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Abstract 23 

Metagenomics is an exciting alternative to seek for carbohydrate-active enzymes from a range of 24 

sources. Typically, metagenomics reveals dozens of putative catalysts that require functional 25 

characterization for further application in industrial processes. High-throughput screening 26 

methods compatible with adequate natural substrates are crucial for an accurate functional 27 

elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted 28 

carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic reaction products, we 29 

generated product profiles to consequently infer substrate cleavage positions, resulting in the 30 

generation of enzymatic degradation maps. Product profiles were produced in high-throughput 31 

for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 32 

(subfamilies 2 (MG432), 7 (MG437) and 28 (MG4328)) and GH8 (MG8) starting from twelve 33 

(arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic 34 

studies of faeces from the North American beaver (Castor canadensis). This work shows how 35 

enzyme loading alters the product profiles produced by all enzymes studied and gives insight into 36 

AX degradation patterns revealing sequential substrate preferences of AX-active enzymes. 37 

 38 

Importance 39 

Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs and rice 40 

husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added value products that 41 

can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for 42 

the biorefinery industries. An efficient and profitable AX degradation requires a set of enzymes 43 

with particular characteristics. Therefore, enzyme discovery and study of substrate preferences is 44 

of utmost importance. Beavers, as consumers of woody biomass are a promising source of a 45 

repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-46 
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throughput analysis of oligosaccharide profiles produced by these enzymes will assist in the 47 

selection of the most appropriate enzymes for the biorefinery.48 
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Introduction 49 

Metagenomic studies of the microbial communities associated with plant cell wall degraders 50 

reveal a large number of gene sequences coding for potential carbohydrate-active enzymes 51 

(CAZymes) (1). Accurate functional analysis of new CAZymes must accompany this continuous 52 

discovery at the genomic level. Such newly functionally validated enzymes can be applied in the 53 

biorefinery industry and/or for further protein engineering (2-5). Glycoside hydrolases (GHs) that 54 

cleave polysaccharide main chains and/or substituents can have complex substrate preferences, 55 

often showing multi-substrate specificities (6-9). These substrate preferences are often also 56 

dependent on main chain substituents. Consequently, the degradation of complex carbohydrate 57 

polymers often requires synergistic or combinatorial action of multiple enzymes. Tedious 58 

techniques, long analysis times, demanding hands-on assays, specialised equipment and lack of 59 

appropriate representative substrates contribute to the existing gap between enzyme discovery 60 

and functional characterization (10). Accordingly, high-throughput (HT) techniques that can deal 61 

with a large number of metagenome-derived putative enzymes and that can give an insight into 62 

the substrate specificities of unannotated enzymes in a relatively short time are required (11). 63 

DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) offers an 64 

interesting approach to study the substrate specificities of CAZymes, primarily due to the 65 

possibility to use substrates that represent the natural carbohydrates instead of artificial aryl 66 

glycoside substrates like p-nitrophenyl- and 4-methylumbelliferyl-derivatives (12). In fact, the 67 

latter substrate derivatives may mask the real enzymatic substrate specificity due to, for example, 68 

steric differences in comparison to the natural oligosaccharides. DSA-FACE has shown 69 

outstanding oligosaccharide resolution and sensitivity (a detection limit ranging from 38 to 55 70 

pM for the substrates studied), short hands-on time and analysis time (13). In addition, DSA-71 
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FACE allows analysis of the substrate specificities in HT when using multiple parallel capillaries 72 

as in standard capillary sequencing devices. 73 

In this work we focus on arabinoxylan (AX) which is a hemicellulosic polysaccharide that may 74 

contain a range of substitutions including α-L-arabinofuranosyl, α-D-glucuronic acid, 4-O-75 

methyl-α-D-glucuronic acid, α-D-galactopyranose and ferulic acid residues, depending on the 76 

source (14). Deconstruction of AX by GHs leads to useful sugars for the production of 77 

bioethanol, food and nutraceutical added-value products such as xylitol (15-18) and prebiotics 78 

(19-23). GHs with diverse substrate specificities for the degradation of complex AX structures 79 

are being discovered continuously and annotated in the various protein databases (24). The 80 

carbohydrate-active enzymes database (CAZy) classifies GHs into families according to amino 81 

acid sequence similarity (25). Although structural similarity often correlates with enzyme 82 

substrate specificity, the CAZy family division cannot always be used to predict enzyme 83 

substrate specificity because of the different specificities assigned per GH family. Additionally, 84 

up to now only approximately 1% of the annotated GHs in CAZy have been experimentally 85 

characterized (25). Due to the abundance of GH43 members and the large substrate specificity 86 

variety found within this family, the GH43 family was further divided into subfamilies on the 87 

basis of sequence analyses, suggesting that the correlation between functional annotation of the 88 

enzyme and subfamily assignment is more accurate (26). The GH43 family subdivision and 89 

analysis relies on computational and experimental data, which are mainly based on synthetic 90 

substrates such as p-nitrophenyl (pNP) monosaccharides. To obtain a more accurate 91 

understanding of the substrate specificity of AX-active enzymes, we have recently used DSA-92 

FACE to analyze the hydrolysates of AX-active enzymes with natural representative 93 

(arabino)xylo-oligosaccharides ((A)XOS) (13). In this work, DSA-FACE is used to elucidate 94 

substrate specificities of enzymes derived from metagenomic studies on the North American 95 

 on S
eptem

ber 27, 2020 at U
niversiteitsbibliotheek G

ent
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


6 
 

beaver (Castor canadensis) fecal microbiome (27). Three genes belonging to uncharacterized or 96 

poorly characterized subfamilies 2, 7 and 28 of GH43 and one from GH8 that were identified in 97 

active fosmids were shown to be active on AX by preliminary functional screening tests with aryl 98 

glycosides and/or high-performance anion-exchange chromatography with pulsed amperometric 99 

detection (HPAEC-PAD) (27) (Figure 1). To gain further insight into AX degradation patterns by 100 

the aforementioned enzymes, we introduce DSA-FACE product profiles and associated 101 

sequential degradation maps for a convenient representation of the activity(ies) of each enzyme 102 

on twelve (A)XOS substrates. By implementing DSA-FACE product profiles, we reveal the 103 

preferred substrate cleavage sites by a GH4328 member, the modular specificity of a GH432 – 104 

GH8 enzyme and the dependence of the enzymatic activity of a GH437 member on the activity of 105 

the aforementioned GH432 – GH8 enzyme. 106 

 107 

Results 108 

DSA-FACE allows rapid evaluation of product profiles produced by metagenome-derived AX-109 

active enzymes  110 

In this study, we have used DSA-FACE to set up product profiles for three newly-discovered 111 

enzymes of the GH43 family active on AX. These enzymes were identified through a preceding 112 

metagenomic analysis of the North American beaver (Castor canadensis) fecal microbiome (27). 113 

The first selected enzyme (MG4328) contains a GH43 subfamily 28 domain. The second enzyme 114 

(MG432-8) is a modular enzyme composed of a GH43 subfamily 2 and a GH8 domain. To 115 

differentiate the specificities of each domain, we have also set up product profiles produced by 116 

two mutated variants, in which the respective domains are inactivated by mutagenesis of the 117 

catalytic acid residue (27), resulting in MG432 and MG8, respectively (Table 1). The third 118 

enzyme MG437 comprises a single domain assigned to GH43 subfamily 7. These enzymes were 119 
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selected because of the limited characterization for these subfamilies. An initial analysis of these 120 

enzymes with chromogenic substrates and HPAEC-PAD confirmed that they have AX-acting 121 

activities as summarized in Table 1. The initial low expression yields of MG432-8, MG432 and 122 

MG437 were optimized by variation of expression strains, growth temperature, induction and 123 

purification protocols (Table 2). Eluted fractions from the different expressions/purifications 124 

containing the desired protein were pooled for further analysis. 125 

DSA-FACE product profiles are a qualitative representation of the carbohydrates present after 126 

enzymatic reactions with different (A)XOS (Figure 2A). Twelve oligosaccharides (5 XOS, 7 127 

AXOS) are used in these enzymatic reactions. Reaction hydrolysates are then analyzed with 128 

DSA-FACE. The output of DSA-FACE are electropherograms that need to be interpreted by 129 

referencing to (A)XOS standards to reveal the identity of the resulting products. Peak areas are 130 

quantified and normalized to calculate the relative conversion of each substrate and relative 131 

proportion of the products. This has been exemplified in Figure 2B for a previously characterized 132 

α-L-arabinofuranosidase from Bifidobacterium adolescentis (BaAXH-d3) (13). Alpha-L-133 

arabinofuranosidases are classified into arabinoxylan arabinofuranohydrolases (AXH) that 134 

hydrolyze the O-2 and/or O-3 arabinofuranosyl monomers from the doubly substituted xyloses 135 

(AXH-d2, AXH-d3, AXH-d2,3) or from the mono substituted xyloses (AXH-m2, AXH-m3, 136 

AXH-m2,3). To simplify the representation of enzymatic substrate preferences, we introduce 137 

here product profiles with a fixed color code instead of electropherograms as the final DSA-138 

FACE outcome. Substrate conversions are easily observed in the product profiles by a color 139 

change. Accordingly, there is only a color change in the case of A2+3XX and XA2+3XX for 140 

BaAXH-d3. Next to the product profiles, degradation maps highlighting cleavage positions for 141 

the different (A)XOS tested are elaborated to assist in evaluating enzyme substrate preferences. 142 

 143 
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Different product profiles for increasing MG4328 concentrations 144 

Purified MG4328 was tested against the panel of five XOS and seven AXOS using four different 145 

enzyme concentrations (0.3 – 1 – 6 – 32 µM). The product profiles of MG4328 show diverse 146 

hydrolytic products which change depending on the enzyme concentration (Figure 3). At the 147 

lowest concentration tested (0.3 µM) MG4328 completely removes an O-2 arabinose from a non-148 

reducing end singly substituted xylose, i.e. A2XX to X3 (AXH-m2 activity). In addition, at 149 

concentrations at or above 0.3 µM MG4328 both O-2 and O-3 arabinoses are partially removed 150 

from the non-reducing end doubly substituted xylose of A2+3XX, resulting in X3 (AXH-d2,3 151 

activity), but higher concentrations (6 µM) are needed for a full conversion. The internal O-2 152 

arabinose from XA2XX is only removed from 1 µM and even at the highest concentration studied 153 

(32 µM) MG4328 is not able to remove O-2 and O-3 arabinoses from XA2+3XX, indicating that 154 

the internal single/double arabinose substitutions are less accessible for hydrolysis. Removal of 155 

the O-3 arabinoses from A3XX and XA3XX (AXH-m3 activity), resulting in X3 and X4, 156 

respectively, is observed from 1 µM MG4328. MG4328 thus exerts diverse arabinofuranosidase 157 

specificities with the best conversion of A2XX. Xylanolytic activity is visible at concentrations at 158 

or above 1 µM as well, with a preference for the longest xylo-oligosaccharide tested (X6). Also, 159 

AXOS with removed arabinoses are further partially degraded (e.g. XA3XX is converted to X2 160 

and X4). 161 

 162 

The product profiles for MG432-8 are the sum of the product profiles of its respective domains 163 

Enzymatic reactions with purified MG432, MG8 and MG432-8 were performed. The product 164 

profiles in Figure 4 demonstrate that MG432 is a β-xylosidase and MG8 is a reducing end xylose-165 

releasing exo-oligoxylanase (Rex). At a concentration of 3 µM, MG432 partially converts XOS 166 

into X2. It seems there are more structural hindrances or product inhibition in comparison to MG8 167 
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based on the slower observed degradation rate. MG432 does hydrolyze the non-reducing xylose 168 

monomers from XA2XX, XA3XX and XA2+3XX (Figure 4A) but not the non-reducing arabinose 169 

substituted xylose monomers (A2XX, A3XX and A2+3XX). At a concentration of 3 µM MG8 fully 170 

converts X3, X4 and X5 to X2, but we did not observe visible conversion of X2 to X. However, X6 171 

seems to be more slowly converted to X2 due to possible hindrances in accommodating long XOS 172 

into MG8 catalytic subsites or due to product inhibition, indicating a preference for smaller XOS. 173 

As typical for Rex enzymes, MG8 requires two non-substituted xyloses from the reducing end to 174 

hydrolyse the reducing end xylose (28, 29). This is observed when the reducing end xylose 175 

monomer is hydrolysed from A2XX, A3XX, A2+3XX, XA2XX, XA3XX and XA2+3XX but not 176 

from A3X. We also evaluated different concentrations for MG8 (0.2, 0.8, 3 and 17 µM) (Figure 177 

S1). Notably, at the minimum MG8 concentration tested (0.2 µM) only X3 to X6 were partially 178 

hydrolysed into smaller dp XOS, showing the preference for XOS over AXOS by MG8. At 179 

concentrations from 0.8 to 17 µM, MG8 shows the same product profiles as the ones performed 180 

with 3 µM enzyme (Figure 4). 181 

At concentrations of 3 µM MG432-8 displays the sum of both β-xylosidase and Rex activities 182 

(Figure 4). When we evaluated MG432-8 at a higher concentration (17 µM), MG432-8 also 183 

exhibited α-L-arabinofuranosidase activity when hydrolyzing the mixture of XA2XX and XA3XX 184 

into A2X, A3X and X2 (Figure S2). This is likely performed by the MG432 domain since 17 µM 185 

MG8 did not show α-L-arabinofuranosidase activity on any of the substrates tested and 3 µM 186 

MG432 showed a small amount of α-L-arabinofuranosidase activity on A3X but not on A3XX or 187 

XA3XX (Figure 4). 188 

 189 

Product profiles of MG437 change with increasing MG437 concentration and in the presence of 190 

MG432-8/MG432/MG8 191 
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MG437 activity was only detected at the highest concentration tested (38 µM). MG437 showed a 192 

xylanase activity on X4, X5 and X6 (Figure S3). Yet, when enzymatic reactions were performed 193 

with 8 µM MG437 in the presence of 3 µM MG432-8, A3X is converted to X2, showing an 194 

additional AXH-m3 activity, which does not happen when enzymatic reactions are performed 195 

with the same concentrations of MG432-8 or MG437 alone (Figure 5). X2 and X3 can also be 196 

observed after enzymatic reactions with 8 µM MG437 in the presence of 3 µM MG432-8 and 197 

A3XX or XA3XX, again showing additional AXH-m3 activity. Notably, O-2 arabinofuranosyl 198 

substitutions are not a substrate since A2XX is not further hydrolyzed to X2. When enzymatic 199 

reactions were performed with elevated concentrations (38 µM MG437 in the presence of 17 µM 200 

MG432-8) and A3X, the end product was again X2, showing no further hydrolysis, but when the 201 

same concentrations were tested against A2XX, A2X and X2 appeared as reaction products 202 

(Figure S2).  203 

To discriminate whether the additional AXH-m3 or AXH-m2 activity that appears when 204 

combining MG437 and MG432-8, comes from either MG437 or MG432-8, we investigated again 205 

the activity of MG437 in the presence of the derivatives of MG432-8 in which one domain was 206 

inactivated by mutation (MG432 and MG8). When A3X reacted with 8 µM MG437 and 3 µM 207 

MG432 (Figure S4), approximately 50% A3X was converted to X2. The same reaction but in 208 

combination with 3 µM MG8 also resulted in a minor fraction of X2 (Figure S1). These data 209 

indicate that the AXH-m3 activity does indeed result from MG437. This finds further support as 210 

also AXH-m3 activity is detected in both cases when a mixture of A2XX/A3XX reacts with 211 

MG437 in the presence of either MG432 (Figure S4) or MG8 (Figure S1). Likely MG437 has a 212 

preference for non-reducing O-3 substituted xyloses since 8 µM MG437 and 3 µM MG8 do not 213 

hydrolyze XA3XX further into X2. These findings are consistent with the previously identified 214 

arabinofuranosidase activity of MG437 on A3X detected by HPAEC-PAD (27). In sum, the scans 215 
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indicate that MG437 shows AXH-m3 activity on small O-3 arabinose substituted AXOS (A3X 216 

and A3XX) in the presence of MG432-8, and xylanase activity at elevated concentrations. 217 

 218 

Discussion 219 

Functional metagenomic studies of the beaver fecal microbiome revealed enzymes from 220 

subfamilies 2, 7 and 28 of the GH43 CAZy family. Whereas subfamily 2 has two characterized α-221 

L-arabinofuranosidases from Chitinophaga pinensis DSM2588 and Mucilaginibacter mallensis 222 

MP1X4 (3, 30), subfamilies 7 and 28 have no characterized enzymes to date. Activity on CMU-X 223 

indicated that MG4328 is a β-xylosidase (27). However, the MG4328 product profiles reveal that 224 

MG4328 is able to hydrolyze all (A)XOS substrates except XA2+3XX, showing xylanase, AXH-225 

m2,3 and AXH-d2,3 activities. We cannot confirm if the observed xylanase activity is due to 226 

endo- or sequential exo-xylanase activity. If MG4328 acts as a β-xylosidase it would be expected 227 

that X2 is also degraded to X, which does not seem to happen even at the highest concentration 228 

tested. Though, monomeric xylose cannot be detected by DSA-FACE. Similarly, GH43 229 

PcAxy43A from Paenibacillus curdlanolyticus (GH43 subfamily 35) is also unable to hydrolyze 230 

XA2+3XX and shows endo-xylanase, β-xylosidase, AXH-d2,3 and AXH-m2,3 activities in a 231 

single catalytic domain (31), but the presence of both exo- and endo-activity in a single enzyme 232 

can be considered unusual. Ara 1 isolated from barley malt also has both AXH-m2,3 and AXH-233 

d2,3 activities and a four times higher enzyme concentration is needed for conversion of 234 

XA2+3XX into X4 than for conversion of A2+3XX (32). Besides a N-terminal MG4328 GH43 235 

domain, a C-terminal discoidin domain has been identified using the Conserved Domain 236 

database. This discoidin domain has putative lectin-like properties, binding carbohydrates (33). 237 

To unravel how MG4328  deals with such a variety of substrates, the influence of this C-terminal 238 

domain on the observed multiple activities may be investigated. A blastp analysis of MG4328 239 
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against all GH43 CAZy family characterized sequences (182 characterized sequences out of 240 

16250) revealed an enzyme from Belliella baltica DSM 15883 (accession number: AFL85801.1) 241 

as the most similar sequence (E-value 5x10-10 with 45% query cover and 25% percentage 242 

identity). This enzyme is annotated in GH43 subfamily 31 of the CAZy database and was 243 

identified as a β-D-galactofuranosidase in the study of (3). The endo-1,4-β-xylanase from an 244 

uncultured bacterium URE4 (accession number: ACM91046.1) shows the maximum query cover 245 

of 85% (E-value: 1x10-4, percentage identity: 23%). This enzyme is annotated in subfamily 29 of 246 

the CAZy database. These relatively low similarities spread over different subfamilies emphasize 247 

the need for detailed analyses of the substrate specificity as done here for MG4328. 248 

The substrate preferences of MG432-8, MG432, MG8, and MG437 in the presence of MG432-8 249 

were previously analyzed by HPAEC-PAD upon enzymatic reactions with 0.5 µM purified 250 

enzyme and 4 mM A3X, A2XX and a mixture of XA2XX and XA3XX (27). At the conditions 251 

tested MG432, MG8, and MG437 showed β-xylosidase, Rex and AXH-m3 activities, respectively. 252 

Due to the limited HT capacity of HPAEC-PAD, a restricted number of substrates were tested, 253 

omitting doubly substituted XOS, for example. The minor α-L-arabinofuranosidase activity of the 254 

MG432 β-xylosidase against A3X indicates MG432 shows both β-xylosidase and AXH-m3 255 

activities at concentrations higher than 3 µM. Bifunctional β-xylosidase and α-L-256 

arabinofuranosidase activities have already been reported before in the GH43 CAZy family but 257 

not yet in subfamily 2. It seems these enzymes can accommodate both xylose and arabinose units 258 

in their active sites not only due to obvious structural similarities between arabinose and xylose 259 

sugars, but also due to rotations on the α-arabinose linkage to xylose that can resemble a β-xylose 260 

linkage in the main chain (34, 35). Accordingly, it can be questioned whether MG432 is actually 261 

bifunctional or misrecognizes the substrate, which can be observed at an elevated enzyme 262 

concentration.  263 
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Xylanolytic activity of MG432-8 and MG432 against X2 remains ambiguous. DSA-FACE is not 264 

able to detect xylose and can thus not detect possible X2 degradation. Previous HPAEC-PAD 265 

analyses show that X2 was not hydrolyzed by MG432-8 and MG432 (27). In accordance with 266 

these results, MG432-8 and MG432 were also not active against chromogenic pNP-X. However, 267 

MG432-8 and MG432 showed activity with fluorogenic CMU-X, suggesting X2 xylanolytic 268 

activity. This discrepancy may be explained by the higher sensitivity when using fluorogenic 269 

substrates. In sum, if MG432-8 and MG432 can hydrolyze X2, it will be at maximum with a low 270 

activity. This contrasts to many GH43 β-xylosidases that digest X2 (36). Yet, β-xylosidases such 271 

as XylB from Bifidobacterium adolescentis that prefer longer dp XOS over X2 have also been 272 

reported (37).  273 

DSA-FACE demonstrated a strict Rex substrate specificity for MG8 and showed complete 274 

substrate conversion at the maximum concentration tested. Up to now there are only four GH8 275 

Rex enzymes characterized in the CAZy database, including enzymes from Bacillus halodurans 276 

(38), Bifidobacterium adolescentis (39), Bacteroides intestinalis (40) and Paenibacillus 277 

barcinonensis (29). MG8 shows a typical Rex activity (as the characterized Rex enzymes listed 278 

above): MG8 does not hydrolyze pNP-X, is active on XOS with dp 3 to 6 and has a preference 279 

for short dp XOS (41). Similar to Rex8A from Paenibacillus barcinonensis, which was the first 280 

one tested against branched oligosaccharides (MeGlcA decorated xylooligomers), MG8 is able to 281 

hydrolyze the reducing end xylose of branched AX-oligosaccharides. Notably, the rex8A gene 282 

from Bacteroides intestinalis is located downstream a xyl3A gene, which encodes a β-xylosidase. 283 

The X2 generated by Rex8A is therefore hydrolyzed by the Xyl3A β-xylosidase. This is not the 284 

case for MG432-8 as both MG432 and MG8 cannot efficiently hydrolyze X2 as shown here and 285 

before with HPAEC-PAD. β-Xylosidases such as MG432, and Rex such as MG8 which have low 286 

or no X2 hydrolytic activity are interesting for the incomplete degradation of AX into X2. X2 has 287 
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been demonstrated to be the most efficient prebiotic in terms of promoting a higher growth of 288 

Bifidobacterium and Lactobacillus strains among the xylose polymers and to present an increased 289 

sweetness power in comparison to sucrose (42). 290 

MG437 shows a unique substrate specificity pattern, requiring the presence of MG432-291 

8/MG432/MG8 for activity. In fact, the MG432-8 and MG437 coding sequences were identified in 292 

the same operon, already suggesting a natural synergy between these two enzymes. Notably, 293 

MG437 only handles O-3 arabinofuranosyl substitutions of rather small AXOS. Previously a 294 

GH4318 metagenome-derived enzyme also showed a single preference for A3X from the (A)XOS 295 

studied (13). At higher enzyme concentrations MG437 shows xylanase (either endo- or exo-296 

xylanase activity as discussed for MG4328) activity on higher dp XOS and AXH-d2 activity on 297 

internal arabinose substituted xyloses. Further investigation should be made to understand such 298 

particular substrate recognition by MG437 and GH4318. 299 

It is worth noting that our study provides detailed insights into substrate preferences but not into 300 

kinetics. Overnight reactions were performed, but often incomplete conversions were observed. 301 

Similar observations of incomplete conversions were observed before with AX-acting enzymes 302 

(31, 43-45). This may either indicate low rates, enzyme death and/or product inhibition. The 303 

latter is less likely to be an issue in natural systems where other enzymes further convert the 304 

product from the first reaction. Yet, product inhibition is highly relevant in industrial applications 305 

where high substrate concentrations are used. Consequently, enzymes are either selected based on 306 

low product inhibition levels (46, 47), or their crystal structure is determined to unravel the 307 

structural basis of product inhibition, giving rise to opportunities for protein engineering to 308 

release or reduce product inhibition (48). 309 

In conclusion, DSA-FACE enables a HT analysis of enzymatic substrate preferences of AXOS-310 

acting enzymes in a relatively short experimental and analysis time. Thanks to the HT nature of 311 
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the approach, by performing enzymatic reactions at different enzyme concentrations, different 312 

(A)XOS structures can be ranked as preferred substrates and sequential enzymatic cleavages can 313 

be determined. This approach allowed us to create degradation maps for five metagenome-314 

derived enzymes for twelve different (A)XOS substrates. The knowledge of the exact substrate 315 

preferences is undoubtedly essential to achieve either desired hydrolysis products (e.g. prebiotics) 316 

or to come to a full hydrolysis. Finally, given the variety, promiscuity and flexible substrate 317 

preferences of the majority of carbohydrate active enzymes, DSA-FACE may be explored for 318 

other activities rather than (arabino)xylanolytic activities. 319 

 320 

Materials and methods 321 

Expression and purification of metagenome-derived enzymes 322 

pET28 plasmids containing the enzyme DNA sequences were obtained as described previously 323 

(27). Chemically competent Escherichia coli TOP10 and E. coli BL21 (DE3), E. coli BL21 324 

CodonPlus (DE3) or E. coli ArcticExpress strains prepared according to the rubidium chloride 325 

method were transformed with these plasmids. 326 

Table 2 gives an overview of the enzyme expression conditions obtained after preceding 327 

optimization steps. For optimal aeration, Erlenmeyer flasks exceeding at least four times the 328 

expression volume were used. The different expression hosts were grown at indicated 329 

temperatures in lysogeny broth (LB) with appropriate antibiotics until reaching an OD600 of 330 

approximately 0.6 followed by isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. LBE-331 

5052 auto-induction medium consisted of 1% tryptone, 0.5% yeast extract, 40 mM K2HPO4, 10 332 

mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 2 mM Mg2SO4, 0.5% glycerol, 0.05% glucose, 333 

0.2% lactose, 50 µg/mL kanamycin and trace metals mix (50 µM FeCl3, 20 µM CaCl2, 10 µM 334 

MnCl2, 10 µM ZnSO4, 2 µM CoCl2, 2 µM CuCl2, and 2 µM NiCl2).  335 
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Cells were harvested by centrifugation at 3100 x g for 30 min at 4 °C. Pellets were then 336 

suspended in 1/25 of the original volume in equilibration buffer for metal affinity 337 

chromatography (see below) and 1 mg/mL lysozyme and incubated on ice for 30 min. After three 338 

freeze-thaw cycles, sonication was performed on ice (3 x 30 s with 30 s interval, 40% amplitude). 339 

Cell debris were removed by centrifugation at 20000 x g for 30 min at 4 °C and resulting 340 

supernatants were clarified by filtration with a 0.45 µm filter. Purifications by metal affinity 341 

chromatography were performed either with His GraviTrap columns (GE Healthcare) or HisPur 342 

Ni-NTA Superflow agarose (Thermo Fisher Scientific). The manufacturer’s protocols were 343 

followed in both cases with the exception for the latter that the sample-resin incubation time was 344 

extended to 1 h and buffers used were modified (20 mM sodium phosphate 500 mM NaCl 20 345 

mM imidazole pH 7.4 as equilibration buffer, 20 mM sodium phosphate 500 mM NaCl 50 mM 346 

imidazole pH 7.4 as wash buffer and 20 mM sodium phosphate 500 mM NaCl 500 mM 347 

imidazole pH 7.4 as elution buffer). 348 

Eluted samples were diluted with reducing sample buffer, boiled for 5 min and analyzed by 12% 349 

SDS-Page (Roti®-Mark standard from Carl Roth was used). Fractions containing the protein of 350 

interest were then dialyzed against 20 mM HEPES-NaOH buffer pH 7.0 and 300 mM NaCl, 351 

pooled and concentrated with Vivaspin concentrators when necessary. Dialysis was done with 352 

Slide-A-Lyzer™ MINI Dialysis Devices, 3.5K MWCO (Thermo Fisher Scientific) or with 353 

SERVAPOR® dialysis tubing, MWCO 12000-14000 RC, diameter 16 mm. Protein 354 

concentrations were measured with the Abs280nm app of the DeNovix DS-11 series 355 

spectrophotometer. Extinction coefficients were calculated with the ProtParam tool (ExPASy). 356 

 357 

 358 

 359 
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Enzymatic reactions of metagenome-derived enzymes with (A)XOS 360 

Metagenome-derived enzymes were tested against (A)XOS (Figure 6) supplied by Megazyme 361 

(Megazyme International Ireland, Bray, Ireland), which have a minimum purity of 95% except 362 

for the mixture of A2XX and A3XX, which has a minimum purity of 90%, and for XA2+3XX 363 

which has a minimum purity of 85%. Enzymatic reactions with a total volume of 100 µL (or in 364 

50 µL to achieve desired enzyme concentration when there was only a limited enzyme volume 365 

available) in a 96-well plate contained 0.2-38 µM enzyme, 10 µM (A)XOS, 50 mM HEPES-366 

NaOH 50 mM NaCl pH 7.0. Mineral oil (30-50 µl) was used to avoid evaporation from the 96-367 

well plate during enzymatic reaction (Figure 7). Substrate and enzyme blanks, where enzyme and 368 

substrate (respectively) were replaced by the corresponding buffer, have been added. Some 369 

repetitions of reactions were performed in a 1.5 mL Eppendorf for reasons of simplicity. 370 

Enzymatic reactions were incubated at 37 °C and 750 rpm in a Thermomixer comfort 371 

(Eppendorf). The number of replicates done per enzyme/substrate combination is given in Table 372 

S1. After 22 h, reactions were stopped by incubation at 80 °C for 30 min.  373 

 374 

Analysis of enzymatic reaction hydrolysates by DSA-FACE 375 

Reaction hydrolysates were diluted 10-fold with ultrapure water and 10 µL were lyophilized. 376 

Carbohydrates present in the lyophilized fraction were then derivatized with 8-aminopyrene-377 

1,3,6-trisulfonic acid trisodium salt (APTS) by reductive amination as in (13). Afterwards, 378 

samples were quenched by diluting the reactions 200-fold with ultrapure water. Ten µL of 379 

derivatized hydrolysate was analyzed by the Applied BiosystemsTM 3130 Genetic Analyzer with 380 

36 cm capillaries filled with Applied BiosystemsTM POP-7TM polymer as in (13) (Figure 7).  381 

Through DSA-FACE electropherograms the carbohydrates before and after enzymatic reactions 382 

are identified by comparison to standards. Xylose and arabinose monomers are not detected by 383 
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DSA-FACE as they fall into the DSA-FACE noise region due to their high electrophoretic 384 

mobility. Since A2X, A2+3X, XA2X, XA3X and XA2+3X standards are not commercially available, 385 

they were identified by comparison between the electrophoretic mobilities of the hydrolysates, 386 

the electrophoretic mobilities of the available standards and based on spiking experiments (Figure 387 

S5 and Figure S6). Previously it was seen that AXOS with dp z present an electrophoretic 388 

mobility between XOS with dp z-1 and z showing an increased electrophoretic mobility in 389 

comparison with XOS with the same dp. For example, A2XX and A3XX are therefore expected to 390 

have an electrophoretic mobility in between X3 and X4 (13). 391 

 392 

DSA-FACE product profiles 393 

DSA-FACE product profiles were made with the excel graph function. Peak areas were collected 394 

with the GeneMapper® Software Version 4.0. DSA-FACE peak area reproducibility is dependent 395 

on the amount of labeled carbohydrate injected in each run, which may vary due to the 396 

electrokinetic injection mechanism of the 3130 Genetic Analyzer. Intrinsic carbohydrate 397 

electrophoretic mobilities affect the amount of sample injected by the electrokinetic mechanism 398 

(49). Therefore peak areas are corrected by dividing the hydrolysate peak areas by the peak area 399 

of the blank with same (A)XOS structure. When this AXOS was not one of the standard AXOS, 400 

the peak area of an AXOS with the same dp is taken. The average of the corrected peak areas is 401 

then taken for the DSA-FACE product profiles. To normalize all peak areas obtained for the 402 

same enzyme but different enzyme concentrations and substrates, the largest peak area (or the 403 

largest sum of the carbohydrate peak areas when more peaks are present in an hydrolysate) is 404 

taken as the maximum amount of carbohydrate possibly found in a hydrolysate. All product 405 

profiles revealed by DSA-FACE are summarized in Table S2. 406 

 407 
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Data availability 408 

GenBank accession numbers for the enzyme DNA sequences 12_H03-13 (MG432-8), 12_H03-12 409 

(MG437), and 12_J03-18 (MG4328) (Table 1) are MT603581, MT603582 and MT603583, 410 

respectively. 411 
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Tables 594 

  595 

Table 1 - Metagenomic AX-active enzymes analyzed in this study. The CAZy family (and 596 

subfamily in subscript) is given for the modules that constitute each enzyme. Domains 597 

inactivated by mutagenesis are indicated with a red line. Activity tests on aryl glycosides p-598 

nitrophenyl β-D-xylopyranoside (pNP-X), 4-methylumbelliferyl β-D-xylopyranoside (MU-X), 6-599 

chloro-4-methylumbelliferyl β-D-xylopyranoside (CMU-X), p-nitrophenyl α-L-600 

arabinofuranoside (pNP-Ara) and 4-methylumbelliferyl α-L-arabinofuranoside (MU-Ara) and 601 

HPAEC-PAD analysis using A3X, A2XX, XA3XX and XA2XX as substrates were performed by 602 

(27). CBM = Carbohydrate binding module. Rex = reducing end xylose-releasing exo-603 

oligoxylanase. 604 

Protein 
name 

used in 
this 

study 
 

Protein 
name 

used in 
(27) 

Enzyme modularity 
Activity 
on aryl 

glycosides

Activity 
detected by 

HPAEC-
PAD 

Observations

MG4328 12_J03-18  

 
CMU-X Not tested - 

MG432-8 
12_H03-

13 
 

 
CMU-X 

Rex and 
β-xylosidase 

Does not 
hydrolyse X2 

MG432 
12_H03-

13_E507A 
 

 
CMU-X β-xylosidase 

Does not 
hydrolyse X2 

MG8 
12_H03-

13_E209A 
 

Not 
detected 

Rex - 

MG437 
12_H03-

12  
Not 

detected 

Cleaves O-3- 
arabinose 

decorations 
from A3X 

Only active in 
the presence 
of MG432-8 

 605 

CBM13 GH437 

GH432 GH8 

GH4328

GH432 GH8 

GH432 GH8 
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Table 2 - Expression conditions of the metagenome-derived enzymes studied in this work. 606 

Enzyme Expression 
host 

Host growth 
temperature

Induction type 
Purification 

method 

MG4328 
E. coli BL21 

(DE3) 
24 h at 37 ºC, 250 rpm on  

LBE50-52 auto-induction medium 
HisGraviTrap 

MG432-8 

E. coli BL21 
CodonPlus 

(DE3) 

37 ºC,  
250 rpm  

1 mM IPTG at 16 ºC 
for 18 to 20 hours, 

250 rpm 

HisPur Ni-NTA 
Superflow agarose 
(250/100 µL resin)

E. coli 
ArcticExpress 

30 ºC,  
250 rpm 

1 mM IPTG at 16 ºC 
for 24 hours,  

250 rpm 

HisPur Ni-NTA 
Superflow agarose 

(100 µL resin) 

MG432 

E. coli BL21 
CodonPlus 

(DE3) 

30 ºC/37 ºC, 
250 rpm 

1 mM IPTG at 16 ºC 
for 18 to 20 hours, 

250 rpm 

HisPur Ni-NTA 
Superflow agarose 
(500/100 µL resin)

MG437 

18 h at 30 ºC, 250 rpm on  
LBE50-52 auto-induction medium 

HisGraviTrap 

30 ºC,  
250 rpm 

1 mM IPTG at 16 ºC 
for 18 hours,  

250 rpm 

HisPur Ni-NTA 
Superflow agarose 

(500 µL resin) 

MG8 E. coli BL21 
(DE3) 

37 ºC,  
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Figures 617 
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 633 

 634 

Figure 1 – Preceding functional screening of putative enzymes derived from metagenomics 635 

on beaver fecal samples. A) Upon environmental sample collection and gDNA extraction, a 636 

metagenomic DNA library of 4500 clones suitable for heterologous expression was constructed. 637 

These clones were expressed and checked for active hits by high-throughput preliminary 638 

functional screening methods. Fifty one active hits were sequenced and 135 putative glycoside 639 

hydrolases (GHs) from 28 GH families were identified by in silico analysis. B) Three GH43 640 
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genes, one of which is modular with an additional GH8 domain, and two mutants thereof were 641 

characterized by enzymatic activity tests with aryl glycosides and by HPAEC-PAD using 642 

representative arabinoxylan oligosaccharides (27).  643 
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 664 

Figure 2 – Product profiles and degradation maps. (A) General approach to establish DSA-665 

FACE product profiles and a corresponding degradation map in four steps. (B) Product profiles 666 

 on S
eptem

ber 27, 2020 at U
niversiteitsbibliotheek G

ent
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


32 
 

for BaAxhd3 from Bifidobacterium adolescentis after reaction with A²XX, A²+³XX, XA²XX, 667 

XA³XX and XA²+³XX. Electropherograms a, c, e and g show the substrate blanks, whereas 668 

electropherograms b, d, f and h show the corresponding hydrolysates upon enzymatic reaction 669 

with BaAxhd3. The peaks are compared to standards for carbohydrate peaks identification (1). A 670 

qualitative interpretation of the electropherograms is then displayed on a product profile (bars are 671 

labeled with the letters of corresponding electropherograms) (2). Substrate conversions are easily 672 

observed by a color change. The first bar corresponds to the substrate blank followed by bar(s) 673 

showing colors corresponding to the (A)XOS found upon enzymatic reaction. A degradation map 674 

is obtained from the different product profiles for BaAxhd3 (3). 675 
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 688 
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 691 

 692 

 693 
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 698 

 699 

 700 

 701 

Figure 3 - Product profiles starting from 12 (A)XOS and degradation map of MG4328. The 702 

product profiles (A) show the hydrolysis products obtained after 22 h of enzymatic reactions with 703 

0.3, 1, 6 and 32 µM MG4328 (1, 2, 3 and 4 respectively). The (A)XOS used as substrates for the 704 

enzymatic reactions are identified as ‘s’. A degradation map is given in B with a schematic 705 

representation of the (A)XOS structures used as substrates and the ones obtained as hydrolysis 706 

products, using corresponding colors. Based on hydrolysis products obtained, cleavage positions 707 

for MG4328 are indicated with .  708 

 709 
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 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

Figure 4 - Product profiles of MG432, MG8 and MG432-8. The product profiles in A show the 725 

hydrolysis products obtained after 22 h of enzymatic reactions with 3 µM MG432 (1), MG8 (2) 726 

and MG432-8 (3). The (A)XOS used as substrates for the enzymatic reactions are identified as 727 

‘s’. A degradation map is given in B with a schematic representation of the (A)XOS structures 728 

used as substrates and the ones obtained as hydrolysis products, using corresponding colors. 729 

Based on hydrolysis products obtained, cleavage positions for MG432 and MG8 are indicated 730 

with  and  , respectively. 731 

 732 
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 733 
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 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

Figure 5 - Product profiles of MG437, MG432-8, and MG437 in the presence of MG432-8. The 747 

product profiles (A) show the hydrolysis products obtained after 22 h of enzymatic reactions with 748 

8 µM MG437 (1), 3 µM MG432-8 (2) and 8 µM MG437 in the presence of 3 µM MG432-8 (3). 749 

The (A)XOS used as substrates for the enzymatic reactions are identified as ‘s’. The dotted line 750 

means there was no reaction performed to test the hydrolysis of A2+3XX by MG437. A 751 

degradation map is given in B with a schematic representation of the (A)XOS structures used as 752 

substrates and the ones obtained as hydrolysis products. Based on hydrolysis products obtained, 753 

cleavage positions for MG437 and MG432-8 are indicated with  and x, respectively.  754 
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 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

Figure 6 - Twelve different (arabino)xylo-oligosaccharides ((A)XOS) used as substrates in 767 

the enzymatic reactions and as standards for the DSA-FACE analysis. AXOS are named 768 

according to nomenclature proposed by (50). 769 
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 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

Figure 7 - Protocol for high-throughput study of substrate specificities of arabinoxylan-782 

active enzymes by DSA-FACE. Putative AX-active enzymes are incubated with (A)XOS for 22 783 

hours (A). Six enzymes were tested against 12 (A)XOS, including 12 substrate blanks and 6 784 

enzyme blanks (90 samples in total). Reaction hydrolysates are then diluted with ultrapure water 785 

and lyophilized (B). Afterwards, reductive amination reactions are performed to derivatize the 786 

carbohydrates at their reducing end with the negatively charged and fluorescent APTS (C). Ten 787 

microliters of derivatized reaction hydrolysate are analyzed by DSA-FACE (D). All steps are 788 

done in a 96-well plate and 90 samples are analyzed in approximately 14 hours. 789 

 790 
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