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Dampened virulence and limited
proliferation of Batrachochytrium
salamandrivorans during subclinical
infection of the troglobiont olm
(Proteus anguinus)
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Emerging infections add to existing threats to the survival of amphibians worldwide. The olm (Proteus
anguinus) is a vulnerable, troglobiont urodele species with a small European range and restricted

to underground karstic systems. Population declines to emerging threats like the chytrid fungus
Batrachochytrium salamandrivorans, are likely to go unnoticed due to inaccessibility of the species’
habitat. We here studied the interaction between olms and B. salamandrivorans. Experimental
inoculation of olms resulted in low-level, asymptomatic but persistent infections, with limbs as
predilection sites. The lack of exponential fungal growth in the olms’ epidermis correlated with limited
fungal proliferation and dampened virulence gene expression after exposure to olm skin compounds.
The olm is one of few western Palearctic urodeles that is tolerant to B. salamandrivorans infection and
may act as a subterranean disease reservoir, yet costs of subclinical infection may compromise olm
fitness on the long term.

During the past decades, around 500 amphibian species have declined in Australia, Europe and America due
to the fungal disease chytridiomycosis', which is caused by two chytrid fungi Batrachochytrium dendrobatidis*
and Batrachochytrium salamandrivorans®. Since first reported in 2010, B. salamandrivorans has brought multiple
salamander populations to the edge of extinction® and recently emerged in Spain, over 1000 km from the index
outbreak site in the Netherlands®. This infection continues to pose a threat especially to small range susceptible
salamanders*®. Intrinsic host susceptibility is a major predictor of disease severity and impact, and current
evidence suggests the level of susceptibility to be rather consistent within a given amphibian species’. Levels of
susceptibility to B. salamandrivorans have been classified as: resistant (no infection, no clinical disease), toler-
ant (infection, no disease), susceptible (infection resulting in clinical disease, with the potential to recover) and
lethal (death in the majority of infected animals)’.

Until the discovery of a cave fish®, the olm, Proteus anguinus, was the only known, true troglobiont vertebrate
in Europe, which inhabits the underground water of Dinaric Karst in Italy, Slovenia, Croatia, Bosnia Herzegovina
and Montenegro®'®. Olms have been listed as Vulnerable on the IUCN red list and list of EDGE of Existence
program! (https://www.edgeofexistence.org/species/olm/). Although it is protected by national legislation in its
range states, the population is declining because of water pollution and habitat disturbance from land use changes
occurring above the cave systems'?. Proactive identification of threats to their survival is necessary since, due to
their underground occurrence, olm populations are notoriously difficult to monitor. Therefore, we here estimated
the threat of B. salamandrivorans to olms by a series of laboratory studies into the host-pathogen interaction.
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Figure 1. GE load dynamics in 6 olms after experimental exposure to B. salamandrivorans. Infection loads are
shown as log,, GE values. Different individuals are shown in different graphs.
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Figure 2. Log,, GE load in abdominal skin (n=1) and feet samples (n=3) of 6 experimentally infected olms
and an uninfected animal (negative control).

Results

Batrachochytrium salamandrivorans binds to olm skin and subclinically persists in keratinized
toes of olms. To assess the threat of B. salamandrivorans to olms, 6 animals were experimentally exposed
to this fungal pathogen. None of the olms died during the 6 months after inoculation or developed any obvious
clinical signs of infection. Using qPCR on skin swabs, only three of six animals were shown to develop low level
infections, with intermittent fungal shedding (Fig. 1).

After euthanasia, QPCR revealed that both feet and abdominal skin samples from all 6 animals were positive
for B. salamandrivorans (Fig. 2).

The presence of B. salamandrivorans thalli in olm epidermis was confirmed using immunohistochemistry
in the abdominal skin and in one foot of two animals, in the absence of any signs on histopathology (Fig. 3a).
Thalli were located in the superficial epidermal layers, opposed to the pan-epidermal localization of fungal thalli
in skin of affected fire salamanders (Fig. 3b). No thalli were observed in negative control (Fig. 3c).

Batrachochytrium salamandrivorans attaches to olm skin but the skin mucosome limits fungal
proliferation. To examine the role of the mucosome as a first line of defense against B. salamandrivorans,
growth control capacities of both fire salamander and olm mucosome were evaluated. In the invasion trial with
skin tissue, B. salamandrivorans spores attached to both olm and fire salamander skin in 4 h. The GE loads in
skin samples from fire salamanders were significantly (P=0.0023) higher than those in skin samples from olms
(Fig. 4). In contrast to the fire salamander mucosome, the olm mucosome showed significant inhibition of the
growth of B. salamandrivorans compared to the positive control (Fig. 5).

Dampened virulence of B. salamandrivorans after exposure to olm skin. Searching for changes
in B. salamandrivorans pathogenicity, we examined the expression of a selection of B. salamandrivorans viru-
lence genes in spores and spores that were first exposed to olm or fire salamander skin. Compared to control
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Figure 3. Immunohistochemistry of a toe of an olm (a) and the ventral skin of a fire salamander (b) that were
experimentally infected with B. salamandrivorans. (c) shows the ventral skin of an uninfected olm. Brown
staining shows the presence of intra-epidermal thalli of B. salamandrivorans (*) (scale bar, 50 pm).
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Figure 4. GE loads of B. salamandrivorans attached to skin biopsies of fire salamanders (n=18) and olms
(n=18) after co-incubation for 4 h. The whiskers represent the median, the minimum and maximum values,
and the first and third quartiles. A cross (+) indicates the mean value. **P<0.001.
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Figure 5. Growth of B. salamandrivorans in mucosomes collected from olm and fire salamander. qPCR results

are shown in Log,, GE value. The whiskers represent the mean with range of 3 replicates. Same letter shared in
groups indicates significant difference (P <0.05) between groups. Fs fire salamander, PC positive control.

spores that were not exposed to host tissue, Bs 06099, CBM 18 07447 and CDM 08289 were (tended) signifi-
cantly upregulated in B. salamandrivorans spores after exposure to both the fire salamander (P=0.003, P=0.017,
P=0.026, respectively) and the olm skin (P=0.006, P=0.19, P=0.004, respectively) (Fig. 6). While CRN 00955
from the Crinkler family showed no altered expression in fire salamanders, it was significantly (P=0.016) down-
regulated in olm. For the other genes, CRN 06851, ADM 06233, CBM 18 04331 and CBM 18 08642, there was
no significant difference between different groups.

Discussion

In contrast to the vast majority of western Palearctic urodele species assessed, olms were shown to be toler-
ant to persistent B. salamandrivorans infection after experimental exposure and none of the infected animals
developed any obvious signs of disease. Our results suggest olms to be potential long-term but low-level carriers
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Figure 6. Relative expression profiles of B. salamandrivorans virulence genes after incubation of zoospores
with fire salamander skin (n=18) or olm skin (n=18) for 2 h, compared to gene expression of zoospores that
were not exposed to salamander skin (“spores”). The results are presented as means + standard error of the mean

(SEM), asterisk shows the significance (P<0.017) compared to the control group (“spores”), the letter

a significant (P<0.017) difference between olm and fire salamander.
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of B. salamandrivorans. Although extrapolation to natural conditions should be done with care, the constant
environment in cave systems, similar to our experimental conditions, and supposedly increased stress in the
captive animals render a scenario of severe disease and mortality under natural conditions unlikely. With the
current information, we therefore estimate the risk of B. salamandrivorans-driven declines in olms as minor.
However, the long term proliferation of the fungus within the olm keratinized limb tissue may coincide with a
more subtle cost, associated with increased energy expenditure, impaired locomotion or increased vulnerability
of the limbs to secondary infection.

These low level but persistent infections that are limited to the most superficial epidermal layers without
causing the skin erosions observed in susceptible hosts® correlate with results obtained in the in vitro experi-
ments. The olm mucosome was shown to limit fungal proliferation. The amphibian mucosome is made up of host
skin compounds and symbiotic bacterial products'® and has been suggested to play a role as first line of defense
against B. salamandrivorans'. Besides limiting fungal proliferation, skin compounds may play an additional role
by trapping of spores in the mucus layer with subsequent removal due to the constant shedding of skin mucus.
This mechanism is well known to be an important defense mechanism in the vertebrate intestinal tract'.

Besides limiting fungal growth, contact of fungal spores with olm skin dampened fungal virulence. Virulence
gene expression was different between (tolerant) olms and (lethally susceptible) fire salamanders. The most obvi-
ous difference was noticed in Crinkler gene CNR 0095 expression. This gene was downregulated after contact of
the spores with olm skin. These results suggest that pathogen virulence gene expression in the tolerant olms is
regulated such that fungal populations are kept within limits, without obvious damage to the host as observed
in the infection trial. Further elucidation of the role of the presumed virulence genes in B. salamandrivorans
chytridiomycosis is likely to produce key insights in the host-pathogen interaction.

Materials and methods
All methods were carried out in accordance with relevant guidelines and regulations.

Infection dynamics of B. salamandrivorans in experimentally infected olms (Proteus angui-
nus). In a first experiment, we wanted to quantify infection and disease dynamics of B. salamandrivorans
infections in six olms. The olms originated from Slovenia (3 animals) and Croatia (3 animals), from captive colo-
nies that consisted of animals that were flushed outside their cave habitat. The animals were housed individually
in aquaria at 11 °C in complete darkness and were left to acclimate for 6 weeks. Aquaria contained 3 L of aged
tap water, which was replaced weekly, and a hiding place. Animals were fed once weekly with tubifex. All animals
were clinically healthy and negative for B. salamandrivorans, B. dendrobatidis and Ranavirus (assessed using
qPCR on skin swabs following standard protocols'®'®) at the start of the experiment. Experimental infection
consisted of exposure to a single dose of 1.5x 10° zoospores of the B. salamandrivorans type strain (AMFP13/1)
in 620 mL water for 24 h’. After exposure, animals were inspected daily for clinical signs and sampled weekly
to monitor B. salamandrivorans infection dynamics using qPCR on skin swabs'®. The experiment was ended at
6 months after inoculation. All animals were euthanised and examined for the presence of B. salamandrivorans
infection using qPCR on skin tissue samples (abdominal skin (1 sample per animal) and feet (3 samples per ani-
mal)) and immunohistochemistry (abdominal skin and feet)'®!. Skin tissue of an uninfected olm was included
as a negative control for gPCR and immunohistochemistry analysis. To confirm the specificity of the qPCR reac-
tions, we randomly selected 4 positive qPCR products for sequencing'®. The infection experiment was approved
by the ethical committee of the Faculty of Veterinary Medicine (Ghent University) (EC2017/75).

Olm mucosome activity against B. salamandrivorans. By skin mucosome, we refer to the com-
pounds present at the surface of the amphibian skin, which can be rinsed of with water. Mucosomes were col-
lected from healthy and B. salamandrivorans naive olms (3) and fire salamanders (Salamandra salamandra) (6)
using the bathing method described by Woodhams?. Briefly, each animal was bathed in a petri dish with HPLC
water for 1 h, the volume of water was calculated according to animal surface?'. After filtration through a 0.2 um
pore filter (Whatman, GE Healthcare Life Sciences), the collected mucosomes were kept on ice. Meanwhile, B.
salamandrivorans spores were collected from culture flasks with sporulating sporangia by flooding the flask with
TGhL medium. The collected spores were filtered using a sterile filter with pore size 10 um (PluriSelect, Leipzig,
DE). To achieve the target concentration of 1x 10° spores per mL, the spore suspension was diluted with TGhL
before use. Finally, 100 pL of this spore suspension was used to inoculate 10° spores per well of a 96-well flat-
bottom plate (Greiner BIO-ONE, Stonehouse, Gloucestershire, UK).

In each well, 100 pL of the mucosome solution was added to the spore suspension. In positive control wells,
filtered HPLC water was added instead of mucosome. All the conditions were performed in triplicate. The plate
was incubated at 15 °C. After 5 days of incubation, the bottom of each well was scraped with a 100 pL tip and
the liquid was transferred to a 1.5 mL Eppendorf tube for DNA extraction and gPCR'®. Multiple comparisons
on the original values were assessed by a Kruskal-Wallis analysis, followed by pairwise Mann-Whitney U-test
(SPSS version 25; SPSS Inc., Chicago, IL, USA).

Skin attachment and virulence gene expression of B. salamandrivorans. We here assessed the
regulation of virulence mechanisms of B. salamandrivorans and its ability to attach and invade the skin of olms
versus fire salamanders as a proxy for pathogenicity and colonization capacity’ using an ex vivo protocol modi-
fied from Van Rooij et al.?2. Three 5 mm and three 8 mm diameter, full thickness ventral skin biopsies were col-
lected from each of the six olms of the infection trial after euthanasia, and from six B. salamandrivorans negative
fire salamanders.
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Batrachochytrium salamandrivorans zoospores were collected from mature cultures in sterile distilled water.
The water containing zoospores was filtered using a sterile filter with pore size 10 um. To achieve the target
concentration of 2.5 x 107 spores per mL, the spore suspension was concentrated after centrifugation at 3000 g
for 5 min at 15 °C.

To quantify B. salamandrivorans invasion in host tissue, the 8 mm biopsies were transferred to wells of a
96 well plate, exposed to 200 pL spore suspension and incubated for 4 h at 15 °C. Then, the tissues were rinsed
with sterile distilled water once to get rid of unattached spores and cut into two equal pieces. One piece was
transferred to an empty Eppendorf to analyse with B. salamandrivorans QPCR'S, the second piece was processed
for immunohistochemical staining'. DNA was extracted with a DNeasy Blood & Tissue Kit (Qiagen, German-
town, USA) and qPCR was performed as described by Boyle et al.'® and Blooi et al."®. To compare association
of B. salamandrivorans between hosts, the original log,, genomic equivalent (GE) values were assessed using a
Kruskal-Wallis analysis (SPSS version 25).

To quantify virulence gene expression of B. salamandrivorans after exposure to host skin tissue, the 5 mm skin
biopsies were transferred to individual 2 mL Eppendorf tubes, exposed to 300 uL of the zoospore suspension and
incubated at 15 °C for 2 h. We analyzed gene expression of a selection of virulence genes as identified by Farrer
et al.>*. Gene expression after exposure to host tissue was compared to gene expression of zoospores without
tissue exposure. Total RNA extraction was performed using the Qiagen RNeasy mini Kit following the standard
protocol®. The concentration and quality of the RNA was checked with the Agilent 2100 Bioanalyzer System
(Agilent Technologies, Waldbronn, Germany). RNA (500 ng) was reverse transcribed to cDNA with the iScript
cDNA synthesis kit (Bio-Rad, Hercules, CA) and cDNA was stored at — 20 °C before use. Real-time quantitative
PCR reactions were run in duplicate and the reactions were performed in 10 pL volumes using the iQ SYBR
Green supermix (Bio-Rad) and 1.5 pL 1/5 diluted cDNA. The experimental protocol for gPCR was performed
on a CFX384 RT-qPCR System with a C1000 Thermal Cycler (Bio-Rad). The results were analyzed using the Bio-
Rad CFX manager 3.1. Quantification cycle (Cq) values were obtained using auto baseline settings and they were
applied per primer set. The threshold for maximum Cq difference between the technical replicates was set to 1.

The stability of candidate reference genes (GAPDH, TUB, a-centractin)* was analyzed using QBase, all show-
ing a GeNorm M value<1.0 and a coefficient of variation value <0.5. Relative gene expression analysis of the
target genes®* is shown as fold changes of mRNA expression, which were calculated based on the CNRQ values
obtained in QBase. Since the data were not normally distributed, a non-parametric Kruskal-Wallis analysis
on the CNRQ values was performed, followed by a pairwise Mann-Whitney U-test (SPSS version 26), with a
Bonferroni-corrected P value (P value=0.05/number of comparisons). The P value for significance was set at
0.05/3=0.017, and for tendency at 0.1/3=0.033.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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