AEM Accepted Manuscript Posted Online 18 September 2020 Appl. Environ. Microbiol. doi:10.1128/AEM.01505-20 Copyright © 2020 American Society for Microbiology. All Rights Reserved.

1	
2	
3	High-throughput generation of product profiles for
4	arabinoxylan-active enzymes from metagenomes
5	Metagenome-derived AX-active enzymes product profiles
6	
7	
8	Maria João Maurício da Fonseca ^a , Zachary Armstrong ^{b,*} , Stephen G. Withers ^b ,
9	Yves Briers ^{a,#}
10	^a Department of Biotechnology, Ghent University, Ghent, Belgium.
11	^b Department of Chemistry, University of British Columbia, Vancouver, Canada.
12	
13	
14	
15	
16	[#] Corresponding author: <u>yves.briers@ugent.be</u>
17	*Current affiliation: Department of Chemistry, The University of York, York, United Kingdom.
18	
19	
20	
21	Keywords: arabinoxylan, enzyme discovery, metagenomics, substrate specificity, DSA-FACE
22	

23 Abstract

24	Metagenomics is an exciting alternative to seek for carbohydrate-active enzymes from a range of
25	sources. Typically, metagenomics reveals dozens of putative catalysts that require functional
26	characterization for further application in industrial processes. High-throughput screening
27	methods compatible with adequate natural substrates are crucial for an accurate functional
28	elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted
29	carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic reaction products, we
30	generated product profiles to consequently infer substrate cleavage positions, resulting in the
31	generation of enzymatic degradation maps. Product profiles were produced in high-throughput
32	for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43
33	(subfamilies 2 (MG43 ₂), 7 (MG43 ₇) and 28 (MG43 ₂₈)) and GH8 (MG8) starting from twelve
34	(arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic
35	studies of faeces from the North American beaver (Castor canadensis). This work shows how
36	enzyme loading alters the product profiles produced by all enzymes studied and gives insight into
37	AX degradation patterns revealing sequential substrate preferences of AX-active enzymes.
38	

39 Importance

40 Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs and rice 41 husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added value products that 42 can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for 43 the biorefinery industries. An efficient and profitable AX degradation requires a set of enzymes 44 with particular characteristics. Therefore, enzyme discovery and study of substrate preferences is 45 of utmost importance. Beavers, as consumers of woody biomass are a promising source of a 46 repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-

- 47 throughput analysis of oligosaccharide profiles produced by these enzymes will assist in the
- 48 selection of the most appropriate enzymes for the biorefinery.

Accepted Manuscript Posted Online

Applied and Environmental

49 Introduction

50 Metagenomic studies of the microbial communities associated with plant cell wall degraders 51 reveal a large number of gene sequences coding for potential carbohydrate-active enzymes 52 (CAZymes) (1). Accurate functional analysis of new CAZymes must accompany this continuous 53 discovery at the genomic level. Such newly functionally validated enzymes can be applied in the biorefinery industry and/or for further protein engineering (2-5). Glycoside hydrolases (GHs) that 54 55 cleave polysaccharide main chains and/or substituents can have complex substrate preferences, 56 often showing multi-substrate specificities (6-9). These substrate preferences are often also 57 dependent on main chain substituents. Consequently, the degradation of complex carbohydrate 58 polymers often requires synergistic or combinatorial action of multiple enzymes. Tedious 59 techniques, long analysis times, demanding hands-on assays, specialised equipment and lack of 60 appropriate representative substrates contribute to the existing gap between enzyme discovery 61 and functional characterization (10). Accordingly, high-throughput (HT) techniques that can deal 62 with a large number of metagenome-derived putative enzymes and that can give an insight into 63 the substrate specificities of unannotated enzymes in a relatively short time are required (11). 64 DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) offers an 65 interesting approach to study the substrate specificities of CAZymes, primarily due to the 66 possibility to use substrates that represent the natural carbohydrates instead of artificial aryl 67 glycoside substrates like p-nitrophenyl- and 4-methylumbelliferyl-derivatives (12). In fact, the 68 latter substrate derivatives may mask the real enzymatic substrate specificity due to, for example, 69 steric differences in comparison to the natural oligosaccharides. DSA-FACE has shown 70 outstanding oligosaccharide resolution and sensitivity (a detection limit ranging from 38 to 55 71 pM for the substrates studied), short hands-on time and analysis time (13). In addition, DSA-

AEM

72

73	as in standard capillary sequencing devices.
74	In this work we focus on arabinoxylan (AX) which is a hemicellulosic polysaccharide that may
75	contain a range of substitutions including α -L-arabinofuranosyl, α -D-glucuronic acid, 4-O-
76	methyl- α -D-glucuronic acid, α -D-galactopyranose and ferulic acid residues, depending on the
77	source (14). Deconstruction of AX by GHs leads to useful sugars for the production of
78	bioethanol, food and nutraceutical added-value products such as xylitol (15-18) and prebiotics
79	(19-23). GHs with diverse substrate specificities for the degradation of complex AX structures
80	are being discovered continuously and annotated in the various protein databases (24). The
81	carbohydrate-active enzymes database (CAZy) classifies GHs into families according to amino
82	acid sequence similarity (25). Although structural similarity often correlates with enzyme
83	substrate specificity, the CAZy family division cannot always be used to predict enzyme
84	substrate specificity because of the different specificities assigned per GH family. Additionally,
85	up to now only approximately 1% of the annotated GHs in CAZy have been experimentally
86	characterized (25). Due to the abundance of GH43 members and the large substrate specificity
87	variety found within this family, the GH43 family was further divided into subfamilies on the
88	basis of sequence analyses, suggesting that the correlation between functional annotation of the
89	enzyme and subfamily assignment is more accurate (26). The GH43 family subdivision and
90	analysis relies on computational and experimental data, which are mainly based on synthetic
91	substrates such as <i>p</i> -nitrophenyl (<i>pNP</i>) monosaccharides. To obtain a more accurate
92	understanding of the substrate specificity of AX-active enzymes, we have recently used DSA-
93	FACE to analyze the hydrolysates of AX-active enzymes with natural representative
94	(arabino)xylo-oligosaccharides ((A)XOS) (13). In this work, DSA-FACE is used to elucidate
95	substrate specificities of enzymes derived from metagenomic studies on the North American

FACE allows analysis of the substrate specificities in HT when using multiple parallel capillaries

Applied and Environ<u>mental</u>

Microbiology

poorly characterized subfamilies 2, 7 and 28 of GH43 and one from GH8 that were identified in active fosmids were shown to be active on AX by preliminary functional screening tests with aryl glycosides and/or high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) (27) (Figure 1). To gain further insight into AX degradation patterns by the aforementioned enzymes, we introduce DSA-FACE product profiles and associated sequential degradation maps for a convenient representation of the activity(ies) of each enzyme on twelve (A)XOS substrates. By implementing DSA-FACE product profiles, we reveal the preferred substrate cleavage sites by a $GH43_{28}$ member, the modular specificity of a $GH43_2$ – 105 GH8 enzyme and the dependence of the enzymatic activity of a GH437 member on the activity of 106 the aforementioned $GH43_2 - GH8$ enzyme. 107 108 Results 109 DSA-FACE allows rapid evaluation of product profiles produced by metagenome-derived AX-110 active enzymes 111 In this study, we have used DSA-FACE to set up product profiles for three newly-discovered 112 enzymes of the GH43 family active on AX. These enzymes were identified through a preceding 113 metagenomic analysis of the North American beaver (Castor canadensis) fecal microbiome (27). 114 The first selected enzyme (MG43₂₈) contains a GH43 subfamily 28 domain. The second enzyme

115 (MG43₂-8) is a modular enzyme composed of a GH43 subfamily 2 and a GH8 domain. To

116 differentiate the specificities of each domain, we have also set up product profiles produced by

117 two mutated variants, in which the respective domains are inactivated by mutagenesis of the

- 118 catalytic acid residue (27), resulting in MG432 and MG8, respectively (Table 1). The third
- 119 enzyme MG437 comprises a single domain assigned to GH43 subfamily 7. These enzymes were

Applied and Environ<u>mental</u>

Microbiology

120

121 enzymes with chromogenic substrates and HPAEC-PAD confirmed that they have AX-acting 122 activities as summarized in Table 1. The initial low expression yields of MG43₂-8, MG43₂ and 123 MG437 were optimized by variation of expression strains, growth temperature, induction and 124 purification protocols (Table 2). Eluted fractions from the different expressions/purifications 125 containing the desired protein were pooled for further analysis. 126 DSA-FACE product profiles are a qualitative representation of the carbohydrates present after 127 enzymatic reactions with different (A)XOS (Figure 2A). Twelve oligosaccharides (5 XOS, 7 128 AXOS) are used in these enzymatic reactions. Reaction hydrolysates are then analyzed with 129 DSA-FACE. The output of DSA-FACE are electropherograms that need to be interpreted by referencing to (A)XOS standards to reveal the identity of the resulting products. Peak areas are 130 131 quantified and normalized to calculate the relative conversion of each substrate and relative 132 proportion of the products. This has been exemplified in Figure 2B for a previously characterized 133 α-L-arabinofuranosidase from *Bifidobacterium adolescentis* (BaAXH-d3) (13). Alpha-L-134 arabinofuranosidases are classified into arabinoxylan arabinofuranohydrolases (AXH) that 135 hydrolyze the O-2 and/or O-3 arabinofuranosyl monomers from the doubly substituted xyloses 136 (AXH-d2, AXH-d3, AXH-d2,3) or from the mono substituted xyloses (AXH-m2, AXH-m3, 137 AXH-m2,3). To simplify the representation of enzymatic substrate preferences, we introduce 138 here product profiles with a fixed color code instead of electropherograms as the final DSA-FACE outcome. Substrate conversions are easily observed in the product profiles by a color 139 change. Accordingly, there is only a color change in the case of $A^{2+3}XX$ and $XA^{2+3}XX$ for 140 141 BaAXH-d3. Next to the product profiles, degradation maps highlighting cleavage positions for 142 the different (A)XOS tested are elaborated to assist in evaluating enzyme substrate preferences. 143

selected because of the limited characterization for these subfamilies. An initial analysis of these

144 *Different product profiles for increasing MG43*₂₈ concentrations

145	Purified MG43 $_{28}$ was tested against the panel of five XOS and seven AXOS using four different
146	enzyme concentrations (0.3 – 1 – 6 – 32 μ M). The product profiles of MG43 ₂₈ show diverse
147	hydrolytic products which change depending on the enzyme concentration (Figure 3). At the
148	lowest concentration tested (0.3 μ M) MG43 ₂₈ completely removes an O-2 arabinose from a non-
149	reducing end singly substituted xylose, i.e. A ² XX to X ₃ (AXH-m2 activity). In addition, at
150	concentrations at or above 0.3 μ M MG43 ₂₈ both O-2 and O-3 arabinoses are partially removed
151	from the non-reducing end doubly substituted xylose of $A^{2+3}XX$, resulting in X ₃ (AXH-d2,3
152	activity), but higher concentrations (6 μ M) are needed for a full conversion. The internal O-2
153	arabinose from XA^2XX is only removed from 1 μ M and even at the highest concentration studied
154	(32 μ M) MG43 ₂₈ is not able to remove O-2 and O-3 arabinoses from XA ²⁺³ XX, indicating that
155	the internal single/double arabinose substitutions are less accessible for hydrolysis. Removal of
156	the O-3 arabinoses from A^3XX and XA^3XX (AXH-m3 activity), resulting in X_3 and X_4 ,
157	respectively, is observed from 1 μ M MG43 _{28.} MG43 ₂₈ thus exerts diverse arabinofuranosidase
158	specificities with the best conversion of A ² XX. Xylanolytic activity is visible at concentrations at
159	or above 1 μ M as well, with a preference for the longest xylo-oligosaccharide tested (X ₆). Also,
160	AXOS with removed arabinoses are further partially degraded (e.g. XA^3XX is converted to X_2
161	and X ₄).

162

163 The product profiles for MG43₂-8 are the sum of the product profiles of its respective domains

164 Enzymatic reactions with purified MG43₂, MG8 and MG43₂-8 were performed. The product

- 165 profiles in Figure 4 demonstrate that MG43₂ is a β -xylosidase and MG8 is a reducing end xylose-
- 166 releasing exo-oligoxylanase (Rex). At a concentration of 3 μM, MG43₂ partially converts XOS
- 167 into X₂. It seems there are more structural hindrances or product inhibition in comparison to MG8

168

169	monomers from XA ² XX, XA ³ XX and XA ²⁺³ XX (Figure 4A) but not the non-reducing arabinose
170	substituted xylose monomers (A ² XX, A ³ XX and A ²⁺³ XX). At a concentration of 3 μ M MG8 fully
171	converts X_3 , X_4 and X_5 to X_2 , but we did not observe visible conversion of X_2 to X. However, X_6
172	seems to be more slowly converted to X2 due to possible hindrances in accommodating long XOS
173	into MG8 catalytic subsites or due to product inhibition, indicating a preference for smaller XOS.
174	As typical for Rex enzymes, MG8 requires two non-substituted xyloses from the reducing end to
175	hydrolyse the reducing end xylose (28, 29). This is observed when the reducing end xylose
176	monomer is hydrolysed from A ² XX, A ³ XX, A ²⁺³ XX, XA ² XX, XA ³ XX and XA ²⁺³ XX but not
177	from A^3X . We also evaluated different concentrations for MG8 (0.2, 0.8, 3 and 17 μ M) (Figure
178	S1). Notably, at the minimum MG8 concentration tested (0.2 μ M) only X ₃ to X ₆ were partially
179	hydrolysed into smaller dp XOS, showing the preference for XOS over AXOS by MG8. At
180	concentrations from 0.8 to 17 μ M, MG8 shows the same product profiles as the ones performed
181	with 3 μ M enzyme (Figure 4).
182	At concentrations of 3 μ M MG43 ₂ -8 displays the sum of both β -xylosidase and Rex activities
183	(Figure 4). When we evaluated MG43 ₂ -8 at a higher concentration (17 μ M), MG43 ₂ -8 also
184	exhibited α -L-arabinofuranosidase activity when hydrolyzing the mixture of XA ² XX and XA ³ XX
185	into A^2X , A^3X and X_2 (Figure S2). This is likely performed by the MG43 ₂ domain since 17 μ M
186	MG8 did not show α -L-arabinofuranosidase activity on any of the substrates tested and 3 μ M
187	MG43 ₂ showed a small amount of α -L-arabinofuranosidase activity on A ³ X but not on A ³ XX or
188	XA ³ XX (Figure 4).
189	
190	Product profiles of MG437 change with increasing MG437 concentration and in the presence of
191	MG43 ₂ -8/MG43 ₂ /MG8

based on the slower observed degradation rate. MG432 does hydrolyze the non-reducing xylose

9

192

193	xylanase activity on X_4 , X_5 and X_6 (Figure S3). Yet, when enzymatic reactions were performed
194	with 8 μ M MG43 ₇ in the presence of 3 μ M MG43 ₂ -8, A ³ X is converted to X ₂ , showing an
195	additional AXH-m3 activity, which does not happen when enzymatic reactions are performed
196	with the same concentrations of MG43 ₂ -8 or MG43 ₇ alone (Figure 5). X_2 and X_3 can also be
197	observed after enzymatic reactions with 8 μM MG437 in the presence of 3 μM MG432-8 and
198	A ³ XX or XA ³ XX, again showing additional AXH-m3 activity. Notably, O-2 arabinofuranosyl
199	substitutions are not a substrate since A^2XX is not further hydrolyzed to X_2 . When enzymatic
200	reactions were performed with elevated concentrations (38 μM MG437 in the presence of 17 μM
201	MG43 ₂ -8) and $A^{3}X$, the end product was again X_{2} , showing no further hydrolysis, but when the
202	same concentrations were tested against A^2XX , A^2X and X_2 appeared as reaction products
203	(Figure S2).
204	To discriminate whether the additional AXH-m3 or AXH-m2 activity that appears when
205	combining MG437 and MG432-8, comes from either MG437 or MG432-8, we investigated again
206	the activity of MG437 in the presence of the derivatives of MG432-8 in which one domain was
207	inactivated by mutation (MG432 and MG8). When A^3X reacted with 8 μM MG437 and 3 μM
208	MG43 ₂ (Figure S4), approximately 50% $A^{3}X$ was converted to X ₂ . The same reaction but in
209	combination with 3 μ M MG8 also resulted in a minor fraction of X ₂ (Figure S1). These data
210	indicate that the AXH-m3 activity does indeed result from MG437. This finds further support as
211	also AXH-m3 activity is detected in both cases when a mixture of A ² XX/A ³ XX reacts with
212	MG437 in the presence of either MG432 (Figure S4) or MG8 (Figure S1). Likely MG437 has a
213	preference for non-reducing O-3 substituted xyloses since 8 μ M MG43 ₇ and 3 μ M MG8 do not
214	hydrolyze XA ³ XX further into X ₂ . These findings are consistent with the previously identified
215	arabinofuranosidase activity of MG437 on A ³ X detected by HPAEC-PAD (27). In sum, the scans
	10

MG437 activity was only detected at the highest concentration tested (38 μ M). MG437 showed a

Applied and Environmental

Microbiology

216 indicate that MG43₇ shows AXH-m3 activity on small *O*-3 arabinose substituted AXOS (A³X

and A^3XX) in the presence of MG43₂-8, and xylanase activity at elevated concentrations.

218

219 Discussion

220 Functional metagenomic studies of the beaver fecal microbiome revealed enzymes from 221 subfamilies 2, 7 and 28 of the GH43 CAZy family. Whereas subfamily 2 has two characterized α -222 L-arabinofuranosidases from Chitinophaga pinensis DSM2588 and Mucilaginibacter mallensis 223 MP1X4 (3, 30), subfamilies 7 and 28 have no characterized enzymes to date. Activity on CMU-X 224 indicated that MG43₂₈ is a β -xylosidase (27). However, the MG43₂₈ product profiles reveal that MG43₂₈ is able to hydrolyze all (A)XOS substrates except XA²⁺³XX, showing xylanase, AXH-225 226 m2,3 and AXH-d2,3 activities. We cannot confirm if the observed xylanase activity is due to 227 endo- or sequential exo-xylanase activity. If MG43₂₈ acts as a β -xylosidase it would be expected that X₂ is also degraded to X, which does not seem to happen even at the highest concentration 228 229 tested. Though, monomeric xylose cannot be detected by DSA-FACE. Similarly, GH43 230 PcAxy43A from Paenibacillus curdlanolyticus (GH43 subfamily 35) is also unable to hydrolyze $XA^{2+3}XX$ and shows endo-xylanase, β -xylosidase, AXH-d2,3 and AXH-m2,3 activities in a 231 232 single catalytic domain (31), but the presence of both exo- and endo-activity in a single enzyme 233 can be considered unusual. Ara 1 isolated from barley malt also has both AXH-m2,3 and AXHd2,3 activities and a four times higher enzyme concentration is needed for conversion of 234 XA²⁺³XX into X₄ than for conversion of A²⁺³XX (32). Besides a N-terminal MG43₂₈ GH43 235 236 domain, a C-terminal discoidin domain has been identified using the Conserved Domain 237 database. This discoidin domain has putative lectin-like properties, binding carbohydrates (33). 238 To unravel how MG43₂₈ deals with such a variety of substrates, the influence of this C-terminal 239 domain on the observed multiple activities may be investigated. A blastp analysis of MG43₂₈

240	against all GH43 CAZy family characterized sequences (182 characterized sequences out of
241	16250) revealed an enzyme from Belliella baltica DSM 15883 (accession number: AFL85801.1)
242	as the most similar sequence (E-value 5×10^{-10} with 45% query cover and 25% percentage
243	identity). This enzyme is annotated in GH43 subfamily 31 of the CAZy database and was
244	identified as a β -D-galactofuranosidase in the study of (3). The endo-1,4- β -xylanase from an
245	uncultured bacterium URE4 (accession number: ACM91046.1) shows the maximum query cover
246	of 85% (E-value: 1x10 ⁻⁴ , percentage identity: 23%). This enzyme is annotated in subfamily 29 of
247	the CAZy database. These relatively low similarities spread over different subfamilies emphasize
248	the need for detailed analyses of the substrate specificity as done here for MG43 ₂₈ .
249	The substrate preferences of MG43 ₂ -8, MG43 ₂ , MG8, and MG43 ₇ in the presence of MG43 ₂ -8
250	were previously analyzed by HPAEC-PAD upon enzymatic reactions with 0.5 μ M purified
251	enzyme and 4 mM A ³ X, A ² XX and a mixture of XA ² XX and XA ³ XX (27). At the conditions
252	tested MG43 ₂ , MG8, and MG43 ₇ showed β -xylosidase, Rex and AXH-m3 activities, respectively.
253	Due to the limited HT capacity of HPAEC-PAD, a restricted number of substrates were tested,
254	omitting doubly substituted XOS, for example. The minor α -L-arabinofuranosidase activity of the
255	MG43 ₂ β -xylosidase against A ³ X indicates MG43 ₂ shows both β -xylosidase and AXH-m3
256	activities at concentrations higher than 3 μ M. Bifunctional β -xylosidase and α -L-
257	arabinofuranosidase activities have already been reported before in the GH43 CAZy family but
258	not yet in subfamily 2. It seems these enzymes can accommodate both xylose and arabinose units
259	in their active sites not only due to obvious structural similarities between arabinose and xylose
260	sugars, but also due to rotations on the α -arabinose linkage to xylose that can resemble a β -xylose
261	linkage in the main chain (34, 35). Accordingly, it can be questioned whether MG43 ₂ is actually
262	bifunctional or misrecognizes the substrate, which can be observed at an elevated enzyme
263	concentration.
	12

264

265	able to detect xylose and can thus not detect possible X2 degradation. Previous HPAEC-PAD
266	analyses show that X_2 was not hydrolyzed by MG43 ₂ -8 and MG43 ₂ (27). In accordance with
267	these results, MG43 ₂ -8 and MG43 ₂ were also not active against chromogenic pNP-X. However,
268	MG43 ₂ -8 and MG43 ₂ showed activity with fluorogenic CMU-X, suggesting X_2 xylanolytic
269	activity. This discrepancy may be explained by the higher sensitivity when using fluorogenic
270	substrates. In sum, if MG43 ₂ -8 and MG43 ₂ can hydrolyze X ₂ , it will be at maximum with a low
271	activity. This contrasts to many GH43 β -xylosidases that digest X ₂ (36). Yet, β -xylosidases such
272	as XylB from <i>Bifidobacterium adolescentis</i> that prefer longer dp XOS over X ₂ have also been
273	reported (37).
274	DSA-FACE demonstrated a strict Rex substrate specificity for MG8 and showed complete
275	substrate conversion at the maximum concentration tested. Up to now there are only four GH8
276	Rex enzymes characterized in the CAZy database, including enzymes from Bacillus halodurans
277	(38), Bifidobacterium adolescentis (39), Bacteroides intestinalis (40) and Paenibacillus
278	barcinonensis (29). MG8 shows a typical Rex activity (as the characterized Rex enzymes listed
279	above): MG8 does not hydrolyze pNP-X, is active on XOS with dp 3 to 6 and has a preference
280	for short dp XOS (41). Similar to Rex8A from Paenibacillus barcinonensis, which was the first
281	one tested against branched oligosaccharides (MeGlcA decorated xylooligomers), MG8 is able to
282	hydrolyze the reducing end xylose of branched AX-oligosaccharides. Notably, the rex8A gene
283	from <i>Bacteroides intestinalis</i> is located downstream a <i>xyl3A</i> gene, which encodes a β -xylosidase.
284	The X_2 generated by Rex8A is therefore hydrolyzed by the Xyl3A β -xylosidase. This is not the
285	case for MG43 ₂ -8 as both MG43 ₂ and MG8 cannot efficiently hydrolyze X_2 as shown here and
286	before with HPAEC-PAD. β -Xylosidases such as MG43 ₂ , and Rex such as MG8 which have low
287	or no X_2 hydrolytic activity are interesting for the incomplete degradation of AX into X_2 . X_2 has

Xylanolytic activity of MG432-8 and MG432 against X2 remains ambiguous. DSA-FACE is not

Applied and Environ<u>mental</u>

288

289

290 sweetness power in comparison to sucrose (42). 291 MG437 shows a unique substrate specificity pattern, requiring the presence of MG432-292 8/MG432/MG8 for activity. In fact, the MG432-8 and MG437 coding sequences were identified in 293 the same operon, already suggesting a natural synergy between these two enzymes. Notably, 294 MG437 only handles O-3 arabinofuranosyl substitutions of rather small AXOS. Previously a 295 GH43₁₈ metagenome-derived enzyme also showed a single preference for A³X from the (A)XOS 296 studied (13). At higher enzyme concentrations MG437 shows xylanase (either endo- or exo-297 xylanase activity as discussed for MG43₂₈) activity on higher dp XOS and AXH-d2 activity on 298 internal arabinose substituted xyloses. Further investigation should be made to understand such 299 particular substrate recognition by MG437 and GH4318. 300 It is worth noting that our study provides detailed insights into substrate preferences but not into 301 kinetics. Overnight reactions were performed, but often incomplete conversions were observed. 302 Similar observations of incomplete conversions were observed before with AX-acting enzymes 303 (31, 43-45). This may either indicate low rates, enzyme death and/or product inhibition. The 304 latter is less likely to be an issue in natural systems where other enzymes further convert the 305 product from the first reaction. Yet, product inhibition is highly relevant in industrial applications 306 where high substrate concentrations are used. Consequently, enzymes are either selected based on 307 low product inhibition levels (46, 47), or their crystal structure is determined to unravel the 308 structural basis of product inhibition, giving rise to opportunities for protein engineering to 309 release or reduce product inhibition (48). 310 In conclusion, DSA-FACE enables a HT analysis of enzymatic substrate preferences of AXOS-311 acting enzymes in a relatively short experimental and analysis time. Thanks to the HT nature of

been demonstrated to be the most efficient prebiotic in terms of promoting a higher growth of

Bifidobacterium and Lactobacillus strains among the xylose polymers and to present an increased

Applied and Environ<u>mental</u>

Microbiology

312 the approach, by performing enzymatic reactions at different enzyme concentrations, different 313 (A)XOS structures can be ranked as preferred substrates and sequential enzymatic cleavages can 314 be determined. This approach allowed us to create degradation maps for five metagenome-315 derived enzymes for twelve different (A)XOS substrates. The knowledge of the exact substrate 316 preferences is undoubtedly essential to achieve either desired hydrolysis products (e.g. prebiotics) 317 or to come to a full hydrolysis. Finally, given the variety, promiscuity and flexible substrate 318 preferences of the majority of carbohydrate active enzymes, DSA-FACE may be explored for 319 other activities rather than (arabino)xylanolytic activities. 320 321 Materials and methods 322 *Expression and purification of metagenome-derived enzymes* 323 pET28 plasmids containing the enzyme DNA sequences were obtained as described previously 324 (27). Chemically competent Escherichia coli TOP10 and E. coli BL21 (DE3), E. coli BL21 325 CodonPlus (DE3) or E. coli ArcticExpress strains prepared according to the rubidium chloride 326 method were transformed with these plasmids. 327 Table 2 gives an overview of the enzyme expression conditions obtained after preceding 328 optimization steps. For optimal aeration, Erlenmeyer flasks exceeding at least four times the 329 expression volume were used. The different expression hosts were grown at indicated 330 temperatures in lysogeny broth (LB) with appropriate antibiotics until reaching an OD_{600} of 331 approximately 0.6 followed by isopropyl β -D-1-thiogalactopyranoside (IPTG) induction. LBE-332 5052 auto-induction medium consisted of 1% tryptone, 0.5% yeast extract, 40 mM K_2 HPO₄, 10 333 mM KH₂PO₄, 50 mM NH₄Cl, 5 mM Na₂SO₄, 2 mM Mg₂SO₄, 0.5% glycerol, 0.05% glucose, 334 0.2% lactose, 50 µg/mL kanamycin and trace metals mix (50 µM FeCl₃, 20 µM CaCl₂, 10 µM 335 MnCl₂, 10 µM ZnSO₄, 2 µM CoCl₂, 2 µM CuCl₂, and 2 µM NiCl₂). 15

336	Cells were harvested by centrifugation at $3100 \ge g$ for 30 min at 4 °C. Pellets were then
337	suspended in 1/25 of the original volume in equilibration buffer for metal affinity
338	chromatography (see below) and 1 mg/mL lysozyme and incubated on ice for 30 min. After three
339	freeze-thaw cycles, sonication was performed on ice (3 x 30 s with 30 s interval, 40% amplitude).
340	Cell debris were removed by centrifugation at 20000 x g for 30 min at 4 °C and resulting
341	supernatants were clarified by filtration with a 0.45 μ m filter. Purifications by metal affinity
342	chromatography were performed either with His GraviTrap columns (GE Healthcare) or HisPur
343	Ni-NTA Superflow agarose (Thermo Fisher Scientific). The manufacturer's protocols were
344	followed in both cases with the exception for the latter that the sample-resin incubation time was
345	extended to 1 h and buffers used were modified (20 mM sodium phosphate 500 mM NaCl 20
346	mM imidazole pH 7.4 as equilibration buffer, 20 mM sodium phosphate 500 mM NaCl 50 mM
347	imidazole pH 7.4 as wash buffer and 20 mM sodium phosphate 500 mM NaCl 500 mM
348	imidazole pH 7.4 as elution buffer).
349	Eluted samples were diluted with reducing sample buffer, boiled for 5 min and analyzed by 12%
350	SDS-Page (Roti®-Mark standard from Carl Roth was used). Fractions containing the protein of
351	interest were then dialyzed against 20 mM HEPES-NaOH buffer pH 7.0 and 300 mM NaCl,
352	pooled and concentrated with Vivaspin concentrators when necessary. Dialysis was done with
353	Slide-A-Lyzer [™] MINI Dialysis Devices, 3.5K MWCO (Thermo Fisher Scientific) or with
354	SERVAPOR® dialysis tubing, MWCO 12000-14000 RC, diameter 16 mm. Protein
355	concentrations were measured with the Abs280nm app of the DeNovix DS-11 series
356	spectrophotometer. Extinction coefficients were calculated with the ProtParam tool (ExPASy).
357	
358	
359	

360

361

362

Applied and Environmental

Microbiology

(Megazyme International Ireland, Bray, Ireland), which have a minimum purity of 95% except for the mixture of A²XX and A³XX, which has a minimum purity of 90%, and for XA²⁺³XX 363 364 which has a minimum purity of 85%. Enzymatic reactions with a total volume of 100 uL (or in 365 50 μ L to achieve desired enzyme concentration when there was only a limited enzyme volume 366 available) in a 96-well plate contained 0.2-38 µM enzyme, 10 µM (A)XOS, 50 mM HEPES-367 NaOH 50 mM NaCl pH 7.0. Mineral oil (30-50 µl) was used to avoid evaporation from the 96-368 well plate during enzymatic reaction (Figure 7). Substrate and enzyme blanks, where enzyme and 369 substrate (respectively) were replaced by the corresponding buffer, have been added. Some 370 repetitions of reactions were performed in a 1.5 mL Eppendorf for reasons of simplicity. 371 Enzymatic reactions were incubated at 37 °C and 750 rpm in a Thermomixer comfort 372 (Eppendorf). The number of replicates done per enzyme/substrate combination is given in Table 373 S1. After 22 h, reactions were stopped by incubation at 80 °C for 30 min. 374 375 Analysis of enzymatic reaction hydrolysates by DSA-FACE 376 Reaction hydrolysates were diluted 10-fold with ultrapure water and 10 µL were lyophilized. 377 Carbohydrates present in the lyophilized fraction were then derivatized with 8-aminopyrene-378 1,3,6-trisulfonic acid trisodium salt (APTS) by reductive amination as in (13). Afterwards, 379 samples were quenched by diluting the reactions 200-fold with ultrapure water. Ten uL of derivatized hydrolysate was analyzed by the Applied BiosystemsTM 3130 Genetic Analyzer with 380 36 cm capillaries filled with Applied BiosystemsTM POP-7TM polymer as in (13) (Figure 7). 381 382 Through DSA-FACE electropherograms the carbohydrates before and after enzymatic reactions 383 are identified by comparison to standards. Xylose and arabinose monomers are not detected by

Enzymatic reactions of metagenome-derived enzymes with (A)XOS

Metagenome-derived enzymes were tested against (A)XOS (Figure 6) supplied by Megazyme

Applied and Environ<u>mental</u>

Microbioloav

384 DSA-FACE as they fall into the DSA-FACE noise region due to their high electrophoretic mobility. Since A²X, A²⁺³X, XA²X, XA³X and XA²⁺³X standards are not commercially available, 385 386 they were identified by comparison between the electrophoretic mobilities of the hydrolysates, 387 the electrophoretic mobilities of the available standards and based on spiking experiments (Figure 388 S5 and Figure S6). Previously it was seen that AXOS with dp z present an electrophoretic 389 mobility between XOS with dp z-1 and z showing an increased electrophoretic mobility in comparison with XOS with the same dp. For example, A²XX and A³XX are therefore expected to 390 391 have an electrophoretic mobility in between X_3 and X_4 (13). 392 393 DSA-FACE product profiles 394 DSA-FACE product profiles were made with the excel graph function. Peak areas were collected 395 with the GeneMapper® Software Version 4.0. DSA-FACE peak area reproducibility is dependent 396 on the amount of labeled carbohydrate injected in each run, which may vary due to the 397 electrokinetic injection mechanism of the 3130 Genetic Analyzer. Intrinsic carbohydrate 398 electrophoretic mobilities affect the amount of sample injected by the electrokinetic mechanism 399 (49). Therefore peak areas are corrected by dividing the hydrolysate peak areas by the peak area 400 of the blank with same (A)XOS structure. When this AXOS was not one of the standard AXOS, 401 the peak area of an AXOS with the same dp is taken. The average of the corrected peak areas is 402 then taken for the DSA-FACE product profiles. To normalize all peak areas obtained for the 403 same enzyme but different enzyme concentrations and substrates, the largest peak area (or the 404 largest sum of the carbohydrate peak areas when more peaks are present in an hydrolysate) is 405 taken as the maximum amount of carbohydrate possibly found in a hydrolysate. All product 406 profiles revealed by DSA-FACE are summarized in Table S2. 407

408

Data availability

409	GenBank accession numbers for the enzyme DNA sequences 12_H03-13 (MG43 ₂ -8), 12_H03-12			
410	(MG	(MG43 ₇), and 12_J03-18 (MG43 ₂₈) (Table 1) are <u>MT603581</u> , <u>MT603582</u> and <u>MT603583</u> ,		
411	respe	respectively.		
412				
413	Ackr	Acknowledgments		
414	We tl	We thank Ghent University (BOF Start Grant) and the Natural Sciences and Engineering		
415	Research Council of Canada for the financial support to perform this work.			
416				
417	Refe	rences		
418	1.	Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS,		
419		Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z,		
420		Rubin EM. 2011. Metagenomic discovery of biomass-degrading genes and genomes from		
421		cow rumen. Science 331:463-467.		
422	2.	Armstrong Z, Mewis K, Strachan C, Hallam SJ. 2015. Biocatalysts for biomass		
423		deconstruction from environmental genomics. Current Opinion in Chemical Biology		
424		29:18-25.		
425	3.	Helbert W, Poulet L, Drouillard S, Mathieu S, Loiodice M, Couturier M, Lombard V,		
426		Terrapon N, Turchetto J, Vincentelli R, Henrissat B. 2019. Discovery of novel		
427		carbohydrate-active enzymes through the rational exploration of the protein sequences		
428		space. Proceedings of the National Academy of Sciences of the United States of America		
429		116:10184-10185.		

AEM

430

4.

431		Developing process designs for biorefineries-definitions, categories, and unit operations.
432		Energies 13:22.
433	5.	Villota EM, Dai Z, Lu Y, Yang B. 2020. Enzymes for cellulosic biomass hydrolysis and
434		saccharification, p 283-326. In Vertès AA, Qureshi N, Blaschek HP, Yukawa H (ed),
435		Green energy to sustainability: strategies for global industries. John Wiley & Sons Ltd.
436	6.	Khandeparker R, Numan MT. 2008. Bifunctional xylanases and their potential use in
437		biotechnology. Journal of industrial microbiology&biotechnology 35:635-644.
438	7.	Lee K-T, Toushik SH, Baek J-Y, Kim J-E, Lee J-S, Kim K-S. 2018. Metagenomic mining
439		and functional characterization of a novel KG51 bifunctional cellulase/hemicellulase from
440		black goat rumen. Journal of agricultural and food chemistry 66:9034-9041.
441	8.	Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, Shi P, Wang Y, Yao B. 2015. A
442		novel bifunctional GH51 exo-α-L-arabinofuranosidase/endo-xylanase from
443		Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnology for
444		Biofuels 8:197.
445	9.	Malgas S, Mafa MS, Mkabayi L, Pletschke BI. 2019. A mini review of xylanolytic
446		enzymes with regards to their synergistic interactions during hetero-xylan degradation.
447		World Journal of Microbiology and Biotechnology 35:187.
448	10.	Kračun SK, Schückel J, Westereng B, Thygesen LG, Monrad RN, Eijsink VGH, Willats
449		WGT. 2015. A new generation of versatile chromogenic substrates for high-throughput
450		analysis of biomass-degrading enzymes. Biotechnology for Biofuels 8:70.
451	11.	Borsenberger V, Ferreira F, Pollet A, Dornez E, Desrousseaux M-L, Massou S, Courtin
452		CM, O'Donohue MJ, Fauré R. 2012. A versatile and colorful screening tool for the
453		identification of arabinofuranose-acting enzymes. Chembiochem 13:1885-1888.
		20

Chaturvedi T, Torres AI, Stephanopoulos G, Thomsen MH, Schmidt JE. 2020.

454	12.	Chen H-m, Armstrong Z, Hallam SJ, Withers SG. 2016. Synthesis and evaluation of a
455		series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening
456		metagenomic libraries for glycosidase activity. Carbohydrate Research 421:33-39.
457	13.	Fonseca MJMd, Jurak E, Kataja K, Master ER, Berrin J-G, Stals I, Desmet T, Landschoot
458		AV, Briers Y. 2018. Analysis of the substrate specificity of α -L-arabinofuranosidases by
459		DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis. Applied
460		Microbiology and Biotechnology 23:10091-10102.
461	14.	Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annual Review of Plant Biology 61:263-
462		289.
463	15.	Li Z, Qu H, Li C, Zhou X. 2013. Direct and efficient xylitol production from xylan by
464		Saccharomyces cerevisiae through transcriptional level and fermentation processing
465		optimizations. Bioresource Technology 149:413-419.
466	16.	Poletto P, Pereira GN, Monteiro CRM, Pereira MAF, Bordignon SE, Oliveira Dd. 2020.
467		Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon
468		sugar prebiotics. Process Biochemistry 91:352-363.
469	17.	Vázquez MJ, Alonso JL, Dominguez H, Parajó JC. 2001. Xylooligosaccharides:
470		manufacture and applications. Trends in Food Science & Technology 11:387-393.
471	18.	Dumon C, Song L, Bozonnet S, Fauré R, O'Donohue MJ. 2012. Progress and future
472		prospects for pentose-specific biocatalysts in biorefining. Process Biochemistry 47:346-
473		357.
474	19.	Wilkens C, Andersen S, Dumon C, Berrin J-g, Svensson B. 2017. GH62
475		arabinofuranosidases: Structure, function and applications. Biotechnology Advances
476		35:792-804.

21

477	20.	Biely P, Singh S, Puchart V. 2016. Towards enzymatic breakdown of complex plant xylan
478		structures: State of the art. Biotechnology Advances 34:1260-1274.
479	21.	Deutschmann R, Dekker RFH. 2012. From plant biomass to bio-based chemicals: Latest
480		developments in xylan research. Biotechnology Advances 30:1627-1640.
481	22.	Kabel MA, Kortenoeven L, Schols HA, Voragen AGJ. 2002. In vitro fermentability of
482		differently substituted xylo-oligosaccharides. Journal of agricultural and food chemistry
483		50:6205-6210.
484	23.	Laere KMJV, Hartemink R, Bosveld M, Schols HA, Voragen AGJ. 2000. Fermentation of
485		plant cell wall derived polysaccharides and their corresponding oligosaccharides by
486		intestinal bacteria. Journal of agricultural and food chemistry 48:1644-1652.
487	24.	Holck J, Djajadi DT, Brask J, Pilgaard B, Krogh KBRM, Meyer AS, Lange L, Wilkens C.
488		2019. Novel xylanolytic triple domain enzyme targeted at feruloylated arabinoxylan
489		degradation. Enzyme and Microbial Technology 129:109353.
490	25.	Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-
491		active enzymes database (CAZy) in 2013. Nucleic acids research 42:490-495.
492	26.	Mewis K, Lenfant N, Lombard V, Henrissat B. 2016. Dividing the large glycoside
493		hydrolase family 43 into subfamilies: A motivation for detailed enzyme characterization.
494		Applied and Environmental Microbiology 82:1686-1692.
495	27.	Armstrong Z, Mewis K, Liu F, Melanie CM-l, Ming H, Kevin C, Stephen M, Hallam SJ.
496		2018. Metagenomics reveals functional synergy and novel polysaccharide utilization loci
497		in the Castor canadensis fecal microbiome. The ISME Journal 12:2757-2769.
498	28.	Jiménez-Ortega E, Valenzuela S, Ramírez-Escudero M, Pastor FJ, Sanz-Aparicio J. 2020.
499		Structural analysis of the reducing-end xylose-releasing exo-oligoxylanase Rex8A from
500		Paenibacillus barcinonensis BP-23 deciphers its molecular specificity. The FEBS Journal.
		22

AEM

501

29.

502	hydrolase family 8 reducing-end xylose-releasing exo-oligoxylanase Rex8A from
503	Paenibacillus barcinonensis BP-23 is active on branched xylooligosaccharides. Applied
504	and Environmental Microbiology 82:5116-5124.
505 30.	Rio TGD, Abt B, Spring S, Lapidus A, Nolan M, Tice H, Copeland A, Cheng J-F, Chen
506	F, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Mikhailova N, Pati A,
507	Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Chain P, Saunders E
508	Detter JC, Brettin T, Rohde M, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz
509	P, Kyrpides NC, Klenk H-P, Lucas S. 2010. Complete genome sequence of Chitinophaga
510	pinensis type strain (UQM 2034T). Standards in Genomic Sciences 2:87-95.
511 31.	Teeravivattanakit T, Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C,
512	Sakka K, Ratanakhanokchai K. 2016. Novel trifunctional xylanolytic enzyme Axy43A
513	from Paenibacillus curdlanolyticus strain B-6 exhibiting endo-xylanase, beta-D-
514	xylosidase, and arabinoxylan arabinofuranohydrolase activities. Applied and
515	Environmental Microbiology 82:6942-6951.
516 32.	Broberg A, Duus J, Thomsen KK, Ferre H. 2000. A novel type of arabinoxylan
517	arabinofuranohydrolase isolated from germinated barley analysis of substrate preference
518	and specificity by nano-probe NMR. European Journal of Biochemistry 267:6633-6641.
519 33.	Mathieu SV, Aragão KS, Imberty A, Varrot A. 2010. Discoidin I from Dictyostelium
520	discoideum and interactions with oligosaccharides: specificity, affinity, crystal structures
521	and comparison with Discoidin II. Journal of Molecular Biology 400:540-554.
522 34.	Vincent P, Shareck F, Dupont C, Morosoli R, Kluepfel D. 1997. New a-L-
523	arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of
524	the abfB gene and characterization of the enzyme. Biochemical Journal 322:845-852.
	23

Valenzuela SV, Lopez S, Biely P, Sanz-Aparicio J, Pastor FIJ. 2016. The glycoside

525

35.

526		system of <i>Clostridium stercorarium</i> for hydrolysis of arabinoxylan: reconstitution of the
527		in vivo system from recombinant enzymes. Microbiology 150:2257-2266.
528	36.	Saha BC. 2003. Hemicellulose bioconversion. Industrial Biotechnology Journal 30:279-
529		291.
530	37.	Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. 2011.
531		Characterization of two β -xylosidases from <i>Bifidobacterium adolescentis</i> and their
532		contribution to the hydrolysis of prebiotic xylooligosaccharides. Applied Microbiology
533		and Biotechnology 92:1179-1185.
534	38.	Honda Y, Kitaoka M. 2004. A family 8 glycoside hydrolase from Bacillus halodurans C-
535		125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. The Journal of
536		biological chemistry 279:55097-55103.
537	39.	Lagaert S, Campenhout SV, Pollet A, Bourgois TM, Delcour JA, Courtin CM, Volckaert
538		G. 2007. Recombinant expression and characterization of a reducing-end xylose-releasing
539		exo-oligoxylanase from Bifidobacterium adolescentis. Applied and Environmental
540		Microbiology 73:5374-5377.
541	40.	Hong P-Y, Iakiviak M, Dodd D, Zhang M, Mackie RI, Canna I. 2014. Two new xylanases
542		with different substrate specificities from the human gut bacterium Bacteroides
543		intestinalis DSM 17393. Applied and Environmental Microbiology 80:2084-2093.
544	41.	Lagaert S, Pollet A, Courtin CM, Volckaert G. 2014. β -Xylosidases and α -L-
545		arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnology
546		Advances 32:316-332.

Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH. 2004. Enzyme

547

42.

548		to market: Production and commercial potential of xylooligosaccharides. Biotechnology
549		Advances 37:107397.
550	43.	Wongratpanya K, Imjongjairak S, Waeonukul R, Sornyotha S, Phitsuwan P, Pason P,
551		Nimchua T, Tachaapaikoon C, Ratanakhanokchai K. 2015. Multifunctional properties of
552		glycoside hydrolase family 43 from Paenibacillus curdlanolyticus strain B-6 including
553		exo-beta-xylosidase, endoxylanase, and alpha-L-arabinofuranosidase activities.
554		Bioresources 10:2492-2505.
555	44.	Broeker J, Mechelke M, Baudrexl M, Mennerich D, Hornburg D, Mann M, Schwarz WH,
556		Liebl W, Zverlov VV. 2018. The hemicellulose-degrading enzyme system of the
557		thermophilic bacterium Clostridium stercorarium: comparative characterisation and
558		addition of new hemicellulolytic glycoside hydrolases. Biotechnology for Biofuels
559		11:229.
560	45.	Wang Y, Sakka M, Yagi H, Kaneko S, Katsuzaki H, Kunitake E, Kimura T, Sakka K.
561		2018. Ruminiclostridium josui Abf62A-Axe6A: A tri-functional xylanolytic enzyme
562		exhibiting α -L-arabinofuranosidase, endoxylanase, and acetylxylan esterase activities.
563		Enzyme and Microbial Technology 117:1-8.
564	46.	Bachmann SL, McCarthy AJ. 1991. Purification and cooperative activity of enzymes
565		constituting the xylan-degrading system of Thermomonospora fusca. Applied and
566		Environmental Microbiology 57:2121-2130.
567	47.	Huang Y, Zheng X, Pilgaard B, Holck J, Muschiol J, Li S, Lange L. 2019. Identification
568		and characterization of GH11 xylanase and GH43 xylosidase from the chytridiomycetous
569		fungus, Rhizophlyctis rosea. Applied Microbiology and Biotechnology 103:777-791.

Amorim C, Silvério SC, Prather KLJ, Rodrigues LR. 2019. From lignocellulosic residues

570

48.

571		product inhibition by arabinose and xylose of the thermostable GH43 β -1,4-xylosidase	
572		from Geobacillus thermoleovorans IT-08. PloS ONE 13:e0196358.	
573	49.	Schaeper JP, Sepaniak MJ. 2000. Parameters affecting reproducibility in capillary	
574		electrophoresis. Electrophoresis 21:1421-1429.	
575	50.	Fauré R, Courtin CCM, Delcour DJA, Dumon DC, Faulds CCB, Geoffrey EB, Fort FS,	,
576		Fry GSC, Halila HS, Kabel GMA, Pouvreau L, Bernard I, Rivet JA, Saulnier GL, Scho	ls
577		JHA, Driguez IH, A MJOD. 2009. A brief and informationally rich naming system for	
578		oligosaccharide motifs of heteroxylans found in plant cell walls. Australian Journal of	
579		Chemistry 62:533-537.	
580			
581			
582			
583			
584			
585			
586			
587			
588			
589			
590			
591			
592			
593			
			2

Rohman A, Oosterwijk Nv, Puspaningsih NNT, Dijkstra BW. 2018. Structural basis of

594 Tables

595

596 Table 1 - Metagenomic AX-active enzymes analyzed in this study. The CAZy family (and 597 subfamily in subscript) is given for the modules that constitute each enzyme. Domains 598 inactivated by mutagenesis are indicated with a red line. Activity tests on aryl glycosides p-599 nitrophenyl β-D-xylopyranoside (pNP-X), 4-methylumbelliferyl β-D-xylopyranoside (MU-X), 6-600 chloro-4-methylumbelliferyl β-D-xylopyranoside (CMU-X), p-nitrophenyl α-L-601 arabinofuranoside (pNP-Ara) and 4-methylumbelliferyl α-L-arabinofuranoside (MU-Ara) and 602 HPAEC-PAD analysis using A³X, A²XX, XA³XX and XA²XX as substrates were performed by 603 (27). CBM = Carbohydrate binding module. Rex = reducing end xylose-releasing exo-604 oligoxylanase.

Protein name used in this study	Protein name used in (27)	Enzyme modularity	Activity on aryl glycosides	Activity detected by HPAEC- PAD	Observations
MG43 ₂₈	12_J03-18	- GH43 ₂₈	CMU-X	Not tested	-
MG43 ₂ -8	12_H03- 13	- GH43 ₂ - GH8	CMU-X	Rex and β-xylosidase	Does not hydrolyse X ₂
MG43 ₂	12_H03- 13_E507A	- GH432 - GH8	CMU-X	β-xylosidase	Does not hydrolyse X ₂
MG8	12_H03- 13_E209A	- GH43 ₂ — GH8 —	Not detected	Rex	-
MG437	12_H03- 12	— GH43 ₇ — CBM13	Not detected	Cleaves <i>O</i> -3- arabinose decorations from A ³ X	Only active in the presence of MG43 ₂ -8

605

Enzyme	Expression host	Host growth temperature	Induction type	Purification method
MG43 ₂₈	<i>E. coli</i> BL21 (DE3)	24 h at 37 °C, 250 rpm on LBE50-52 auto-induction medium		HisGraviTrap
MG42. 9	<i>E. coli</i> BL21 CodonPlus (DE3) 37 °C, 250 rpm		1 mM IPTG at 16 °C for 18 to 20 hours, 250 rpm	HisPur Ni-NTA Superflow agarose (250/100 µL resin)
WIG432-0	<i>E. coli</i> ArcticExpress	30 °C, 250 rpm	1 mM IPTG at 16 °C for 24 hours, 250 rpm	HisPur Ni-NTA Superflow agarose (100 µL resin)
MG43 ₂	E coli DI 21	30 °C/37 °C, 250 rpm	1 mM IPTG at 16 °C for 18 to 20 hours, 250 rpm	HisPur Ni-NTA Superflow agarose (500/100 µL resin)
	CodonPlus	18 h at 30 °C, 250 rpm on LBE50-52 auto-induction medium		HisGraviTrap
MG43 ₇	(DE3)	30 °C, 250 rpm	1 mM IPTG at 16 °C for 18 hours, 250 rpm	HisPur Ni-NTA Superflow agarose (500 µL resin)
MG8	E. coli BL21 (DE3)	37 °C, 250 rpm	1 mM IPTG at 16 °C for 18 hours, 250 rpm	HisPur Ni-NTA Superflow agarose (500 µL resin)

606 Table 2 - Expression conditions of the metagenome-derived enzymes studied in this work.

608

609

610

611

612

613

614

615

616

AEM

Applied and Environmental Microbiology

Accepted Manuscript Posted Online

Applied and Environmental

Microbiology

617 Figures

635 Figure 1 – Preceding functional screening of putative enzymes derived from metagenomics 636 on beaver fecal samples. A) Upon environmental sample collection and gDNA extraction, a 637 metagenomic DNA library of 4500 clones suitable for heterologous expression was constructed. 638 These clones were expressed and checked for active hits by high-throughput preliminary 639 functional screening methods. Fifty one active hits were sequenced and 135 putative glycoside 640 hydrolases (GHs) from 28 GH families were identified by in silico analysis. B) Three GH43

AEN

641	genes, one of which is modular with an additional GH8 domain, and two mutants thereof were
642	characterized by enzymatic activity tests with aryl glycosides and by HPAEC-PAD using
643	representative arabinoxylan oligosaccharides (27).
644	
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	

AEM

AEM

664

A Setup of product profiles and degradation maps for AX-active enzymes in four steps

- 1. High-throughput enzymatic reactions in 96-well plate with substrates representative for natural (arabino)xylo-oligosaccharides
- 2. DSA-FACE analyses Identification of reaction hydrolysate products with standards
- 3. DSA-FACE electropherograms converted into product profiles
- 4. Degradation maps designed based on the information obtained from the different product profiles

d

O xylose \triangle arabinose BaAxhd3 ()

Applied and Environmental

Microbiology

dobacte
Electro
f and 1
ks are c
of the
of corres
nge. Tł
nding t
erent pr

676 677

667

668

669

670

671

672

673

674

675

- 678
- 679
- 680
- 681
 - 682
- 683 684
- 685 686
- 687

AEM

erium adolescentis after reaction with A²XX, A²⁺³XX, XA²XX, for BaAxhd3 from Bifid opherograms a, c, e and g show the substrate blanks, whereas XA³XX and XA²⁺³XX. electropherograms b, d, h show the corresponding hydrolysates upon enzymatic reaction with BaAxhd3. The peak compared to standards for carbohydrate peaks identification (1). A qualitative interpretation electropherograms is then displayed on a product profile (bars are labeled with the letters of sponding electropherograms) (2). Substrate conversions are easily observed by a color chan he first bar corresponds to the substrate blank followed by bar(s) showing colors correspon to the (A)XOS found upon enzymatic reaction. A degradation map is obtained from the diffe roduct profiles for BaAxhd3 (3).

32

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

A

B

*

O xylose Δ arabinose

for MG43 $_{28}$ are indicated with .

MG43₂₈ (;)

s1234

X3 $\equiv X_4$ X5

Ο

s-substrate

О

ŧ

s1234 s1234

■ A²⁺³XX

 $1 - 0.3 \ \mu M$ $2 - 1 \ \mu M$ $3 - 6 \ \mu M$ $4 - 32 \ \mu M$

Ο

■ XA²XX

Ο

■XA³XX

 $\mathbf{A} \bigtriangledown \mathbf{O} \bullet \mathbf{O} \bullet$

■ XA²⁺³XX

■A³XX

■A²XX

•

representation of the (A)XOS structures used as substrates and the ones obtained as hydrolysis

products, using corresponding colors. Based on hydrolysis products obtained, cleavage positions

Ο \triangleleft

710

Figure 4 - Product profiles of MG432, MG8 and MG432-8. The product profiles in A show the

hydrolysis products obtained after 22 h of enzymatic reactions with 3 µM MG43₂ (1), MG8 (2)

and MG4 3_2 -8 (3). The (A)XOS used as substrates for the enzymatic reactions are identified as

's'. A degradation map is given in B with a schematic representation of the (A)XOS structures

used as substrates and the ones obtained as hydrolysis products, using corresponding colors.

Based on hydrolysis products obtained, cleavage positions for MG432 and MG8 are indicated

Applied and Environmental Microbiology

725

726

727

728

729

730

731

732

with $\stackrel{\triangleleft}{}$ and $\stackrel{\wedge}{}$, respectively.

Accepted Manuscript Posted Online

747 Figure 5 - Product profiles of MG437, MG432-8, and MG437 in the presence of MG432-8. The 748 product profiles (A) show the hydrolysis products obtained after 22 h of enzymatic reactions with 749 8 μ M MG43₇ (1), 3 μ M MG43₂-8 (2) and 8 μ M MG43₇ in the presence of 3 μ M MG43₂-8 (3). 750 The (A)XOS used as substrates for the enzymatic reactions are identified as 's'. The dotted line means there was no reaction performed to test the hydrolysis of A²⁺³XX by MG43₇. A 751 752 degradation map is given in B with a schematic representation of the (A)XOS structures used as 753 substrates and the ones obtained as hydrolysis products. Based on hydrolysis products obtained, 754 cleavage positions for MG43₇ and MG43₂-8 are indicated with and x, respectively.

755

AEM

767 Figure 6 - Twelve different (arabino)xylo-oligosaccharides ((A)XOS) used as substrates in 768 the enzymatic reactions and as standards for the DSA-FACE analysis. AXOS are named 769 according to nomenclature proposed by (50).

770 771

Figure 7 - Protocol for high-throughput study of substrate specificities of arabinoxylan-782 783 active enzymes by DSA-FACE. Putative AX-active enzymes are incubated with (A)XOS for 22 784 hours (A). Six enzymes were tested against 12 (A)XOS, including 12 substrate blanks and 6 785 enzyme blanks (90 samples in total). Reaction hydrolysates are then diluted with ultrapure water 786 and lyophilized (B). Afterwards, reductive amination reactions are performed to derivatize the 787 carbohydrates at their reducing end with the negatively charged and fluorescent APTS (C). Ten 788 microliters of derivatized reaction hydrolysate are analyzed by DSA-FACE (D). All steps are 789 done in a 96-well plate and 90 samples are analyzed in approximately 14 hours.

Applied and Environmental

Microbiology

790

DNA extraction and sequencing

Large insert DNA libraries 4500 clones

Parallel expression and

preliminary functional

screening with aryl

51 positive clones

Genes cloning, mutagenesis, protein expression and purification

AX-active enzymes

characterization

27 GH43 genes from 10 subfamilies

of them is a modular enzyme

GH43 genes belong to the

comprising a GH43 – subfamily 2

were identified in active fosmids. One

domain and a GH8 domain. Two other

uncharacterized subfamilies 7 and 28.

- One GH437 and one GH43₂₈ gene and the modular $GH43_2 - GH8$
- Two mutants: GH43₂ and GH8 alone

Positive clones

glycosides

sequencing and gene (cluster of genes) identification 51 clones sequenced, 135 GH genes from 28 GH families identified

Preliminary functional screening with aryl glycosides

Substrate specificity characterization by HPAEC-PAD GH43₇, GH43₂₈, GH43₂ – GH8 and mutants GH43₂ and GH8 are active on AX

Accepted Manuscript Posted Online

Applied and Environmental Microbiology

A Setup of product profiles and degradation maps for AX-active enzymes in four steps

- 1. High-throughput enzymatic reactions in 96-well plate with substrates representative for natural (arabino)xylo-oligosaccharides
- 2. DSA-FACE analyses Identification of reaction hydrolysate products with standards
- 3. DSA-FACE electropherograms converted into product profiles
- 4. Degradation maps designed based on the information obtained from the different product profiles

B

Product profile and degradation map for *Ba*Axhd3 from *Bifidobacterium adolescentis*

1. DSA-FACE electropherograms

3. Degradation map

A s 1234 X ₂	s1234 • X ₃ • 2 s - s	s1234 X ₄ X ₅ substrat	s1234 • X ₆ • X ₆	s1234 A ³ X ■ 4	s = 1234 s A ² XX = A ³ X 1 2 - 1	1234 s 1234 XX $A^{2+3}XX$ M $3-6$	4 s1234 s • XA ² XX	1234 s123 XA ³ XX 32 μM	34 s1234 XA ²⁺³ XX
B *									
O xyl ∆ ara M0	lose Ibinose G43 ₂₈ (;)							-

Downloaded from http://aem.asm.org/ on September 27, 2020 at Universiteitsbibliotheek Gent

xylose Ο

arabinose Δ

> $MG43_{2}(q)$ MG8 (4)

Applied and Environmental <u>Microbiology</u> Applied and Environmental

 \bigcirc xylose \triangle arabinose MG43₂-8 (X) MG43₇ in the presence of MG43₂-8 (|)

pplied and Environmental Microbiology

Accepted Manuscript Posted Online

Applied and Environ<u>mental</u> Microbiology

A. Enzymatic reactions in 96-well plate

(10 µM substrate) 6 enzymes, 5 XOS, 7 AXOS, 12 substrate blanks, 6 enzyme blanks

B. Lyophilization of hydrolysates

D. DSA-FACE

