. That is, the
probability of data loss is as low as guaranteed in the Service Level Agreements
(SLAs). Therefore, the data backup server has to perform backup operations
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regularly to keep the data loss probability very low.

On one hand the backup frequency should be high enough to keep the
probability of data loss low. On the other hand, these backup operations
come at an economic cost of sending operation requests to the name node
and keeping cloud resources occupied. There is also an economic cost of
keeping the backup server active to perform these operations. There is a clear
trade-off that needs to be addressed here. In this dissertation, we will model
the data backups as a queueing model to numerically compute the two sides
of trade-off. In order to achieve this, we will define and compute the following
performance indicators

1. Age of data: When data packets wait for the backup server to perform
the operations, they are at a risk of loss in case of immediate failure. This
probability of failure is higher if the packets have to wait for long periods
for backup service. Therefore, we define the performance measure age
of data focused on the data packet which arrives in an empty system.
Precisely, it is defined as the time this data packet has to wait until it
receives backup service. The backup system alternates between on and off
periods with off periods much longer than the on periods. Therefore, the
first packet which arrives in an empty system has the longest waiting time
to receive the service. By focusing on this packet, we measure the worst
performance that a data packet can receive during the backup process.
By enforcing QoS limits for this packet, we can truly say that each packet
receives high QoS. Such a claim may not be true if we the analysis was
focused on the QoS of any general packet. In the section 1.2.2 we will
introduce Recovery point objective which will highlight the importance
of this performance indicator.

2. Backlog size: Packets which have not received backup service wait for the
backup server and become a part of the backlog/queue. A bigger backlog
implies that more data packets are at risk of loss. We will compute the
characteristic properties of this backlog size such as the long-run average
number of packets in the backlog.

3. Probability a new connection is established with the name node: As de-
fined earlier, each new connection to the namenode comes at an additional
cost. We are able to compute the probability of a new connection at a
random time epoch, which represents the frequency of new connections
initiated.

4. Probability server is busy: Backup server usage comes at a cost of energy.
Therefore, keeping it on continuously is unwise. The server is therefore
switched to sleep mode when there are no packets to serve. Moreover,
if the backup server is kept on for long periods, it may keep the cloud
resources occupied for longer period than necessary. Therefore, by com-
puting this probability, we are able to capture the resource usage of the
backup server.
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Note: It is important to note that the data packets written to the storage
nodes are immutable. Therefore, if a file is changed and needs to be backed
up, all the packets associated with that file would need to be rewritten. This
means that the number of connections to the name node and the total amount
of data sent to the store node is much higher than the net data stored.

1.2.2 Recovery point objective

Recovery point objective (RPO) is one of the most crucial parameters defined
in the literature of data backup processes. Recovery point is defined as the
time point in history such that the system is recoverable up to that point in
case of an immediate disaster. The RPO gives us a bound on the age of the
recovery point i.e. the difference between current time and recovery point (see
[36] for more details).

Since the backup server is put into idle mode when it has no data packets
to serve, it alternates between service and idle periods. A consecutive idle and
service period together forms a data backup cycle. RPO defines a bound on
the amount of time any data packet can wait during a data backup cycle. In
a stable system, the data packet which arrives first in a data backup cycle
suffers maximum wait for restart of backup process. In paragraph 2.4.4, we
therefore compute the waiting time of this data packet as ensuring bounds on
this waiting time is crucial to satisfy the RPO.

Note that in this dissertation we focus primarily on the QoS measures
of the storage processes. For telecommunication services, it is known that the
Quality of Experience (QoE) of user is closely related to QoS of the network.
[37] show that for services such as cloud storage processes, QoE and QoS are
connected together by a generic formula. Therefore, the QoS metrics of cloud
storage processes can be quickly translated into QoE metrics if required.

1.3 Uncertainties associated

The primary aim of the backup process is to ensure the safety of data packets
at all times. To ensure this safety, data backup operations are performed
frequently. This keeps the number of data packets waiting for service, as well as
the time they have to wait for service as low as guaranteed in SLAs. However,
new data packets can arrive at any instant and have to be served within a
reasonable time frame. As we will see in the next chapters, to maximise the
resource usage data packets are served in batches. These properties lead to an
uncertainty of when the packets actually get serviced from the time of arrival
which leads to an uncertainty about the performance of backup processes.

Moreover, once the backup server starts serving these data packets to
the cloud, the amount of time required to finish all the operations depends on
the internal jobs of the cloud architecture which are not visible to the outside
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user. This time is also dependent on the placement of the storage nodes chosen
as well as the number of jobs operating on the cloud infrastructure. Addition-
ally, the backup server goes into idle mode when there are no data packets
to serve. This off-period is important to save the cost of running the backup
server. We will assume this off-period has a known probability distribution.
This assumption is made to ensure that different backup operations do not
clash or synchronize together which might cause sudden spikes in the traffic
at the name node. Similar techniques are used in WiFi routers to avoid such
clashes [38].

1.4 Virtual Reality headsets

In chapter 5, we work on a new research topic, streaming of 3600 videos on
Virtual Reality (VR) headsets. This work was done in collaboration with
Prof. Rob van der Mei and Prof. Hans van den Berg at CWI, Amsterdam.
To maintain the legibility of the thesis for readers, we will provide only a
brief overview of this topic. All the necessary details will follow up in chapter 5.

Over the past few years, VR headsets have gained tremendous popular-
ity and this interest is expected to increase even further in the near future.
The potential applications of this technology range from education [39],
museum tours [40], medical training industry [41] to gaming industry [42]. We
are primarily interested in the use of VR headsets to stream 3600 videos, which
is commonly used due to the powerful immersive experience it provides to the
users [43]. Such an immersive experience of high quality, however, requires a
high bandwidth connection. 5G networks will be able to provide high network
bandwidth required to operate these headsets.

A VR headset requires high reliability and robustness against the fluc-
tuations of the channel quality since the latency requirements are between
6 - 15 ms. A latency higher than 15 ms not only degrades the viewing
quality, it also leads to issues like motion sickness [44]. These bandwidth and
latency requirements have stretched our abilities to provide network services.
Moreover, due to the increasing popularity, big companies like Facebook and
YouTube have invested heavily in VR streaming. Therefore, it is expected that
the usage will increase even further as VR headsets integrate into the life of
regular users. This increase in the number of users will put even more stress on
the network. Therefore, in chapter 5, we model and analyze the streaming of
3600 videos on a VR headset over a wireless connection as an Markov Decision
Process (MDP) problem. Our focus is to build a streaming algorithm which
can optimizes the QoE for the users and resource usage during the streaming
of these videos.
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1.5 Methodology

In this section we will discuss the mathematical tools used in this dissertation.
The exact use of these tools will be discussed in the upcoming chapters.

1.5.1 Markov processes

Before we have a look at Markov processes, we will briefly introduce a more
general class of processes called stochastic processes. A stochastic process
X = {Xn, n ∈ T} is a collection of random variables. That is, for each n in
the index set T , Xn is a random variable. In this dissertation, we will work
with discrete time stochastic processes, that is, T is a countable set and is an
index in time. For example, Xn could represent the number of data packets
waiting for backup service at time instant n.

A stochastic process qualifies to be a Markov process if the state of the
system in the future depends only on the current state. Consider a discrete-
time stochastic process Xn, then for this to be Markov process,

P (Xn+1 = x|Xn, Xn−1, . . . , X0) = P (Xn+1 = x|Xn),

for any value of x ∈ A and n. Here A is the state space of the process. If the
size of the state space A is finite or countable, the Markov process is called a
Markov chain.

1.5.2 Discrete-Time Markov Chains (DTMC)

Consider a discrete-time stochastic process {Xn, n ∈ T} where the index set T
and the state space is finite or countable. If

P{Xn+1 = in+1|Xn = in, Xn−1 = in−1, . . . , X0 = i0}
= P{Xn+1 = in+1|Xn = in},

holds for any integral n, and the states in+1, in, . . . , i0, then Xn is said to be a
discrete-time Markov chain (DTMC). If further we have,

P{Xn+m+1 = j|Xn+m = i} = P{Xn+1 = j|Xn = i},∀i, j ∈ A,∀m,n ≥ 0,

the Markov chain is time homogeneous or stationary. We will deal only with
this class of DTMC in this dissertation. Therefore, in general we say

pi,j = P{Xn+1 = j|Xn = i},

is the transition probability from state i at time n to state j at time n+ 1.
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1.5.2.1 State of DTMC

At each successive step, we can obtain the probability of being in a particular
state of DTMC using the probability rule as

P{Xn+1 = i} =
∑
k∈A

P{Xn+1 = i|Xn = k}P{Xn = k}.

Define x(n) = [x
(n)
0 , x

(n)
1 , . . .] as the probability vector describing the state of

the system at time n, where x(n)
i is the probability of the system being in state

i at time n, where n ≥ 0. We have,

x
(n+1)
i =

∑
k∈A

x
(n)
k pk,i,

which can be transformed into a matrix form as

x(n+1) = x(n)P = x(0)Pn,

where P = [pk,i] is the probability transition matrix of the Markov chain.

1.5.2.2 Chapman Kolmogorov equations

The (i, j)th value in Pn, p(n)
i,j represents the probability that the system is in

jth state after n transitions, given that it started from state i. Therefore, we
have

p
(2)
i,j =

∑
k∈A

pi,kpk,j ,

p
(n)
i,j =

∑
k∈A

p
(n−1)
i,k pk,j =

∑
k∈A

pi,kp
(n−1)
k,j ,

p
(n)
i,j =

∑
k∈A

p
(m)
i,k p

(n−m)
k,j .

1.5.2.3 Classification of states

States of a Markov chain can be classified into different types depending on the
transition probabilities pi,j .

Communicating states: State j is accessible from state i if ∃n > 0 :
p

(n)
i,j > 0. State i and j are communicating states if both are accessible

to each other.

Absorbing states: A state is said to be an absorbing state if once the
system enters state i it never leaves it. Precisely, state i is absorbing if
pi,i = 1.
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Transient and Recurring states:
Define,

fi,i = P{Xn = i, for some n ≥ 1|X0 = i}.

fi,i computes the probability that the system ever returns to state i.
If fi,i = 1, the state i is a recurrent state, otherwise if fi,i < 1, the state
i is a transient state.

Periodic states: A state i is said to be periodic if the number of steps
required to return to it is a multiple of a, (a > 1). Here the period, a, of
state i is defined as gcd{n : p

(n)
i,i > 0}.

If a state has period equal to 1, it is said to be aperiodic.

1.5.2.4 Classification of Markov chains

• Irreducible Chain: A Markov chain is said to be irreducible if all the
states communicate with each other.

• Absorbing Chain: A Markov chain is said to be an absorbing chain if any
of its states is an absorbing state, i.e., ∃i such that pi,i = 1.

• Recurrent Markov Chain: A Markov chain is said to be recurrent if all the
states of the chain are recurrent. Recurrent states are further classified
into null recurrent and positive recurrent states.

• Null and Positive recurrent Markov chains: Define τi,i as the amount of
time required to return to state i given the starting state is i, then E(τi,i),
the expected value of τi,i classifies whether the state i is positive or null
recurrent.
If E(τi,i) <∞, the recurrent state i is a positive recurrent state.
Else if E(τi,i) =∞, the recurrent state i is null recurrent state.

• Ergodic Markov Chain: An irreducible Markov chain is said to be ergodic
if all its states are aperiodic and positive recurrent.

1.5.2.5 Limiting behavior of Markov chains

One key feature of time-homogeneous DTMCs is their behaviour after a long
period of time, i.e., their limiting behaviour.

Let P be the transition matrix of an ergodic DTMC and the probabil-
ity vector of the initial state is given by x(0), then the probability vector that
defines the state of the system at any time n is given by

x(n) = x(n−1)P = x(0)Pn.

After a long time, n → ∞ we have x(n) → x and therefore x(n) → xP , which
is known as the stationary probability of the system.
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Note: For a non-ergodic system, x may not be equal to the limiting proba-
bility vector of the system even if both exist. That is, for a non-ergodic system
even if a y exists such that

Pn →


y
y
...
y

 , as n→∞
x may not be equal to y.

Mean first recurrence time and steady state distributions

For an ergodic system in steady state, the probability of being in state i is xi.
The mean recurrence time Mi,i for state i is related to xi as

xi =
1

Mi,i
.

1.5.3 Probability generating functions (PGFs)
In the upcoming chapters, we will use Probability Generating Functions for the
analysis of our model. For z ∈ C, the PGF of a random variable X is defined
as

X(z) = E(zX) =

∞∑
n=0

P (X = n)zn.

Analyticity

The radius of convergence, < of a PGF X(z) is defined such that X(z) is
analytic for |z| < < and not analytic for z = <. It can be easily shown that
< ≥ 1. Therefore, any PGF X(z) is an analytic function of z in the complex
unit disk {z ∈ C : |z| < 1}. Moreover, X(z) is bounded in the complex disk
{z ∈ C : |z| ≤ 1} which implies that a PGF does not have poles in this disk.

Normalization condition

Any PGF satisfies the equation

X(1) =

∞∑
k=0

P (X = k) = 1. (1.1)

Computing the probability mass

From the definition of PGF of a random variable, we know that P (X = n) is the
coefficient of zn, therefore we can compute the mass function using derivatives
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as

P (X = n) =
1

n!

∂nX(z)

∂zn

∣∣∣
z=0

.

We often need to compute the tail probabilities of X, i.e. P (X > n) for
a large n. Computing derivatives becomes infeasible in here, therefore we
compute approximations of the tail probabilities using the Darboux’s theorem
(see Theorem 3.2 and [45]).

Computing moments from generating function

We know that the radius of convergence, <, is at least one. If we further assume
that it is larger than one, the random variables are light tailed, meaning that
all moments are finite and can be computed using derivatives at z = 1. That
is, for instance

E(X) = X ′(1) =
∂X(z)

∂z

∣∣∣
z=1

,

E(X2) = X ′′(1) +X ′(1) =
∂2X(z)

∂z2

∣∣∣
z=1

+
∂X(z)

∂z

∣∣∣
z=1

,

V ar(X) = X ′′(1) +X ′(1)−X ′(1)2. (1.2)

Sum of independent random variables

The PGF of a sum of independent random variables equals the product of
their corresponding PGFs, i.e., if Xi, for i = 1, . . . n, are independent and
Y =

∑n
i=1Xi, then

Y (z) = X1(z)X2(z) . . . Xn(z).

This unique feature is very convenient for the analysis and is one of the moti-
vations to use PGFs throughout this dissertation.

Joint PGFs

Let u, v ∈ C, and U and V be two random variables, then the joint PGF of U
and V is defined as

J(u, v) = E(uUvV ) =

∞∑
n1=0

∞∑
n2=0

P (U = n1, V = n2)un1vn2 .

Clearly, from this definition we can see that the marginal PGFs of U and V
can be extracted from J(u, v) as

U(u) = J(u, 1),

V (v) = J(1, v).
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1.5.4 Markov Decision Processes (MDP)
In the second part of the thesis, we will present a different research topic,
streaming of videos on VR headsets. In this section, we will briefly discuss
Discrete-time Markov decision processes which form the base of the mathe-
matical analysis of that chapter.

A Markov decision process has four major components: the state space,
the probability transition matrix, the action space and the reward function.
The state space defines all the possible states of the system we are observing.
Time is divided into small slots of fixed length and the system transitions
between different states at the slot boundaries. Additionally, at the end of each
slot, an action has to be taken from the action space. The state transitions
happen in accordance with the transition probability matrix at this time slot.
However, the transition may also depend on the action we chose at the end
of the slot. That is, say the system is in state s1 at the time step k, and we
chose to take an action a, the system will move to state s2 with probability
pk(s2|s1, a).

The motivation behind choosing an appropriate action at each time step
is that the system is given an immediate reward based on the action chosen in
a particular state. That is, rk(s, a) is the reward for taking action a in state
s at time k. Since these rewards accumulate with time, the aim is to select
actions which maximize the accumulated reward. A wise decision at any slot
boundary would be to think of both immediate and future rewards. This is
exactly what the algorithm would do which will be presented in further detail
in the next paragraph.

Policy and value function

A sequence of actions from the starting state s0 to the terminal state forms a
policy i.e.,

π = (π0, π1, . . . , πk), k ≤ ∞,
πl : S→ A, l ≥ 0.

Moreover, a policy is called stationary if the action depends only on the state
and is independent of the time, i.e. πk = π̄. Our aim is to find a policy which
maximizes the total reward received in the long run.

Solving MDPs

There are three basic methods to solve MDPs : value iteration, policy iteration
and linear programming. While the first two methods are iterative, the third
approach uses the simplex method to solve the problem. Due to our large
state space, we will focus only on iterative approaches and in particular use
policy iteration as this method converges faster.
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We assume that our transition probabilities and rewards do not vary
with time. That is, pk(s2|s1, a) = p(s2|s1, a) and rk(s, a) = r(s, a). We
therefore have the following expression for the expected utility of a state s
under policy π, where γ is the discount factor

V π(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s))V π(s′).

The first part of this expression is the immediate reward received for choosing
the action π(s) while the second part is the sum of all the future rewards
expected. Therefore, the utility of a state under a given policy captures the
sum of all the rewards expected in the long run. The goal of using MDP is to
find the policy which maximizes this utility for each state.

Policy iteration

Policy iteration consists of two sequential phases, policy evaluation and pol-
icy improvement. In policy evaluation, we start with a random policy π and
evaluate the policy using the Belmann equation. After that step, we check if
a better action is available for each state, that is, if the policy is stable. The
final stable policy found is the optimal policy. The whole process is divided
into four steps

1. Initialization : we start with a random policy π and assign random values
to the value function in a defined range.

2. Policy evaluation : Bellman equation is used to evaluate the policy, see
Algorithm 1.

3. Policy improvement : after the evaluation of the policy, we check if a
better action is available in each state, see Algorithm 2.

4. Stopping criterion : while evaluating a policy, we have to define a thresh-
old θ which defines the completion of policy evaluation.

The final stable policy is the optimal policy π∗ which maximises the long term
reward for the system.

Since we consider systems with a finite set of states and a finite number of
actions in each state, policy iteration will stop in a finite number of steps.

1.6 Dissertation outline
In this section, we will give an overview of the chapters discussed in this
dissertation while focusing on the main idea behind each chapter. We will also
discuss the publications that resulted from the work described in each chapter
individually. The main focus of this dissertation is data backups in cloud. Our
main aim is to develop models for cloud data backups. These models capture
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Result: A stable policy
π(s) ∈ A and V (s) ∈ U[0, 100] arbitrarily for all s ∈ S
while ∆ > θ do

∆← 0
foreach s ∈ S do

t← V (s)

V (s)←
∑
s′ p(s

′|s, π(s))

(
r(s, π(s), s′) + γV (s′)

)
∆← max(∆, |t− V (s)|)

end
end

Algorithm 1: Policy evaluation

Result: Optimal policy
policy-stable ← False
while policy-stable 6= True do

policy-stable ← True
foreach s ∈ S do

t← π(s)

π(s)← arg maxa
∑
s′ p(s

′|s, a)

(
r(s, a, s′) + γV (s′)

)
if t 6= π(s) then policy-stable ← False ;

end
end

Algorithm 2: Policy improvement
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the influence of the different stochastic components on the performance of
the backup processes. Moreover, they also capture the interaction between
different components of the backup process. By analyzing the models, we are
able to come up with closed-form expressions of the performance measures of
the backup processes which helps us provide an insight into their behavior.

In Chapter 2, we analyze a stochastic model where the backup server
goes into idle mode when there are no data packets to serve. Further, at the
end of this idle period, the backup service is restarted with some probability
dependent on the number of data packets in the backlog. The work in this
chapter has resulted in a journal publication [1] and conference presentation
[46]. In this chapter we start with a batch service model for the backup
server which has probabilistic restarting conditions for service. By using this
model, we are able to precisely define the key QoS objectives of a backup
process, namely, age of data, number of packets in the backlog, probability
of a new connection with the namenode and the probability that the backup
server is busy. Using the analysis we are able to numerically compute
these objectives; finally, we illustrate the use of these objectives to build an
optimization problem whose objective is to minimize the cost of running the
backup operation. This optimization problem also includes the constraints on
some performance measures to ensure a minimum service quality is guaranteed.

The work in Chapter 2 laid foundations for the work done in Chapter
3. In this chapter, we focus on the primary performance measure of backup
processes, the age of Data. The performance of data backup processes is
guaranteed by defining a Recovery point objective (RPO). We show how
ensuring a low age of data helps us ensure the limits of RPO are always met.
The work done in this chapter resulted in a journal publication [47] and a
conference presentation [48]. Once an exact expression for the probability
generating function of the distribution of the age of data is obtained, we do
the analysis of its tail distribution. We also use this analysis to evaluate data
backup processes with trigger mechanism.

In Chapter 4, we look at a new model of data backup processes. Our
main aim here is to model data backup processes which have an inbuilt
threshold on the time since last backup. By including ’time since last backup’
in the model, we are able to compute its distribution and provide useful
insights of using this measure to ensure RPO limits are always met. We also
compare the model studied in this chapter and chapter 2. The work done in
this chapter resulted in a journal publication [49].

In Chapter 5, we discuss a new research topic, streaming of 3600 videos
on VR headsets. In this research our focus is to model the transmission of
video tiles on the headset as a Markov decision process. We also include the
user head movement prediction in this model. Our primary aim is to download
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the best possible tiles which will ensure a good QoE for the user when the
network conditions are not completely reliable. This work has been accepted
as a conference publication at Valuetools 2020 [50] and a journal publication
[51] which is currently under review.

In Chapter 6, we summarize our contributions and draw conclusions to
the work done in this dissertation. We also provide some possible future
directions of this work.

We now provide a list of publications which resulted from the work dis-
cussed in this dissertation:

• [1] A. Saxena, D. Claeys, H. Bruneel, B. Zhang, J. Walraevens, Modeling
data backups as a batch-service queue with vacations and exhaustive
policy, Computer Communications 128 (2018) 46 – 59

• [47] A. Saxena, D. Claeys, H. Bruneel, J. Walraevens, Analysis of the age
of data in data backup systems, Computer Networks 160 (2019) 41–50.

• [49] A. Saxena, D. Claeys, B. Zhang, J. Walraevens, Cloud data storage:
A queueing model with thresholds, Annals of Operations Research (2019)
1572-9338.

• [50] A. Saxena, S. Subramanyam, P. Cesar, R. van der Mei, H. van den
Berg, Efficient, QoE aware delivery of 3600 videos on VR headsets over
mobile links, in: Proceedings of the 13th EAI International Conference on
Performance Evaluation Methodologies and Tools, Valuetools ’20, Associ-
ation for Computing Machinery, New York, NY, USA, 2020, p. 156–163.

• [51] A. Saxena, S. Subramanyam, P. Cesar, R. van der Mei, H. van den
Berg, QoE aware delivery of 3600 videos on wireless VR headsets, IEEE
Transactions on Network and Service Management, Under Review.



2
Cloud data backups

With the rapid increase in data storage requirements and migration towards
cloud storage, the right balance between doing backups very frequently and
reducing resource consumption has to be found. To help finding this balance,
in this chapter, we model a wide set of data backup processes as a generic batch
service queueing model with vacations, exhaustive service and probabilistic
restarting conditions. Batch service queueing models with vacations provide a
very natural way of modeling data backups to cloud infrastructure. We are
able to precisely compute the QoS measures of the data backup processes
using this model. Nevertheless, to the best of our knowledge, data backup
processes have been rarely modeled and analyzed as queueing processes. [52]
propose a queueing model of cloud based streaming services to evaluate service
quality. [53] model data backups as a two dimensional Markov chain and
study optimization of the network bandwidth utilization. [54] present decision
algorithms, utilizing Markov decision processes, which use constraints on recov-
ery parameters to decide when to backup and which type of backup to perform.

Queueing models with vacations, in general, have been studied exten-
sively in the literature (see [55] and [56] for details about some applications).
In particular, some relevant batch-service queueing models with vacations
have been studied. [57] study a server which goes into a vacation when the
system is empty and restarts service on return if there is at least one customer
in the system. [58] study a batch-service model with multiple vacations where
the server requires a minimum threshold of queue size to keep the server on
and another threshold to restart it after the vacation. The model also takes
into account a setup and close down time for the server. Other models studied
by [59] and [60] consider a single vacation case with a threshold where the
system waits in idle condition after returning from a vacation if the threshold
is not matched. The queueing models listed above have not been built and
studied from the perspective of data backup processes. Our model, on the
other hand, is specifically designed to model a wide range of exhaustive data
backup processes.
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We model exhaustive data backup processes as a very general batch-
service queueing model with vacations and probabilistic restarting conditions.
Discrete-time models are appropriate to model several telecommunication
processes (see [61]). We thoroughly analyze the discrete-time queueing model
and obtain various performance measures. We then explicitly translate
performance measures of the queueing model to QoS measures of data backup
processes. Our model and the QoS measures are useful to find the right
balance between doing cloud backups frequently enough (to increase data
safety) and reducing resource usage (power consumption and communication
costs). We study the dependence of QoS measures on the model parameters
as well as compute the values of these parameters that minimize the user cost
function. Note that, as stated in [62], pure threshold policies may not be
optimal. Therefore, we define parameters for probabilistic restarts to model
the behavior of the server. Moreover, since the cost of connecting to cloud
infrastructure is typically independent of the amount of data backed up, our
work focuses on exhaustive policies (see example the cost structure of Amazon
Web Services [8] and Microsoft Azure Storage [10]).

This chapter presents an extension of previous work [63]. The model
studied by [63] assumes single slot vacations and single slot service times.
Our model extends the vacation length and service lengths to general dis-
tributions as well as introduces probabilistic restarting conditions. Making
the model much more general implies that it models a wider set of ex-
haustive data backup policies. Additionally, this work looks at significantly
more performance measures and a more thorough modeling of data backups [1].

We characterize our model using four types of parameters:

• l : threshold on the queue content to begin service with probability 1

• c : capacity of backup server

• αi where i = 1, . . . n− 1 : starting probability when i packets are present

• T : a random variable which defines the length of any vacation

In addition to a wide range of data backup policies, this model covers a wide
range of user behavior and backup server features. That is, both the arrival
distribution (the number of arrivals in a slot) and service times (which depend
on the batch size) can be chosen freely provided that the system remains
stable. These flexible parameters empower us to set their values based on the
traffic seen by the server and required system performance. Our aim is to
answer questions such as: given the service level agreements, what are the right
model parameters to maintain a stable and efficient system? Such questions
can be answered accurately once we have computed the exact expressions of
the main QoS measures in terms of the parameters. The main advantage of
our analysis is that we can compute the QoS measures for a general set of
parameters.
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We start with a description of the model and justify its suitability for
data backups in Section 2.1. We also discuss in detail the utility of each
parameter of the model. It is then followed by the analysis of the model
in Section 2.2. We also highlight some observations at the service/vacation
epochs which give us some important relations to solve our model. Using the
results of Section 2.2, we deduce the performance measures of the model in
Section 2.3 and QoS measures of data backups in Section 2.4. We compute
measures such as the age of data at the beginning of a backup period and
the probability that the backup server is busy in a slot. We also evaluate
the performance of the system for different system parameters in Section
2.5. Further, we construct an optimization problem to highlight how one can
compute the optimal parameters to minimize user cost. In the last section we
summarize our observations and results from previous sections and present
possible directions for future work.

2.1 Backup process model

In data backup processes, packets that have not yet been backed up are part of
the backlog. The backlog size then corresponds to the number of packets that
have not yet been backed up. In case of exhaustive backup service processes,
when the backup server initiates a backup, it continues backing up until the
backlog size becomes zero.

We model the backlog as a queue where the customers represent data packets
and the backup server by a batch server. As a result, packets arriving in the
queue correspond to newly generated packets that have not yet been backed up.

The batch server has a capacity of maximum c packets and it employs
an exhaustive policy i.e. the server keeps serving until the system content
becomes zero. At that moment, the backup server immediately goes into
energy saving mode which is modeled as a vacation of T slots with T a random
variable. If upon returning from the vacation, the system content ( i.e. the
total number of packets in the queue and the server) is larger than or equal
to l, the server immediately initiates the service (a new backup); otherwise it
starts the service with a probability αi, where i is the number of packets in
queue. With probability 1−αi the server goes into another vacation i.e. stays
in the energy saving mode. Lengths of vacation periods are independent and
identically distributed.

2.1.1 Data storage on cloud infrastructures

We discussed the storage process on cloud infrastructure in detail in the
section 1.2. Briefly put, when the backup server wants to write data, it sends
a request to the namenode. Namenode stores the metadata of the data to be
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Figure 2.1: Components of the backup process

stored and sends back the IP-addresses of the data nodes on which the backup
server is allowed to write the data. A data packet completes its service when
it has been written to the cloud infrastructure. Our work assumes that the
backups performed are incremental in nature, i.e., only the changes in the
system from the last copy are saved and backed up. Figure 2.2 highlights the
components of our queueing model and connects it with the cloud data backup
process of Figure 2.1.

Now we discuss the model choices and the importance of the model pa-
rameters and characteristics.

Batch Service

Data packets are segmented and transmitted in batches of size c from the local
backup server to the cloud to improve the efficiency of the transmission. (see
[64], [65] for details)

Exhaustive service

A new connection is established when the server communicates with the
namenode of the cloud service provider, that is, when a new backup is
initiated. Cloud service providers charge cloud users for each new connection.
Since the cost of a new connection is independent of the amount of data to be
backed up, an exhaustive service policy comes naturally. The details of cost
structure of cloud service providers are available at [8] and [10].

Starting probabilities

In contrast to a fixed threshold policy, probabilistic restarting conditions allow
the system to restart service even when the threshold l has not been met.
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Figure 2.2: Queueing model of cloud data backup process

It is important to note that fixed threshold based policies are just a special
case of our model parameters, i.e., αi = 0, ∀i < l where l is the threshold.
Therefore, including the restarting probabilities makes the model more generic
and encourages a much wider set of exhaustive backup policies.

Further, randomization has often been used to achieve an improvement
in the efficiency of the system. For instance [66] use randomization to ease-off
the traffic for data backups and therefore reduce the peak load. [67] use
randomization to improve the efficiency of distribution of data blocks over a
network. Similarly, by including probabilistic restarts in our model, we are
able to achieve a trade-off between contrasting QoS measures. This is also
illustrated in section 2.4.4.

Vacations

Data processes are very power intensive and a significant amount is spent to
keep the system idle while it waits for packets to arrive. As stated earlier from
[17], 1.5% of total power produced in the US was used for Data center com-
puting. By introducing vacations, the local backup server sleeps during the
idle periods and power consumption of the backup server is reduced. More-
over, by modeling vacation length as a random variable, we allow our model to
incorporate more randomization which makes it, again, more generic. Clearly,
deterministic fixed length vacations is just a special case of this model param-
eter.
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Ak number of arrivals in slot k. It has a generating function
A(z). Hence, we assume independent and identically dis-
tributed (i.i.d.) arrivals in each slot. However, this can be
any general distribution.

T vacation length. This variable has a generating function
T (z).

c capacity of the backup server; defines the maximum number
of packets that can be served in a single batch.

l threshold for service start. When the system wakes up and
finds ≥ l packets the server resumes service.

αi probability that a backup process is started in presence of
exactly i packets with α0 = 0, 0 ≤ αi ≤ 1,∀0 < i < l and
αi = 1,∀i ≥ l.

Gm service time required for a batch ofm packets. This stochas-
tic variable has a (general) generating function Gm(z).

ρ load of the system defined by A′(1)G′c(1)/c.
k this subscript defines the slot number.
Qk queue content (the number of packets in the queue, exclud-

ing the ones receiving service) during the kth slot.
Sk server content (the number of packets in service) during the

kth slot. Since Sk = 0 when the backup service is in vaca-
tion, we use this event as a proxy to check if the backup is
running.

Rk remaining time in slot k of the current service/vacation pe-
riod. When the server is serving packets it is the remaining
serving time of those packets; otherwise, it is the remaining
vacation time of the current vacation.

Table 2.1: List of all the notations used in the analysis

2.2 Analysis of the model

We study the discrete time model of the system defined in section 2.1 using
the definitions from Table 2.1. We calculate the joint generating function of
the queue content, server content and remaining service time at a random slot
boundary. From this generating function we deduce some of the performance
measures of the model such as the system content at a random slot boundary
and the number of customers served in a random batch.

This analysis is critical to be able to compute the QoS measures of the
data backup process introduced in section 1.2.1. It also helps us to select
the starting parameters. We illustrate the selection of parameters using an
optimization problem in section 2.5.3.
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Note that, all the terms defined in the Table 2.1 are discrete variables.
Without loss of generality, in the analysis we have assumed that l ≥ c. This
is because a model with l = l0, l0 < c can be rewritten as another equivalent
model with l = c and αi = 1,∀l0 ≤ i < c while keeping all the remaining
parameters the same. Further, we assume that the probability of zero arrivals
in a slot A(0) > 0. Otherwise, the backlog would never be empty and the
system would never enter a vacation.

2.2.1 Transition equations
We relate the random vectors (Qk, Sk, Rk) and (Qk+1, Sk+1, Rk+1). The rela-
tions are governed by following observations

• If the remaining service/vacation time of the current batch is more than
one slot (Rk > 1), then there is no change in the system in slot k + 1
other than new arrivals (Qk+1 = Qk +Ak) and the Rk reduces by one.

• If the server is serving during slot k, the remaining service time is equal
to 1 slot (Rk = 1) and there are a positive number of packets in queue
at the end of the slot (Qk + Ak > 0), then the server starts service of a
new batch in slot k + 1 due to the exhaustive service policy.

• If the remaining service/vacation time is equal to 1 slot (Rk = 1) and
there are no packets in the queue at the end of the slot (Qk + Ak = 0),
the server goes for a vacation starting in slot k + 1.

• If the server is in vacation and is about to wake up in the next slot
(Rk = 1), the server begins service with probability αi in slot k+1, where
i is the number of packets in queue at the end of the slot k (i = Qk+Ak).

This leads to the following relations

Qk+1

Sk+1

Rk+1

 =



(m,Sk, Rk − 1) if Rk > 1, Qk +Ak = m
(0,m,Gm) if Rk = 1, Sk > 0, Qk +Ak = m, 0 < m < c

(m− c, c,Gc) if Rk = 1, Sk > 0, Qk +Ak = m, c ≤ m < l
(0, 0, T ) if Rk = 1, Qk +Ak = m,m = 0

(m− c, c,Gc) if Rk = 1, Qk +Ak = m,m ≥ l
if Rk = 1, Sk = 0, Qk +Ak = m, 0 < m < c

(m, 0, T ) with probability (1− αm)
(0,m,Gm) with probability αm

if Rk = 1, Sk = 0, Qk +Ak = m, c ≤ m < l
(m, 0, T ) with probability (1− αm)

(m− c, c,Gc) with probability αm

Note that Rk ≥ 1, because as soon as it becomes one, it either changes to the
service time of next batch or a multiple slot length vacation in the next slot.
For this reason we will work with Rk − 1 rather than Rk in the generating
function.
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2.2.2 Limiting generating function

Define,
Vk+1(z, y, x) = E(zQk+1ySk+1xRk+1−1)

and

E

(
zX{condition}

)
= E

[
zX |condition

]
P (condition).

Using the transition equations defined in section 2.2.1, one can write

Vk+1(z, y, x) =

E
(
zQk+AkySkxRk−1−1{Rk > 1}

)
+ E

(
xT−1{Rk = 1, Qk +Ak = 0}

)
+

c−1∑
m=1

E
(
ymxGm−1{Rk = 1, Sk > 0, Qk +Ak = m}

)
+

l−1∑
m=c

E
(
zm−cycxGc−1{Rk = 1, Sk > 0, Qk +Ak = m}

)
+

∞∑
m=l

E
(
zm−cycxGc−1{Rk = 1, Qk +Ak = m}

)
+

c−1∑
m=1

E
((
zmxT−1(1− αm)

+ ymxGm−1αm
)
{Rk = 1, Sk = 0, Qk +Ak = m}

)
+

l−1∑
m=c

E
((
zmxT−1(1− αm)

+ zm−cycxGc−1αm
)
{Rk = 1, Sk = 0, Qk +Ak = m}

)
which can be transformed in

Vk+1(z, y, x) =
A(z)

x
E
(
zQkySkxRk−1

)
− A(z)

x
E
(
zQkySkxRk−1{Rk = 1}

)
+ E

(
xT−1{Rk = 1, Qk +Ak = 0}

)
+

c−1∑
m=1

E
(
ymxGm−1{Rk = 1, Sk > 0, Qk +Ak = m}

)
+

l−1∑
m=c

E
(
zm−cycxGc−1{Rk = 1, Sk > 0, Qk +Ak = m}

)
+

∞∑
m=l

E
(
zm−cycxGc−1{Rk = 1, Qk +Ak = m}

)
+

c−1∑
m=1

E
((
zmxT−1(1− αm) + ymxGm−1αm

)
{Rk = 1,

Sk = 0, Qk +Ak = m}
)

+

l−1∑
m=c

E
((
zmxT−1(1− αm)
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+ zm−cycxGc−1αm
)
{Rk = 1, Sk = 0, Qk +Ak = m}

)
.

(2.1)

In heavy traffic conditions, the system never takes vacations and the batch
size is always the maximum c. Therefore, for the system to remain stable,
the average amount of work arriving during a service period should be less
than the capacity of the batch server. The stability condition of this model is
therefore given by A′(1)G′c(1) < c, i.e. ρ < 1. The vacations do not play a role
in the stability condition which is a standard results in queueing systems with
vacation. [68] prove the stability condition of such queueing systems by proving
that the underlying Markov chain of the system content is ergodic under the
condition ρ < 1. Under the assumption that ρ < 1, we look at the state of the
system variables in steady state.
Define

d1(m) = lim
k→∞

P (Qk +Ak = m,Rk = 1, Sk > 0), (2.2)

d0(m) = lim
k→∞

P (Qk +Ak = m,Rk = 1, Sk = 0), (2.3)

d(m) = lim
k→∞

P (Qk +Ak = m,Rk = 1) = d0(m) + d1(m), (2.4)

V (z, y, x) = lim
k→∞

Vk(z, y, x).

Our first aim is to write all the expressions in terms of the unknown boundary
probabilities U = {d(0), d(1), d(2), . . . d(c − 1), d0(1), d0(2), . . . d0(l − 1)} and
then formulate a linear system to solve for these unknowns. From (2.1), by
letting k → ∞ and replacing the terms by their generating functions, we can
write

V (z, y,x) =
A(z)

x
V (z, y, x)− A(z)

x
V (z, y, 0) +

T (x)

x
d(0) +

c−1∑
m=1

ym
Gm(x)

x
d(m)

+
(y
z

)cGc(x)

x
lim
k→∞

∞∑
m=0

zmP (Qk +Ak = m,Rk = 1)

−
(y
z

)cGc(x)

x

c−1∑
m=0

zmd(m) +

c−1∑
m=1

(
zmT (x)− ymGm(x)

)
x

(1− αm)d0(m)

+

l−1∑
m=c

(
zm

T (x)

x
− zm−cycGc(x)

x

)
(1− αm)d0(m). (2.5)

Since
∑∞
m=0 z

mP (Qk +Ak = m,Rk = 1) is easily computed, we have

lim
k→∞

∞∑
m=0

zmP (Qk +Ak = m,Rk = 1) = lim
k→∞

A(z)Vk+1(z, 1, 0)

= A(z)V (z, 1, 0). (2.6)
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Using the relation (2.6) we can rewrite (2.5) as

V (z, y, x)
(
x−A(z)

)
= −A(z)V (z, y, 0)

+

c−1∑
m=1

(
ymGm(x)− zm−cycGc(x)

)
d(m)

+
(y
z

)c
A(z)V (z, 1, 0)Gc(x) +

(
T (x)−

(y
z

)c
Gc(x)

)
d(0)

+

c−1∑
m=1

(
zmT (x)− ymGm(x)

)
(1− αm)d0(m)

+

l−1∑
m=c

(
zmT (x)− zm−cycGc(x)

)
(1− αm)d0(m). (2.7)

From this equation, we can find expressions for V (z, y, 0) and V (z, 1, 0) by
different substitutions of x, y and z. Substituting x = A(z) followed by y → 1
gives us

A(z)V (z, 1, 0)
(
zc−Gc(A(z))

)
=
(
zcT (A(z))−Gc(A(z)

)
d(0)

+

c−1∑
m=1

(
zcGm(A(z))− zmGc(A(z))

)
d(m)

+

c−1∑
m=1

(
zmT (A(z))−Gm(A(z))

)
zc(1− αm)d0(m)

+

l−1∑
m=c

(
zcT (A(z))−Gc(A(z))

)
zm(1− αm)d0(m). (2.8)

Similarly, using the substitution x = A(z) in (2.7) yields

A(z)V (z, y, 0) = A(z)V (z, 1, 0)Gc(A(z))
(y
z

)c
− d(0)

((y
z

)c
Gc(A(z))

− T (A(z))
)

+

c−1∑
m=1

(
ymGm(A(z))− zm−cycGc(A(z))

)
d(m)

+

c−1∑
m=1

(
zmT (A(z))− ymGm(A(z))

)
(1− αm)d0(m)

+

l−1∑
m=c

(
zmT (A(z))− zm−cycGc(A(z))

)
(1− αm)d0(m). (2.9)

Clearly, one can use (2.8) in the latter expression and get an expression for
V (z, y, 0) in terms of the unknown boundary probabilities U. This expression
would be useful to compute an expression of system content in section 2.2.3.
In the remaining part of this section, our primary aim is to form a solvable
linear system of equations in U. As a step towards this objective, we look at
the generating function of the system content.
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2.2.3 Generating function of system content
The system content in any time slot is defined as the number of packets either
in queue waiting for service or currently in service. Therefore, its generating
function is given by V (z, z, 1). In (2.7), replacing x = 1, and y = z gives us,(

1−A(z)
)
V (z, z, 1) = −A(z)V (z, z, 0) +A(z)V (z, 1, 0). (2.10)

To further solve (2.10), replace x = A(z) and y = z in (2.7) which gives us

A(z)V (z, z, 0) = Gc(A(z))A(z)V (z, 1, 0) +
(
T (A(z))−Gc(A(z))

)
d(0)

+

c−1∑
m=1

zm
(
Gm(A(z))−Gc(A(z))

)
d(m)

+

c−1∑
m=1

zm
(
T (A(z))−Gm(A(z))

)
(1− αm)d0(m)

+

l−1∑
m=c

zm
(
T (A(z))−Gc(A(z))

)
(1− αm)d0(m). (2.11)

Using eqns (2.8)-(2.11) we get an expression for V (z, z, 1) in terms of the un-
knowns U, which after some rewriting yields

(
1−A(z)

)(
zc −Gc(A(z))

)
V (z, z, 1) = B0(z)d(0) +

c−1∑
m=1

Bm(z)d(m)

+

c−1∑
m=1

Wm(z)d0(m) +

l−1∑
m=c

Rm(z)d0(m),

(2.12)

where

B0(z) = Gc(A(z))(1− zc)
(
T (A(z))− 1

)
,

Bm(z) = Gm(A(z))Gc(A(z))
(
zm − zc

)
+ zm

(
zc − 1

)
Gc(A(z))

+ zc
(

1− zm
)
Gm(A(z)),

Wm(z) =
(
Gm(A(z))Gc(A(z))

(
zc − zm

)
+ zc

(
zm − 1

)
Gm(A(z))

+Gc(A(z))T (A(z))zm
(
1− zc

))
(1− αm),

Rm(z) = zmGc(A(z))(1− zc)
(
T (A(z))− 1

)
(1− αm).

For a given value of z, the values A(z), Bm(z), Wm(z) and Rm(z) are known
quantities. We now use a result from [69] to prove that zc − Gc(A(z)) has c
zeros inside the complex unit circle |z| ≤ 1. They have proved that if F (z) is a
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probability generating function with F (0) > 0 and F ′(1) < c with c ∈ N, then
the function zc − F (z) has exactly c zeros inside the unit circle |z| ≤ 1.

Clearly, Gc(A(z)) is the probability generating function of the number
of arrivals in a service period of c packets with Gc(A(0)) > 0 since A(0) > 0.
Moreover, from the stability condition F ′(1) = G′c(1)A′(1) < c. Therefore,
from Theorem 3.2 in [69], zc − Gc(A(z)) has c zeros in the complex unit disk
|z| ≤ 1. This includes the trivial solution z = 1 which will be excluded because
at B0(1) = 0 and Bm(1) = Wm(1) = Rm(1) = 0,∀m.

Therefore, eqn (2.12) has c − 1 zeros in the complex unit disk with
z = 1 excluded i.e. {z : |z| ≤ 1, z 6= 1}. This gives us c− 1 linear equations in
unknowns U, however the cardinality of U is c+l−1. Therefore, we need l more
relations to form a solvable linear system of equations. For more relations, we
look at service initiation opportunities. These opportunities are defined as the
epochs of start/end of service/vacation times. These observations enable us
to find more linear relations between the unknowns U which is a step further
towards forming a solvable linear system in these unknowns.

2.2.4 Observation at service initiation opportunities

We observe the system content at the epoch points of service initiation oppor-
tunities. We start by defining a few terms which are also illustrated in Figure
2.3:

• j : this subscript defines the epoch number being looked at.

• Uj = the system content at the end of jth epoch, i.e., the number of
packets waiting in the queue or in service at the end of the epoch.

• τj = 1, if the jth period is a service period, 0 if vacation period.

At the end of a vacation (v1), if the system has an empty backlog it will enter
a new vacation (v2). This can happen iff the following conditions are true

• at the beginning of the vacation (v1), the system had an empty backlog,
and

• there were no arrivals during this vacation (v1).

This gives us (2.13).

P (Uj = 0, τj = 0) = P (Uj−1 = 0)T (A(0)) (2.13)

Similarly, the system wakes up with n packets (n > 0) in the backlog iff

• the system entered the vacation with empty backlog and there were n
arrivals during the vacation, or
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Figure 2.3: Illustration of service initiation opportunities, service periods and vaca-
tion periods

• the system entered the vacation with i packets present (i > 0) and there
were n− i arrivals during the vacation.

Note that, for the system to enter a vacation with i packets where 0 < i ≤ n,
the previous epoch also has to be a vacation epoch because of the exhaustive
service policy. So for 0 < n < l, where tA(n) denotes the probability of n
arrivals in a vacation period, we have

P (Uj = n, τj = 0) =

n∑
i=1

P (Uj−1 = i, τj−1 = 0)(1− αi)tA(n− i)

+ P (Uj−1 = 0)tA(n). (2.14)

Moreover, tA(n) is a known constant because it is the coefficient of zn in
T (A(z)). Under the assumption of ρ < 1, the system would reach a steady
state and under this steady state, the limiting probabilities of these terms are
defined as

πi(m) = lim
j→∞

P (Uj = m, τj = i),

π(m) = lim
j→∞

P (Uj = m).

Hence, we can write

π0(0) = π(0)T (A(0)), (2.15)

π0(n) =

n∑
i=1

π0(i)(1− αi)tA(n− i) + π(0)tA(n), 0 < n < l, (2.16)

π(n) = π0(n) + π1(n). (2.17)

2.2.5 Relating π, d0(m) and d(0)

Now we relate the terms defined in (2.15)-(2.17) and (2.2)-(2.4). In earlier
sections we defined,

d0(m) = lim
k→∞

P (Qk +Ak = m,Rk = 1, Sk = 0)
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= lim
k→∞

P (Qk +Ak = m,Sk = 0|Rk = 1)P (Rk = 1).

Observe that when Rk = 1, the starting boundary of slot k+1 is the beginning
of a service initiation opportunity epoch which has been analyzed in section
2.2.4. Therefore, limk→∞ P (Qk + Ak = m,Sk = 0|Rk = 1) = limj→∞ P (Uj =
m, τj = 0) and limk→∞ P (Qk +Ak = m|Rk = 1) = limj→∞ P (Uj = m). These
can be used to come up with the following relations,

d0(m) = π0(m) lim
k→∞

P (Rk = 1),

d(m) = π(m) lim
k→∞

P (Rk = 1).

Therefore, we can translate (2.15)-(2.17) to equations in d0(m) and d(0) and
we obtain

d0(0) = d(0)T (A(0)), (2.18)

d0(n) =

n∑
i=1

d0(i)(1− αi)tA(n− i) + d(0)tA(n), 0 < n < l. (2.19)

(2.19) can be rewritten as,

B ·


d(0)
d0(1)
d0(2)
...

d0(l − 1)

 =


0
0
...
0

 , (2.20)

where B is defined as

B =


−tA(1) 1−(1−α1)tA(0) 0 . . . 0

−tA(2) −(1−α1)tA(1) 1−(1−α2)tA(0) . . . 0

−tA(3) −(1−α1)tA(2) −(1−α2)tA(1) . . . 0

...
...

...
. . .

...
−tA(l−1) −(1−α1)tA(l−2) −(1−α2)tA(l−3) . . . 1−(1−αl−1)tA(0)

 .

We do not include (2.18) in the matrix equations because d0(0) /∈ U. However,
this equation will be useful while looking at the performance measures in
section 2.3. Summarizing, (2.20) gives us (l−1) linearly independent equations
between the unknowns in U which are crucial to create a solvable system.

Combining the results of sections 2.2.3 and 2.2.5, we have in total c + l − 2
equations which is still less than the number of unknowns (c + l − 1).
However, by the normalization property of generating functions, we know
that V (z, z, 1)|z=1 = 1. This normalization condition, discussed in paragraph
2.2.6, gives us an additional relation in the unknowns. Combining all these
equations together, we get a solvable system of l + c − 1 linearly independent
equations and l + c− 1 unknowns U.



2.2 Analysis of the model 33

2.2.6 Normalization condition

As stated above, the normality condition V (1, 1, 1) = 1 plays a critical role to
get a solvable linear system. This equation is obtained by applying L’Hospital’s
rule twice to (2.12) which gives us(

cT ′(1)

c−G′c(1)A′(1)

)
d(0) +

l−1∑
m=1

(
cT ′(1)

c−G′c(1)A′(1)

)
(1− αm)d0(m)

+

c−1∑
m=1

(
cG′m(1)−mG′c(1)

c−G′c(1)A′(1)

)(
d(m)− (1− αm)d0(m)

)
= 1. (2.21)

To easily write the system of equations in matrix form, eqn (2.21) can be
rewritten as(

cT ′(1)

c−G′c(1)A′(1)

)
d(0)+

c−1∑
m=1

(
mG′c(1) + cT ′(1)− cG′m(1)

c−G′c(1)A′(1)

)
(1− αm)d0(m)+

l−1∑
m=c

(
cT ′(1)

c−G′c(1)A′(1)

)
(1− αm)d0(m) +

c−1∑
m=1

(
cG′m(1)−mG′c(1)

c−G′c(1)A′(1)

)
d(m) = 1.

(2.22)

2.2.7 Original generating function

In this section we show that just like the generating function of system content,
it is possible to express the original generating function defined in (2.2) in terms
of the unknowns U. We have already written V (z, y, x) in terms of V (z, y, 0),
V (z, 1, 0) and the unknowns d0(n)s and d(n)s in (2.7). We have also shown
that we can write V (z, y, 0) and V (z, 1, 0) in terms of the unknowns in (2.8)
and (2.9). Therefore, substituting (2.8) and (2.9) into (2.7) we get

(x−A(z))V (z, y, x) = B0(z, y, x)d(0) +

c−1∑
m=1

Bm(z, y, x)d(m)

+

c−1∑
m=1

Wm(z, y, x)(1− αm)d0(m) +

l−1∑
m=c

Rm(z, y, x)(1− αm)d0(m).

where

B0(z, y, x) = T (x)− T (A(z)) +
yc
(
Gc(x)−Gc(A(z))

)(
T (A(z))− 1

)
zc −Gc(A(z))

,

Bm(z, y, x) = ym(Gm(x)−Gm(A(z)))

+
yc
(
Gc(x)−Gc(A(z))

)(
Gm(A(z))− zm

)
zc −Gc(A(z))

,

Wm(z, y, x) = zm(T (x)− T (A(z)))− ym(Gm(x)−Gm(A(z)))
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+
(zmT (A(z))−Gm(A(z))

zc −Gc(A(z))

)
yc
(
Gc(x)−Gc(A(z)),

Rm(z, y, x) = zm

(
T (x)− T (A(z)) +

yc
(
Gc(x)−Gc(A(z))

)(
T (A(z))− 1

)
zc −Gc(A(z))

)
.

2.3 General performance measures of the model

In this section we write expressions of generating functions of some common
stochastic variables of this queueing model in terms of V (z, y, x) and input
functions. Since we have shown that V (z, y, x) can be expressed in terms of
the boundary probabilities in the set U, the generating functions below can
also be easily written as functions of these boundary probabilities.

2.3.1 System content at random slot boundaries

As the system content includes both the customers in queue and those in ser-
vice, the pgf of the system content is given by the generating function V (z, z, 1).
Exact expression of this generating function was computed in (2.12).

2.3.2 System content at service initiation opportunities

We have already looked at the generating function of d(m). From (2.6), the
generating function of the system content at service initiation opportunities is

A(z)V (z, 1, 0)

V (1, 1, 0)
.

Moreover, one can write the generating function of the system content at va-
cation completion times and service completion times respectively as

A(z)V (z, 0, 0)

V (1, 0, 0)
,

A(z)
(
V (z, 1, 0)− V (z, 0, 0)

)
V (1, 1, 0)− V (1, 0, 0)

. (2.23)

2.3.3 Number of customers served in a random batch

This is an important measure which reflects how efficiently the server resources
are being utilized. The sample space for the number of customers in server
at a slot boundary can be divided into two mutually exclusive and exhaustive
events, Sk = 0 and Sk > 0. Sk = 0 implies that the system is in vacation in
the kth slot since server is empty. Therefore, the generating function for the
server content in a random batch is given by

V (1, y, 1)− V (1, 0, 1)

1− V (1, 0, 1)
. (2.24)
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2.3.4 Queue content when the server is in vacation

Since Sk = 0 implies that the system is in vacation in kth slot, the queue
content during such a slot is given by the generating function

V (z, 0, 1)

V (1, 0, 1)
. (2.25)

2.4 QoS measures of data backup policy

In this section we focus on the performance measures that are of interest to
the backup policy which were discussed in detail in section 1.2.1. The analysis
done in section 2.2 directly gives us the first three QoS measures namely the
backlog size, probability that a new connection is made and the probability
that the backup server is busy. We also compute the age of the data at the
beginning of a backup period, i.e. time spent by first data packet of a backup
cycle waiting for backup to restart. In section 2.5 we evaluate the performance
of the system by looking at the change in the first moment of these stochastic
variables as a function of the load as well as the mean vacation time.

2.4.1 Backlog size

The queue content of the system is the size of the backlog of data packets
which are waiting for service. A bigger backlog size puts more data at the risk
of loss if the server crashes. Moreover, we have a finite capacity of buffer size in
practice. Therefore, we would want to keep this quantity as small as possible.
By the definition of generating function V (z, y, x), the queue content has a
generating function V (z, 1, 1). The mean queue content equals ∂V (z,1,1)

∂z

∣∣∣
z=1

.

2.4.2 Probability that a new connection is made

As mentioned previously, cloud service providers charge for new connections
made to their infrastructure. A new connection is made whenever a new ser-
vice period starts after a vacation period and we would like to compute the
frequency of these new connections. Since the restarting conditions are prob-
abilistic, we compute the probability of a new connection at a random slot,
i.e., limk→∞ P (Sk+1 > 0, Sk = 0). A higher value of this probability measure
would imply more connections are made in the long run. We can compute this
probability in terms of known constants as below.

P (New connection) = lim
k→∞

(
P (Sk = 0)− P (Sk+1 = 0, Sk = 0)

)
= lim
k→∞

(
P (Sk = 0, Rk = 1) + P (Sk = 0, Rk > 1)

− P (Sk+1 = 0, Sk = 0, Rk = 1)− P (Sk+1 = 0, Sk = 0, Rk > 1)
)
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= V (1, 0, 0)−
l−1∑
m=0

lim
k→∞

P (Qk +Ak = m,Sk+1 = 0, Sk = 0, Rk = 1)

= V (1, 0, 0)−
l−1∑
m=0

(1− αm)d0(m) (2.26)

Note that d0(0) /∈ U; however one can use (2.18) to compute the value of this
boundary probability. Using (2.26), we can also compute the probability of a
new connection at a random service initiation opportunity. It is more practical
to use this measure in analysis as we are restricting ourselves to the slots where
the service can be potentially restarted.

P (New Service at Service initiation opportunity)

= lim
j→∞

P (τj = 1|τj−1 = 0) =
P (New connection)

V (1, 0, 0)

= 1−
l−1∑
m=0

(1− αm)d0(m)

V (1, 0, 0)
. (2.27)

As for the backlog size, we would want to keep
P (New connection at Service initiation opportunity) as small as possible.

2.4.3 Probability that the backup server is busy

If the backup server is busy for longer periods, more power would be utilized to
keep it running. It would also imply that the connections established with the
data nodes to serve data packets would have to be maintained for longer period.
The duration for which the backup server are kept on is directly proportional
to the probability that the backup server is busy. Since the backup server is
busy iff it is not on vacation, the probability that it is busy is given by

1− V (1, 0, 1). (2.28)

2.4.4 Age of data at the beginning of a backup period

A data backup cycle consists of one vacation period followed by one service
period. During a data backup cycle, one can observe that the first data packet
arrival has to wait for the longest time for backup service to restart (illustrated
in figure 2.4). We randomly select a data backup cycle and label the first data
packet to arrive in that cycle as ν.

At any slot, we define the age of data based on the earliest packet in
the system. It is defined as the time spent by the earliest packet waiting
for restart of backup service. Clearly, under this definition if the backup
service is ON or if there are no packets in the system, the age of data is
0. Moreover, the age of data attains it maximum just before the start of
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Figure 2.4: Illustration of evolution of age of data in a backup system

backup service (also illustrated in figure 2.4). Therefore, the total time
spent waiting by ν is the age of data at the beginning of a backup pe-
riod. We label this age as Ageν . In this chapter, we will compute the mean
of Ageν and an in-depth analysis of the higher moments will follow in chapter 3.

In section 1.2.2, we introduced the recovery point objective (RPO) which
is one of the most crucial parameters defined in literature of data backup
processes. It defines the maximum time any data packet can wait in the data
packets queue. To meet the QoS objectives defined by RPO, it is necessary
to select the backup parameters such that Ageν is within acceptable limits.
By computing this QoS measure, we compute the impact of vacations on the
waiting time of data packets.
We first compute the number of vacations ν witnesses, excluding the one in
which it arrives, before the service is restarted. This will help us compute
the amount of time it spends waiting for the backup service to restart. Note
that ν might arrive in any vacation period after the service is stopped (not
necessarily the first one) but those earlier vacation periods are not relevant as
they are not part of age of ν. We refer to Figure 2.5 for an illustration of the
delay of ν.

We observe the system at consecutive vacation epochs starting at the
end of the vacation period during which ν arrives. We use the queue content
at these epochs to define an absorbing Markov Chain for this process. That
is, define the state space Ω =

{
1, 2, . . . , l − 1, B

}
, where in state i, the system

has i packets backlogged during a vacation while ν is in the system. State
B corresponds to the absorbing state in which the backup process restarts.
Notice that our backup system can transit from state a to state b before being
absorbed in state B, where a ≤ b, if there are exactly b − a arrivals during
the vacation period and the backup process does not start at the end of the
vacation. The probability of this transition to happen is (1 − αb)tA(b − a)
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Figure 2.5: Illustration of delay of ν

where tA(n) is defined in section 2.2.4 (probability of n arrivals in a vacation
period).

Since our system jumps between states until it finally gets absorbed, we
can model the number of vacations seen by ν as a discrete phase-type distri-
bution. This distribution is characterized by (β,M) where the state space is
Ω. Such a distribution comprises of l− 1 transient states ({1, 2, . . . l− 1}) and

1 absorbing state (B) . The transition matrix P =

[
M M0

0 1

]
and (β, βl) is

the initial probability vector; M is given by

M =


(1−α1)tA(0) (1−α2)tA(1) (1−α3)tA(2) . . . (1−αl−1)tA(l−2)

0 (1−α2)tA(0) (1−α3)tA(1) . . . (1−αl−1)tA(l−3)

...
...

...
. . .

...
0 0 0 . . . (1−αl−1)tA(0)

 (2.29)

and vector M0 can be calculated using the fact that P is a valid probability
transition matrix, i.e., rows sum to 1.

Since the system is non-empty at the beginning of first (relevant) vacation
period, our starting state is

β = ( (1−α1)tA(1)
1−tA(0) , (1−α2)tA(2)

1−tA(0) , (1−α3)tA(3)
1−tA(0) , . . . , (1−αl−1)tA(l−1)

1−tA(0) ), βl = 1−
l−1∑
i=1

βi.

Define N as the number of phases till absorption to B, i.e., the number of
vacation epochs seen by ν. The generating function of N is given by N(z) =
z ·β · (I − zM)−1 ·M0 + βl where I is the identity matrix (see [70]).
Using this, Ageν can be written as

Ageν =

N∑
i=1

Ti +R,

where Ti ∼ T while R is the remaining vacation time of ν as shown in Figure
2.5. Since E(Tn1{N≥n}) = E(Tn)P (N ≥ n), we can use Wald’s equation (see
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Figure 2.6: Illustration of arrival of ν to compute joint distribution of T0 and R

[71]) to get the first moment of Ageν as

E(Ageν) = E(N)× E(T ) + E(R). (2.30)

We are left with the computation of E(R). We can do this by analyzing the
joint Probability Mass Function(PMF) of the length of vacation the first packet
arrives in, T0, and R. Note that the vacation time in which ν arrives, T0 (see
figure 2.5), does not have the same distribution as T . This is because there
is at least one arrival in the vacation in which ν arrives. The joint pmf can
therefore be written as, for r ≥ 0, t ≥ 1,

P (T0 = t, R = r) = P (T = t, R = r|
T∑
i=1

Ai ≥ 1)

=
P (T = t, R = r,

∑T
i=1Ai ≥ 1)

P (
∑T
i=1Ai ≥ 1)

. (2.31)

Looking at figure 2.6, we can see that R = r when T = t if there are no arrivals
in the first t− r− 1 slots and at least one arrival in the slot in which ν arrives.
Hence (2.31) can be written as

P (T0 = t, R = r) =
A(0)t−r−1

(
1−A(0)

)
P (T = t)

1− T (A(0))
. (2.32)

From (2.32), we can calculate the first moment of the remaining vacation time
by computing

E(R) =

∞∑
r=0

∞∑
t=r+1

rA(0)t−r−1
(
1−A(0)

)
P (T = t)

1− T (A(0))

which can be simplified to

E(R) =
T ′(1)

1− T (A(0))
− 1

1−A(0)
. (2.33)
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Figure 2.7: Mean backlog size

2.5 Numerical evaluation

To demonstrate the sensitivity of the QoS measures on the backup parameters,
we evaluate the performance of backup system using realistic parameter values.
Therefore, we create a scenario from synthetic data based on our experience
working with real, yet proprietary data of an actual data backup system. We
translate the backup parameters into model parameters of the batch service
queueing system to analyze the performance. These measures are the key ele-
ments which can help us select the right parameters based on the performance
requirements.

Backup system

We consider an organization which uses cloud services to backup the data
on laptops of its employees using a centralized backup server. This data is
generated due to incoming and outgoing emails, documents created or edited
etc. From our practical experience and some real data, we define the parameters
of the backup process. The average data generate by all users in 1 minute is
between 20 to 100 MB data. The backup system on the other hand, has a
bandwidth that is capable of serving at a maximum speed of 100 MB per
minute. The data files are zipped into data packets of size 16 MB each and
backup server can serve up to 10 packets in a single batch. Moreover, once
the backup server enters a vacation period, it has to restart service if there are
more than 30 packets in the backlog.
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Figure 2.8: Mean age of data at the beginning of backup cycle

Queueing model

We define our slot length to be 10 sec. Using the information of the backup
system, the model parameters are defined below:

• It is well known that the arrival distribution has a heavy tail (see example
[72]), i.e, there are some slots which will see a big burst of arrivals of
packets. Therefore, we model the arrival distribution to be a mixture
of Poisson and Power law distribution. The generating function of the
number of arrivals in a slot can be written as

A(z) = p× eλ(z−1) + (1− p)× ζγ(z, a)

ζγ(1, a)

ζγ(z, a) =

∞∑
k=a

zk

kγ
(2.34)

where λ is the arrival rate of the Poisson process and γ is the order of
power law distribution. For this example, we use a = 25, p = 0.999, γ =
3.5 while λ varies to model change in the system load. We also need to
ensure that the system remains stable, i.e., the load of the system is less
than 1.

• Since the backup server can serve up to 10 packets in a single batch, the
batch server capacity c = 10.

• Since the backup service has to restart if there are more than 30 packets
in the backlog, the restarting threshold l = 30.
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Figure 2.9: Probability of a new connection at a service initiation opportunity

• Since the writing speed, on an average, allows the backup server to write
about 1 packet in a slot, we model the service time ofm packets as discrete
uniform distribution U[m,m+ 2]. Therefore, the E(Gm) = m+ 1.

• We assume that the backup server goes into vacations of length approxi-
mately equal to 5 minutes. Therefore, the vacation period T is modeled as
U [28, 32], i.e., uniformly distributed discrete random variable between 28
and 32 slots. Moreover, while analyzing the impact of vacation lengths on
the model, we model T as U [v− 2, v+ 2] such that the expected vacation
length, E(T ) = v.

It is important to note that we have used fairly simple distributions for service
time and vacation periods. However, the analytic results obtained in the chap-
ter are valid for any general distributions of service time, vacation periods and
number of arrivals in a slot defined by generating functions Gm(z), T (z) and
A(z) respectively.

2.5.1 Observations

In the graphs in figures 2.7-2.11 we show both the performance measures of
queueing model as well as the QoS measures of the backup process under vary-
ing load or vacation length keeping other parameters constant. These graphs
represent the first moment of the random variables defined in section 2.3 and
section 2.4. Three policies are compared

1. αi = 0,∀0 < i < l, this corresponds to the policy where the service does
not start until the server threshold is met.
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Figure 2.10: Probability server busy

2. αi = 1,∀0 < i < l, this corresponds to the vacation policy which resumes
service if there is at least one packet in the queue when the server wakes
up from vacation. Equivalently, it can be defined as a policy with l = 1.

3. αi = i
3c ,∀0 < i < l, this corresponds to the policy which starts with a

probability that is linear to the number of packets in the queue.

Note that by comparing these policies, we are comparing the threshold policy
with a policy which also has probabilistic restarts. Moreover, the policy with
αi = i/3c is an example policy that we have chosen for comparison while the
model allows us to substitute any valid value. Our primary aim while doing
this comparison is to observe the dependence of QoS measures on the model
parameters.

While comparing these policies in Figures 2.7-2.11, the ideal performance
for each QoS measure individually would be obtained either by policy (1) or
(2). In particular, while policy (1) performs best for QoS measures related to
energy consumption and connection cost, policy (2) performs best for QoS
measures related to data safety. However, these policies individually are not
able to meet all the expectations. We observe that the policy (3) is able to
tackle the trade off and gives a performance which lies in between policy (1)
and policy (2). Also, the choice of parameters of our model, αs, T , l, c, allows
us to get closer to the desired QoS measures. We illustrate selection of optimal
parameters in section 2.5.3 by defining the cost function of a user. One can
make the following general observations from the graphs

• from figures 2.7 and 2.8, the values of mean backlog size and the age of
data at the beginning of a backup period for policy (3) is in the middle of
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Figure 2.11: Average server content in random batch

the two policies (1) and (2). Limiting ourselves to these measures, while
the system performs better than policy (1), it performs worse than policy
(2).

• from figure 2.9, using policy (3), the probability of a new connection at
a service initiation opportunity reduces drastically as compared to policy
(2). Although, this probability under policy (3) is higher when compared
to policy (1), it is closer to policy (1) than (2).

• from figure 2.10, probability that the server is busy may be significantly
lowered by using policy (3) as compared to policy (2). This probability
is higher than the value obtained using policy (1) but fairly close to it.

• from figure 2.11, the mean server content in a random batch using policy
(3) is higher than policy (2) and smaller than (1).

2.5.2 Illustrating the trade-off using cost function

In this section we use the QoS measures of the backup service computed
in section 2.4 to define a cost function for a user. Our primary aim is to
address the trade-off between doing frequent backups and reducing resource
usage. The frequency of performing backups is dependent on all backup
parameters and there are multiple ways of changing this frequency. For
instance one can increase the values of restarting probabilities or decrease
the restarting threshold l. Here, we change the frequency by changing the
restarting threshold l.
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We define the cost function as a function of the restarting threshold l
as follows

Cost(l) = 0.5× E(Ageν) + 20× eP ( New connection )

+ 0.25× E( Backlog content) + 15× eP ( Server busy ) (2.35)

Further, we define αi = min(1, i
100 ) for i < l. The remaining parameters c and

ρ are kept constant at 10 and 0.6. Figure 2.12 shows the change in the cost
function with change in the backup frequency. Clearly, the backup frequency
has to be chosen optimally which can be done by selecting the backup param-
eters optimally. We show how we can compute the optimal backup parameters
in the next paragraph.

2.5.3 Cost optimization

In contrast to the comparisons done in section 2.5.1 between three particular
policies, in this section we look at computing the optimal parameters for our
model. In section 2.5.2, we defined a cost function of the user to highlight the
need of selecting the optimal backup parameters. However, to compute optimal
parameters, it is more appropriate to define the user objective as a combination
of cost function and QoS constraints. We use the four QoS measures, E(Ageν),
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P ( New connection ), E( Backlog content ), P ( Server busy ) computed in
section 2.4 to define the following cost function

W (l, c, α1, . . . , αl−1) = 20× eP ( New connection ) + 15× eP ( Server busy )

and QoS constraints of a user as

E(Ageν) ≤ 30, E( Backlog content ) ≤ 20. (2.36)

For illustration purposes, we minimize this function by varying the starting
probabilities αis and threshold l while keeping the server capacity c constant.
More precisely, we propose a simple mechanism to find the optimal l and
α1, α2, . . . , αl−1. Our primary aim is to show that the optimal policy may not
be a pure threshold policy.

A pure threshold policy can be represented as αi = 0,∀i < m and
αi = 1,∀i ≥ m, where m defines the threshold. Further, a pure threshold
policy with threshold which minimizes cost is called the optimal pure threshold
policy.

The parameters used here are as defined in the beginning of section 2.5.
For a fixed load ρ, the task of finding the optimal l and αis for our model is
equivalent to solving the following optimization problem

minimize
α1,...αl−1,l

W (l, α1, α2, . . . , αl−1)

subject to: E(Ageν) ≤ 30

E( mean backlog content ) ≤ 20

0 ≤ αi ≤ 1, i = 1, . . . , (l − 1)

αi = 1, i ≥ l, l ≤ lmax

We use lmax = 15 to find the solution. For a given load ρ, solution of this
problem gives us the optimal parameters l∗, α∗i s. We use an iterative solver,
auglag() in R, to solve the above non-linear optimization problem. We set the
starting point of the solver as the optimal pure threshold policy. Therefore,
the solution found by the solver would be better than the optimal pure
threshold policy. These may not be globally optimal solutions; however, we
have shown that optimal threshold policies with probabilistic restarts per-
form better than optimal pure threshold policies with threshold l less than lmax.

In Figure 2.13 we compare the cost graph of the user using the optimal
parameters with pure optimal threshold based policies. Note that we have con-
sidered a fairly simple optimization problem. One could also have constraints
as well as utility function dependent on higher moments of QoS measures such
as V ar(mean backlog content ) which can be derived using the generating
functions computed in paragraph 2.3.
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2.5.4 Final insights

In section 2.5.1 we illustrate the dependence of QoS measures on the service
parameters. In section 2.5.3 we look at an optimization problem to compute
the system parameters using the cost function of the user. The key observations
are

• a policy with probabilistic restarting conditions is able to address the
trade off between performing backups too frequently and reducing re-
source consumption.

• for a give system load ρ, the probabilistic restarting policy with optimal
parameters αρi s may outperform the fixed threshold policies.

• the QoS measures can be precisely computed numerically and the param-
eters can be chosen to meet the desired QoS.

• the performance changes significantly if the model parameters are varied.
Therefore, users with different desired QoS need to be treated differently.
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2.6 Summary
We have been able to model exhaustive data backup processes as a very gen-
eral queueing process with batch service, vacations and probabilistic restarting
conditions. Moreover, the number of arrivals in a slot and service time can
have any general distribution. We have shown it is natural to model data
backup processes this way. By computing the QoS measures and analyzing
their dependence on the system parameters, we have illustrated how one can
strike a balance between doing frequent backups and reducing resource usage
for a given QoS. Our observations in section 2.5.1 summarize the dependence of
performance measures on model parameters. Selecting the optimal parameters
allows the system to take longer vacations or support a higher load for the same
QoS. For a given system, such a model empowers us to select the parameters
based on the arrival process and desired system performance while keeping the
system stable. We have illustrated this using an example of how to use the cost
function of the user to select the starting probability parameters.



3
Analysis of age of data

In this chapter, we study a similar discrete-time queueing model described in
Chapter 2 with the aim to calculate the distribution of the age of data just
before a backup starts (Ageν). In a real backup system, the backup service
provider decides the configuration and schedule of backup operations as well
as the communication with the cloud. The backup server alternates between
backup-on and backup-off periods where the backup-on periods are much
smaller than the backup-off periods. And because the age of data is insensitive
to the batch server capacity, in the analysis we will assume that the batch
server has an unlimited capacity. The age of the data is defined as the waiting
time of the oldest packet in the system just before a backup starts. We focus
on the age of the data (Ageν) because it is closely related to the Recovery
Point Objective (RPO) described in section 1.2.2.

The distribution of this age is important for various reasons. In addi-
tion to the mean value, the higher moments of a performance measure such
as variance determine the performance of the system. For instance, a user
may prefer lower variance of a performance measure over lower mean value.
In Chapter 2 we were successful in computing only the first moment of Ageν .
In this chapter, we compute the generating function of the distribution of
Ageν using recursive relations. Using this generating function, one can then
compute all moments of Ageν .

Moreover, the tail probabilities represent the exceptional situations in
which Ageν can attain really large values. Backup service providers guarantee
high QoS and even promise very heavy compensation in case of breach of
SLA. For instance, [13] gives 100% service credits if the RPO is more than
4 hours. Similarly, [73], an IT solutions provider, gives similar guarantees
of RPO between 15mins-24hrs for different service costs. To provide these
guarantees, they charge users based on their usage. The costs associated with
running backup operations has been discussed in section 1.2.1. Therefore, the
probability that such extreme situations occur is an important performance
metric. We analyze the tail of the distribution of Ageν and scenarios in
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which a user might see such a breach. In our analysis, we use the recursive
relations and the dominant singularity of the generating function of Ageν
to compute the asymptotic behavior of the distribution of the age of data
in the backup system. Note that the backup service provider just provides
services and management of the backup process and may not actually own the
cloud infrastructure. They would be hired by an organization to provide these
storage solutions or could be a team within the organization. Such an model
of service is known as Software as a Service (SaaS) (see [7]).

Some storage systems utilize a timer mechanism to avoid the backup-off
period to become very long. The analysis of the model studied in this
chapter is used to find the optimal timer length for storage systems with
time mechanism. In particular, our analysis can be used to measure the
performance of such systems in terms of age of data and the backup frequency.
More details about this are presented in section 3.5.

We start with calculating some generating functions that are required in
the further sections. It is followed by computation of generating function of
Ageν and the analysis of its tail distribution. In the last sections we analyze the
storage systems with time trigger mechanism and present a numerical example.

Table 1: List of notations used in the analysis
l the restarting threshold of the backlog size.
T the random variable which denotes the length of any ran-

dom vacation, its generating function is denoted by T (z).
A(z) the generating function of the number of arrivals in a single

slot.
αi the probability of restart of the batch service at the end of

a vacation if there are i packets backlogged.
R remaining vacation time, i.e., the number of slots remaining

in the current vacation epoch
T0 the length of the vacation in which ν arrives

3.1 Some useful generating functions

In chapter 2 we computed the first moment of the distribution of Ageν . In this
chapter we will compute the PGF of Ageν . This computation requires a few
results to be established first. In particular we compute R(z), the generating
function of the remaining vacation time, S(y, z), the joint generating function
of the length of remaining vacation time and the number of arrivals in T0, and
W (y, z), the joint generating function of the length of a random vacation and
the number of arrivals in it.

Lemma 1. The generating function of the length of the remaining vacation R
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is given by

R(z) =

[
1−A(0)

][
T (A(0))− T (z)

][
1− T (A(0))

][
A(0)− z

] . (3.1)

Proof. Using formula (2.14), this generating function can be written as the
following sum

R(z) =

∞∑
t=1

t−1∑
r=0

zrP (T0 = t, R = r)

=

∞∑
t=1

A(0)t−1[1−A(0)]P (T = t)

1− T (A(0))

t−1∑
r=0

zr

A(0)r

=

[
1−A(0)

][
T (A(0))− T (z)

][
1− T (A(0))

][
A(0)− z

] .

Lemma 2. The joint generating function of the length of the remaining vaca-
tion R and the number of arrivals in T0, nT0

, is given by

S(y, z) = E(ynT0 zR) =

[
A(y)−A(0)

][
T (zA(y))− T (A(0))

][
zA(y)−A(0)

][
1− T (A(0))

] . (3.2)

Proof. Note that the slot in which ν arrives is not considered as part of R and
can have more than one arrival. The generation function S(y, z) can be written
as the following sum

S(y, z) =

∞∑
i=1

∞∑
r=0

yizrP ( i arrivals in r + 1 slots
∣∣ at least one arrival

in slot 1 )P (R = r)

=

∞∑
r=0

A(y)r
A(y)−A(0)

1−A(0)
zrP (R = r)

=
A(y)−A(0)

1−A(0)
R(zA(y)).

Using the results of Lemma 1, we arrive at the following expression,

S(y, z) =

[
A(y)−A(0)

][
T (zA(y))− T (A(0))

][
zA(y)−A(0)

][
1− T (A(0))

] .

We can write the series expansion of S(y, z) in its radius of convergence as

S(y, z) =

∞∑
i=1

ri(z)y
i. (3.3)
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The coefficients ri(z) give us the partial generating functions of the length of
the remaining vacation slots R with total of i arrivals in the whole vacation T0.
We will use ri(z) in our analysis in the further sections.

Lemma 3. The joint generating function of the length of the vacation Ti, i ≥ 1,
and the number of arrivals in it nT is given by

W (y, z) = E(ynT zT ) = T (zA(y)). (3.4)

Proof. This generating function can be written as the following sum

W (y, z) =

∞∑
t=1

∞∑
j=0

yjztP ( j arrivals in t slots )P (T = t)

=

∞∑
t=1

A(y)tztP (T = t) = T (zA(y)).

We can write the series expansion of W (y, z) in its radius of convergence as

W (y, z) =

∞∑
i=0

ti(z)y
i. (3.5)

The coefficients ti(z) are the partial generating functions of a vacation length
with i arrivals.

3.2 Generating function of Ageν
In this section we compute the generating function of Ageν . Therefore, define

• h(t) = P (Ageν = t): the probability mass function of Ageν .

• φi(t): Given the backlog size equals i at the beginning of a vacation, φi(t)
is the probability mass function of the remaining time until the restart
of the batch service.

The end of each vacation gives the system a service initiation opportunity. The
backup server then decides to either restart the batch service or enter a new
vacation. To find the distribution of Ageν , we first condition on the action
chosen by the backup server at the end of vacation T0. That is, we write

h(t) = P (Ageν = t ∩ backup service restarts after vacation T0)

+ P (Ageν = t ∩ backup service does not restart after vacation T0)

=

l−1∑
i=1

αiP (i arrivals in t+ 1 slots
∣∣ at least 1 arrival in slot 1 )P (R = t)
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+

∞∑
i=l

P (i arrivals in t+ 1 slots
∣∣ at least 1 arrival in slot 1 )P (R = t)

+

t−1∑
k=0

l−1∑
i=1

P (i arrivals in k + 1 slots
∣∣ at least 1 arrival in slot 1)

× (1− αi)P (R = k)φi(t− k). (3.6)

Similarly, φi(t) can be written recursively as

φi(t) =

l−1∑
j=i

αjP (j − i arrivals in t slots )P (T = t)

+

∞∑
j=l

P (j − i arrivals in t slots )P (T = t)

+

t−1∑
k=1

l−1∑
j=i

(1− αj)P (j − i arrivals in k slots)P (T = k)φj(t− k).

(3.7)

We will now transform eqn (3.6) and eqn (3.7) to generating functions. There-
fore, we define

H(z) =

∞∑
t=0

zth(t), Φi(z) =

∞∑
t=1

ztφi(t), i = 1 . . . l − 1.

the generating functions of the distributions h(t) and φi(t). We can then use
eqn (3.6) to write

H(z) =

∞∑
t=0

l−1∑
i=1

(αi − 1)ztP (i arrivals in t+ 1 slots
∣∣ at least 1 arrival

in slot 1 )P (R = t) +R(z)

+

∞∑
t=1

t−1∑
k=0

l−1∑
i=1

zt(1− αi)P (i arrivals in k + 1 slots
∣∣ at least 1

arrival in slot 1 )P (R = k)φi(t− k)

=

l−1∑
i=1

(αi − 1)ri(z) +R(z) +

l−1∑
i=1

(1− αi)
∞∑
k=0

P (i arrivals in k + 1 slots

with at least 1 arrival in slot 1)× P (R = k)

∞∑
t=k+1

ztφi(t− k)

=

l−1∑
i=1

(αi − 1)ri(z) +R(z) +

l−1∑
i=1

(1− αi)Φi(z)
∞∑
k=0

zkP (i arrivals in
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k + 1 slots with at least 1 arrival in slot 1)P (R = k)

=

l−1∑
i=1

(αi − 1)ri(z) +R(z) +

l−1∑
i=1

(1− αi)Φi(z)ri(z).

Similar calculations using eqn (3.7) are possible. We end up with the following
recursion:

Φi(z) = T (z) +

l−1∑
j=i

(1− αj)
(

Φj(z)− 1
)
tj−i(z), ∀1 ≤ i ≤ l − 1. (3.8)

We summarize our results in the following theorem.

Theorem 3.1. The generating function of Ageν , H(z), is given by

H(z) = R(z) +

l−1∑
i=1

(1− αi)ri(z)
(

Φi(z)− 1
)
, (3.9)

Φi(z) =
1

1− (1− αi)t0(z)

(
T (z)− (1− αi)t0(z)

+

l−1∑
j=i+1

(1− αj)tj−i(z)
(

Φj(z)− 1
))
∀1 ≤ i ≤ l − 1,

(3.10)

where ri(z) and ti(z) can be computed from eqns (3.2-3.5). Note that the func-
tions Φi(z) can be computed recursively starting from Φl−1(z).

3.3 Mean and variance of Ageν
Using eqn (3.9) and (3.10) one can compute moments of Ageν . First, the mean
value is given by

E(Ageν) = H ′(1) = R′(1) +

l−1∑
i=1

(1− αi)ri(1)Φ′i(1),

Φ′i(1) =
1

1− (1− αi)t0(1)

(
T ′(1) +

l−1∑
j=i+1

(1− αj)Φ′j(1)tj−i(1)
)

∀1 ≤ i ≤ l − 1. (3.11)

We verified that the mean of Ageν obtained using eqn (3.11) is exactly the
same as obtained in chapter 2 where Wald’s equation was used to obtain the
mean value. Similarly, we can use the second derivatives of H(z) and Φi(z) to
compute the variance of Ageν .

H ′′(1) = R′′(1) +

l−1∑
i=1

(1− αi)
(

2r′i(1)Φ′i(1) + Φ′′i (1)ri(1)
)
,
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Φ′′i (1)
(

1− (1− αi)t0(1)
)

= T ′′(1) + 2Φ′i(1)(1− αi)t′0(1)

+

l−1∑
j=i+1

(1− αj)
(
tj−i(1)Φ′′j (1) + 2Φ′j(1)t′j−i(1)

)
,

V ar(Ageν) = H ′′(1) +H ′(1)−H ′(1)2. (3.12)

Computing r(n)
i (1), t

(n)
i (1), the nth derivatives of the partial generating func-

tions, involves inversion of derivatives of the joint generating functions in eqn
(3.3) and eqn (3.5). This is a non trivial task for a general distribution func-
tion. However, for well behaved functions such as rational functions, we can
compute the derivatives to get r(n)

i (1), t
(n)
i (1). One can also use a numerical

inversion algorithms, such as Fourier series method in [74], to compute these
values.

For a Poisson arrival process and vacation lengths distribution with support
in [a, b] (i.e. P (a ≤ T ≤ b) = 1), the coefficients and their derivatives can be
directly computed and have a closed form expression given below.

ti(1) =

b∑
t=a

e−λt(λt)i
P (T = t)

i!
,

t′i(1) =

b∑
t=a

te−λt(λt)i
P (T = t)

i!
,

ri(1) =
ti(1)

1− T (A(0))
,

r′i(1) =
t′i(1)

1− T (A(0))
− 1

1− T (A(0))

b∑
t=a

e−λtλi
P (T = t)

i!

t∑
s=1

si.

These constants can then be used to compute the mean and variance of Ageν .

3.4 Tail asymptotics

As mentioned earlier in this chapter, computing the tail probabilities is of equal
importance, since extreme events result in a high financial loss. Therefore, it
is important to analyze the cases in which this age can take high values and
compute the probability of their occurrence. Therefore, in this section we
compute the tail asymptotic of Ageν using the generating function H(z). For
this analysis we carry out dominant singularity analysis of H(z). For the ease
of presentation we make some naturally applicable assumptions stated below.
It is important to note that this analysis is valid even when these assumptions
are not met but would complicate the presentation.

Assumptions:
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1. Intuitively, an efficient data backup policy should restart the backup ser-
vice with higher probability if there are more packets in the backlog.
This is because when more packets are waiting for service, there are more
packets at risk. Therefore, we assume that αi is non decreasing, i.e., i < j
implies αi ≤ αj .

2. The first s restarting probabilities are equal, i.e., α1 = α2 = . . . = αs.
This is not a restriction as any value of s between 1 and l− 1 is allowed.
However, the value of s has an impact on tail probabilities.

3. T (z), the generating function of the vacation period is defined by the
user. Since it is a user defined function, it is reasonable to expect it to
be analytic everywhere. Therefore, we assume that T (z) does not have
any singularities. This implies that R(z), ti(z) and ri(z) also do not have
any singularities.

A function f(z) is said to have a singularity at a point z0 if it is not analytic
at this point. Further, a dominant singularity of a function is a singularity with
smallest absolute value among all singularities. In this work, we make extensive
use of the following result (see [45] page 436, Theorem VI.14 for details).

Theorem 3.2 (Darboux theorem). Suppose the power series X(z) =∑∞
n=0 x(n)zn with positive real coefficients x(n) is analytic near 0 and has

only algebraic singularities σk on its circle of convergence |z| = <X , in other
words, in a neighborhood of σk we have

X(z) ∼
(

1− z

σk

)−wk
Yk(z),

where wk ∈ C\{0,−1,−2, . . . , } and Yk(z) denotes a nonzero analytic function
near σk. Let w = maxkRe(wk) denote the maximum of the real parts of the
wk. Then we have

x(n) =
∑
k

Yk(σk)

Γ(wk)
nwk−1σ−nk + o(nw−1<−n),

with the sum taken over all k with Re(wk) = w and Γ(w) the Gamma-function
of w (with Γ(n) = (n− 1)! for n discrete).

Therefore, if the dominant singularities, σk ∈ C, of the generating function
X(z) and the behavior of the generating function in the neighborhood of these
dominant singularities (wk and Yk(σk)) are identified, this theorem expresses
an approximation for the tail of the corresponding distribution (x(n) for large
n).

From eqn (3.9), H(z) contains the generating functions Φi(z). There-
fore, we start with the analysis of Φi(z) to compute the singularities of
H(z).
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Lemma 4. The singularities of Φi(z) are given by

{z :

l−1∏
j=i

(
1− (1− αj)t0(z)

)
= 0}.

Proof. From eqn (3.10), we can compute

Φl−1(z) =
T (z)− (1− αl−1)t0(z)

1− (1− αl−1)t0(z)
.

Clearly, Φl−1(z) has a singularity of order 1 at the zeros of 1− (1−αl−1)t0(z),
which proves the lemma for i = l − 1. For i = 1, . . . , l − 2 we will prove this
result by induction, i.e., for all m > i assume Φm(z) has singularities at

{z :

l−1∏
j=m

(
1− (1− αj)t0(z)

)
= 0},

we will show that the result holds for Φi(z). We can rewrite eqn (3.10) as,

Φi(z) =
1

1− (1− αi)t0(z)

(
T (z)− (1− αi)t0(z)− (1− αi+1)t1(z)

+

l−1∑
j=i+2

(1− αj)tj−i(z)
(

Φj(z)− 1
))

+ (1− αi+1)t1(z)
Φi+1(z)

1− (1− αi)t0(z)
.

Hence, the singularities of Φi(z) are the singularities of Φi+1(z) and the zeros
of 1− (1− αi)t0(z). Therefore, these singularities are given by

{z :

l−1∏
j=i

(
1− (1− αj)t0(z)

)
= 0}.

Lemma 5. The singularities of H(z) are given by zeros of

l−1∏
i=1

(
1− (1− αi)t0(z)

)
= 0, (3.13)

where the dominant singularities are the solutions of

t0(z) =
1

1− α1
. (3.14)

Moreover, the order of these singularities is equal to s.
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Proof. From eqn (3.9) and (3.10), H(z) is a linear combination of
Φ1(z), . . . ,Φl−1(z). Therefore, H(z) has a singularity at every singular-
ity of Φi(z), 1 ≤ i < l. Note that there are no additional singularities of H(z)
which come from T (z) and R(z) because of assumption 3. This proves the
first part of the lemma.

From eqns (3.4) and (3.5), we find t0(z) = T (zA(0)), i.e. t0(z) is the
partial generating function of the length of a vacation with 0 arrivals.

From Pringsheims Theorem, [45] page 240 Theorem IV.6, we know that
for probability generating functions, at least one dominant singularity lies on
the real axis. Moreover, for x ∈ R, T (x) is an increasing function of x as it is
a probability generating function. Since αi are non decreasing in i,

min
i

(
1

1− αi

)
=

1

1− α1
,

and dominant singularities on the real axis are given by

min{z : t0(z) =
1

1− αi
, 0 < i < l, z ∈ R} = min{z : t0(z) =

1

1− α1
, z ∈ R}.

Moreover, since all the dominant singularities have the same modulus (equal
to the radius of convergence), all the dominant singularities are given by the
solutions of (1− α1)t0(z) = 1.

From assumption 2, we know that

α1 = α2 = . . . = αs < αs+1 ≤ αs+2 ≤ . . . αl−2 ≤ αl−1.

Using this relation, the singularities of H(z) can be rewritten as

(
1− (1− α1)t0(z)

)s l−1∏
i=s+1

(
1− (1− αi)t0(z)

)
= 0.

Therefore, the order of each dominant singularity equals s.

Note that if we did not have assumption 1, eqn (3.14) would still be valid with
α1 replaced by αmin = mini αi.

Lemma 6. For 1 ≤ i ≤ s, Φi(z) has a singularity at σk of the order of s− i+1
where σk is the kth dominant singularity of H(z).

Proof. From Lemma 4, singularities of Φi(z) are solutions of

l−1∏
j=i

(
1− (1− αj)t0(z)

)
= 0,
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which can be rewritten as

s∏
j=i

(
1− (1− αj)t0(z)

) l−1∏
j=s+1

(
1− (1− αj)t0(z)

)
= 0. (3.15)

We know that α1 = α2 . . . = αs. Therefore eqn (3.15) can be rewritten as

(
1− (1− α1)t0(z)

)s−i+1
l−1∏

j=s+1

(
1− (1− αj)t0(z)

)
= 0.

Moreover, from Lemma 5, if σk is a dominant singularity of H(z), 1 − (1 −
α1)t0(σk) = 0. Therefore, Φi(z) also has a singularity at σk of the order of
s− i+ 1.

We now compute the coefficient Yk(σk) which defines the behavior of the
generating function H(z) in the neighbourhood of the kth dominant singularity
σk.

Theorem 3.3. The tail distribution of Ageν is given by

P (Ageν = n) ∼
M∑
k=1

Yk(σk)
ns−1

(s− 1)!σnk
, (3.16)

where M is the total number of zeros of t0(z) = 1
1−α1

with smallest norm and

Yk(σk) =
r1(σk)[t1(σk)]s−1

[T ′(σkA(0))A(0)]s

(
T (σk)− 1−

l−1∑
j=s+1

(1− αj)tj−s(σk)

+

l−1∑
j=s+1

(1− αj)tj−s(σk)Φj(σk)

)
. (3.17)

Proof. Since σk is a dominant singularity of H(z) of order s, Yk(σk) (see theo-
rem 3.2) is given by

Yk(σk) = lim
z→σk

(σk − z)sH(z)

= lim
z→σk

(σk − z)s
(
R(z) +

l−1∑
i=1

(1− αi)ri(z)(Φi(z)− 1)

)
.

From Lemma 6, we know that for 1 ≤ i ≤ s, Φi(z) has a singularity of order
s − i + 1 at σk. Moreover, Φi(z), i > s, does not have a singularity at σk.
Therefore, the expression for Yk(σk) simplifies to

Yk(σk) = lim
z→σk

(σk − z)s(1− α1)r1(z)Φ1(z)

= (1− α1)r1(σk) lim
z→σk

(σk − z)sΦ1(z). (3.18)
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Therefore, to compute Yk(σk), we need to compute the cΦ1
, the constant which

defines the behavior of Φ1(z) around the dominant singularity σk.

cΦ1
= lim
z→σk

(σk − z)sΦ1(z).

Using eqn (3.10), we can write

Φi(z) =
T (z)−

∑l−1
j=i(1− αj)tj−1(z) +

∑l−1
j=s+1(1− αj)tj−1(z)Φj(z)

1− (1− αs)t0(z)

+
(1− αs)

∑s
j=i+1 tj−1(z)Φj(z)

1− (1− αs)t0(z)
. (3.19)

To compute cΦ1
, we first compute the coefficient of 1

[1−(1−αs)t0(z)]s in eqn (3.19)
recursively which results in

(1− αs)s−1t1(z)s−1

(
T (z)−

l−1∑
j=s

(1− αj)tj−s(z) +

l−1∑
j=s+1

(1− αj)tj−s(z)Φj(z)
)
.

Note that while computing cΦ1
the terms other than the coefficient of

1
[1−(1−αs)t0(z)]s will become 0 under the limits z → σk. Therefore, the coef-
ficient cΦ1

is given by

cΦ1
= lim
z→σk

(σk − z)sΦ1(z)

= lim
z→σk

(σk − z)s
(1− αs)s−1[t1(z)]s−1

[1− (1− αs)t0(z)]s

(
T (z)

−
l−1∑
j=s

(1− αj)tj−s(z) +

l−1∑
j=s+1

(1− αj)tj−s(z)Φj(z)
)
.

Using L’Hôpital’s rule s times in the above expression and using the relation
(1− αs)t0(σk) = 1 we get

cΦ1
=

[t1(σk)]s−1

(1− αs)[T ′(σkA(0))A(0)]s

(
T (σk)− 1

+

l−1∑
j=s+1

(1− αj)tj−s(σk)
(
Φk(σk)− 1

))
, (3.20)

where we also used t0(z) = T (zA(0)). Therefore, from eqn (3.18)

Yk(σk) = (1− α1)r1(σk)cΦ1

=
r1(σk)[t1(σk)]s−1

[T ′(σkA(0))A(0)]s

(
T (σk)− 1

+

l−1∑
j=s+1

(1− αj)tj−s(σk)
(
Φj(σk)− 1

))
.
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Therefore, from theorem 3.2, for large n, we can approximate the tail of
Ageν as

P (Ageν = n) ∼
M∑
k=1

Yk(σk)
ns−1

(s− 1)!σnk
.

Note that, to compute the tail distribution, we need to compute
r1(σk), t1(σk), . . . tl−1−s(σk), Φs+1(σk), . . . , Φl−1(σk). Using eqn (3.10), one
can recursively compute Φs+1(σk), . . . ,Φl−1(σk) starting from Φl−1(σk). More-
over, from eqn (3.3) we have,

r1(σk) =
∂S(y, z)

∂y

∣∣∣∣
{y=0,z=σk}

=
A′(0)

(
T (σkA(0))− T (A(0))

)
1− T (A(0))

.

Similarly, to compute t1(σk), . . . , tl−1−s(σk) use eqn (3.5), for example,

t1(σk) =
∂W (y, z)

∂y

∣∣∣∣
{y=0,z=σk}

= T ′(σkA(0))σkA
′(0).

3.5 Backup systems with time trigger mecha-
nism

Some backup systems have a time trigger mechanism to initiate a backup period
if the backup-off period becomes too long. Let us assume this timer is of length
ψ, then the maximum age of data is given by

Age = min(Ageν , ψ). (3.21)

Therefore, the age of data for such backup systems can be computed from our
analysis using eqn (3.21).

Note: We assume that the timer starts when the first packet arrives
during the vacation period. It can be defined from beginning of the off-period
or start of the vacation in which the packet arrived. In those cases, eqn (3.21)
would have to be modified accordingly. Similarly, we assume that ψ is a
constant; however, it can be a stochastic variable.

It is important to note that, for such backup systems to work efficiently, ψ has
to be chosen wisely. On one hand, a small value of ψ would result in backup
operations being triggered too often. While on the other hand, a large value
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of ψ defeats the whole purpose of a time trigger mechanism, which is to avoid
long backup off periods. Therefore, it is important for such backup systems to
choose an optimal timer length ψ. To measure this efficiency, we define a new
performance measure, the frequency of backups.

Frequency of backups

For any general event repeating at a period of P , its frequency is defined as
F = 1

P . Since the backup time itself is typically very short as compared to
backup-off periods, we define the frequency of backup operations as

Freq =
1

E(Age)
=

1

E(min(Ageν , ψ))
. (3.22)

To be able to select the optimal trigger parameter, it is important to
study the effect of ψ on both the frequency and age of data. The QoS of
backup processes is defined in terms of the RPO. That is, a service provider
would guarantee an RPO to its user, such as 15min-24hrs guaranteed by [73]
for different costs, as mentioned in introduction. Using eqns (3.21) and (3.22),
we can compute the moments of Age and the frequency for such backup
mechanisms.

E(Age) = E(min(Ageν , ψ))

= ψ × P (Ageν > ψ) + E(Ageν |Ageν ≤ ψ)P (Ageν ≤ ψ)

= ψP (Ageν > ψ) +

ψ∑
n=1

nP (Ageν = n)

= ψP (Ageν > ψ) + E(Ageν)−
∞∑

n=ψ+1

nP (Ageν = n)

= E(Ageν) +

∞∑
n=ψ+1

(ψ − n)P (Ageν = n).

E(Ageν) can be computed from eqn (3.11). Assuming ψ is reasonably large,
using the Theorem 3.3, we can approximate the E(Age) as

E(Age) ≈ E(Ageν) +

∞∑
n=ψ+1

(ψ − n)

M∑
k=1

Yk(σk)
ns−1

(s− 1)!σnk

= E(Ageν) +

M∑
k=1

Yk(σk)

∞∑
n=ψ+1

(ψ − n)
ns−1

(s− 1)!σnk
.

Using eqn (3.22), the frequency is therefore given by

F ≈
[
E(Ageν) +

M∑
k=1

Yk(σk)

∞∑
n=ψ+1

(ψ − n)
ns−1

(s− 1)!σnk

]−1

. (3.23)
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Figure 3.1: Impact of restarting probability α1 on tail of Ageν , Arrival rate = 0.1,
l = 20

3.6 Numerical evaluation

In this section, we analyze the performance of the system using the numerical
example used in section 2.5. Since it is well known that the arrival distribution
can have a heavy tail (see example [75]) we assume that the number of arrivals
in a slot follows a Mixed distribution of Poisson and Power Law. The vacation
lengths have a discrete uniform distribution.

A(z) = peλ(z−1) + (1− p)Lγ(z)

Lγ(1)
, p = 0.999,

Lγ(z) =

∞∑
k=a

zγ

kγ
, a = 25, γ = 2.5, (3.24)

T (z) =
1

5

(
zv−2 + zv−1 + zv + zv+1 + zv+2

)
.

Using Maple, we find the solutions of the equation (3.14). We find that the
generating function H(z) has only 1 dominant singularity and plot Ageν(n) =
P (Ageν = n) with varying system parameters1.

Using the tail distribution of Ageν , F and E(Age) can be computed easily
using eqn (3.23). Therefore, analyzing the tail distribution of Ageν is sufficient.
To do this analysis with different restarting probabilities, we vary αs between
0 and 0.5, for values of s between 1 and 5, while keeping the remaining αi for

1The code used for tail distribution analysis is available at https://github.com/saxe405/
tail_distribution

https://github.com/saxe405/tail_distribution
https://github.com/saxe405/tail_distribution
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Figure 3.2: Tail of Ageν with increasing n, Arrival rate = 0.1, l = 20.

Figure 3.3: Tail of Ageν with increasing n, Arrival rate = 0.1, s = 1
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i > s fixed. That is,

α1 = α2 = . . . = αs = α,

αi = 0.6 + 0.4× i

l
, ∀i > s.

Figure 3.4: Maximum age of data and frequency of backup with change in timer
length. λ = 0.07, slot length = 5 second, αi = i

30
, and l = 20.

3.6.1 Observations and key insights
A system administrator would desire to keep the age of data as low as possible.
However, increasing the frequency of backups would come with an increased
economic cost. We are able to exactly compute the generating function of Ageν
as well as the tail distribution. We observe that the tail distribution is sensitive
to the change in model parameters.

In the figures 3.1-3.3, we plot the tail probabilities of Ageν with respect to
the change in the model parameters α1, s and l. In figure 3.4, we compute the
expected maximum age, E(Age) and frequency (F ) for backup operations with
time trigger mechanism.

• Choice of the smallest restarting probability α1 needs to be smart. A
smaller value of α1 would give a dominant singularity of smaller modulus
from eqn (3.14). Since σnk is in the denominator of eqn (3.16), it would
lead to larger tail probabilities. This is also observed in Figure 3.1.

• The order of dominant singularities s is directly determined by the choice
of restarting probabilities αj , 0 < j < l. Since in the eqn (3.16) of tail
probability distribution, ns appears in the numerator, a smaller value of
s leads to smaller tail probabilities. This is also observed in Figure 3.1
and 3.2.



66 Analysis of age of data

• A larger restarting threshold l results in a higher value of Yk(σk) from
eqn (3.17). Therefore, tail probabilities are higher for higher restarting
threshold. This is also observed in Figure 3.3.

• For backup operations with time trigger mechanism, increasing the timer
length drastically decreases the backup frequency. As shown in example
in Figure 3.4, selecting timer length of 45min instead of 40min reduces
the backup frequency by approximately 15%. Users can define their cost
functions based on E(Age), F and other performance measures computed
in chapter 2. Minimizing this cost function would give the optimal pa-
rameters, including the optimal trigger length.

3.7 Summary
In our previous chapter, we modeled data backup systems as a batch service
queueing model with vacations and restarting probabilities. We obtained var-
ious performance measures such as the moments of the backlog size and the
mean value of the age of data at the beginning of a backup. The age of data
is one of the most important quantities in backup systems because it captures
the risk of data loss in case of a disaster. In this chapter we have computed
the generating function of the age of data at the beginning of the backup. As a
consequence, we can now compute higher order moments and analyze the tail
of this distribution by computing the dominant singularities of the generating
function. The choice of restarting probabilities determines the value of these
singularities as well as their order. We have analyzed the behavior of the tail
of the distribution of Ageν for different values of model parameters. We are
able to precisely compute the tail distribution characterized by the model pa-
rameters. We also use this analysis to compute and analyze the performance
measures of backup systems with time trigger mechanism.



4
Queueing model with two

thresholds

4.1 Introduction

In the previous two chapters, we modeled the backup processes as a queueing
model with probabilistic restarting rules. Using that model, we were able to
compute the performance measures such as the distribution of backlog size,
probability the server is busy. We also computed the PGF of the age of data and
analyze its tail distribution. The backup service provider’s aim is to ensure that
the QoS requirements, with the primary focus on the age of data and backup
frequency, are always met. There are multiple ways of ensuring this. Selecting
the appropriate restarting parameters or implementing a timer mechanism with
an optimal trigger are two possible ways to do this. However, some backup
service providers, may still demand a stronger control over the age of data to
deliver high QoS. Therefore in this chapter we study a new queueing model for
backup server. The key modification is that we explicitly a timer within the
model that was missing in Chapter 2.

Figure 4.1: Relating performance measures of queueing model with QoS of data
storage
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Figure 4.2: Data storage mechanism

We model the storage process as a discrete-time batch service queueing model
with sleep mode. This model is characterized using 3 parameters: c, the
capacity of the storage server, l, the backlog restarting threshold, and τ
restarting threshold for maximum time between the completion of a storage
and the start of a new storage. The τ parameter is precisely used to model the
timer mechanism. To keep the model applicable to a wide range of use cases,
the service time of data packets and sleep epochs of the server are assumed
to follow a general distribution. Similar to the model studied in chapter 2,
the data which needs to be stored on the cloud infrastructure arrives at the
storage server in the form of data packets. We model the number of arrivals
of these data packets in a single slot as a general distribution and independent
across each slot.

We discussed the challenges faced during the setup of backup operations
in chapter 1. For the convenience of the reader, we will briefly reiterate some
of those challenges. A system administrator has four major challenges while
designing the data storage operations

1. Data backlog should stay low so that the number of data packets waiting
for storage in the backlog should not exceed the available system buffer.

2. Waiting time of data packets should stay low as the data packets that
are not yet stored can be lost.

3. Storage server should be in sleep mode as long as possible to keep the
power consumption and cloud resource usage low.
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4. Establish as few connections as possible to cloud infrastructure as the
user is charged for number of connections made to namenode.

In order to ensure that challenges (1) & (2) are met, the administrator needs
to perform storage operations as frequently as possible. However, increasing
the frequency of storage operations is not good for challenges (3) & (4). There-
fore, there is a clear trade-off involved in selecting this storage frequency. By
modeling these storage operations as a queueing model, we aim to compute the
necessary performance measures and this trade-off.

4.2 Model description
Newly generated data packets are not immediately stored, but wait before
they are uploaded to the cloud infrastructure. We model newly generated
data packets as packets arriving to a queueing system. Waiting before
storage is modelled by waiting in the queue of the queueing model until being
served by a server. Service corresponds to being stored on cloud infrastructure.

The number of data packets generated during consecutive slots is as-
sumed to constitute an independent and identically distributed sequence
{Ak; k ≥ 1} where Ak denotes the number of newly generated data packets
during the slot k. The common random variable of the sequence {Ak; k ≥ 1}
is denoted by A and its mass function and probability generating function
respectively by a(n) and A(z). Note that A has a general distribution, i.e., we
do not impose a particular distribution to the applicability of the model. This
is exactly the same as the model we described in section 2.1.

A common strategy to tackle the trade-off explained in the chapter 2 is
to only start the storage when enough packets are present, i.e., waiting for
storage; but at the same time, imposing a limit on the maximum number of
slots since the last storage. This is modelled as thresholds as follows; when
the storage server becomes available it starts a new storage operation if the
number of packets present is at least l or if the time since the completion of
the previous storage is at least τ .

Once the storage is activated, multiple batch operations are performed
till backlog gets empty. Since, for efficiency purpose, packets are not trans-
mitted individually, but in batches of, say, c packets, the storage service is
modelled as a series of batch services of c packets (except if less than c packets
are present for the batch, then a smaller batch is served). Furthermore, in order
to not start storage too frequently, the threshold l is not too small in practice
and typically larger than c. Hence, it is safe to assume that l ≥ c. Further,
we assume that A(0) > 0, i.e., the probability that zero packets arrive in
a slot is non-zero otherwise the storage server would never go into a sleep mode.

Remark: The exhaustive policy is frequently used in storage processes
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and cloud service providers charge each new connection (new storage initia-
tion), for example [8] and [11] can charge as high as $0.01 per 1,000 requests.
The number of storage operations in general are significantly higher than the
number of total files eventually written. As already explained in section 1.2.1,
this is because the packets stored on the cloud infrastructure are immutable.
That is, even if there is a small change to a file, which is divided into several
data packets for storage, all the data packets and their redundant copies have
to be rewritten. Therefore, we incorporate exhaustive service policy in the
model of cloud storage. Hence, after having served a batch of packets, the
server serves another batch of packets unless there are no packets any more.
Packets arriving during storage are thus also served during that same storage
cycle. Checking each slot whether a new storage could be initiated would be
too energy consuming. Hence, if the server decides not to start the storage,
the server temporarily goes into sleep mode. Incorporating sleep mode is a
common strategy in telecommunications to save energy for example [76], [77],
[78], [79], [80], [81].

In order not to restrict the applicability of the model, the length of a
sleep period denoted by T , can have any distribution. The generating function
of T is denoted by T (z). Note that the special case T (z) = z corresponds to
checking each slot. Hence, the case of no sleep mode is also included. The
lengths of distinct sleep epochs are assumed to be independent. This part of
the model is also present in the model studied in chapter 2.

The time to transmit (serve) a batch of m packets (m ≤ c) is denoted
by Gm and its probability generating function by Gm(z). Again, to not
restrict the applicability, no restrictions are imposed on the distribution of
Gm. A summary of all the notations used in the analysis is given in the table
1.

4.3 Analysis
The analysis of this model will follow a similar path as we have seen in section
2.2. However, the analysis of the system initiation opportunities is more
involved than seen in section 2.2.4.

We begin by writing down the discrete Markov chain for (Qk,Wk, Rk).
We observe the system at a random slot k and observe the quantities Qk,Wk

and Rk. Using these quantities we can write the following relations for the
slot k + 1

• If there is more than one slot remaining in the current epoch, the system
sees only new arrivals. During sleep periods, the number of slots since
previous storage also increases.

• If the system is at the end of service of the current batch and the backlog
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Table 1: List of notations used in the analysis
c capacity of the batch server
l starting threshold of backlog size for batch service to restart

when server wakes up from a sleep mode.
τ starting threshold of number of slots since last storage for

batch service to restart when server wakes up from a sleep
mode.

T defines the distribution of any random sleep period with
the generating function T (z).

Qk the number of packets in queue at the slot boundary k i.e.
excluding the packets in service.

Wk the number of slots since the last storage at slot boundary
k. Wk = 0 implies that server is on during slot k while
Wk = j > 0 implies that no storage has taken place in j
slots (including the current slot).

Ak the number of arrivals in the slot k. Its distribution is given
by the generating function A(z).

Rk the remaining service time or the remaining sleep time in
the current epoch depending on whether a service or sleep
mode is going on.

Gm the service time of a batch containing m packets. Its dis-
tribution is given by the generating function Gm(z). More-
over, G0 ≡ T .

η(a, b) minimum{a, b}.
ρ A′(1)G′c(1)/c is the load of the system

I0(x)
1 iff x = 0
0 otherwise
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is not empty, it starts serving a new batch in the next slot(with max c in
a single batch). This is due to the exhaustive service policy. Further, if
the backlog is empty, the server goes into a sleep mode.

• If the server is at the end of a sleep epoch and finds that at least τ
slots have passed since the last storage, it starts the service immediately.
However, if the backlog is empty, it just resets the number of slots since
last storage to 1 and goes into another sleep mode.

• If the server is at the end of a sleep epoch and finds that the threshold
τ has not been breached, it decides to start a new batch service if the
backlog is more than l packets.

Using the relations above, we start by writing the vector (Qk+1,Wk+1,
Rk+1) in terms of (Qk,Wk, Rk).

(Qk+1,Wk+1, Rk+1) =

• If Rk > 1,Wk = 0, (ongoing service)

(Qk +Ak, 0, Rk − 1). (4.1)

• If Rk > 1,Wk > 0, (ongoing sleep mode)

(Qk +Ak,Wk + 1, Rk − 1). (4.2)

• If Rk = 1,Wk = 0 OR Rk = 1,Wk ≥ τ , (τ threshold breached)

(Qk +Ak − η(Qk +Ak, c), I0(η(Qk +Ak, c)), Gη(Qk+Ak,c)). (4.3)

• If Rk = 1, 0 < Wk < τ,Qk +Ak ≥ l, (l threshold breached)

(Qk +Ak − c, 0, Gc). (4.4)

• If Rk = 1, 0 < Wk < τ,Qk +Ak < l, (no threshold breached)

(Qk +Ak,Wk + 1, T ). (4.5)

Define the joint generating function,

Vk(z, y, x) = E(zQkyWkxRk−1).

Further, we use the notation

E(zX{condition}) = E(zX |{condition})P (condition).

Using relations eqn (4.1-4.5), one can write

Vk+1(z, y, x) = E

(
zQk+AkxRk−2{Rk > 1,Wk = 0}

)
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+ E

(
zQk+AkyWk+1xRk−2{Rk > 1,Wk > 0}

)
+ E

(
zQk+Ak−η(Qk+Ak,c)yI0(η(Qk+Ak,c))x

Gη(Qk+Ak,c)
−1

{Rk = 1,Wk = 0 OR Rk = 1,Wk ≥ τ}
)

+ E

(
zQk+Ak−cxGc−1{Rk = 1, 0 < Wk < τ,Qk +Ak ≥ l}

+ zQk+AkyWk+1xG0−1{Rk = 1, 0 < Wk < τ,Qk +Ak < l}
)
.

(4.6)

Following [68], the system is stable when ρ < 1. We look at the steady state of
the system. For this, we further define

V (z, y, x) = lim
k→∞

Vk(z, y, x), (4.7)

dj(m) = lim
k→∞

P (Qk +Ak = m,Wk = j, Rk = 1), j < τ (4.8)

dτ (m) = lim
k→∞

P (Qk +Ak = m,Wk ≥ τ,Rk = 1). (4.9)

Namely, dj(m) represents the stationary probability of having m packets in
the backlog, and the number of slots since last storage being equal to j and
the server being at the end of a sleep or storage period. For j = τ the number
of slots since last storage is greater than or equal to τ .

Using eqns (4.7) -(4.9), eqn (4.6) can be rewritten as

V (z, y, x) =
A(z)

x

(
V (z, 0, x)− V (z, 0, 0)

)
+
A(z)y

x

(
V (z, y, x)

− V (z, y, 0)− V (z, 0, x) + V (z, 0, 0)

)
+
yT (x)

x

(
d0(0) + dτ (0)

)
+

c−1∑
m=1

Gm(x)

x

(
d0(m) + dτ (m)

)

+

∞∑
m=c

zm−cGc(x)

x

(
d0(m) + dτ (m)

)

+

τ−1∑
j=1

∞∑
m=l

zm−cGc(x)

x
dj(m) +

l−1∑
m=0

τ−1∑
j=1

zmyj+1T (x)

x
dj(m). (4.10)

One can observe that

lim
k→∞

∞∑
m=0

τ∑
j=0

zmP (Qk +Ak = m,Wk = j, Rk = 1) = A(z)V (z, 1, 0). (4.11)
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Using eqn (4.11), eqn (4.10) can be rewritten as

V (z, y, x)

(
1− A(z)y

x

)
=
A(z)(1− y)

x

(
V (z, 0, x)− V (z, 0, 0)

)
− A(z)y

x
V (z, y, 0) +

A(z)Gc(x)

xzc
V (z, 1, 0)

+

(
yT (x)

x
− Gc(x)

xzc

)(
d0(0) + dτ (0)

)
+

c−1∑
m=1

zcGm(x)− zmGc(x)

xzc

(
d0(m) + dτ (m)

)

+

l−1∑
m=0

τ−1∑
j=1

zm+cyj+1T (x)− zmGc(x)

xzc
dj(m). (4.12)

This equation contains τ × l+ c unknowns namely U =
{
d0(m) : m = 0 . . . c−

1
}⋃{

dj(m) : m = 0 . . . l − 1, j = 1 . . . τ
}
. We will show that V (z, 1, 0),

V (z, 0, x), V (z, 0, 0), V (z, y, 0) can be expressed as linear combinations of the
unknowns U. Therefore, V (z, y, x) can be expressed explicitly using the model
parameters and unknowns U.

Substituting y = 1 followed by x = A(z) in eqn (4.12) we get

A(z)V (z, 1, 0)
(
zc−Gc(A(z))

)
=

(
zcT (A(z))−Gc(A(z))

)(
d0(0) + dτ (0)

)
+

c−1∑
m=1

(
zcGm(A(z))− zmGc(A(z))

)(
d0(m) + dτ (m)

)
+

l−1∑
m=0

τ−1∑
j=1

(
zm+cT (A(z))− zmGc(A(z))

)
dj(m). (4.13)

Substituting y = 0 in eqn (4.12) gives

V (z, 0, x)(x−A(z)) = −A(z)V (z, 0, 0)− Gc(x)

zc

(
d0(0) + dτ (0)

)
+

c−1∑
m=1

(
Gm(x)− zmGc(x)

zc

)(
d0(m) + dτ (m)

)
+A(z)V (z, 1, 0)

Gc(x)

zc
− Gc(x)

zc

τ−1∑
j=1

l−1∑
m=0

zmdj(m). (4.14)

Further, substituting x = A(z) in eqn (4.14) gives us

A(z)V (z, 0, 0) = −Gc(A(z))

zc

(
d0(0) + dτ (0)

)
+A(z)V (z, 1, 0)

Gc(A(z))

zc
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+

c−1∑
m=1

(
Gm(A(z))− zmGc(A(z))

zc

)(
d0(m) + dτ (m)

)
− Gc(A(z))

zc

τ−1∑
j=1

l−1∑
m=0

zmdj(m). (4.15)

Finally, V (z, y, 0) can be computed by substituting x = A(z)y in (4.12) which
gives us

yA(z)V (z, y, 0) = A(z)(1− y)

(
V (z, 0, yA(z))− V (z, 0, 0)

)
+

(
yT (yA(z))− Gc(yA(z))

zc

)(
d0(0) + dτ (0)

)
+

c−1∑
m=1

(
Gm(yA(z))− zmGc(yA(z))

zc

)(
d0(m) + dτ (m)

)
+
A(z)Gc(yA(z))

zc
V (z, 1, 0)

+

l−1∑
m=0

τ−1∑
j=1

(
zmyj+1T (yA(z))− zmGc(yA(z))

zc

)
dj(m),

which on using eqn (4.13) - (4.15) gives us

yA(z)V (z, y, 0) = yA(z)V (z, 0, 0) + yT (yA(z))

(
d0(0) + dτ (0)

)
+

l−1∑
m=0

τ−1∑
j=1

zmyj+1T (yA(z))dj(m). (4.16)

Substituting eqn (4.13)-(4.16) in eqn (4.12), one can write

V (z, y, x)(x−yA(z))

= y
(
T (x)− T (yA(z))

)(
d0(0) + dτ (0)

)
+

[
x− yA(z)

x−A(z)

]
×[

− z−c
(
Gc(x)−Gc(A(z))

)(
d0(0) + dτ (0)

)
+

c−1∑
m=1

(
Gm(x)

−Gm(A(z))− zm−c
(
Gc(x)−Gc(A(z))

))(
d0(m) + dτ (m)

)
−
(
Gc(x)−Gc(A(z))

) τ−1∑
j=1

l−1∑
m=0

zm−cdj(m)

]

+

(
x− yA(z)

)
A(z)

(
Gc(x)−Gc(A(z))

)
(x−A(z))zc

V (z, 1, 0)
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+

l−1∑
m=0

τ−1∑
j=1

zmyj+1

(
T (x)− T (yA(z))

)
dj(m), (4.17)

where V (z, 1, 0) is given by eqn (4.13). Therefore, we have shown that the
generating function V (z, y, x) can be expressed as a linear combination of the
unknowns U and the model parameters. Now, we will compute relations be-
tween unknowns U and form a solvable system of linear equations. Once these
unknowns have been computed, the generating function would be completely
expressible using the model parameters. To achieve this we use the results from
[69].

4.3.1 Zeros of zc −Gc(A(z))

In chapter 2, section 2.2.3, we proved that zc−Gc(A(z)) has c− 1 zeros inside
the complex region {z : |z| ≤ 1, z 6= 1, z ∈ C}. These zeros can be used in eqn
(4.13) giving us c− 1 linear equations in the unknowns U.

4.3.2 Normalization condition
The normalization condition of probability generating functions, as already
seen in section 2.2.6, gives us V (1, 1, 1) = 1. Therefore, by applying L’hôpital
rule in eqn (4.17) and using the normalization condition we get

cT ′(1)

(
d0(0)+dτ (0)

)
+

c−1∑
m=1

(
cG′m(1)−mG′c(1)

)(
d0(m) + dτ (m)

)

+

τ−1∑
j=1

l−1∑
m=0

cT ′(1)dj(m) = c−G′c(1)A′(1). (4.18)

Therefore, using the zeros of zc − Gc(A(z)) the normalization condition, eqn
(4.18), we already have c linear equations in unknowns U. However, the number
of unknowns in U is equal to τ× l+c. To find more relations, we look at service
initiation opportunities.

4.3.3 Service initiation opportunities
Service initiation opportunities are defined as the slot boundaries on which the
service/sleep periods start and end. We look at a service initiation opportunity
at the end of a sleep period and relate it to the previous service initiation op-
portunity. We looked at service initiation opportunities for the model studied
in chapter 2 in section 2.2.4. In that model, the restart of service was dependent
only on the number of packets in the backlog. However, here it also depends on
the number of slots since the last backup which gives us more cases to consider.

Note that if the service is not initiated at the end of a sleep period, an-
other sleep period would follow. Our main aim is to make some observations
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(a) Previous epoch di(m), i < j (b) Previous epoch dτ (0)

Figure 4.3: Recursive relation for Case I

and write recursive relations between dj(m), j > 0. These relations can be
divided into two cases.

CASE I: j < τ

During the steady state, let us assume that the storage server is at the end of
the sleep mode and slot number = k i.e. Rk−1 = 1. Further assume that the
backlog size Qk = m, and the number of slots since the last storage Wk−1 = j.
The probability that the server is in this state is equal to dj(m) where j < τ .
Say the previous period ended at slot f , it has to be one of the following :

1. a service period with no backlog at the end i.e. Qf = 0,Wf−1 =
0, Rf−1 = 1. The probability the server is in this state is equal to d0(0),

2. a sleep period at the end of which more than τ slots had elapsed without
storage and no backlog i.e. Qf = 0,Wf−1 ≥ τ,Rf−1 = 1. The probability
of the server being in this state is equal to dτ (0),

3. a sleep period with less than j slots since last storage i.e. Qf = n,Wf−1 =
i, Rf−1 = 1 where i < j, n ≤ m.

See Figure 4.3 for an illustration of the recursive relation. It is important to
note that at the end of the previous service initiation opportunity, the backlog
can not be more than l packets otherwise the current period would not be a
sleep period. Therefore for m < l, we can write

dj(m) =

j−1∑
i=1

m∑
n=0

di(n)a(m− n, j − i)t(j − i) +
(
d0(0) + dτ (0)

)
a(m, j)t(j),

(4.19)

where a(n, s) is the probability of n arrivals in s slots and t(s) is the probability
that the length of sleep epoch is s slots.

CASE II: j = τ

During the steady state, let us assume that the storage server is at the end of
the sleep mode and the slot number is equal to k , i.e., Rk−1 = 1. Further
assume that the backlog size Qk is equal to m and the number of slots since
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(a) Previous epoch dj(m), j < τ (b) Previous epoch dτ (0)

Figure 4.4: Recursive relation for Case II

the last storage Wk−1 is equal to τ . The probability that the server is in this
state is equal to dτ (m). Say the previous period ended at slot f , it has to be
one of the following :

1. a sleep period with j slots since the last storage where j < τ , i.e.,
Qf = n,Wf−1 = j, Rf−1 = 1. The probability that the server is in this
state is equal to dj(n),

2. a sleep period with more than τ slots since the last storage and no backlog
i.e. Qf = 0, Wf−1 ≥ τ,Rf−1 = 1. The probability that the server is in
this state is equal to dτ (0),

3. a service period which ends with zero packets in backlog, i.e., Qf = 0,
Wf−1 = 0, Rf−1 = 1. The probability that the server is in this state is
equal to d0(0).

See Figure 4.4 for an illustration of the recursive relations. Therefore form < l,
we have

dτ (m) =

τ−1∑
j=1

m∑
n=0

∞∑
s=τ−j

dj(n)a(m− n, s)t(s) +

∞∑
s=τ

(
dτ (0) + d0(0)

)
a(m, s)t(s).

(4.20)

Together, these two cases give us τ×l new equations. Combining the results
obtained in section 4.3.1 and section 4.3.2, we have a solvable linear system of
equations with (c+ τ × l) unknowns. Therefore, by solving this linear system,
one can exactly compute the generating function V (z, y, x) in terms of the
model parameters.

Computational complexity

For exact computation of the generating function V (z, y, x), one needs to solve
a system of linear equations with (c+τ×l) unknowns for a general distributions
of A, T and Gm, m ≤ c. During the analysis of the model studied in chapter 2,
we only had to solve for l+c−1 unknowns, see section 2.2.3. In contrast, here we
have to solve for a large number of unknowns which increases the computational
complexity of this model. However, since T , the distribution of the sleep epoch
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of the storage server, is fixed by the system administrator, it should have a
reasonably simple distribution. This reduces the order of the system of linear
equations significantly. That is, if we know that P (T > p) = 1, the length of
each sleep epoch is more than p. Therefore, from eqn (4.19), dj(m) = 0 for all
j ≤ p. The order of system of linear equations is reduced to c+ (τ − p)× l.

4.4 Performance measures

In this section, we look at generating functions of some performance measures
of this queueing system which are expressed in V (z, y, x). These include the
QoS measures of the data backup policy described in section 1.2.1. Since we
have computed a closed form expression for this generating function in terms
of the model parameters and known constants U, the expressions of perfor-
mance measures can be easily computed by substitution. Further, it is very
straightforward to compute the moments of the performance measures from
their generating functions. For example, if X(z) is a pgf of a random variable
X,

E(X) =
∂X(z)

∂z

∣∣∣∣
z=1

,

V ar(X) =
∂2X(z)

∂z2

∣∣∣∣
z=1

+
∂X(z)

∂z

∣∣∣∣
z=1

−
(
∂X(z)

∂z

∣∣∣∣
z=1

)2

,

E(Xn) =
∂nX(z)

∂zn

∣∣∣∣
z=1

.

4.4.1 Backlog size

By the definition of the generating function V (z, y, x), the generating function
of the backlog size is given by V (z, 1, 1).

4.4.2 Queue content during sleep mode

When the system is in sleep mode, Wk > 0. Therefore, the generating function
for the queue content during sleep mode is given by

V (z, 1, 1)− V (z, 0, 1)

1− V (1, 0, 1)
. (4.21)

4.4.3 Probability of a new connection

A new connection is established when a new service is initiated after a sleep
epoch. Therefore,

P ( New connection ) = lim
k→∞

P (Wk+1 = 0,Wk > 0)
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= lim
k→∞

∞∑
j=1

Pr
(
Wk+1 = 0,Wk = j, Rk = 1

)
= lim
k→∞

τ−1∑
j=1

∞∑
m=l

Pr
(
Qk +Ak = m,Wk = j,Wk+1 = 0, Rk = 1

)
+ lim
k→∞

∞∑
m=1

Pr
(
Qk +Ak = m,Wk ≥ τ,Wk+1 = 0, Rk = 1

)
=

∞∑
m=l

τ−1∑
j=1

dj(m) +

∞∑
m=1

dτ (m)

= V (1, 1, 0)− V (1, 0, 0)−
l−1∑
m=0

τ−1∑
j=1

dj(m)− dτ (0)

= d0(0).

Note that d0(0) = limk→∞ P (Qk + Ak = 0,Wk = 0, Rk = 1). That d0(0) is
equals the probability that we are in the last slot of a storage period. Between
two consecutive storage periods, there is always a backup-off period. Therefore,
in steady state the P (new connection) equals the probability that we are in the
last slot of a storage period.

4.4.4 Probability that server is busy

During service periods, the number of slots since the last storage remains zero.
Therefore the probability that the server is busy is given by

P ( Server Busy ) = lim
k→∞

P (Wk = 0) = V (1, 0, 1)

=

(
G′c(1)T ′(1)A′(1)

c−G′c(1)A′(1)

)(
d0(0) + dτ (0)

)
+

c−1∑
m=1

(
G′m(1) +

G′c(1)
(
G′m(1)A′(1)−m

)
c−G′c(1)A′(1)

)(
d0(m) + dτ (m)

)
+

l−1∑
m=0

τ−1∑
j=1

(
G′c(1)T ′(1)A′(1)

c−G′c(1)A′(1)

)
dj(m). (4.22)

This quantity is the probability that a in randomly selected slot, the backup
server is busy. A higher value of this probability would imply that the server is
active during more slots. Therefore, it captures the power consumption of the
storage server. Moreover, to keep the backup operations running, the backup
server communicates actively with the cloud infrastructure, this quantity also
captures the duration for which connections to the cloud infrastructure are kept
alive.
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4.4.5 Number of slots since last storage
By the definition of the generating function V (z, y, x), the generating function
of the number of slots since the last storage is given by

V (1, y, 1) =

(
y(1− T (y))

1− y
+
G′c(1)T ′(1)A′(1)

c−G′c(1)A′(1)

)(
d0(0) + dτ (0)

)
+

c−1∑
m=1

(
G′m(1) +

G′c(1)
(
G′m(1)A′(1)−m

)
c−G′c(1)A′(1)

)(
d0(m) + dτ (m)

)
+

l−1∑
m=0

τ−1∑
j=1

(
yj+1(1− T (y))

1− y
+
G′c(1)T ′(1)A′(1)

c−G′c(1)A′(1)

)
dj(m). (4.23)

This is an important quantity since it gives us the distribution of how long
the data storage operations would be stopped. As described in chapter 1, this
gives us the distribution of the limits defined by RPO. In chapters 2 and 3, we
were able to compute only the first moment and the PGF for an approximate
measure of this quantity.

4.5 Numerical example
In this section, we consider a storage system whose parameters are inspired by
our experience with storage systems and some proprietary data. This example
is very similar to the one studied in section 2.5. To evaluate the performance,
we evaluate the first moments of the measures defined above.

Storage system

The newly generated data packets arrive at the storage server at a rate between
20 and 60 MB/min. The storage server can serve at a maximum rate of 60
MB/min. Data packets are served in batches of maximum size of 10 packets.
The storage server enters sleep mode if there is nothing to serve at the end
where the length of sleep mode is 1.5 minutes on average. The storage server
resumes operations after the sleep if there are more than 20 data packets waiting
in backlog or more than 5 mins have elapsed since the past storage operation.
Each data packet is, on an average, 10 MB is size.

Queueing model

We assume that each slot is of 10 seconds length. Therefore, model parameters
can be evaluated as

• The distribution of number of arrivals in a single slot is a mix of Poisson
and Power law so that the distribution has a heavy tail i.e.

A(z) = p× eλ(z−1) + (1− p)× ζγ(z)

ζγ(1)
,
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Figure 4.5: Expected backlog size with increasing system load

ζγ(z) =

∞∑
k=r

zk

kγ
.

• The length of each sleep period has a uniform distribution between 7 and
11 slots, i.e. T (z) = 1

5

∑11
i=7 z

i and E(T ) = 9.

• The batch server capacity c = 10.

• The backlog starting threshold l = 20.

• The number of slots since last storage starting threshold τ = 30.

• Service time of a batch of size m has a uniform distribution i.e. Gm(z) ≡
[m,m+ 2].

In our numerical analysis we show the dependence of the first moment of our
performance measures on different values of l and τ for varying system load.
These results are illustrated in Figures 4.5 - 4.8.

4.5.1 Observations
The results illustrated in Figure 4.5 - 4.8 show that the performance measures
are dependent on the choice of storage operations parameters. When the system
is under low or moderate load, we observe the following

1. from Figures 4.5-4.7, smaller restarting thresholds are better to have a
lower expected backlog size. While higher restarting thresholds result in
smaller probability of a new connection and longer time since the last
storage.
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Figure 4.6: Probability of new connection with increasing system load
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Figure 4.7: Expected number of slots since last upload with increasing system load
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Figure 4.8: Probability server busy with increasing system load

2. from Figure 4.8, a higher thresholds results in lower probability of server
being busy. It is important to note that even a slight change in this
measure translates to equivalent percentage change in the consumption
of power and cloud resources. Therefore, even an improvement of 0.1%
may be substantial.

When the load reaches the capacity of the system, the choice of parameters does
not have a significant impact for any of the defined performance measures. This
happens because the system would rarely go into sleep mode when the load is
very high and therefore the restarting thresholds do not play a large role.

4.5.2 Comparison with model of chapters 2 and 3

In our model in chapters 2 and 3 we have modeled backup processes as a
queueing model with probabilistic restarting rules. In that model, the batch
server goes into a vacation if there is nothing to serve. When the vacation
ends, it checks only the number of packets in the backlog. If there are more
than l packets in the backlog, the service is resumed immediately. However, if
there are i packets in the backlog, i < l, the backup service is resumed with
probability αi where the αi s are defined by the user.

In contrast to those chapters, our focus here is to model the time between
the completion of storage and restart of next storage. By modeling this time,
we model the recovery point objective (RPO) limits. Moreover, in chapters 2
and 3, using the model and analysis, we computed the mean value and PGF
of the distribution of a measure which is an approximation of the RPO limits.
However, in this chapter we are able to compute the exact distribution of these
RPO limits. Finally, we include a timer such that if the RPO is larger than a
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value τ , we start a new storage even if the number of packets is lower than l.
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Figure 4.9: Illustration that as τ increases, the performance measures of our model
(model 2) converges to results obtained in [1] (model 1).

The queueing model studied in this chapter and the model studied in chap-
ters 2 and 3 are equivalent if we have αi = 0,∀i < l and τ → ∞. That is,
with no probabilistic restarts the model described in chapter 2 is equivalent to
this model without a timer (τ = ∞). In figure 4.9, we plot the mean backlog
size and the probability server is busy at random slot with increasing value of
τ . It illustrates that as τ increases, the performance measures converge to the
performance measures give by model in chapter 2 with αi = 0,∀i < l. The
convergence is faster for higher loads since the server goes into fewer vacations
for higher loads. The difference between the performance measure values for
the two models highlights the importance of correctly modeling τ , especially
for the mean backlog size. That is, by introducing τ in our model, we are able
to more accurately capture the behavior for storage services with a strict limit
on time since the last storage operation.
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(a) Cost function (b) Feasible region of l and τ shaded grey

Figure 4.10: Cost function and feasible region

4.5.3 Cost minimization
In this section we define the cost function of a user which captures the monetary
cost of doing storage operations similar to what we did in section 2.5.3. The
expected QoS as defined as constraints. We then look for the optimal values
of parameters l and τ which minimize the cost. We use the same parameters
as defined in the beginning of this section with load ρ = 0.6. Define the cost
function as

C(l, τ) = eProb server busy + e50×Prob New Service. (4.24)

Further, the QoS measures are given by the following constraints

E(Backlog Size) ≤ 22 packets,
E(Number of slots since last storage) ≤ 8 slots. (4.25)

View Figure 4.10 for the change in the cost function, eqn (4.24), of the user and
the feasible region given by the constraints, eqn (4.25). We find that τ = 47
and l = 19 are the optimal thresholds for this user.

4.5.4 Final insights
While designing data storage processes, one is mainly concerned about the
challenges described in the introduction. These challenges can be divided into
two broad categories i.e. cost of performing storage and the probability of
data loss. The level of sensitivity of the measures in these categories, on the
storage parameters is very different. Given a feasible target of the performance
measures, one can compute the required storage parameters of the storage
system. From our observation and analysis in the previous sections, we observe
the following

1. Expected backlog size and probability that the server is busy are numer-
ically less sensitive to the storage parameters as compared to probability
of a new connection and expected number of slots since last storage.
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However, for a user, a small change in less numerically sensitive measures
(say probability that server is busy) may be more costly than a larger
change in more numerically sensitive measure( say expected number of
slots since last storage).

2. These parameters have an impact only when the system is under moderate
or low load.

3. A trade-off can be achieved between the counteracting performance mea-
sures by selecting optimal storage parameters.

4.6 Summary
In this chapter we have modeled cloud data storage processes as an exhaustive
batch service queueing model with sleep mode and thresholds. By properly
selecting the threshold of backlog size and time since the last storage, we can
ensure a good balance between risk of data loss and cost of doing storage op-
erations. We compute some key performance measures of the queueing system
which help us to numerically compute the performance of an equivalent storage
system. We consider a numerical example where we illustrate the dependence
of these performance measures on the storage parameters. These computa-
tions are useful to address the trade-off between doing data storage frequently
enough and reducing the resource usage. We then illustrate the use of these
performance measures to write a cost function of a user with additional QoS
constraints. The cost function and constraints are then used to select the op-
timal restarting threshold parameters.



88 Queueing model with two thresholds



5
Virtual Reality headsets

In this chapter, we analyze the streaming of 3600 videos on VR headsets using
a wireless channel. Current capabilities of wireless communication under 4G do
not support enough bandwidth to be able to handle wireless streaming on VR
headsets. Therefore, the streaming services are dependent on a wired Ethernet
connection. The same cable is used to supply the power to the headset (see
Figure 5.1). However, with the growth of 5G wireless standards, see [82], it
will be possible to provide the services without a wired connection. Wireless
transmission is desired for two reasons:

• Being connected to a wire results in a degraded immersive experience as
it limits the free movement.

• The wires can also be dangerous as one can easily trip on them as their
vision is completely occupied by the headsets.

Streaming completely wireless comes with a couple of challenges. First,
wireless communication is less reliable; 5G has more intermittent behavior
due to shadowing etc. Secondly, in the absence of any cable, the headset
would have to be powered by a battery. Therefore, the consumption of battery
power, which is linked to the number of times a wireless antenna is used, has
to be minimal. To tackle these challenges, we need to maintain a buffer of the

Figure 5.1: Oculus rift
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correct tiles by pre-fetching when the wireless channel quality is good. When
the channel quality is bad, this buffer can mitigate the impact and maintain
the high standards of QoE of the users.

In normal videos, when video needs to be buffered, the complete view
of the video is downloaded in the best possible resolution permitted by the
available bandwidth. Therefore, the buffer length is simply the length of video
in the buffer which can be played back. However, in 3600 videos only the
portion of the video that is in the view of the user is transmitted. This portion
of the video is called the Field of View (FoV) and accounts for less than 15%
of the total video (see Figure 5.2). Such transmission reduces the bandwidth
requirements which makes the high quality FoV transmission possible.

The buffering mechanism for 3600 videos is therefore much more chal-
lenging than for a simple video. Not only do we need to account for the
network interruptions, we also need to take into account the user head
movements to build a useful buffer. Additionally, if the user head moves in
an unanticipated direction, the buffer needs to be rebuilt. Since the device is
supported by a battery and a wireless network connection, we need to ensure
that both these resources are used reasonably.

Providing such an immersive experience comes with a lot of challenges.
Since the video outside the FoV is transmitted at the lowest quality, there
is a risk that if the user moves outside the anticipated FoV, a low quality
fallback video is displayed. Many papers have tried to optimize the different
components of streaming 3600 videos. For example, [83] aim to minimize
the average transmission rate by addressing the trade-off between creating
projections at the VR headsets versus doing it at the edge node. [84] look at a
similar trade-off with delay constraints by utilizing computation and buffering
resources at the VR device. [85] optimize the buffer use by storing video in
multiple bit rates.

A few papers have analysed the transmission of 3600 videos on the headset.
[4] use linear regression to predict and download the FoV of the user up to two
seconds and download tiles of this predicted FoV. [86] implement a method-
ology where the tiles in the FoV of user are streamed at the highest possible
quality and at the lowest for tiles outside this view with buffer length limited to
two seconds. [87] maintain an additional low quality buffer of the whole 3600

video to avoid scenario in which nothing is shown to the user. [5] investigate
a multi-tier approach of streaming on VR headsets, where the impact of bad
network conditions is mitigated by falling back on a WiFi connection. All the
studies use simulations to analyze the performance and compare with other
strategies. While simulation studies may have some advantages, performing
them can be a time consuming exercise. On the other hand, our model is
able to provide a precise table of download decisions the headset must take,
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Figure 5.2: The FoV of a user, see [2] for more details.

encompassing all the system scenarios. Moreover, this model also guarantees
that the long run cost of performing the task would be minimal. More
precisely we use Markov Decision Process (MDP) to get the decision table
and then use simulation to evaluate the performance under different conditions.

In this chapter, we use the patterns of head movement of the user and
the information about the most viewed parts of the video to build the buffer
which has FoV in the highest quality. We model this as an MDP which
helps us decide which parts of the video should be buffered. For example, if
enough high quality tiles are not available for the upcoming video segment,
the headset attempts to use as much bandwidth that it is permitted to use
in the given channel quality. However, if the upcoming segments of FoV are
available in high quality, tiles are downloaded only if the channel quality is
very good, as downloading in such conditions uses fewer resources. More
precisely, downloading decisions are taken to build a buffer in a way such that
the trade-off between high QoE and resource usage is optimized. We show how
the buffering mechanism translates to MDP parameters. The MDP approach
leads to a downloading policy that ensures a proper trade-off between QoE
and resource usage.

Our contribution is therefore:

• We develop an MDP based streaming approach which includes user head
movement prediction as well as variation in the channel quality,

• The mechanism allows the flexibility to model different video types and
users to accurately measure and optimize the cost and QoE of any specific
user,
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• We perform experiments to collect and analyse the user head movement
data and use it to evaluate the MDP based buffering policy,

• We show that a higher quality of FoV can be achieved using our approach
at a lower expected cost.

• Unlike other methods, using the MDP model, the buffer decisions can be
computed in a few minutes.

We start with an overview of streaming of videos in Section 5.1 where we
provide the required details of streaming process on VR headsets. We discuss
the modelling assumptions in Section 5.2. This is followed by an overview
of MDP formulation of the problem in Section 5.3 where we show how we
model the primary features of VR streaming of 3600 videos. In Section 5.4,
we give a brief overview of the experiment in which we collect the data of user
head movement. In the Sections 5.5 - 5.7 we evaluate the performance of this
buffering approach by comparing it with other common approaches.

5.1 Video streaming on VR headsets

3600 videos are divided into small tiles which can be downloaded separately
and then stitched together after the transmission. Since only the FoV tiles are
primarily required, those tiles are rendered in the highest resolution possible.
The tiles outside the FoV are transmitted at the lowest resolution as a fall
back mechanism. Therefore, any buffering mechanism needs to predict and
account for the FoV of the user to build an appropriate buffer. However, if the
user makes an unanticipated movement, this buffer needs to be rebuilt.

Video is transmitted in short segments of a fraction of second. That is,
if a normal video is buffered, the transmission is done to add short segments
of the video to build the buffer. Similarly, in 3600 videos, the video is split in
short segments in time. Therefore, when a tile is downloaded a short segment
of that portion of video is downloaded. In this chapter we assume that the
segments are half a second long.

Buffering mechanism is case of 3600 videos is challenging, because we
need to predict the FoV of the user. If incorrect tiles are downloaded, it leads
to higher costs without any improvement to QoE. When buffering, we have
two types of information available about the user interest: short predictions
and long predictions.

5.1.1 Short term prediction

At any point in time, we have access to the head position of the user and
the angular momentum of their head in three independent directions (see
Figure 5.3). Using this information, it is possible to predict the head position
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Figure 5.3: 3600 video viewing direction (from [3])

in the next one or two seconds with very high accuracy. [88] show that
accurate predictions are possible up to half or one seconds with accuracy of
more than 92%. More methods exist for such predictions. For example, [89]
describe a gravitational predictor and use of AI-techniques to predict the inter-
esting part of the video. [90] use supervised learning to predict the eye position.

In our chapter, we assume these predictions are represented as three-
dimensional distribution function and are known beforehand. That is,
P (θr, θp, θy) is the probability that the head moves in a time slot by θr, θp
and θy in the roll, pitch and yaw respectively (see Figure 5.3). Note that these
predictions are user dependent and are only accurate for one or two seconds.
Therefore, we can only use them to build the buffer of the first few segments.
Moreover, these predictions are independent of the current head position and
momentum.

In Figure 5.4, we illustrate these distributions that we get from analyz-
ing the data of our experiments. We have two different videos viewed by
27 participants (more details to follow in Section 5.4). We illustrate the
distribution of the degree of head movement in each direction for different
cases. We have picked up three special cases to highlight the extreme cases of
head movement that we observed for these users. We will use these scenarios
to evaluate the performance of our buffering mechanism in the upcoming
sections.

5.1.2 Long term prediction

If we observe different users over the same video segments, there is a decent
amount of overlap in their viewing patterns (see Figure 5.5). That is, different
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Figure 5.4: Probability distributions of the user head movement from the experiment
detailed in Section 5.4

Figure 5.5: Heatmap of user’s FoV pattern (from [4])



5.2 Modelling assumptions 95

users find similar areas of the videos interesting and their FoV is in that general
direction. [91] provide a data-set of head movements of viewers watching 3600

videos. [92] analyze the traces of viewing data of more than 150 users and
conclude that the viewer’s focus follows a similar pattern over all users using
the data shared in [93]. [94] use traces of head movement of users from 19 VR
videos to predict the future FoV position of the user using deep learning.

5.1.3 Tile importance

For each segment, using short or long term prediction, for each tile we know the
probability of it being in the FoV. The magnitude of these probabilities defines
the sequence in which tiles are downloaded. In other words, these probabilities
define the importance of each tile to create the user FoV. Therefore, to know
the status of a future segment in the buffer, we only need to know the number
of tiles downloaded in the buffer for that segment. We do not need to know the
location of those tiles within the segment. When a user moves the head, the
importance of tiles changes, which makes only a fraction of tiles in the buffer
useful.

5.2 Modelling assumptions

In the following sections, we will model the buffering process as a discrete-time
Markov decision process. That is, time is divided into slots (of a fraction of
a second) and the decisions to buffer are taking at the beginning of a slot.
We assume that the channel quality (CQ) is a Markov process, described by
probability transition matrix PCQ. It is assumed that the channel quality
remains constant during a single video segment. The aim is to perform buffer
operations at the beginning of these slots when the channel quality is good,
such that the FoV is available for future segments in a high quality. The
algorithm optimizes a weighted average of QoE and resource usage.

We will make the following assumptions:

• The whole 3600 video is always available in the lowest quality. We do not
consider this transmission as a part of our problem as it doesn’t require
much bandwidth.

• Tiles of the best quality are transmitted to improve the quality of the
FoV. Our focus is on the transmission of these high quality tiles.

• The user behaviour is known from the beginning, i.e., the distribution of
the navigation pattern P (θr, θp, θy) is known.

We divide the buffer into two parts (see figure 5.6)

• The short-term buffer which is limited to the first two segments
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Current FOV Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

Short term buffer Long term buffer

Figure 5.6: Buffer divided into short term and long term buffer

• The long-term buffer which comprises all the segments after the short
term buffer.

The head movements only influence the first two segments and are always given
the higher priority. Moreover, we enforce that for long-term buffer segments,
no more thanM tiles are downloaded per segment. This is done to ensure that
only reasonable number of tiles are downloaded using long term predictions as
they are not user specific.

5.3 MDP formulation for buffering mechanism

A Markov decision process has four major components: the state space, the
probability transition matrix, the action space and the reward function. To
capture the buffering mechanism, we need to define the situation of the buffer
and channel in the form of a state. This state should include the information
of the number of tiles in the buffer, the time left in the current segment being
played as well the condition of the channel quality. Let us denote the state
space as S, the current slot number is denoted by k and the system is in state
s1 at the starting of this slot.

At the beginning of each slot, a buffer decision can be chosen out of all
possible actions denoted by action set A. The validity of these actions depends
on the state of the system. Let us assume that the action chosen is denoted
by a at the beginning of slot k.

The system transitions between states as new tiles are downloaded and
channel quality changes. This transition is also dependent on the action
a chosen at the beginning of the slot. The matrix P (s2|s1, a) defines the
probability that the system enters state s2, given that it was in state s1 and
the action a was chosen.

The system is rewarded for being in any given state, where the states
which ensure that the QoE is good have a higher reward. This influences the
decision of the buffering process to move the system closer to the high reward
states. This reward function is defined as R(a, s1), that is, R(a, s1) is the
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amount of reward received if an action a is chosen if the system is in state s1.
Precisely, it is a weighted sum of the quality of the predicted FoV defined by
s1 and the direct cost of performing the action a.

As the system transitions between these states and takes actions, it col-
lects rewards. Therefore, for any given state, we can define the expected utility
for each state of a given policy π as:

V π(s) = R(π(s), s) +
∑
s′

γP (s′|π(s), s)V π(s′)

where γ is the discount factor.

Therefore, using the framework of the Markov decision processes (MDPs),
we want to arrive at the map of actions which would lead to the maximum
expected total reward of the system. This is because these set of actions
will influence the system to move to states with higher reward which are
representative of high QoE and low expected cost. Such a map of action space
is called the optimal policy. We will use π∗ to define such an optimal policy
where

π∗(s) = a∗ (5.1)

for each state s it gives the optimal action a∗.

5.3.1 State space
The state space is defined by

S = {(n1, n2, L,N,R,CQ)

0 ≤ n1 ≤ T, 0 ≤ n2 ≤ T, 0 ≤ L ≤ Lmax,
0 ≤ N ≤M, 1 ≤ R ≤ Q, 0 ≤ CQ ≤ CQmax}, (5.2)

where n1 is the number of tiles in the first buffer segment, n2 is the number of
tiles in the second buffer segment, L is the number of long-term segments which
have already been downloaded and N is the number of tiles in the current long
term segment which needs more tiles. R is the number of slots left in the current
video segment being played at the headset and CQ is the channel quality during
the slot. At the end of the video segment in the headset, the tiles in the first
buffer segment are used to build the FoV of the user. By storing only the
number of tiles in each segment and not including their position, we are able to
ensure that the state space is not too large which results in a good performance
of policy iteration discussed in paragraph 5.3.5.

5.3.2 Action space
For any given state of the system, there is a set of feasible actions from which
one must be chosen. The set of all such possible actions forms the action space
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A. We define actions using a tuple (bs, n), where bs is the buffer segment in
which the tiles are downloaded and n is the number of tiles downloaded. For
the short term buffer, bs = 1 or 2, while for the long term buffer, bs = 3. That
is,

A = {(0, 0)} ∪ {(bs, n) : bs = 1, . . . 3, n = 1, . . . T}. (5.3)

Not all actions may be valid in a given state. For example, if the channel
quality CQ = 0, no tiles can be downloaded. Therefore, any action (bs, n) with
bs > 0 is not valid when CQ = 0.

5.3.3 Probability transition matrix
The system transitions between states based on the following factors:

• The action chosen in the previous slot: for instance, if more tiles are
downloaded in the second segment, system would transition to a state
with more tiles in that segment.

• User head movements: for instance, if the user moves their head a few
degrees more than anticipated, some of the tiles in the buffer would be-
come useless. That is, out of n1 and n2 tiles in the buffer, only a fraction
of them would be useful. Therefore, the system would move to a state
with smaller n1 and n2 depending on the magnitude of movement.

• Channel quality: the channel quality, alone, is assumed to follow a Markov
process. This transition is determined by the probability transition ma-
trix PCQ.

• Remaining time in the current segment of the video: when the current
segment of headset is over, the first segment of the buffer is used to create
the FoV of the user. Which means that in the next slot, n1 is replaced
by n2 and n2 is replaced by M or N , depending on the condition of long
term buffer segments.

5.3.4 Reward function
In a given state s, if action a is chosen, it would lead to a reward of R(a, s).
This reward is a weighted sum of two quantities:

• Cost of downloading : downloading tiles in a channel state incurs a cost
which increases as the channel quality degrades. Therefore, the algorithm
is penalized higher if tiles are downloaded in a worse channel quality.

• FoV quality : a state defines the quality of the predicted FoVs. Therefore,
the algorithm is penalised if the buffer of the predicted FoVs is not good.
Moreover, the first buffer segment is prioritized over the second buffer
segment which has a higher priority over long term segments. Therefore,
the penalty for FoV unavailability decreases with higher segment number.



5.3 MDP formulation for buffering mechanism 99

Notation List
s1, s2, s used to denote states
S the state space
a used to denote actions
A the action space
n1, n2 used to denote the number of tiles in segment one and two
T maximum number of tiles that can be downloaded in a seg-

ment
CQ the channel quality
CQmax highest channel quality state possible
PCQ probability transition matrix of channel quality
N number of tiles in the current long-term buffer segment
M maximum number of tiles that can be downloaded in any

long-term segment
R remaining number of slots in the current video segment
Q length of each video segment
L number of long-term segments downloaded in buffer
Lmax maximum number of long-term segments that can be down-

loaded in buffer
(bs, n) action which means n tiles are download in segment bs
R(a, s) reward gained by taking an action a in state s
P (s2|a, s1) probability that their is a state change to s2 given that ac-

tion a is taken while system is in state s1

γ discount factor
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By choosing such penalties/rewards we are able to prioritise the tiles in the
short-term segments. Moreover, these downloads also take into account the
cost of downloading in a given channel quality.

5.3.5 Policy iteration

Policy iteration consists of two sequential phases, policy evaluation and policy
improvement [95]. In policy evaluation, we start with a random policy π and
evaluate the policy using the Belmann equation. We have already discussed
this in detail in section 1.5.4. The optimal policy π∗ we get after completion
of policy evaluation, optimises a weighted sum of costs and QoE.

5.4 User head movement experiment

We collected a data set of user behaviour and navigation patterns while viewing
immersive media. We used the four sequences in the 8i voxelized full bodies
data set [96] for the experiment. Each sequence was clipped at 5 seconds
long and was rendered at a constant 30 frames per second. The playback was
looped until the participant asked to move ahead to the next sequence. The
sequences were rendered in the Unity game engine and participants were asked
to wear an Oculus Rift CV1 head mounted display to view the content. They
were asked to sit on a swivel chair placed at the centre of the room and were
allowed to inspect the scene using only head movements. We rotated and scaled
the sequences so they appeared in front of the participants and were speaking
or moving in their general direction. At every rendered frame we logged the
position and orientation of the viewport by tracking the camera object in the
scene. We capture the viewport position using X,Y,Z coordinates in the world
coordinate system and the orientation using three Euler angles.

5.5 Algorithm parameters

To view the parameters and the exact code, have a look at the github reposi-
tory1 .

FoV tile distribution

As expected, downloading more tiles improves the quality of FoV of the user.
The model can handle any general cumulative probability distribution, F (x),
of the utility of tiles. Here we will use a uniform distribution for utility, i.e.,
F (x) = Cx, where C is a constant.

1The code is available at https://github.com/saxe405/buffer

https://github.com/saxe405/buffer
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Head movements

We use the distributions obtained from the analysis of head movement discussed
in section 5.4. We have selected six particular scenarios, namely:

• W3_all : distribution using all the data.

• W3_V1 : distribution using the data of video one.

• W3_V2 : distribution using the data of video two.

• W3_P17 : distribution using the data of viewer 17.

• W3_P21 : distribution using the data of viewer 21.

• W3_P25 : distribution using the data of viewer 25.

Channel quality

The authors of [5] use 5G traces to measure the performance of a multi-tier
approach of streaming on VR headsets. These traces suggest that using three
states Markov process would be enough to capture the variation in the channel
quality. The model can however support any general channel quality matrix.

Long term predictions

Our model requires only the parameter M to be defined for long term predic-
tions. A high value of M may result in wastage of resources, while using a
very small value defeats the purpose of using long term predictions. We use
M = 80% of the maximum number of tiles we need to complete a FoV.

5.6 Performance measures

We compute two main performance measures:

• FoV quality/QoE : as high quality tiles are downloaded, the quality of
FoV improves. This measure quantifies the quality of the FoV by looking
at the buffer at the end of the video segment being played on the headset.

FoV quality =
1

K

K∑
k=1

F (sk.n1

∣∣segment ends at slot k), (5.4)

where sk is the state of the system at the end of slot k and F (.) is the
FoV tile distribution defined in section 5.5 and K is the length of the
simulation.
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Figure 5.7: Scatter plot of QoE vs cost for different weights in the reward function.
There is only a single point for streaming because it doesn’t use the reward function.

• Cost of streaming : Cost of downloading new tiles depends on the channel
conditions. The idea is to improve the FoV quality at the least additional
cost. This measure captures the cost of streaming using any policy.

Cost =
1

K

K∑
k=1

Num_tiles_downloaded(π(sk)) ∗ Cost(sk.CQ), (5.5)

where π is the chosen policy which gives us the map of actions. In case
of predictive buffering, we use the optimal policy obtained by policy iter-
ation defined in section 5.3. sk the state of the system at the end of slot
k and Cost(CQ) is the cost of downloading a single tile in the channel
quality CQ.

To numerically analyze the performance, we compare three streaming
policies1 and a benchmark

• No-buffering : In this methodology, the headset does not plan any buffer
segments. While the current segment is played out, the tiles are down-
loaded for just the upcoming segment. This strategy is the greedy ap-
proach which does not consider the variation in the channel quality and
the cost of downloading in a bad channel state. This strategy serves as a
good benchmark to evaluate the impact of including channel conditions
and user behavior into the streaming strategy on the VR headset.
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Figure 5.8: Illustration of decisions taken by predictive-buffering in different states.
State variables R and L are excluded to reduce the number of dimensions.

• Predictive-buffering : this is the approach which uses the optimal MDP
policy that optimizes the weighted sum of resource usage and QoE. Both
short-term and long-term segments are maintained in the buffer with
short-term segments receiving a higher priority over long-term segments.

• Short-term buffering : In this methodology, only a short-term buffer is
maintained. That is, only the head movement statistics are utilized to
download the tiles. This approach is basically identical to the previous
approach (predictive buffering) with Lmax = 0 as no tiles are downloaded
for long-term segments.

• Benchmark : To compute the impact of network interruptions alone, we
need to isolate the impact of the prediction error of the head movement
on the performance. Therefore, we introduce a benchmark scenario in
which we assume that the head movement prediction has no error. More
precisely, this metric is equivalent to Predictive-buffering with 100% ac-
curate head movement prediction. By comparing this metric with others,
we can see the impact of user head movement. Moreover, we are able
to compare the performance of Predictive-buffering with the best perfor-
mance under the same networking conditions.
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Figure 5.9: Impact of channel unreliability i.e. the amount of time spent in state 0.

5.7 Numerical results

In this section, we briefly discuss the performance of the three streaming policies
described in the previous section.

• In Figure 5.7, we show scatter plot of resource usage and quality of FoV.
Since there is no buffering mechanism in place for ’no-buffering’ sce-
nario, we have a single point. However, for ’short-term buffering’ and
’predictive-buffering’, we can have different weights for cost of download-
ing and FoV quality. Therefore, we have multiple points for these sce-
narios, each defined by a different relative weight of cost of downloading
and FoV quality. Using predictive-buffering or short term buffering, we
get an improvement of FoV quality of more than 15%. The difference in
the FoV quality from the benchmark is less than 5%. Since more high
quality tiles are downloaded to maintain a buffer, the improvement in
FoV quality is possible at an additional cost. Further, by using both long
term and short term predictions, the quality of FoV is further improved
without a noticeable increase in the average resource usage.

• In Figure 5.8 we provide an illustration of the decision taken by the
predictive-buffering algorithm under different system conditions. The
size of the bubble is defined by the number of tiles downloaded, while
the colour of the bubble is defined by the segment in which these tiles
are downloaded. Clearly, in a bad state (state 0), nothing is downloaded
as the channel conditions do not allow it. In the average state (state 1),
tiles in the first segment are prioritized. If the FoV of the first segment
is complete, tiles of the second segment are downloaded. If both these
segments do not need any more tiles, the network capacity is used to
download tiles of long-term buffer segments. This holds in the best net-
working state (state 2) as well, however more tiles can be downloaded in
a single slot.
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Figure 5.10: Performance for different head movement scenarios where the channel
quality is modelled as a Markov chain which spends 20% of the time in state 0.

• In Figure 5.9a we illustrate the change in the quality of FoV as the net-
work becomes increasing unreliable. By increasing unreliability, we mean
that the fraction of time spent in bad state increases. In these illustra-
tions, the channel stays in state 2 for 20% of the time and in state 1
for the remaining time. Using predictive-buffering, the performance is
slightly better than using only short-term buffering. However, there is
significant improvement in the quality as compared to the scenario of no-
buffering. Moreover, there is about 5% difference from the benchmark,
which is a result of the prediction error in the user head movement. This
order of difference in the performance remains consistent with increasing
unreliability of the channel.

• In Figure 5.9b we illustrate the change in the resource usage as the net-
work becomes increasingly unreliable. There is an additional cost of using
predictive-buffering or short-term buffering as compared to no-buffering
because more tiles are downloaded in those strategies. Since both the
benchmark and predictive-buffering utilize the extra bandwidth to down-
load tiles in the long-term buffer segments, they have a similar resource
usage. Moreover, including long term predictions doesn’t lead to any in-
crement in the cost. That is, the difference between predictive-buffering
and short-term buffering cost is negligible.

• In Figure 5.10 we look at the performance of our algorithm with different
probability distributions of head movement. These distributions were
computed from the experiment explained in section 5.4. We select these
six scenarios since they capture the whole range of expected user behavior.
In these figures, we assume that the channel spends 20% of the time in bad
states. As illustrated in the figure, the performance is determined by how
accurately we are able to predict the user FoV. For cases where the user
has a higher tendency to move their head position, W3_V1 andW3_P17,
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Performance along trace 2: a stable wireless 5G connection
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Performance along trace 5: an unstable wireless 5G connection
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Figure 5.11: Performance along 5G traces published in [5]. The Markov model of
channel quality is used to compute the decision table while the 5G trace is used in
the simulation to evaluate the performance.



5.8 Summary 107

the performance is far from the benchmark. There is an improvement in
performance with W3_all and W3_P21 since user head movement is
more stable. And for W3_V2 and W3_P25, the performance is very
close to the benchmark. It is important to note that there is always an
advantage of buffering over no-buffering due to the improvement in the
FoV quality. Moreover, since all the bandwidth is utilized to download
tiles, the resource usage across all scenarios remains the same.

• In Figure 5.11, we look at the same head movement scenarios. The dif-
ference is that instead of using the Markov model for channel quality to
simulate the performance, we use the actual traces of 5G published in [5].
Note that, we still use the Markov model of channel quality to solve the
MDP using policy iteration. The trace number 2, used in Figures 5.11a-
5.11b, corresponds to the trace of 5G with few network interruptions.
While the trace number 5, used in Figures 5.11c and 5.11d, corresponds
to a trace captured in the worst network condition in their area. Since
these figures use the real world data of the head movement prediction as
well as the channel quality, we can say with further conviction that using
predictive-buffering, a higher FoV quality/QoE, closer to the benchmark
is achieved at a small additional cost. Moreover, by including long term
predictions we are able to reduce the average resource usage. This hap-
pens because the tiles are pre-fetched when networking is cheaper and
therefore less tiles have to be downloaded when networking is expensive.

These results can be summarized as

1. Including short-term predictions leads to a substantial increase in the
QoE of the user. This improvement is possible at an additional cost of
resource usage.

2. There is a further improvement in the QoE by including long-term predic-
tions in the model. Although the incremental improvement may not be
as substantial as what we could achieve by using short-term predictions,
this improvement comes without any significant additional cost. Further,
in some scenarios, by including long-term predictions we are even able to
reduce the average long term resource usage ( Figure 5.11b).

3. Improvement in the accuracy of the head movement prediction can further
help improve the QoE experience as we can get closer to the benchmark.

5.8 Summary
In this chapter, we have modeled the delivery of 3600 videos on a VR head-
set over a wireless connection as an MDP problem. We perform an experiment
where we show two videos to twenty seven participants to study the user behav-
ior. Using the analysis of this data, we build a head movement prediction model
and include it in the MDP formulation of the delivery of 3600 videos. Further,
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we model the intermittent behavior of the wireless channel as a Markov chain
where each state represents the quality of the channel. We then solve this MDP
using policy iteration which gives us the optimal policy that guarantees a high
QoE for a reasonable resource usage by using their weighted average. Further,
we illustrate the performance of our approach using traces of 5G connections
as well as the head movement behaviour of some users.



6
Conclusion

In this dissertation, we have analyzed the performance of cloud storage pro-
cesses using stochastic models. We also developed an MDP based streaming
algorithm for 3600 videos on VR headsets. In both these topics, we first
identified the key features of these processes and the uncertainties associated
with them. Using this information, we create stochastic models to gain more
insight into their performance. The analysis of these models also helps in a
cost effective and QoS aware scheduling of operations. We now conclude this
dissertation with a summary of the main contributions.

In Chapter 2 we model data backup processes as a general queueing
model. The backup server which performs the storage operations is modeled
as a batch server with limited capacity. Additionally, this backup server
goes into vacations when there are no data packets to serve. The service is
restarted at the end of the vacation if the probabilistic restarting conditions
are met. By analyzing this model, we are able to compute the QoS measures
of a general backup process, namely the backlog size, age of data, probability
of a new connection, and probability the backup server is busy. We further
illustrate the importance of these QoS measures using a case study. In this
study, we compute the optimal backup parameters of a storage system with
a defined cost and QoS constraints. This computation is possible by framing
this as an optimization problem with storage parameters as the variables. It
is important to note that this model supports any general distribution of the
number of arrivals in a slot as well as the distribution of service time. We
therefore use a heavy tailed distribution of number of arrivals in the case study.

In Chapter 3 we focus on the analysis of the age of data of the model
studied in Chapter 2. The age of data has a phase type distribution, therefore
we can use some existing results of probability theory, Wald’s equation,
to compute the first moment. However, computing higher moments is not
straightforward using such results. We are able to use some properties of the
data backup process to exactly compute the PGF of the age of data. We
use these results to compute the tail probabilities of the age of data and its
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sensitivity on the data backup parameters. These results help in selecting
appropriate storage parameters to ensure the tail probabilities are within the
limits desired by the operator. Moreover, often data backup providers enforce
a trigger mechanism to ensure the limit on the age of data. We compute the
age of data as well as the backup frequency for such systems. We illustrate
the use of these results to compute an optimal timer for such backup systems.

In Chapter 4 we introduce a new way of modeling storage systems. Some
storage service providers have very high QoS guarantees and ensuring low
age of data may be critical for delivering such service. This is enforced by
including a threshold on the time since last backup within the model. We
analyze this new model to get insights into the performance of these backup
systems. We compare this model with the model studied in Chapters 2 and 3
and also illustrate the use of these performance measures using a case study
similar to one we had in Chapter 2.

In Chapter 5, we introduce a new research topic, streaming of 3600

videos on VR headsets. We have modeled the delivery of 3600 videos on a
VR headset over a wireless connection as an MDP problem. We perform an
experiment where we show two videos to twenty seven participants to study
the user behavior. Using the analysis of this data, we build a head movement
prediction model and include it in the MDP formulation of the delivery of 3600

videos. Further, we model the intermittent behavior of the wireless channel
as a Markov chain where each state represents the quality of the channel. We
then solve this MDP using policy iteration which gives us the optimal policy
that guarantees a high QoE for a reasonable resource usage by using their
weighted average. Further, we illustrate the performance of our approach
using traces of 5G connections as well as the head movement behaviour of
some real use cases selected from our experiment.
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