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ABSTRACT
Signed networks are mathematical structures that encode posi-
tive and negative relations between entities such as friend/foe or
trust/distrust. Recently, several papers studied the construction
of useful low-dimensional representations (embeddings) of these
networks for the prediction of missing relations or signs. Existing
network embedding methods for sign prediction, however, gen-
erally enforce different notions of status or balance theories in
their optimization function. These theories, are often inaccurate or
incomplete which negatively impacts method performance.

In this context, we introduce conditional signed network embed-
ding (CSNE). Our novel probabilistic approach models structural
information about the signs in the network separately from fine-
grained detail. Structural information is represented in the form of a
prior, while the embedding itself is used for capturing fine-grained
information. These components are then integrated in a rigorous
manner. CSNE’s accuracy depends on the existence of sufficiently
powerful structural priors for modelling signed networks, currently
unavailable in the literature. Thus, as a second main contribution,
which we find to be highly valuable in its own right, we also intro-
duce a novel approach to construct priors based on the Maximum
Entropy (MaxEnt) principle. These priors can model the polarity
of nodes (the degree to which their links are positive) as well as
signed triangle counts (a measure for the degree structural balance
holds to in a network).

Experiments on a variety of real-world networks confirm that
CSNE outperforms the state-of-the-art on the task of sign prediction.
Moreover, the MaxEnt priors on their own, while less accurate than
full CSNE, achieve accuracies competitive with the state-of-the-art
at very limited computational cost, thus providing an excellent
runtime-accuracy trade-off in resource-constrained situations.

CCS CONCEPTS
• Computing methodologies → Machine learning; Knowl-
edge representation and reasoning.
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1 INTRODUCTION
In recent years, signed networks have become prominent in online
media representing friend/foe relations [20], trust networks describ-
ing trust/distrust [12], natural language processing for modelling
synonyms and antonyms [15], and sentiment analysis denoting
positive or negative opinions [36]. Signed networks are powerful
data representations describing complex interactions between het-
erogeneous entities represented as nodes (or vertices). Generally,
we refer to these interactions or node-pair connection as edges or
links. In contrast to classical networks, where links simply denote
a relation between entities, in signed networks these relations can
be ‘positive’ (e.g. friend, trust) or ‘negative’ (e.g. foe, distrust).

An important task on signed networks is the prediction of signs
between node-pairs for which this sign is unknown. This contrasts
with link prediction, where the purpose is to predict whether any
given node-pair with unknown link status should be linked or not.
Sign prediction is an important problem in practice owing to the
high cost of acquiring information on the signs in many domains. In
social networks, for example, interactions between users (e.g. mes-
sages exchanged, or connections made) can be efficiently tracked.
Unveiling the positive or negative nature of the relations between
users (i.e. edge signs) from these interactions, however, is more
challenging. In a trust network it may be easy to keep track of who
engaged in a transaction with whom, but much less easy to under-
stand the mutual trust relations underlying these transactions. Note
that sign prediction not only allows one to predict the sign of a link
in the network, it also allows one to predict the sign of a link the
existence of which is not established. In social networks, for exam-
ple, this would allow one to assess whether two people are likely to
become friends or foes if introduced to each other. Sign prediction
has thus been the topic of many recent studies [18, 34, 38, 40].

A particular class of approaches extensively used for the analysis
of unsigned networks consists of representation learning methods,
also called network embedding methods [17, 32]. These techniques
model nodes as low-dimensional vectors in IR𝑑 . The underlying idea
is that similar nodes in the graph are mapped to close-by vectors
in the embedding space. Using these representations, traditional
machine learning methods can be applied on network data to per-
form downstream tasks such as link prediction [11, 37], information
diffusion [4, 9, 23], and multi-label classification [35].
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Despite their success, however, unsigned network embedding
techniques are not directly applicable to signed networks. Indeed,
in signed networks node-pairs can have three possible states: un-
linked, positively linked, and negatively linked. Unsigned network
embedding methods only consider two possible states (unlinked
and linked). Thus, to apply them unaltered to signed networks,
one would have to ignore the distinction between two of the three
states, e.g. ignoring the difference between negatively linked and
unlinked. This is problematic, as the semantics of these states are
often very different. For example, unlinked node-pairs are often
to be interpreted as having an unknown sign. Moreover, for many
signed networks it may be useful to account for balance theory
[14] in the model, which is conceptually impossible without distin-
guishing these three possible states of node-pairs. Balance theory
suggests that triads with an odd number of negative connections
are unstable and, thus, less likely to form or persist over time. For
example, in a trust network structural balance means one is less
likely to trust someone who is distrusted by a friend.

To overcome the aforementioned difficulties, several embedding
methods for signed networks have been proposed, such as SiNE
[38], Signet [15] and SNE [40]. These methods adopt random walk
or probabilistic strategies to learn the structure of signed networks
and have been shown to outperform unsigned embedding methods
for downstream tasks, such as sign prediction. Nevertheless, these
methods present two major drawbacks. On one hand, they often
impose constraints on the learning process that strictly enforce
status or balance theories, even though these theories generally
only hold to a certain extent [21]. On the other hand, they often
suffer from overfitting as only the connected node-pairs are used
in the embedding learning process.

In this context, we propose a novel probabilistic approach which
we coin Conditional Signed Network Embedding (CSNE). The idea
of CSNE is to find an embedding for the nodes in the network that is
maximally informative of the signs in the network conditioned on a
probabilistic prior for these signs. These two distributions are then
combined in a rigorousmanner. The rationale is the observation that
embeddings are often unsuited for representing complex structural
information, while they are strong at representing fine-grained
local information [26]. Thus, if we are able to use a probabilistic
prior to represent structural information about the network, both
types of information can be effectively leveraged for sign prediction.
Representing structural and fine-grained information separately has
the additional advantage of allowing us to conveniently learn the
prior from data, i.e. learn the extent to which structural balance and
other properties hold for each network. Moreover, this approach
reduces the amount of information the embedding must represent.
This, in turn, allows CSNE to use lower embedding dimensionalities,
without compromising accuracy, and effectively prevent overfitting.

More specifically, inspired by Conditional Network Embedding
(CNE) [17], we construct a likelihood function for the embedding
(i.e. a distribution for the signs conditional on the embeddings),
and infer the embedding using the Maximum Likelihood principle.
The key idea of CSNE is to construct this likelihood function using
Bayes rule from a prior distribution for the signs, and a conditional
distribution for the embedding conditioned on the signs. This ap-
proach allows us to conveniently model structural information in a
suitable prior while the embedding itself can focus exclusively on

learning fine-grained local connectivity relations between nodes
that are more easily expressed in a metric space.

CSNE could work, at least in principle, with any prior for the
signs. Yet, in this paper we propose a novel approach for inferring
such priors. Our flexible approach can accommodate different types
of structural information, however, in this paper we focus on two
particular types that have the potential to significantly improve
sign prediction performance. The first is that within a network,
some nodes may have a more positive (or negative) inclination than
others. When modelling, for instance, social interactions, certain
users will be liked more often, while others are disliked more often
depending on their personality, ideology etc. For new connections
formed by these users, we may expect such tendency to persist.
We refer to this underlying tendency as the polarity of a node. The
second is that structural balance rarely holds exactly, but it may hold
to a certain extent. The extent to which it holds can be quantified in
terms of the number of balanced triangles (where structural balance
holds) versus the number of unbalanced triangles (where it does not
hold) in the network. For example, if trust in a trust network is being
breached at a high rate, structural balance will hold less strongly.
Indeed, even if in an equilibrium situation structural balance would
hold, occasional breach of trust can disrupt this balance.

Unfortunately, no approaches have been proposed in the litera-
ture modelling such information, for use as a prior in CSNE. Thus,
building upon recent work from Adriaens et al. [1] on efficient
Maximum Entropy (MaxEnt) models for unsigned graphs, we show
how both polarity and the degree to which structural balance holds
can be modelled in an accurate and highly scalable manner. This
approach is a second main result in this paper.

Themain contributions of this paper are:

• Overcoming conceptual and technical challenges we propose
a new probabilistic method for signed network embedding
and sign prediction. Our method, which we coin Conditional
Signed Network Embedding (CSNE) computes the most in-
formative embeddings w.r.t. a prior on the network structure.

• We design a new edge-independentMaxEnt prior specifically
for signed networks. This prior models two key structural
properties of signed networks: the proportion of positive
to negative connections of each node or node polarity and
the number of balanced and unbalanced triangles formed by
each edge or triangle counts.

• We provide extensive experiments, comparing with existing
methods for signed network embedding and sign prediction.

The benefits of these contributions are as follows:

• CSNE is a conceptually novel and mathematically rigorous
probabilistic approach to signed network embedding, capa-
ble of modelling both structural and fine-grained informa-
tion. Its modular design means that future research develop-
ments on priors for signed networks have the potential to
further boost CSNE’s performance.

• The proposed MaxEnt prior, which is conceptually simple
and intuitive, is extremely efficient to compute (an order of
magnitude faster than SIGNet, the fastest state-of-the-art
method for sign prediction). When used on its own for sign



prediction, it already uniformly outperforms all state-of-the-
art baselines evaluated across a diversity of commonly used
benchmark networks.

• CSNE with the proposed MaxEnt prior further improves upon
this accuracy for sign prediction, while requiring computa-
tion times equal to or only slightly higher than the fastest
state-of-the-art baseline method (SIGNet).

The remainder of the paper is organized as follows. In Sec. 2, we
briefly discuss the relatedwork. In Sec. 3, we introduce our proposed
method. For ease of exposition, we first discuss the MaxEnt prior,
before discussing CSNE and how the prior can be used as a building
block in CSNE. Our experimental setup is described in Sec. 4. We
report the results in Sec. 5. Finally, Sec. 6 concludes this paper and
summarizes open questions.

2 RELATEDWORK
Our paper is primarily related to the analysis of signed networks
and the prediction of missing signs [18, 34, 38, 40]. Our modular
approach, additionally, incorporates ideas from two related fields.

First, CSNE connects to a large body of research in the field
of unsigned network representation learning. Early approaches
such as Laplacian Eigenmaps [2] and Locally Linear Embeddings
[33] were motivated by dimensionality reduction. More recently,
embedding methods have been used to bridge the gap between
traditional machine learning and network structured data [3, 24, 30].
Methods such as DeepWalk [32] and Node2vec [11] have been
proposed to learn embeddings by leveraging a randomwalk strategy
on the graphs. Other approaches such as GraRep [5] and Arope [41]
aim to model high order proximities between nodes in the networks.
A recent probabilistic approach, CNE, can efficiently incorporate
prior information in the embedding learning process. This method
has also been shown in a recent empirical study by Mara et al. [27]
to largely outperform other embedding methods for the task of
link prediction. For these reasons, our research incorporates ideas
introduced in CNE to the context of signed network embedding.
As mentioned in the previous section, however, these methods are
not directly applicable to the analysis of signed network.

Second, the proposed probabilistic approach for modelling struc-
tural properties of signed networks borrows ideas from the field
of maximum entropy random graph models [8, 16, 31], and most
directly from De Bie [7]. Our approach additionally incorporates
recent results from Adriaens et al. [1] to address a fundamental
challenge of these models: the difficulty of modelling structural
properties, which tend to introduce dependencies between the vari-
ables involved, without losing computational tractability.

Several methods for the specific task of signed network embed-
ding have been proposed. One of the first approaches in this field
is SNE [40], which computes embeddings through a log-bilinear
model that incorporates link types in a given path in the network.
More recent approaches [15, 25, 38], impose constraints in the opti-
mization process to enforce different notions of structural balance.
SiNE [38] proposes a deep learning framework for signed network
embedding and incorporates the extended structural balance theory
proposed in Cygan et al. [6]. SIGNet [15] is a scalable node em-
bedding method for signed networks. Akin to CSNE, this method
aims to incorporate the notion of balance theory introduced by

Heider [14]. Targeted node sampling [29], which extends negative
sampling techniques from classical word2vec algorithms, is used to
maintain structural balance in higher order neighbourhoods. And
in Lu et al. [25], the authors propose SSNE, a method for embedding
directed signed networks that considers status theory [12, 22] in
its learning phase. The status of a node is determined based on
positive and negative links and a ranking is computed. In contrast
to these methods, CSNE does not assume a notion of balance must
hold exactly. Instead, our method learns the extent to which bal-
ance holds for every network. Finally, in another recent work, two
methods nSNE and lSNE were proposed for learning node and edge
embeddings in signed networks [34].

3 PROPOSED METHOD
In this section we introduce CSNE. We start in Sec. 3.1 by intro-
ducing basic concepts and notation for signed networks and sign
prediction. In Sec. 3.2, we recap some prior research on MaxEnt
graph models and introduce a novel edge-independent MaxEnt dis-
tribution that allows one to efficiently model polarity and different
types of triangle counts (to model the extent to which structural
balance holds) in signed networks. Finally, in Sec. 3.3 we describe
the overall CSNE method, and how the MaxEnt model can be used
as a building block thereof. In what follows, we limit our analysis
exclusively to undirected networks.

3.1 Concepts and notation
3.1.1 Signed Networks. We represent an undirected signed net-
work by 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 nodes and |𝐸 | = 𝑚 edges where
𝐸 ⊆

(𝑉
2
)
. Each node 𝑖 ∈ 𝑉 denotes an entity and edges {𝑖, 𝑗} ∈ 𝐸

represent unordered relations between two entities 𝑖 and 𝑗 . Edges
{𝑖, 𝑗} can describe positive or negative relations in signed networks.
A function 𝑠 : 𝐸 → {−1, +1} is used to map edges to their respec-
tive signs. We denote the set of positive links i.e. {{𝑖, 𝑗} ∈ 𝐸 |
𝑠 ({𝑖, 𝑗}) = 1} by 𝐸+, and negative links {{𝑖, 𝑗} ∈ 𝐸 | 𝑠 ({𝑖, 𝑗}) = −1}
by 𝐸−. The adjacency matrix of a signed network 𝐺 is represented
as Â ∈ A = {−1, 0, 1}𝑛×𝑛 with entries 𝑎𝑖 𝑗 ∈ {−1, 0, 1}, and with
𝑎𝑖 𝑗 = 0 if {𝑖, 𝑗} ∉ 𝐸 and 𝑎𝑖 𝑗 = 𝑠 ({𝑖, 𝑗}) otherwise.1

3.1.2 Sign Prediction. This task amounts to, given an observed
signed network 𝐺 = (𝑉 , 𝐸), inferring the signs 𝑠 ({𝑖, 𝑗}) ∈ {−1, 1}
of unobserved node-pairs {𝑖, 𝑗} ∈

(𝑉
2
)
\ 𝐸.

3.2 A MaxEnt distribution for edge signs
Maximum entropy random graph models are statistical models used
for network inference based on the principle of maximum entropy
[16]. This principle states that the best estimate of a distribution
given certain constraints is the one with highest entropy amongst
those satisfying said constraints. In practice, these constraints are
often derived from empirical data.

In the context of unsigned networks, MaxEnt modelling works
as follows. Given an observed binary adjacency matrix Â ∈ A𝑏𝑖𝑛 =

1In some settings, it might be useful to consider a fourth possible state of a node-
pair {𝑖, 𝑗 } ∈

(𝑉
2
)
: linked (i.e. {𝑖, 𝑗 } ∈ 𝐸), but with unknown sign (i.e. 𝑠 ( {𝑖, 𝑗 })

unknown). Although semantically this is different, from a methodological perspective
the distinction between such node-pairs and unlinked node-pairs is irrelevant, as the
only node-pairs used for training in any existing method (including ours) are those
for which the sign is known.



{0, 1}𝑛×𝑛 and a set of statistics (e.g. node degrees, assortativity,
densities of particular blocks, etc.) considered characteristic for
this network, one seeks the MaxEnt distribution 𝑃 over random
A ∈ A𝑏𝑖𝑛 such that the expected values of these statistics are equal
to the values empirically observed on Â. For instance, one can seek
the MaxEnt distribution 𝑃 which preserves the node degrees of Â
i.e. E𝑃 [

∑
𝑖 A𝑖, 𝑗 ] =

∑
𝑖 Â𝑖, 𝑗 .

Here, our objective is to learn a MaxEnt distribution 𝑃 (A) for the
signs of all node-pairs {𝑖, 𝑗} ∈

(𝑉
2
)
. We use a similar formulation to

that of MaxEnt models for unsigned graphs, with a key difference:
the random variables are now the signs 𝑠 ({𝑖, 𝑗}) instead of whether
a node-pair is connected or not. In summary, we aim to find a
distribution over the set A𝑠𝑖𝑔𝑛 = {−1, 1}𝑛×𝑛 of all possible signed
matrices A of size 𝑛, with expected values for certain important
statistics equal to their values on the empirically observed signs.
Of course, as the signs are known only for the linked node-pairs,
the statistics are computed based on the linked node-pairs only.

As observed by various authors [1, 10], two major drawbacks
when fitting MaxEnt models are scalability and generalization to
arbitrary constraints. Thus, a key challenge in the development of
MaxEnt models is to identify statistics that are characteristic for the
data, while using them as constraints is computationally tractable.
We already argued that node polarity statistics, and statistics on
the number of balanced/unbalanced triangles, are both useful to
use as constraints. Now, we will show that their use as constraints
in MaxEnt modelling is computationally tractable as well. Our
approach is based on recent work by Adriaens et al. [1], which
identifies a broad class of statistics that can be used to formulate
these constraints.

Let F ∈ R𝑛×𝑛 denote a real-valued matrix with 𝑓𝑖 𝑗 the element
on row 𝑖 and column 𝑗 , referred to as a feature matrix. Rephrased
for our current context, Adriaens et al. [1] then demonstrate that
constraints on statistics of the form

𝛾 (A) ≜
∑

{𝑖, 𝑗 }∈𝐸
𝑓𝑖 𝑗𝑎𝑖 𝑗 , (1)

can be used efficiently for MaxEnt modelling. Note that these sta-
tistics must satisfy the requirement of pertaining to the edges only
such that their empirical values can be computed. They can also
be specialised to compute polarity and triangle statistics. Next, we
introduce 𝑛 feature matrices which we specialize to compute the
polarity of each node and three additional matrices for computing
the number of triangles with particular sign patters.

Polarity. We formally define the polarity of a node as the sum
of the signs of edges incident to this node. To model the polarity
of each node 𝑙 ∈ 𝑉 , we propose to use one feature matrix F𝑙 as an
indicator function of the 𝑙th row, i.e.

𝑓 𝑙𝑖 𝑗 =

{
1, iff 𝑖 = 𝑙

0, otherwise.
(2)

Indeed, for such a feature matrix,
∑

{𝑖, 𝑗 }∈𝐸 𝑓 𝑙
𝑖 𝑗
𝑎𝑖 𝑗 =

∑
𝑗 :{𝑙, 𝑗 }∈𝐸 𝑎𝑙 𝑗 ,

equal to the polarity of node 𝑙 as required. Let us denote the corre-
sponding polarity statistic for node 𝑙 as 𝛾𝑙 .

Counting triangles with various sign patterns. In addition to the
polarity statistics (one per node), we also use three statistics that

jointly describe how many triangles the network contains with
three positive signs (+++ triangles), with two positive signs (++-
triangles), with one positive sign (+-- triangles), and with all neg-
ative signs (--- triangles). Note that the total number of triangles
is fixed, so three of these constraints will suffice. Moreover, using
any linear combination of these statistics would be equivalent. In
particular, it is mathematically convenient to count the following
three statistics which jointly can be used:

• Triangle statistic𝛾++ This statistic is defined as the number
of +++ triangles minus the number of ++- triangles. This
can be counted in the form of Eq. (1) by defining 𝑓𝑖 𝑗 as the
number of wedges, or paths of length two between 𝑖 and 𝑗 ,
with two positive signs, or formally:

𝑓 ++𝑖 𝑗 =
∑

𝑘 :{𝑘,𝑖 }∈𝐸∧{𝑘,𝑗 }∈𝐸

𝑎𝑖𝑘 + 1
2

𝑎𝑘 𝑗 + 1
2

. (3)

Then
∑

{𝑖, 𝑗 }∈𝐸 𝑓 ++
𝑖 𝑗

𝑎𝑖 𝑗 =
∑

{𝑖, 𝑗 }∈𝐸+ 𝑓 ++
𝑖 𝑗

−∑{𝑖, 𝑗 }∈𝐸− 𝑓 ++
𝑖 𝑗

, which
is indeed equal to the number of +++ triangles minus the
number of ++- triangles.

• Triangle statistic𝛾+− This statistic is defined as the number
of ++- triangles minus the number of +-- triangles. It can
be computed as in Eq. (1) by defining 𝑓 +−

𝑖 𝑗
as the number of

wedges with differing signs that connect 𝑖 and 𝑗 , or formally:

𝑓 +−𝑖 𝑗 =
∑

𝑘 :{𝑘,𝑖 }∈𝐸∧{𝑘,𝑗 }∈𝐸

1 − 𝑎𝑖𝑘𝑎𝑘 𝑗

2
. (4)

• Triangle statistic𝛾−− This statistic is defined as the number
of +-- triangles minus the number of --- triangles. It can be
computed as in Eq. (1) by defining 𝑓 −−

𝑖 𝑗
as the number of

wedges with two minus signs connecting 𝑖 and 𝑗 , or formally:

𝑓 −−𝑖 𝑗 =
∑

𝑘 :{𝑘,𝑖 }∈𝐸∧{𝑘,𝑗 }∈𝐸

1 − 𝑎𝑖𝑘

2
1 − 𝑎𝑘 𝑗

2
. (5)

Note that these three statistics jointly, together with the fixed over-
all triangle count, indeed uniquely define the number of triangles
with any sign pattern. For example, denoting the total number of
triangles as 𝑡 , it is easy to verify that the number of ++- triangles
can be computed as 𝑡+𝛾−−+2𝛾+−−𝛾++

4 .
Thus the MaxEnt distribution can be found by solving the fol-

lowing convex optimization problem:

argmax
𝑃 (A)

−E𝑃 [log 𝑃 (A)], (6)

s.t. E𝑃 [𝛾𝑙 (A)] = 𝑐𝑙 ∀𝑙 = 1, . . . , 𝑛,
E𝑃 [𝛾++ (A)] = 𝑐++,

E𝑃 [𝛾+− (A)] = 𝑐+−,

E𝑃 [𝛾−− (A)] = 𝑐−−,

where 𝑐𝑙 = 𝛾𝑙 (Â), 𝑐++ = 𝛾++ (Â), 𝑐+− = 𝛾+− (Â), and 𝑐−− = 𝛾−− (Â)
denote the empirically observed values of the statistics.

As shown by Adriaens et al. [1], the formulation in Eq. (6) fac-
torizes as a product of independent Bernoulli distributions. The
solution, adapted to the case of signed networks, is of the form:

𝑃 (A) =
∏

{𝑖, 𝑗 }∈𝐸
𝑃 (𝑎𝑖 𝑗 = 1)

�̂�𝑖 𝑗 +1
2 (1 − 𝑃 (𝑎𝑖 𝑗 = 1))1−

�̂�𝑖 𝑗 +1
2 . (7)



Moreover, the ‘success probabilities’ 𝑃 (𝑎𝑖 𝑗 = 1) for node-pairs {𝑖, 𝑗}
are equal to:

𝑃 (𝑎𝑖 𝑗 = 1) =
exp(∑𝑛

𝑙=1 𝑓
𝑙
𝑖 𝑗
_𝑙 + 𝑓 ++

𝑖 𝑗
_++ + 𝑓 +−

𝑖 𝑗
_+− + 𝑓 −−

𝑖 𝑗
_−−)

1 + exp(∑𝑛
𝑙=1 𝑓

𝑙
𝑖 𝑗
_𝑙 + 𝑓 ++

𝑖 𝑗
_++ + 𝑓 +−

𝑖 𝑗
_+− + 𝑓 −−

𝑖 𝑗
_−−)

,

(8)
where _𝑙 , _++, _+−, and _−− denote the Lagrange multipliers as-
sociated with the respective constraints in Eq. (6). The optimal
values of these Lagrange multipliers can be found by unconstrained
minimization of the convex Lagrange dual function:

𝐿(_1, . . . , _𝑀 ) = (9)∑
{𝑖, 𝑗 }∈𝐸 log(1 + exp(∑𝑛

𝑙=1 𝑓
𝑙
𝑖 𝑗
_𝑙 + 𝑓 ++

𝑖 𝑗
_++ + 𝑓 +−

𝑖 𝑗
_+− + 𝑓 −−

𝑖 𝑗
_−−))

−
𝑛∑
𝑙=1

𝑐𝑙_𝑙 − 𝑐++_++ − 𝑐+−_+− − 𝑐−−_−− .

This optimization problem can be solved efficiently for very large
networks, as shown by Adriaens et al. [1], by using equivalences
between the Lagrange multipliers. In our proposed model, this re-
duces the number of free variables to 𝑂 (

√
𝑛). Moreover, we can

further improve efficiency by limiting our computations to the con-
nected node-pairs for which signs are known. Finally, we observe
that after fitting the MaxEnt prior, a probability for each node-pair
of being positive or negative is obtained. These unique probabilities,
determined by the polarities of the connected nodes and triangle
counts, can be directly used for sign prediction.

3.3 Conditional Signed Network Embedding
As introduced in Sec. 1, the MaxEnt model is required as a prior for
CSNE. For ease of exposition, the prior was discussed in the previous
section. In the current section, we introduce CSNE proper and
explain how the MaxEnt prior is an integral component. However,
before diving into the details of CSNE, we formally define the task
of signed network embedding.

Embedding approaches learn a function 𝑔 : 𝑉 → IR𝑑 which maps
nodes in the network to d-dimensional real-valued vectors. These
representations are generally denoted as X = (x1, x2, . . . , x𝑛)′ ∈
IR𝑛×𝑑 , where x𝑖 is the embedding corresponding to node 𝑖 . A com-
mon modelling assumption for NE methods is that similar nodes
in the network must be mapped to close-by representations in the
embedding space. For the particular case of signed network em-
bedding, we additionally require the function 𝑔 : 𝑉 → IR𝑑 to map
pairs {𝑖, 𝑗} ∈ 𝐸− to more distant representations x𝑖 and x𝑗 in the
embedding space, than pairs {𝑖, 𝑗} ∈ 𝐸+. At the same time, unlinked
node-pairs are commonly not used in the embedding learning pro-
cess i.e. their distance in unimportant.

CSNE aims to learn the most informative embedding X for a
given signed network 𝐺 = (𝑉 , 𝐸) with adjacency matrix Â. In
simple terms, the objective is to find the embedding X that maxi-
mizes the likelihood of observing the signs on the edges in Â. We
formulate this optimization task as a Maximum Likelihood Esti-
mation (MLE) problem, 𝑎𝑟𝑔𝑚𝑎𝑥X𝑃 (A|X). Akin to Kang et al. [17],
we do not postulate the likelihood function 𝑃 (A|X) directly. In-
stead, we do postulate the density function of the embedding X
conditioned on the signed network, i.e. 𝑝 (X|A). Then, we com-
bine 𝑝 (X|A) with the MaxEnt prior discussed in Sec. 3.2, 𝑃 (A), by

means of the Bayes formula. The likelihood function, thus, follows
as 𝑃 (A|X) =

𝑝 (X |A)𝑃 (A)
𝑝 (X) . Independently modelling the density

function of the embedding conditioned on the network and the
MaxEnt distribution on the signs of 𝐺 , has one major advantage.
The prior, can encode properties of the network which do not have
to be reflected by the learned embedding X. Effectively, this means
that CSNE can a make better use of the embedding space.

The MaxEnt prior 𝑃 (A) has already been introduced in Sec. 3.2
and its expression given in Eq. 7. For postulating the conditional
density 𝑝 (X|A), we only need to model the distances between con-
nected node-pairs {𝑖, 𝑗}. As metric, we use the Euclidean distance
between the embeddings of the end nodes, i.e. 𝑑𝑖 𝑗 ≜ | |x𝑖 − x𝑗 | |2.
As already discussed, we require the distances between positively
connected node-pairs {𝑖, 𝑗} ∈ 𝐸+ to be lower than those between
negatively connected pairs {𝑖, 𝑗} ∈ 𝐸−. To model this, we use two
half-normal distributions with locations at 0 and different spread
parameters. Distances between pairs {𝑖, 𝑗} ∈ 𝐸+ are generated from
a half-normal distribution with spread parameter 𝜎1 and between
pairs {𝑖, 𝑗} ∈ 𝐸− from a similar distribution with parameter 𝜎2,
where 𝜎1 < 𝜎2. Thus, we have:

𝑝 (𝑑𝑖 𝑗 | {𝑖, 𝑗} ∈ 𝐸+) = N+
(
𝑑𝑖 𝑗 |𝜎21

)
, (10)

𝑝 (𝑑𝑖 𝑗 | {𝑖, 𝑗} ∈ 𝐸−) = N+
(
𝑑𝑖 𝑗 |𝜎22

)
. (11)

The conditional density 𝑝 (X|A) can then be expressed as follows:

𝑝 (X|A) =
∏

{𝑖, 𝑗 }∈𝐸+
N+

(
𝑑𝑖 𝑗 |𝜎21

)
·

∏
{𝑖, 𝑗 }∈𝐸−

N+
(
𝑑𝑖 𝑗 |𝜎22

)
. (12)

The resulting likelihood function to optimize is:

𝑃 (A|X) = 𝑝 (X|A)𝑃 (A)
𝑝 (X) =

𝑝 (X|A)𝑃 (A)∑
A 𝑝 (X|A)𝑃 (A)

=
∏

{𝑖, 𝑗 }∈𝐸+

N+
(
𝑑𝑖 𝑗 |𝜎21

)
𝑃 (𝑎𝑖 𝑗 = 1)

N+
(
𝑑𝑖 𝑗 |𝜎21

)
𝑃 (𝑎𝑖 𝑗 = 1) + N+

(
𝑑𝑖 𝑗 |𝜎22

)
(1 − 𝑃 (𝑎𝑖 𝑗 = 1))

·
∏

{𝑖, 𝑗 }∈𝐸−

N+
(
𝑑𝑖 𝑗 |𝜎22

)
(1 − 𝑃 (𝑎𝑖 𝑗 = 1))

N+
(
𝑑𝑖 𝑗 |𝜎21

)
𝑃 (𝑎𝑖 𝑗 = 1) + N+

(
𝑑𝑖 𝑗 |𝜎22

)
(1 − 𝑃 (𝑎𝑖 𝑗 = 1))

.

(13)

In order to maximize the likelihood function Eq. (13) we use
block stochastic gradient descent. The derivation of the gradient
follows closely the one in Kang et al. [17]. Thus, we refer the user to
this manuscript for more details. The gradient of the log-likelihood
function in CSNE w.r.t. the embedding x𝑖 of node 𝑖 reads:

𝜕 𝑙𝑜𝑔(𝑃 (A|X))
𝜕 xi

= 2
∑

𝑗 :{𝑖, 𝑗 }∈𝐸+
(x𝑖 − x𝑗 )𝑃 (𝑎𝑖 𝑗 = −1|X)

(
1
𝜎22

− 1
𝜎21

)
+ 2

∑
𝑗 :{𝑖, 𝑗 }∈𝐸−

(x𝑖 − x𝑗 )𝑃 (𝑎𝑖 𝑗 = 1|X)
(
1
𝜎21

− 1
𝜎22

)
.

(14)

Intuitively, the first summation in the gradient expression pulls
the embedding of each node close to the embeddings of positively



Table 1: Main statistics of the networks used for sign predic-
tion evaluation.

Data Slashdot(a) Slashdot(b) Epinions Wiki-rfa Bitcoin-𝛼 Bitcoin-otc

|𝑉 | 77350 82140 131828 11258 3783 5881
|𝐸 | 468554 500481 711210 171562 14124 21492
|𝐸 |/|𝑉 | 12.11 12.18 10.78 30.47 7.46 7.30
% |𝐸+ |/|𝐸 | 75% 76% 83% 77% 90% 85%
% Bal. Tri. 85% 86% 89% 73% 83% 85%

connected neighbours. The second summation, on the other hand,
pushes this embedding far from those of negatively connected
nodes. Finally, after fitting the model, sign predictions can be di-
rectly extracted from the posterior probability matrix.

4 EXPERIMENTAL SETUP
To evaluate the performance of CSNE, we conducted experiments
on six networks from four sources, which we introduce in Sec. 4.1.
We compared the empirical observations for CSNE with four re-
cent methods for signed network embedding that are discussed
in Sec. 4.2. Specifics of the test setup, including hyperparameters
settings for all methods are outlined in Sec. 4.3. Reproducibility
details are provided in Sec. 4.4.

4.1 Datasets
We performed sign prediction evaluation using 6 different real-
world datasets. The first two networks constitute snapshots from
the Slashdot [22] social newswebsite, where users can create friends
(positive links) and foes (negative links). These snapshots, Slash-
dot(a) and Slashdot(b), were obtained in November 2008 and Febru-
ary 2009, respectively. Epinions [22] is a product review website,
where users can trust (positive links) or distrust (negative links)
each other. Wiki-rfa [39] contains votes of Wikipedia users en-
dorsing or opposing candidates for adminship. Neutral votes, also
present in the data, are not used. The dataset contains informa-
tion on votes between 2003 and 2013. Lastly, we used two Bitcoin
cryptocurrency trust networks, Bitcoin-𝛼 and Bitcoin-otc. These
networks, obtained from [19], were gathered in order to identify
transactions with fraudulent users.

All datasets, which were originally directed, were preprocessed
to remove the direction of links. In the experiments, we also used
the largest connected components only and ignored self-loops. The
most relevant network statistics are summarized in Table 1.

4.2 Comparison methods
To be able to interpret the performance of CSNE in the context of ex-
isting methods, we performed the same sign prediction experiments
using the following methods:

• SiNE [38] uses a deep neural network architecture to learn
node embeddings. The objective function optimized by SiNE
satisfies the structural balance theory. In this method, nodes
are expected to be closer to their friends than their foes. If no
negative connections exist for specific nodes, virtual nodes
and negative links to these are generated.

• nSNE [34], similarly to SiNE, uses a deep neural network
to learn node embeddings by leveraging second order prox-
imities in the graph. At the same time, the method learns a
mapping from node embeddings to edge embeddings.

• lSNE [34] is a simplified version of nSNE where the map-
ping function from node embeddings to edge embeddings is
assumed to be linear. The function can therefore be learned
via gradient descent.

• SIGNet [15] uses a random walk strategy to determine node
similarity on the graph and the Skip-Gram model to obtain
node embeddings. The authors propose an extension to the
negative sampling used in word2vec models to perform tar-
geted node sampling and accommodate the main concepts
of structural balance theory (i.e., balanced triangles are more
likely than unbalanced triangles).

4.3 Sign Prediction Test Setup
General setup. As introduced in Sec. 3.1.2, sign prediction amounts
to identifying the signs of unobserved connections between nodes
in a given network. For performance evaluation of sign prediction,
it is common to divide the given set of edges (𝐸) into two disjoint
subsets: the train edges (𝐸𝑡𝑟𝑎𝑖𝑛) are used in the model learning
phase, while the test edges (𝐸𝑡𝑒𝑠𝑡 ) are used for assessing the pre-
diction performance of the methods. The train and test sets are
constructed such that 𝐸𝑡𝑒𝑠𝑡 ∪𝐸𝑡𝑟𝑎𝑖𝑛 = 𝐸, and 𝐸𝑡𝑒𝑠𝑡 ∩𝐸𝑡𝑟𝑎𝑖𝑛 = ∅. At
training time, edges in 𝐸𝑡𝑒𝑠𝑡 are removed and the corresponding
value in the adjacency matrix is set to 0. At test time, the model
is evaluated on all {𝑖, 𝑗} ∈ 𝐸𝑡𝑒𝑠𝑡 and predictions compared to 𝑎𝑖 𝑗 .
In our evaluation, we selected 80% of the total edges {𝑖, 𝑗} ∈ 𝐸 for
training (𝐸𝑡𝑟𝑎𝑖𝑛) and the remaining 20% for testing (𝐸𝑡𝑒𝑠𝑡 ). Train
edges were selected regardless of their sign, using the default sam-
pling strategy of the EvalNE toolbox Mara et al. [28], which ensures
that the training network remains connected. The sets 𝐸𝑡𝑟𝑎𝑖𝑛 and
𝐸𝑡𝑒𝑠𝑡 are expected to contain similar proportions of positive and
negative edges as the original graph. Unless otherwise specified,
all results reported are averages over three independent repetitions
of the experiment with different train and test sets.

Edge embeddings. For prediction, nSNE, lSNE and our proposed
methods can directly return the probability of an edge {𝑖, 𝑗} of
being positive or negative. For SiNE and SIGNet, however, this is
not the case. These methods only return node embeddings from
which predictions must be derived. As shown by Gurukar et al.
[13] an effective approach for obtaining predictions, in this case, is
through binary classification on the edge embeddings derived from
node embeddings. A classifier is first trained on the embeddings
of edges in 𝐸𝑡𝑟𝑎𝑖𝑛 and their corresponding signs {−1, 1}. Then,
predictions for node-pairs in 𝐸𝑡𝑒𝑠𝑡 can be computed. To obtain the
embedding of a link {𝑖, 𝑗} from node representations one can apply
different operators ◦ to the embeddings of the incident nodes 𝑖 and
𝑗 i.e. x𝑖 𝑗 = x𝑖 ◦ x𝑗 . In our evaluation, we selected the operators
introduced in Grover and Leskovec [11], namely Average ((x𝑖 +
x𝑗 )/2), Hadamard (x𝑖 · x𝑗 ),Weighted 𝐿1 (|x𝑖 − x𝑗 |) andWeighted 𝐿2
(|x𝑖 − x𝑗 |2). The choice of operator was tuned as additional method
hyperparameters for SiNE and SIGNet and Logistic Regression with
5 fold cross validation of the regularization parameter was used as
binary classifier.

http://slashdot.org
http://www.btcalpha.com
https://www.bitcoin-otc.com


Table 2: Sign prediction AUC for all networks. Best performing method per dataset is highlighted in bold.

Methods Slashdot(a) Slashdot(b) Epinions Wiki-rfa Bitcoin-𝛼 Bitcoin-otc Avg. AUC Rank

SiNE 0.850±0.002 0.856±0.002 0.898±0.001 0.816±0.002 0.835±0.012 0.857±0.005 8
nSNE 0.895±0.001 0.894±0.002 0.950±0.001 0.879±0.002 0.810±0.024 0.868±0.010 4.5
lSNE 0.886±0.002 0.893±0.002 0.941±0.002 0.872±0.001 0.854±0.022 0.907±0.005 6
SIGNet 0.887±0.002 0.893±0.002 0.943±0.001 0.848±0.005 0.893±0.002 0.928±0.006 4.5
Prior(pol.) 0.879±0.001 0.885±0.001 0.929±0.001 0.870±0.001 0.858±0.014 0.891±0.002 7
Prior(pol.+tri.) 0.888±0.001 0.894±0.001 0.937±0.001 0.875±0.001 0.874±0.009 0.914±0.004 3
CSNE(pol.) 0.902±0.001 0.908±0.001 0.952±0.001 0.886±0.002 0.896±0.009 0.930±0.002 2
CSNE(pol.+tri.) 0.904±0.001 0.909±0.001 0.954±0.000 0.887±0.002 0.899±0.006 0.936±0.002 1

Hyperparameters. Throughout our evaluation, we set number
of dimensions |𝑑 | = 20 for all methods. For CSNE we fixed the
spread parameters 𝜎1 = 1 and 𝜎2 = 2. We ran SiNE, nSNE, lSNE and
CSNE for 500 iterations. This value was empirically found to pro-
vide best results in preliminary experiments. Fitting a MaxEnt prior
is a convex problem for which we use second order information,
therefore, we limited the number of iterations in this case to 20.
We performed method hyperparameter tuning on a validation set
obtained by further splitting 𝐸𝑡𝑟𝑎𝑖𝑛 in 80% training and 20% valida-
tion. The specific method hyperparameters we tuned are as follows.
For SiNE, we tuned 𝛿 = 𝛿0 ∈ {0.5, 1} and the edge embedding
operator. For SIGNet we only tuned the edge embedding operator.
For nSNE and lSNE, we varied _ ∈ {5𝑒 − 5, 2.5𝑒 − 5, 1𝑒 − 5} and
𝛽 ∈ {0.5, 0.05, 0.005, 0}. Finally, for CSNE, including the MaxEnt
priors, we did not tune any hyperparameters.

Evaluation measure. We evaluated the methods in terms of Area
Under the Curve for the Receiver Operating Characteristic (AUC-
ROC). This metric is popular for binary classification tasks and
well suited for prediction in the case of class imbalance. Let TP,
TN, FP and FN be the elements of a confusion matrix. Then, we
can compute the true positive rate as 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 and the false
positive rate as 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 . The AUC is then the area under the
ROC curve created by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various thresholds.

4.4 Reproducibility
To guarantee the reproducibility of our experimental evaluation we
used the EvalNE toolbox [28]. This Python toolbox aims to simplify
and standardize the evaluation of network embedding methods
on various downstream tasks. EvalNE uses configuration files that
detail the evaluation pipeline. A file describing our sign prediction
experiments is available here. This file, together with the datasets
and methods reported in Secs. 4.1 and 4.2 allows full reproduction
of our experiments.

5 EXPERIMENTAL RESULTS
In this section we present and discuss quantitative and qualitative
experimental results. Quantitative results, on one hand, are shown
for the task of sign prediction. A qualitative evaluation, on the
other, is performed through visualization of the signed embeddings
learned by CSNE on a small network representing relations between
characters in the Harry Potter novels.

5.1 Sign Prediction
We start in Table 2 by presenting the AUC scores for each method
on all evaluated datasets. For CSNEwe present the results using two
MaxEnt priors with different sets of constraints, i.e. node polarity
only (pol.) and node polarity combined with balanced/unbalanced
triangle counts (pol.+tri.). These MaxEnt priors, as discussed in
Sec. 3.2, can be independently used for sign prediction. Therefore,
we also include their performance in Table 2 as Prior(pol.) and
Prior(pol.+tri.), respectively.

Our results showcase the superior performance of CSNE over the
baseline methods on all datasets. The largest difference in AUC to
the best performing baseline (2.7%) can be seen for Slashdot(b) while
the lowest (0.4%) can be found for Epinions. Additionally, CSNE
exhibits a more consistent performance on different networks as
compared to other baselines. SIGNet, the best performing baseline
on Bitcoin-𝛼 , performs significantly worse than CSNE, nSNE and
lSNE onWikipedia. Similarly, nSNE, the best baseline on Slashdot(a),
Slashdot(b) and Epinions obtains poor results on Bitcoin-𝛼 and
Bitcoin-otc.

The results in Table 2 also show that using balanced and unbal-
anced triangle counts as additional structural constraints to the
node polarity in the MaxEnt prior, always results in improved AUC
scores. This effect is most prominent when comparing Prior(pol.)
and Prior(pol.+tri.), where the latter obtains higher accuracy scores
across the board. A similar, yet less prominent effect can be observed
when these priors are used as part of CSNE. Another interesting
observation from Table 2 is that the proposed Prior(pol.+tri.) already
provides state-of-the-art results while being much faster than other
methods, as shown by our runtime experiments.

In Figure 1 we present the execution times in seconds (all ex-
periments were run on a machine equipped with an Intel(R) Core
i7-7700K processor and 32GB of RAM), including hyperparameter
tuning, for all methods. For CSNE, the results include prior compu-
tation. Each colour in the figure represents a different network and
the grey boxes indicate, per method, the corresponding cumulative
execution times on all networks (i.e. sum of all coloured bars). An
immediate observation from Figure 1 is that the total execution
time of SiNE (grey bar in the Figure 1), is approximately two orders
of magnitude larger than those of other methods. The cumulative
execution times on all networks of the two MaxEnt priors, on the
other hand, are approximately one order of magnitude lower than
those of the fastest evaluated baseline, SIGNet. We also observe

https://bitbucket.org/ghentdatascience/csne-public/src/master/


Figure 1: Execution times of all methods for sign prediction
on each evaluated network. Gray boxes indicate the total
runtime per method on all datasets.

Figure 2: Relative execution times of all methods compared
to the fastest approach on each dataset (lower is better).

that the two CSNE variants are not significantly slower, on most
networks, than other baseline methods.

In Figure 2 we group the methods by dataset and present their
execution times relative to the fastest method in each case. Firstly,
we observe that Prior(pol.) is the fastest method on all networks and
that Prior(pol.+tri.) is never more than 2x slower. The remaining
methods, with the exception of SiNE, are between 10x and 50x
slower. For SiNE, we observe execution times that are up to 2000
times those our proposed Prior(pol.) approach on the two Slashdot
and the Epinion networks. Finally, we observe that the relative
speedup of Prior(pol.) over the baselines becomes smaller as the
network sizes increase. This effect is due to parallelization, present
in the baseline implementations and not in the MaxEnt prior, which
becomes more relevant for larger networks. Parallelization of the
MaxEnt prior is left as future work.

5.2 Hyperparameter Sensitivity
We evaluated the sensitivity of the proposed CSNE method w.r.t.
three hyperparameters, i.e. train set size, embedding dimensionality
and the spread parameter 𝜎 .

Figure 3: Average sign predictionAUCover all evaluated net-
works for varying sizes of 𝐸𝑡𝑟𝑎𝑖𝑛 - 𝐸𝑡𝑒𝑠𝑡 . A black line over each
bar denotes the 95% confidence interval for the estimate of
the average performance.

5.2.1 Train Set Size. First, we assessed the generalization perfor-
mance of the proposed method from different amounts of initial
training data. We did this by dividing the set of all graph edges 𝐸 in
sets 𝐸𝑡𝑟𝑎𝑖𝑛 and 𝐸𝑡𝑒𝑠𝑡 of different sizes. We started by using 35% of all
edges for training and 65% for testing. We then gradually increased
the size of 𝐸𝑡𝑟𝑎𝑖𝑛 to 50%, 65% and finally 80% while the size of 𝐸𝑡𝑒𝑠𝑡
scaled accordingly 50%, 35% and 20%. Using the same setting as in
Sec. 4.3 we performed sign prediction evaluation for these different
edge splits. For comparison, we also included the AUC scores of
the baseline methods. The average AUC scores of each method
over all evaluated networks, are summarized in Figure 3. The 95%
confidence intervals are also presented for each case.

The results show that the performance of lSNE, nSNE and SIGNet
degrades significantly as the size of 𝐸𝑡𝑟𝑎𝑖𝑛 decreases. CSNE, the
MaxEnt prior and SiNE, on the other hand, are more robust to
changes in the size of 𝐸𝑡𝑟𝑎𝑖𝑛 . The tight confidence intervals for
these three methods also indicate a consistent performance across
different datasets. For lSNE, nSNE and SIGNet these ranges are
larger, especially when little training data is available.

5.2.2 Embedding Dimensionality. Another fundamental parameter
for signed network embedding methods is the size of the resulting
embeddings. We studied the performance of CSNE w.r.t. the dimen-
sionality for 𝑑 ∈ {2, 4, 8, 16, 32}. The results, depicted in Figure 4a,
show a consistent performance of the method for all values of this
parameter. Even for values as low 𝑑 = 2, the performance of out
method is excellent. This indicates that CSNE can be directly used
for visualization without the need to use additional tools.

5.2.3 Spread parameter 𝜎 . The two 𝜎 parameters introduced in
Sec. 3.3 determine, on one hand, the spread of the Gaussian distribu-
tions from which the distances between positively and negatively
connected pairs are generated in Eq. (12). These parameters also
control the strength of the pull and push effects in Eq. (14). There-
fore, to understand the effect on performance of different values
for these parameters, we conducted and additional experiment. In
this experiment, we set 𝜎1 = 1, as this simply fixes the scale, and
varied 𝜎2 ∈ {2, 4, 8, 16, 32}. The results, summarized in Figure 4b,
show the robustness of CSNE to changes of this parameter. Only



(a) (b)

Figure 4: Sign prediction AUC scores of CSNE(pol.+tri.) for
(a) different embedding dimensions 𝑑 and (b) different val-
ues of 𝜎2.

(a) (b)

Figure 5: Convergence of (a) the MaxEnt prior and (b) CSNE.

very large values of 𝜎2 i.e. 𝜎2 = 16 and 𝜎2 = 32 appear to have a
slight effect on method performance. As such, 𝜎1 = 1 and 𝜎2 = 2
appear to be good default values in most cases.

5.3 Convergence Analysis
In this section we present and discuss the convergence of the Max-
Ent prior and of the complete CSNE approach. In Figures 5a and
5b we plot, for each method, the sign prediction AUC against the
gradient descent iteration number on all datasets introduced in
Table 1. In both cases, we used the joint polarity and triangle count
prior. Computing the MaxEnt prior amounts to optimizing a convex
function as discussed in Sec. 3.2. By leveraging second order infor-
mation, convergence is achieved in less than 20 iterations for all
datasets as shown in Figure 5a. In CSNE, maximizing the likelihood
function is a non-convex optimization problem solved via block sto-
chastic gradient descent. Convergence is achieved in approximately
200 iterations as shown in Figure 5b.

5.4 A Case Study: Visualization
We also performed a qualitative evaluation of the CSNE embed-
dings on the popular Harry Potter network. Nodes in the graph
correspond to characters in the novels while edges denote friend
or enemy relations extrapolated from the character interactions
throughout the novels. We preprocessed the original directed net-
work to obtain an undirected representation, extracted the main
connected component and removed self loops. The resulting net-
work𝐺 contained 𝑛 = 65 nodes and𝑚 = 453 edges with an average
degree of 14.

Figure 6: Plot showing the CSNE embeddings of the Harry
Potter network. Enemy relationships between book charac-
ters are highlighted in red, while friendship is highlighted
in blue. A subset of protagonists and antagonists are shown
in blue and red, respectively.

We computed a 2-dimensional embedding X of 𝐺 using CSNE
with a MaxEnt structural prior encoding node polarity and the num-
ber of balanced and unbalanced triangles. We used 100 iterations
to fit the prior and another 100 iterations to learn the embeddings.
We obtained an initial assessment of the embedding quality by per-
forming sign prediction for all edges 𝐸 of 𝐺 . The resulting AUC
score is 0.994.

The embeddings learned by CSNE are presented in Figure 6
where blue links denote friendship relations and red links denote
enemy relations. The main protagonists and antagonists of the nov-
els are presented as blue and red circles, respectively. Two clear
clusters can be identified, a larger one corresponding to the protag-
onists and allies and a smaller one for the antagonists. The relations
within each cluster are mostly positive while between clusters are
negative. To verify that, as expected, positively connected nodes
are, on average, closer to each other than negatively connected
ones, we used the Euclidean distance. The average Euclidean dis-
tance obtained for all positively connected pairs {𝑖, 𝑗} ∈ 𝐸+ is 0.745
with a standard deviation of 0.525. For the negatively connected
pairs, {𝑖, 𝑗} ∈ 𝐸−, the obtained distance is 3.360± 1.014. This exper-
iment shows that CSNE is able to effectively capture the structure
of a signed network in dimensionalities as low as 𝑑 = 2. This also
showcases the potential of CSNE for signed network visualization.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented a new probabilistic approach for
learning representations of signed networks with applications to vi-
sualization and sign prediction. The proposed CSNE method solves
an MLE problem which seeks the embeddings that maximize the
probability of observing the signs on the edges of an input graph.
Our optimization process models certain structural properties of
the data as a MaxEnt prior. Particularly, this prior captures node
polarity and structural balance i.e. as counts of balanced and un-
balanced triangles. Our experimental results indicate that CSNE
can adequately model the specific properties of signed networks
and outperforms other baselines for sign prediction. Additionally,

https://github.com/efekarakus/potter-network/tree/master/data


we have showed that the proposed MaxEnt priors can also be di-
rectly used for sign prediction, resulting in state-of-the-art AUC
scores with runtimes up to 50x lower than those of other baselines.
Our work opens up several avenues for further research and im-
provements. On one hand, more sophisticated MaxEnt priors can
be designed specifically for networks with particular structures,
such as k-partiteness. Another possible line of work is to tackle the
extension of CSNE to directed signed networks.
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