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Abstract: We present an analytical model for light backscattering by coccoliths and 
coccolithophores of the marine calcifying phytoplankter Emiliania huxleyi. The model is 
based on the separation of the effects of diffraction, refraction, and reflection on scattering, a 
valid assumption for particle sizes typical of coccoliths and coccolithophores. Our model 
results match closely with results from an exact scattering code that uses complex particle 
geometry and our model also mimics well abrupt transitions in scattering magnitude. Finally, 
we apply our model to predict changes in the spectral backscattering coefficient during an 
Emiliania huxleyi bloom with results that closely match in situ measurements. Because our 
model captures the key features that control the light backscattering process, it can be 
generalized to coccoliths and coccolithophores of different morphologies which can be 
obtained from size-calibrated electron microphotographs. Matlab codes of this model are 
provided as supplementary material. 
© 2017 Optical Society of America 
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1. Introduction

Coccolithophores are a group of phytoplankton distinctive by their production of elegantly 
sculpted calcite plates, coccoliths, which are organized around each living cell as an outer 
covering forming the so-called coccosphere. Coccolithophores thrive in a wide range of 
marine environments from subtropical gyres to subpolar waters [1]. They are major calcifiers 
in the ocean and play a key role in the oceanic carbon cycle [2]. Among the estimated 200 
species of coccolithophores, the species Emiliania huxleyi (Ehux) is one of the most 
ubiquitous (Fig. 1). This species forms intense blooms in the temperate oceans and seas, 
shedding its coccoliths at the final bloom stages. These scatter so much sunlight that seawater 
turns bright milky-turquoise making blooms easily detectable by the naked eye and from 
space [3, 4]. 

Fig. 1. Scanning Electron Micrograph of Emiliania huxleyi (Dr. Jeremy Young, University 
College London, London, with permission) 

Understanding the light scattering properties of Ehux’ coccospheres and coccoliths is of 
key importance for the monitoring of this species from space borne or in situ optical 
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measurements. Previous experimental studies have obtained the scattering properties of Ehux 
in laboratory cultures [5] as well as in natural waters [6]. The most commonly used approach 
in optical oceanography when modelling the angular light scattering coefficients is Mie 
theory, which treats marine particles as homogeneous spheres. However, scattering by 
irregularly shaped particles with complex morphologies such as coccoliths and coccospheres 
is significantly different from that of homogeneous spheres, especially in the back-direction. 
One of the frequently used methods to compute light scattering from arbitrary shaped 
particles is the discrete dipole approximation, DDA [7], which has been applied to coccoliths 
by Gordon and Du [8]. They showed that, in contrast to the total scattering coefficient, the 
backscattering coefficient and its spectral variation was strongly dependent on coccolith 
morphology due to multiple reflections within the particle. More recently, Zhai et al. [9] 
applied the DDA approach to coccospheres and coccoliths with a very realistic morphology 
and demonstrated in great detail differences in light scattering, absorption and depolarization 
ratio. However, DDA approaches are computationally demanding which hampers their 
practical application to real-world problems in optical oceanography. 

The goal of the present study is to develop and test a generic analytical model for light 
scattering by coccoliths and coccospheres of arbitrary morphology. First, we develop the 
model based on the separation of the effects of diffraction, refraction, and reflection on light 
scattering. Next, we compare our model with the exact solutions of light scattering obtained 
from DDA, and lastly, we compute changes in spectral backscattering during a hypothetical 
Ehux bloom in which Ehux sheds its attached liths. 

2. Analytical model description

The diameter of Ehux’ coccoliths and coccospheres is typically on the order of 2.5 microns 
and 6 microns respectively. Therefore these particles can be considered to be optically large. 
Moreover, these particles are made of calcite with an index of refraction of 1.64 which gives a 
relative index with respect to seawater of 1.22, small enough to be in the range of validity of 
the anomalous diffraction approximation. These conditions allow separation of the effects of 
diffraction, refraction, and reflection on scattering as follows [10–12]: 

[ ] [ ]bdiff brefr brefl bdiff brefr breflbb g gQ Q Q Q Q Fσ σ σ ω+ += + = + (1)

bb
σ is the mean backscattering cross-section while

g
σ is the mean projected surface area of an

individual particle averaged over a uniform random distribution of particle orientation and 
the Q  factors are the scattering efficiency factors due to diffraction, refraction, and reflection. 
For optically large particles and for scattering in the back direction only the reflection term is 
significant, therefore: 

[ ]breflbb g Fσ σ ω= (2)

where ω is the total reflection integrated over all angles while
brefl

F is the fraction of the 

scattering due to reflection that lies in the backscattering hemisphere. The reflection 
component ω can be further broken down into a specular reflection component coming from 
the smooth part

bsm
ω of the particle surface and a diffuse reflection component originating from 

the rough part of the particle surface
brg

ω , thus
bsm brg

ω ω ω= + . These reflection components have 

very different angular behaviour. The smooth specular part heavily favours scattering in the 
forward hemisphere while the rough diffuse scattering is concentrated largely in the backward 
hemisphere. In our original formulation [10–12] we noted that the total reflection effect 
governed by ω  could be modeled as a linear combination of the two types of scattering 
controlled by a simple mixing coefficient R : 
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( )1
brefl bsm rg brg rg

Q RF RFω ω= − + (3)

We did, however, not specify how one should compute the value of R for a given type of 
particle. In Eq. (3) 

rg
F is the maximum fraction of the projected area of the particle that can 

become rough. In what follows, we will derive formulas for R ,
bsm

ω ,
brg

ω and
rg

F for the specific 

case of a coccolith particle. We will use the coccolith morphological characteristics as defined 
by Zhai et al. [9] and shown in Fig. 2. 

Fig. 2. Realistic model of an Emiliania huxleyi coccolith used by Zhai et al. [9] 

With reference to Fig. 2(b) 0r  is the radius of the naked coccolithophore core that the 

coccolith is attached to and all the other dimensions are related to it as follows [9]: 

31 2

0 0 0 0 0 0

0.18, 0.46, 0.54, 0.50, 0.07, 0.18m c h
r r d dr r

r r r r r r
= = = = = =

The outer radius of a coccosphere with a core of radius 
c

r  covered in a single layer of 

coccoliths is therefore 

0
1.215

tot c h c
r r d d r= + + = (4)

Both the coccolith distal and proximal sheets have 40 wedge shaped openings in line with 
one another. As noted in a previous set of papers [13, 14] on scattering by coccolithophores, a 
sharp increase in the backscatter occurs just when the open gaps in the distal and proximal 
sheets of the coccoliths (spoke gap width wΔ , see Fig. 2(c)) which vary as a function of radial 

distance become larger than a quarter of the wavelength / 4λ . The transition point between 
average index (smooth) effect reflection and structured scattering (rough reflection) occurs at 
the radius

tr
r  when wΔ is equal to or larger than / 4λ  [15–17]. Assuming N  pairs of wedges 

and equally wide solid spokes this leads to the following critical size for the beginning of the 
smooth to rough reflection transition: 

2

4 2

tr

w

r

N

πλ
Δ = = (5)

1

2 4 2

tr

tr

x N
x

N
= → = (6)

Vol. 25, No. 13 | 26 Jun 2017 | OPTICS EXPRESS 14999 



tr
r  is the radius at which the spoke gap gets larger than / 4λ  while 

tr
x  is the corresponding 

dimensionless size parameter. 
As the coccolith becomes larger, the portion of the open wedges where the gap exceeds a 

lateral dimension of / 4λ  increases. We denote the maximum radius at which the gaps start to 
appear as mxsr  and the minimum radius at which they disappear as mnsr with corresponding size 

parameters of mxsx  and mnsx . The fraction R of the area of the spokes and gaps that contribute to 

rough (i.e Lambertian scattering) versus smooth scattering is therefore simply given as: 

2 2

2 2
,mxs tr

mns tr mxs

mxs mns

x x
R x x x

x x

−
= ≤ ≤

−
(7)

Rearranging terms and substituting Eq. (6) we get: 

2 2

2 2

2
1 1

1 1

tr

mxs mxs

mns mns

mxs mxs

x N

x x
R

x x

x x

− −

= =

− −

   
   
   
   
   
   

(8)

And outside the bounds of the transfer region we have: 

1

0

tr mns

tr mxs

x x R

x x R

≤ → =

≥ → =

Another parameter we need to evaluate in Eq. (3) is the maximum fraction of the total 
projected area of the coccolith that can become rough,

rg
F . Let 

lth
x  be the dimensionless size 

parameter corresponding to the maximum transverse radius of the coccolith disk, then Frg can 
be expressed as: 

2 2

2

mxs mns

rg

lith

x x
F

x

−
= (9)

Next, we evaluate the backscatter reflections for smooth and rough surfaces, 
bsm

ω and
brg

ω ,

respectively. For smooth surfaces the backscatter reflection is given by [10]: 

( ) 2

2

1
2 sin

4
bsm i

i

r d
π

π

ω π θ θ θ
π

=  
 
 

 (10)

In the expression above ( ) 2

i
r θ  is the Fresnel reflection coefficient for each surface i of 

the particle. By carrying out the integrals in Eq. (10), we obtain for each surface i the 
backscatter reflection coefficients for polarizations perpendicular and parallel to the scattering 
plane. 

( ) ( )
( )

3 24 3 2 2

22

3 16 12 1 2 2 1

6 1
bi

n n n n
n

n
ω

⊥

− + − + −
=

−
(11)

The formula for the backscattering parallel to the plane is very long and complex. Fortunately 
the result can be efficiently approximated to better than 0.2% relative error as follows: 

( ) ( ) 37 1
3 ln16

40 1
bi b

n
n

n
ω ω

|| ⊥

−
= − +

+
  

    
(12)

( )
2

bi bi

bsm bii i
n

ω ω
ω ω ⊥ ||

+
= =  (13)
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To evaluate
brg

ω we proceed a little differently. We first evaluate the total reflection over all 

scattering angles: 

( ) 2

0

1
2 sin

4
t i

i

r d
π

ω π θ θ θ
π

=  
 
 

 (14)

The formulas for the reflections for polarizations perpendicular and parallel to the scattering 
plane for each surface i were first given in [10–12]. These have been corrected here for typos: 

( )( )
( )2

3 1 1

3 1
i

n n

n
ω

⊥

+ −
=

+
(15)

( ) ( ) { ( )( )

( ) ( ) ( ) }
4 6 5 4 3 2

3 22 2

42 2 2 4

1
1 4 7 4 1

1 1

1
2 1 ln 8 1 ln

1

i
n n n n n n

n n

n
n n n n n

n

ω
||

= − − − + − −
+ −

−
+ − + +

+
   

     

(16)

( )
( ) ( )

2

i i

t i

i i

n n
n

ω ω
ω ω ⊥ ||

+
= =  (17)

Note that the fundamental reason we can use the same formulas for the reflectivity of the 
front and back surfaces is that we are dealing with flat disks and the surface elements facing 
each other across the thickness of the disk are at the same relative angle with respect to the 
light ray. This situation is fundamentally different than that of the spheres discussed in [10]. 

The angular reflectivity distribution of a sphere with a rough diffuse surface is given by 
[15–17] 

( ) ( )
2

2
sin cos

3
rg t

p θ ω θ θ θ
π

= − 
 
 

(18)

Integrating Eq. (18) over angles in the back hemisphere we get: 

5

6
brg t

ω ω=  
 
 

(19)

Equations (10)–(19) are valid for each surface reflection and for the sum of these 
reflections in the case that the material is not absorbing. These can be modified to account for 
a complex index m n ik= − as outlined in the appendix. The change in reflectivity induced by 
the presence of k  can be accounted for by using an effective real index and the absorption 
losses between the multiple surfaces can be computed directly. 

From Eqs. (10)–(19) we can readily obtain the complete expression for the ratio of rough 
to smooth backscattering as a function of index of refraction: 

( )
( ) ( )

2

3 24 3 2 2

2
6 15 2

37 16 3 16 12 1 2 2 1 1 3 ln16
40 1

brg

bsm

t n

nn n n n
n

ωω
ω

−
=

−− + − + − + − +
+

 
  

          

 (20) 

This ratio is depicted in Fig. 3. For a calcite coccolith, the index relative to water is 1.20 and 
the ratio in Eq. (20) is 7.92. If we multiply this ratio by the maximum fraction of the coccolith 
surface which is rough we obtain the asymptotic value of the backscattering ratio at short 
wavelengths. The long wavelength asymptote is a perfectly smooth surface. 
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Fig. 3. Rough to smooth backscatter ratio as a function of index of refraction. The red line is 
the index of calcite relative to water used by Zhai et al. [9] in their model and for comparison 
the blue line is the index of silica (1.094) which forms diatom frustules 

According to our analysis, the behavior of the backscattering cross section for coccoliths 
as a function of wavelength will be as follows. In the long wavelength limit the whole surface 
of the particle appears perfectly smooth since asperities or holes will be smaller than 4λ : 

bb g bsmσ σ ω= (21)

As the wavelength gets shorter some parts of the surface will start to appear as rough and 
the backscatter cross-section will increase quickly. When the wavelength gets short enough 
that all the asperities and holes are larger than 4λ  the backscatter cross-section will reach a 

maximum value given by 

( )1
brg

bsm rg rg

bsm

bb g F F
ω

σ σ ω
ω

= − +
 
 
 

(22)

The analytical model presented above has been implemented in Matlab and the code is 
provided as supplementary information to this paper [18]. It provides the backscattering 
efficiency factors of coccoliths and coccolithophores derived from Eq. (3) for real and 
complex index of refraction. 

3. Comparison of the analytical model with the exact scattering solution

Zhai et al. [9] report results for the backscattering ratio /
bb

b b and the total scattering efficiency 

scatQ for Ehux’ coccoliths and coccolithophores. By multiplying these we obtain the 

backscattering efficiency
bscat brefl

Q Q≅

breflbb bscat bb

brefl scat

scat scat

Qb Q b
Q Q

b Q Q b
= ≅ → ≅  

 
 

(23)

In Fig. 4(a) we compare the backscattering efficiency of coccoliths obtained by our model 
with results obtained by Zhai et al. [9] for the case of a coccolith with a real index of 
refraction of 1.2 with no absorption and for the corresponding case of absorption with 0.01k = . 

Zhai et al. [9]’s original data was plotted as a function of the spherical volume equivalent 
radius. While this is adequate for the nearly spherical coccolithophores, it is much is more 
problematic for randomly oriented disks where the geometric cross-section is very different 
for the same volume. We have therefore chosen to use instead an equivalent disk thickness 
size parameter for the coccoliths. This equivalent disk contains the same volume ( )

0c
V r  as the 

coccoliths including the empty spaces between the spokes (see Matlab code provided as 
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supplementary material [18]) and has the same mean radius mr . This automatically defines the 

equivalent thickness size parameter. The total equivalent thickness 
t

t of the combined distal
d

t  

and proximal 
p

t sheet (see Fig. 1A in the appendix) is given by: 

( ) ( )
0

2

2
c

t

m

p

p

d

d t

tV r
t t t

r

t
t

π

λπ
→= =

+
+ = (24)

Treating this structure as a set of two very closely spaced disks allows us to properly 
model the distal and proximal sheets with their four reflective interfaces. 

The sharp transition from smooth to rough reflectivity is clearly seen in both the exact 
case and our approximate model (Fig. 4). The reduction in the backscattering seen in the case 
of finite absorption is simply due to the reduction in signal returned from the three back 
surfaces due to absorption. As expected, the proportion of the reduction can be seen to 
increase as a function of the coccolith thickness. 

Fig. 4. Backscatter efficiency of coccoliths (a) and coccolithophores (b). Points are the results 
from the exact ADDA code of Zhai et al. [9] with no absorption k = 0.0 (red) and with and 
absorption of k = 0.01 (black). The red lines are the corresponding results from the analytical 
model. 

In Fig. 4(b) we compare the backscattering efficiency of coccospheres obtained by our 
model with results obtained by Zhai et al. [9]. The transition to rough backscattering is also 
observed here but only at the largest particle sizes that were analyzed by Zhai et al. [9]. Since 
coccoliths are smaller than coccospheres it should be noted that the coccosphere size 
parameter where this transition starts is also exactly where the gaps in the coccoliths 
becomes 4λ . Note that in this case there are eight reflecting surfaces needed to account for 

both the coccoliths covering the front of the coccosphere and those covering the back of the 
coccosphere which doubles the value of the backscattering efficiency when there is no 
absorption. When there is absorption, the backscattering efficiency is halved since very little 
signal comes back from the surfaces on the back of the coccosphere because of the long 
absorbing path through the core material. 

We are now in a position to discuss the spectral behavior expected for backscatter 
efficiency for coccoliths and coccospheres. For calcite the absorption is negligible even in the 
far UV [19]. We therefore expect that the spectral behavior of the individual detached 
coccoliths will show a sharp transition upwards in the blue and UV region. This spectral 
signature is shown in Fig. 5(a) for a coccolith with a diameter of 2.5 micron and in Fig. 5(b) 
for a coccosphere of 6.25 micron diameter. The transition wavelength is around 550 nm. For 
larger coccoliths this transition will move to longer wavelength in a manner directly 
proportional to the size. In other words the transition size parameter is constant assuming the 
whole relative geometrical structure of the coccoliths stays the same. Given a size distribution 
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of coccoliths one can directly estimate the spectral signature of that distribution. In general 
those signatures will show a smooth rise toward the UV. 

Fig. 5. (a) Backscatter efficiency of a 2.5 micron diameter coccolith as a function of 
wavelength. (b) Backscatter efficiency of a 6.25 micron diameter coccosphere as a function of 
wavelength. Points are from the code of Zhai et al. [9] for coccospheres with no absorption k = 
0.0 (red) and with an absorption of k = 0.01 (black). The red lines are the corresponding results 
from the analytical model. 

The situation is somewhat different in the case of coccospheres. The core has a distinct 
spectral signature [20, 21] that will modulate the backscattering by a factor of up to two by 
masking the reflection from the coccoliths covering the back of the coccosphere (see 
appendix). This spectral modulation in signature may have the potential to be used to estimate 
the ratio of free coccoliths to coccolithophores. 

Finally, contribution of the naked cores can be evaluated using either an anomalous 
diffraction model or Mie scattering code. Their backscatter contribution is however much 
smaller than the contribution of the calcite coccosphere since they have a single reflecting 
surface involved and its inherent reflectivity is much smaller given the average relative index 
is 1.04 [22]. 

4. Comparison of the analytical model with laboratory and in situ results

To compare our results with experimental measurements we used the mean size distribution 
and the spectral absorption values given in [20, 21]. We used a shifted Gamma function size 
distribution model which has been argued to be a better fit than Log-Normal distributions for 
real biological size distributions [23]. 

( ) ( ) ( ) ( )
min

2

min min min
0,

r r
r r p r r r p r r r e

ββ − −≤ → = > → = −  (25)

For this distribution the parameters are related to the mean particle size μ  and the standard 
deviation of the distribution σ as follows. 

min

2
, 2rβ μ σ

σ
= = − (26)

Equations (25)–(26) are sufficient to model coccoliths but to model correctly the 
geometric cross-section of coccolithophores we need to account for coccospheres that can be 
composed of several layers of coccoliths. 

( )1
s c vl l

r r O r= + − Δ (27)

vlO is an overlap factor that is a measure of the added size due to the presence of 

coccoliths attached to the coccosphere. In the present model we are assuming that the 
coccoliths proximal sheets are attached to the lower layer or the core in the case of the first 
layer. It is this lower layer that is completely covered in coccoliths and is used in the next 
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section to evaluate the number of coccoliths per layer. To be consistent with the model used 
by Zhai et al. [9] we have 

0.25
l h c o

r d d rΔ = + = (28)

The results from the laboratory measurement for coccoliths and coccolithophores of Voss 
et al. [5] along with the in situ measurements taken by Gordon et al. [24] are compared in Fig. 
6 below. The agreement is well within experimental error in all cases. 

Fig. 6. Backscatter cross-section for (a) a coccolith population with mean diameter of 2.4 
microns and with a size distribution standard deviation of 0.23 microns and for (b) a 
coccolithophore population with mean naked core diameter of 5.2 microns and an overlap 
factor of 2.The solid lines are theory. The green dots are the laboratory data of Voss et al. [5] 
and the red dot is the field data of Gordon et al. [23]. 

5. Predicted changes in spectral backscattering during a coccolithophore
bloom

In what follows, we simulate changes in spectral backscattering during a hypothetical Ehux 
bloom in which Ehux sheds its attached liths for example due to nutrient limitation [5, 25, 
26]. Given both the pure coccosphere spectrum and the pure coccolith spectrum, they can be 
mixed linearly to describe the evolution of a bloom. The backscattering cross-section for a 
mix of liths and spheres can be written as: 

( ) ( ) ( )(1 )
bloom s vl bs gs l s bl gl s bc gc

F O Q N F Q F Qσ λ λ σ λ σ σ= − + +  (29)

l
N is the number of liths covering the coccosphere, vlO is the number of layers of liths 

covering the coccosphere and
s

F is the fraction of the liths that have been shed. Multiplying the 

backscattering cross-section ( )
bs bs

Q λ σ  x sigma bs by the overlap factor
vl

O  is required to 

properly account for the increase in the number of reflecting surfaces covering the 
coccosphere. The last term is the backscattering from the naked core surface which turns out 
to be negligible in practice when compared to the other terms because its small relative index 
leads to very small reflection efficiency. 

To compute
bloom

σ we need to evaluate the geometric cross-section of randomly oriented 

convex volumes which is given by one quarter of their respective surface areas [15]. For the 
coccospheres we simply have: 

( )[ ]22
1

gs s c vl l
r r O rσ π π= = + − Δ (30)

l
rΔ is the increase in radius of the coated coccosphere per layer of coccoliths attached to its 

core defined in Eq. (27). 
For the coccoliths which we represent as an equivalent disks we have: 
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( ) ( )
2

21
2 2 1

4 2

m

gl m m t t

r
r r t f

π
σ π π= + = +

  
      

(31)

t
t is the equivalent disk thickness defined in Eq. (24) and 

t t m
f t r= . Using the solid angle cone 

formula the number of liths attached around a layer surrounding the core can be evaluated 
with the following formula where the lith number is rounded off to the nearest integer: 

2

2

1 1

l vl

m

s

N O

r

r

=

− −
       

(32)

The total number is obtained by simply summing over the layers. The overlap factor can 
also account for the occurrence of partial cover in the outermost layer. For a ratio of coccolith 
radius to sphere radius of ½ which is approximately the case for the values used in this paper 
the number of coccoliths in the first layer is close to 15 [24]. 

Fig. 7. Compound bloom spectral signatures (a) for a core covered with a single layer of liths 
at the start of shedding, and (b) for a core with two layers of liths at the start of shedding. The 
coccolith size distribution was modeled as a shifted Gamma function with a mean diameter of 
2.4 microns and a standard deviation of 0.23 microns. 

Figure 7 shows the results for the predicted spectral evolution of a bloom that starts with a 
single or a double layer of liths. As the bloom forms and the coccolithophores accrue multiple 
layers of liths a strong increase in light backscattering is seen. As the coccoliths are shed by 
the coccolithophores, the backscatter increases again but not as much. This effect is due to a 
close match between the geometric cross-section of a completely coated coccolithophore 
compared to that of the total cross-section of its free floating coccoliths, a fact already noted 
by Gordon et al. [24] during an Ehux bloom in waters of the Gulf of Maine. Note that the 
present simple model assumes no dynamics other than a transfer of a total fixed number of 
coated coccoliths into a corresponding ensemble of detached coccoliths and that both stay in 
the same volume for the entire time that the shedding takes place. 

The average backscattering coefficient due to Ehux, ( )bcb λ can be obtained from the 

results shown in Fig. 7 by multiplying the backscattering cross-section by the initial number 
density of coccolithophores in the bloom before shedding occurs. For typical blooms as 
analyzed in [24] the number density is on the order of 5x109 m−3. The absorption coefficient 
due to Ehux, ( )

ca λ , can be obtained analogously. The resulting effect on the spectral remote-

sensing reflectance ( )
rs

R λ which is, to first order, proportional to the ratio of ( )bb λ  to 

( ) ( )ba bλ λ+  [27], can be evaluated by adding ( )bcb λ to the backscattering of the other 

standard water constituents to give total ( )bb λ and by adding the ( )ca λ  due to the 
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coccolithophore cores to the total ( )a λ . The results can be used to predict the effect of Ehux 

on the remote sensing reflectance either through a simple water albedo model such as that 
mentioned above or with more sophisticated modeling codes. 

6. Conclusions and perspectives

We have derived an analytical model that captures the main features of light backscattering 
from coccoliths and coccospheres of the calcifying phytoplankter Emiliania huxleyi. We 
accounted for the morphological features of Ehux coccoliths and coccospheres detailed in 
previous work. Our model results for backscattering efficiency factors as a function of 
particle size and light wavelength matched closely with those from an exact ADA scattering 
code including the cases where abrupt transitions in scattering magnitude occurred. Our 
analytical model results for backscattering cross-section compared favorably to available in 
situ and laboratory data. We have also outlined an approach to predict the evolution of the 
magnitude and spectral behaviour of the backscattering coefficient during a bloom as Ehux 
sheds its liths as observed in natural waters and lab cultures. However as a note of caution we 
must mention that the fine-scale morphological features of real Ehux coccoliths (e.g., Fig. 1) 
are similar but not identical to those used in this study. Future work will incorporate the 
features of coccospheres and coccoliths of varying morphology and size distribution as 
derived from scanning electron microscopy images from in situ Ehux samples. We anticipate 
that this will bring our model even closer to reality and will allow us to accurately predict the 
effect of Ehux blooms on and ocean colour remote sensing reflectance. These efforts will 
allow us to improve space-borne and in situ optical algorithms for the estimation of 
coccosphere and coccolith abundance from backscattering, to develop strategies to optically 
differentiate coccospheres from coccoliths and to optically estimate coccolithophore bloom 
state. 

Appendix 

In this appendix we expand the expressions derived in the main part of the article to include 
the reflection of all the surfaces of both the coccolith and coccolithophore in the cases where 
absorption is present. When the imaginary index k is small relative to n  we can use the 
following expression to account for the increase in the reflection coefficients due to its 
presence. 

( )2 2
1 1

eff
n n k= + − + (33)

We simply replace the indices in the formulas given in the main text of this paper by this 
effective index and use the anomalous diffraction approximation formulas for absorption 
efficiency with k as input to account for the attenuation between the surfaces. The coccolith 
disk geometry model used for the calculation of reflection coefficients is shown in Fig. 8 
below. 
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Fig. 8. Simple disk model of an Emiliania huxleyi coccolith used in this paper. The radii of 
both the distal and proximal sheets are equal to rm in the full Zhai et al. [9] model shown in 
Fig. 2. The sum of their respective thicknesses, td and tp, is equal to the total thickness tt of a 
single disk of radius rm that would contain the same volume of solid material as the actual 
complex Zhai coccolith shape. nd , np and kd, kp denote the real and imaginary part of the 
refractive index of both distal sheets, respectively, while ng and kg denote the index of the gap 
between the sheets. 

For the combination of the front four surfaces of a coccolith when absorption is present in 
the material we have for the total reflection term: 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

2

1 2 1

22

3 1 2

2

4 1 2 3

2 2

, , 1 , 1 ,

, 1 , 1 , 1 , 1 ,

, 1 , 1 , 1 , 1 ,

1 , 1 ,

t d d d d d d abs d d

d d d d d d abs d d abs g g

d d d d d d d d abs d d

abs g g abs p p

n k n k n k Q k t

n k n k n k Q k t Q k t

n k n k n k n k Q k t

Q k t Q k t

ω ω ω ω

ω ω ω

ω ω ω ω

= + − −

+ − − − −

+ − − − −

− −

 (34) 

and correspondingly for the backscatter reflection term: 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

2

1 2 1

22

3 1 2

2

4 1 2 3

2 2

, , 1 , 1 ,

, 1 , 1 , 1 , 1 ,

, 1 , 1 , 1 , 1 ,

1 , 1 ,

bsm b d d b d d b d d abs d d

b d d b d d b d d abs d d abs g g

b d d b d d b d d b d d abs d d

abs g g abs p p

n k n k n k Q k t

n k n k n k Q k t Q k t

n k n k n k n k Q k t

Q k t Q k t

ω ω ω ω

ω ω ω

ω ω ω ω

= + − −

+ − − − −

+ − − − −

− −

 (35) 

For randomly oriented disks we have derived a new absorption formula that is given by: 

2

2

3 32
2

1 2 2
1 2 2 2

1
abs

n t n t
n E k E k

n n
Q

π π

λ λ

−
= + −

−

      
          

(36)

where 
3

E  the order 3 exponential integral function [28]. The corresponding Matlab codes are 

provided as supplementary material [18]. 
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For the case of the coccolithophore we must evaluate the effect of both the coccolith 
surfaces on the front of the coccolithophore and from those on the back of the 
coccolithophore as the core of the coccosphere absorbs part of the light transmitted through 
the front coccoliths and reflected from the back coccoliths. For the front surfaces the 
expressions are the same as those for the coccoliths and for the back surfaces they are 
modified by the absorption of the intervening core of the coccosphere as follows: 

( )
2

21 ,
bs bl bl

c

abs sphere c c

s

Q Q Q Q
r

k r
r

−= + −
  
  

   
(37)

Where the absorption efficiency factor of the spherical core is given by: 

( )
( )

( )

( )( )
( )( )2

11
, 2

2
abs sphere c c

c c c c

c cc c
rr ee

Q k r
r r

δ λδ λ

δ λ δ λ

−−

−

−
= + +

 
 
  

(38)

Where 

( ) 2
4 ( )

c
k

π
δ λ λ

λ
= (39)

Note that in the above expressions for absorption efficiency the wavelength in air should be 
used as the original measurements of ( )k λ were taken with reference to air wavelengths. 
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