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Chapter 1

Introduction

During my doctoral studies, I was working on questions which arise both from finite
geometry and graph theory. Apart from the first problem which comes from spectral
graph theory, the other three investigated topics are in the intersection of these two
huge parts of mathematics. Interestingly, the latter three areas have something in
common, namely in all of them we would like to understand the extremal objects,
their structure and whether a stability phenomenon occurs around these extremal
examples.

One of the investigations was motivated by Tamás Héger and Marcella Takáts
[12], who gave a sharp result concerning resolving sets in the incidence graph of pro-
jective planes. While there are several papers in the literature about resolving sets
and metric dimension, there is far less known about another concept, the resolving
partitions and partition dimension which can be defined very similarly, although it
turned out that they behave quite differently.

We also considered a natural question regarding finite projective planes. For a
fixed prime power q, we would like to determine the number of collinearity con-
straints, reckon them as 3-tuples of points of the projective plane which must lie
on a line, such that no matter how they are given we can embed them into a finite
projective plane of order q. Quite surprisingly, this investigation unfolded some deep
connection between our motivation and connectivity properties of hypergraphs, in
particular linear 3-uniform hypergraphs. These connections also helped us to ob-
serve some interesting properties of Steiner triple systems which are well-known and
immensely studied by top researchers.

There are a large number of different type of hypergraph coloring problems,
most of them are broadly studied. In contrast to the usual chromatic number, in
the mid-nineties V. Voloshin in his papers [7, 8, 9] introduced a new notion, the upper
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chromatic number, which requires quite the opposite from a coloring. Namely, here
we would like to use as many colors as we can to color the points such that there
are no rainbow hyperedges, which means that every hyperedge must have points
with the same color. Since projective planes can be considered as hypergraphs
where the vertices correspond to the points, and the hyperedges correspond to the
lines of the projective plane, therefore these structures provide us natural examples
for which determining the upper chromatic number is rather intriguing. In 2007
Gábor Bacsó and Zsolt Tuza [13] gave bounds on the upper chromatic number of
an arbitrary projective plane of order q and then later in 2013 Gábor Bacsó, Tamás
Héger and Tamás Szőnyi [14] determined the upper chromatic number of PG(2, q)
which depends only on τ2(PG(2, q)) which is the minimum number of points in a
2-fold blocking set in PG(2, q). All of these results motivated us to investigate this
question in higher dimensional finite projective spaces, too.

The thesis is built up as follows. In Chapter 2 we recall the basic definitions and
important notions which are indispensable in the sequel. Furthermore we also try to
emphasize some known results that we will often refer to later on. In Chapter 3 we
will prove a conjecture of Willem H. Haemers by constructing two b-regular graphs
which have the same adjacency spectrum, but exactly one of them has a perfect
matching. This construction came from a joint work [A] with Willem H. Haemers
and Jay Cummings.

Together with Zoltán Lóránt Nagy in [B] we managed to determine the parti-
tion dimension of the incidence graph of a finite projective plane up to a constant
factor of 2 and in Chapter 4 we will discuss the details. Chapter 5 is devoted to
the investigation of collinearity constraints and their embeddability properties which
interestingly have connection with connectivity notions in hypergraph theory. More-
over this led to some nice observations about Steiner triple systems too. The results
are joint with Zoltán Lóránt Nagy (see [C]).

In Chapter 6, together with Tamás Héger and Tamás Szőnyi (see [D]) we gen-
eralize the results of Gábor Bacsó, Tamás Héger and Tamás Szőnyi regarding the
upper chromatic number to higher dimensional finite projective spaces. The method
is quite similar to their former argument but we need to evolve it in some sense,
because in our case we often have to deal with weighted blocking sets, too (for ex-
ample after suitable projections). I would like to highlight that there will be a series
of observations if the order of the projective plane is a prime number which led to
Theorem 6.1.9 that is exciting in its own right. Nevertheless, as a corollary to this
theorem, we can achieve a considerably greater interval of stability if the order of
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the projective space is a prime number.
For the sake of clarity we will use the word Result when referring to other authors’

work, and use Theorem, Lemma, etc. if it is our original result. The thesis is based
on those articles which are denoted by roman numerals in the bibliography. Let me
mention that there are two papers of ours [E, F] which have also been published,
but I chose not to include them. Although they deal with graph theoretic questions
I think they do not fit in smoothly in the current frame of the thesis.





Chapter 2

Preliminaries

2.1 Graphs

If we don’t say it otherwise we consider finite, simple, undirected graphs throughout
the thesis.

Definition 2.1.1. G = (V ;E) denotes a graph with vertex-set V and edge-set E.
Two vertices are called adjacent if there is an edge connecting them. The set of
neighbors of a vertex v is denoted by N(v) that is the collection of those vertices
which are adjacent to v. The number of neighbors of a vertex v is called the degree
of v, and we denote it by d(v). A graph is d-regular if the degree of every vertex is
exactly d.

Definition 2.1.2. Pn and Cn denote the path and the cycle on n vertices. The length
of a path or a cycle is the number of edges contained in it. For distinct vertices x
and y, their distance is denoted by d(x, y), that is the length of the shortest path
between x and y. A graph is said to be connected if there exists a path between any
two distinct vertices. If there is no path between two vertices then let their distance
be ∞ by definition. The diameter of a graph diam(G) is equal to the largest distance
among the pair of vertices in G. The diameter is finite if and only if G is connected
(and finite).

Definition 2.1.3. The adjacency matrix of a graph G is a |V |× |V | matrix denoted
by A(G) (or shortly A) such that for vertices x and y the corresponding element of
the matrix A(x, y) = 1 if and only if x and y are adjacent, otherwise A(x, y) = 0.
The multiset of the eigenvalues of the adjacency matrix is called the spectrum of
a graph with respect to the adjacency matrix. We call two graphs cospectral if and
only if their spectra is the same.
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There is a widely investigated set of problems concerning a graph’s spectrum.
Namely, whether a property of a graph is determined by its’ adjacency spectrum.
In other words, what are those graph properties which happen to be the same for
any two cospectral graph. An even simpler, but very natural question is the follow-
ing. How can we find two graphs that are cospectral in an easy way? There exist
some methods to create a new graph from the original graph which are cospectral.
Nevertheless, most of the time the methods are useful too, because the two graphs
will not be isomorphic. We recall one of such methods here which we will use later
in Chapter 3. It is due to Godsil and McKay [29] (see also van Dam, Haemers [27]).

Result 2.1.4. Let G be a graph and let {X, Y } be a partition of the vertex set.
Suppose that X induces a regular subgraph, and that each vertex y ∈ Y has 0, |X|2 ,

or |X| neighbors in X. Make a new graph G′ from G as follows. For each y ∈ Y
with |X|2 neighbors in X, delete the |X|2 edges between y and X, and join y to the |X|2

other vertices of X. Then G and G′ are cospectral.

The set X is called a switching set. The operation that changes G to G′ is called
Godsil-McKay switching.

2.2 Incidence structures

Definition 2.2.1. An incidence structure is a triple (P ,L, I) such that P and L
are disjoint, nonempty sets and I ⊂ P × L is a binary relation between P and L
which is called incidence.

In this thesis we will consider only such incidence structures where both P and
L have finitely many elements. The elements of P and L usually be called points
and lines or blocks depending on the context. Instead of (P, `) ∈ I we often use the
geometric language such as P and ` are incident or ` passes through P .

Definition 2.2.2. An incidence structure (P ,L, I) is isomorphic to another inci-
dence structure (P ′,L′, I ′) if and only if there is a bijection ϕ : P ∪L → P ′ ∪L′ for
which ϕ(P) = P ′, ϕ(L) = L′ and (P, `) ∈ I ⇐⇒ (ϕ(P ), ϕ(`)) ∈ I ′ holds.

Definition 2.2.3. For an incidence structure (P ,L, I) the dual structure is
(L,P , I∗) for which (`, P ) ∈ I∗ if and only if (P, `) ∈ I. An isomorphism be-
tween an incidence structure and its dual is called a correlation. A correlation of
order 2 is called a polarity. An incidence structure is said to be self-dual if there
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exist a correlation of the incidence structure. A class of incidence structures is called
self-dual if all the dual structures are in the class.

For instance, the class of all finite projective planes is self-dual. Note that for
a self-dual class of incidence structures we can apply the principle of duality which
states the following. Given a theorem on all structures in the class we can obtain
another theorem valid for all of them by interchanging the words „points” and „lines”.

Definition 2.2.4. The incidence graph of an incidence structure (P ,L, I) is a
bipartite graph with vertex classes P and L and (P, `) is an edge of this graph if and
only if (P, `) ∈ I.

We refer the reader to the books of Beth, Jungnickel and Lenz [17, 18] for further
details.

2.3 Projective and affine spaces

Let us start by giving the combinatorial definition of affine and projective planes.

Definition 2.3.1. Let P be a non-empty set (whose elements are called points)
and L is a collection of some subsets of P (whose elements are called lines). The
incidence structure (P ,L) is an affine plane if and only if the following axioms hold:

A1) For every two different points there is exactly one line incident with both;

A2) For any line ` and any point P /∈ ` there exists a unique line `′ such that
P ∈ `′ and ` ∩ `′ = ∅;

A3) There exist four points, no three of which belong to the same line.

Definition 2.3.2. Let P be a non-empty set (whose elements are called points)
and L is a collection of some subsets of P (whose elements are called lines). The
incidence structure (P ,L) is a projective plane if and only if the following axioms
hold:

P1) For every two different points there is exactly one line incident with both;

P2) For every two different lines there is exactly one point incident with both;

P3) There exist four points, no three of which belong to the same line.
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If two lines of an affine plane do not intersect each other, we call them parallel.
One can construct an affine plane from a projective plane by removing a line from
it together with its points. It is well-known that any affine plane has q2 points and
q2 + q lines and every projective plane has q2 + q + 1 points and q2 + q + 1 lines for
some integer q ≥ 2, which is called the order of the affine plane or the projective
plane, respectively. Moreover, every affine plane of order q can be embedded into
a unique projective plane of order q. The n-dimensional projective space over the
finite field GF(q), denoted by PG(n, q), can be defined as follows.

Definition 2.3.3. Consider an (n+ 1)-dimensional vector space denoted by V over
GF(q). Let the point-set P = F0 of PG(n, q) be the set of 1-dimensional subspaces of
V , let the set of lines L = F1 of PG(n, q) be the set of 2-dimensional subspaces of V ;
and in general, the set Fk of (k+1)-dimensional subspaces of V , be the k-dimensional
subspaces of PG(n, q) for 0 ≤ k ≤ n. Incidences are given by containment.

The elements of Fk are called the k-dimensional subspaces of PG(n, q) in the
sequel. Thus F2 will correspond to the 2-dimensional subspaces of PG(n, q) which
are called planes. The codimension of a k-dimensional subspace of PG(n, q) is defined
as n− k. For example we will refer to subspaces of PG(n, q) with codimension 1 as
hyperplanes. Let us introduce the notation

θq,n = θn = qn + qn−1 + . . .+ q + 1 = qn+1 − 1
q − 1 (2.3.1)

for the number of points in an n-dimensional projective space of order q. We
recall that a projective plane of order q has θ2 = q2 + q+ 1 points. Finally, we recall
that the number of (k + 1)-spaces containing a fixed k-space in PG(n, q) is θn−k−1.
This can be seen easily by taking an (n−k−1)-space disjoint from the fixed k-space
and observing that each appropriate (k + 1)-space intersects it in a unique point.

It is well-known that for n ≥ 3 any n-dimensional finite projective space must be
isomorphic to PG(n, q) by Wedderburn’s theorem. Notice that for n = 2 there could
be other finite projective planes of order q which are not isomorphic to PG(2, q)
for some appropriate order. These other finite projective planes are called non-
Desarguesian. For more information and details about the basics of finite geometry
we refer the reader to the book of Hirschfeld [16].
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2.4 Blocking sets

Definition 2.4.1. An m-space is a subspace of PG(n, q) of dimension m. A point-
set B ⊆ PG(n, q) is called a t-fold k-blocking set if every (n− k)-space intersects B
in at least t points. A point P ∈ B is essential if B\{P} is not a t-fold k-blocking set,
in other words, if there is an (n− k)-space through P that intersects B in precisely
t points. B is called minimal, if all of its points are essential which means that B
does not contain a smaller t-fold k-blocking set. A blocking set is also commonly
defined as a point-set which intersects every line, but does not contain a line. In the
language of hypergraphs, t-fold blocking sets are called t-transversals.

In PG(n, q), every k-space intersects every (n− k)-space non-trivially. If k < n
2 ,

it is easy to find two (or more, say, t) disjoint k-spaces, whose union is clearly a
2-fold (or t-fold) k-blocking set of size 2θk (or tθk). If k ≥ n

2 , this does not work and,
in fact, not much is known even about the size of a smallest double k-blocking set,
let alone its structure. Even for the particular case n = 2k, no general constructions
had been known for small double k-blocking sets until 2016, when a construction
appeared in [15] by De Beule, Héger, Szőnyi, Van de Voorde. Note that, however,
weighted t-fold blocking sets can be obtained easily in this way.

Definition 2.4.2. A weighted point set of PG(n, q) is a multiset B of the points
of PG(n, q). We may refer to the multiplicities of the points of B via a function
w = wB mapping the point set of PG(n, q) to the set of non-negative integers, where
w is also called a weight function. Points not contained in B have weight zero by w
and, vice versa, zero weight points are considered to be not in B. We call a weighted
point set B of PG(n, q) a weighted t-fold (n − k)-blocking set if for every k-space
U , ∑P∈U w(P ) ≥ t, and B is called minimal if decreasing the weight of any point
results in a k-space violating the previous property; in other words, if B does not
contain a strictly smaller t-fold (n − k)-blocking set, where the size of a weighted
point set is defined as the sum of weights in it. Also, for any point set S, |S ∩ B| is
defined as ∑P∈S w(P ), and in general, any quantity referring to a number of points
of B is usually considered with multiplicities. For example an i-secant line ` (with
respect to B) is a line such that |` ∩ B| = i.

Weighted multiple blocking sets were studied recently by Ferret, Storme, Sziklai,
Weiner [10] and Harrach [11]. We recall some important results which we will use
in the rest of the thesis concerning weighted multiple blocking sets.
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Result 2.4.3 (Harrach [11]). Suppose that a weighted t-fold k-blocking set B in
PG(n, q) has less than (t + 1)qk + θk−1 points. Then B contains a unique minimal
weighted t-fold k-blocking set B′.

The next theorem and its’ variants are often referred as the t (mod p) results.

Result 2.4.4 (Ferret, Storme, Sziklai, Weiner [10] Theorem 4.2 and Corollary 5.2).
Let B be a minimal weighted t-fold (n−k)-blocking set of PG(n, q), q = ph, p prime,
h ≥ 1, of size |B| = tqn−k + t + k′, with t + k′ ≤ qn−k−1

2 . Then B intersects every
k-space in t (mod p) points. Moreover if e ≥ 1 denotes the largest integer for which
each k-space intersects B in t (mod pe) points, then |B| > tqn−k + qn−k

pe+1 − 1.



Chapter 3

Cospectral regular graphs with
and without a perfect matching

3.1 Introduction

In the last decades there were quite a lot of interest in the following type of questions.
Is the graph G determined by its spectrum (or shortly DS)? It would mean that every
graph which is cospectral to G with respect to the adjacency matrix (see Definition
2.1.3) needs to be isomorphic with G, too. Another heavily investigated variant is
whether a property P of a graph G is determined by its spectrum. In other words,
any graph cospectral to G (even the non-isomorphic ones) must also have property
P .

These type of questions originated from chemistry about half a century ago. In
1956, Günthard and Primas [19] raised a very similar question that relates spectral
graph theory to chemistry. For about a year it was believed that every graph is DS,
until Collatz and Sinogowitz [20] found two cospectral, non-isomorphic trees. After
1967 many examples of cospectral graphs were found. One result standing out is
due to Schwenk [21], who stated that almost all trees are not determined by their
spectrum.

On the other hand, van Dam and Haemers recently conjectured that almost all
graphs are DS. The fraction of known non-DS graphs on n vertices is much larger
than the fraction of DS graphs, but both fractions tend to zero as n → ∞. The
conjecture is false not even for trees but for strongly regular graphs, too. Since it is
hard to prove that a graph is DS, only a very small number of graphs are known to
be DS. However, Wang and Xu [22] developed a method and ran some experiments
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which showed that a very large part of the tested graphs are determined by their
generalized spectrum, that is the spectrum of G together with the spectrum of the
complement of G. For further details about these type of questions we refer the
reader to the book of Brouwer and Haemers and a survey paper from van Dam and
Haemers [24, 28].

In the rest of this chapter we focus on a problem posed by Haemers (believing
that the answer should be negative) at the 22nd British Combinatorial Conference
(see [25], Problem 22.8). The problem was also mentioned by Sebastian Cioabă at
the REGS program in Combinatorics (Problem 48, 2011).

Question 3.1.1. Does there exist a pair of regular, cospectral graphs where one has
a perfect matching and the other has none?

By Kőnig’s theorem, regular bipartite graphs of positive degree have a perfect
matching. For regular graphs which are not bipartite, there exists a powerful suffi-
cient condition for existence of a perfect matching in terms of the spectrum of the
adjacency matrix; see the papers of Haemers [23, 37, 30]. Bipartiteness as well as
regularity can be deduced from the spectrum (see [27] by van Dam, Haemers). So it
seems natural to ask whether for a regular graph the existence of a perfect matching
can be seen from the spectrum.

For non-regular graphs there exist easy examples. The disjoint union of the 4-
cycle C4 and the path Pn−4 has a perfect matching when n is even, and is cospectral
with a graph consisting of the path Pn−4 with two pendant vertices attached to each
endpoint, which obviously has no perfect matching. More interesting connected
examples were also found.

Proving that a property P of a graph G is not determined by the spectrum can
be done by using one of the known methods of creating a new cospectral graph
from G. Our main tool was the so-called Godsil-McKay switching (or shortly GM
switching) which was introduced earlier in Result 2.1.4.

3.2 Construction

Theorem 3.2.1. For each b ≥ 5 there exists a pair of cospectral connected b-regular
graphs, where one has a perfect matching and the other one does not.

Proof. We will prove the theorem by constructing a b-regular graph with a Godsil-
McKay switching set X and no perfect matching, for which switching will introduce
many perfect matchings.
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First assume b is odd. Define the graph Hb to be the complement of the disjoint
union of b−1

2 paths P2 and the path P3. Then Hb has b + 2 vertices, and each
vertex has degree b except for one vertex u of degree b − 1. To u we attach a
pendant edge {u, v}, which increases its degree to b. Call the graph obtained this
way with H̃b. Notice that Hb has an odd number of vertices, and therefore no perfect
matching, while H̃b has many perfect matchings, each of which contains the edge
{u, v}. Consequently, by attaching any other graph F to H̃b by identifying v with
some vertex in F , the result has the property that no edge in F which is incident
with v can be in a perfect matching. Figure 3.1 shows these gadgets for b = 5, 6.

We define the graph on the switching set X to be K3 +C2b−5, the disjoint union
of a triangle and a cycle with 2b − 5 vertices. The construction of Y starts with
b − 2 disjoint copies of H̃b. We define W to be the set of vertices consisting of the
b − 2 copies of v. Each w ∈ W will be joined to b − 1 vertices of X, such that w
is adjacent to every vertex of the triangle and no two vertex degrees of the larger
cycle differ by more than one. Notice that our graph is now connected, every vertex
except those in the larger cycle has degree b, and every vertex in Y is adjacent to
0, |X|2 , or |X| vertices in X, so X is a switching set.

We will enlarge Y and add (b − 2)(b − 1) edges between Y and X such that
X remains a switching set, and each vertex gets degree b, as desired. To this end,
first add one more copy of H̃b and insert b− 1 edges between the copy of v and the
vertices in X belonging to the larger cycle, such that the degrees of these vertices
still differ by at most one. Next we add b−3

2 disjoint unions of P2, and join both
vertices of each P2 to b − 1 vertices of the larger cycle in X, such that the degree
of the vertices in X become equal to b. The result is shown in Figure 3.2. The

Figure 3.1: Hb and H̃b for b = 5, 6

obtained graph is b-regular and connected, and X is a Godsil-McKay switching set.
Furthermore, by deleting the b−2 vertices ofW , the corresponding b−2 copies ofHb,
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Figure 3.2: The 5-regular graph with no perfect matching

Figure 3.3: After the Godsil-McKay switching there is a perfect matching
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the triangle and the remainder become b components, each having an odd number
of vertices. Consequently this graph does not have a perfect matching. However,
after performing a Godsil-McKay switch, one easily finds (many) perfect matchings
and one of them is shown in Figure 3.3 with blue edges. This concludes the proof
for the odd case.

When b is even, we make a few small changes. First, the graphs H̃b should be
replaced with a graph obtained as follows. Delete one edge from the complete graph
Kb+1, add an additional vertex v and connect it to the two vertices of degree b− 1.
Then, since b + 1 is odd, any perfect matching must contain one of these two new
edges, which precludes any additional edge incident with v from being in a matching,
just as before. The switching set X now has 2b− 4 vertices and induces K3 +C2b−7.

Lastly, we make a small alteration to the final step, where we increased the
degrees of the vertices in the larger cycle to b. Because b is even, we can do this
without adding an additional H̃b. Instead, we add a cycle Cb−2 to Y and join each
vertex in the added cycle to b − 2 vertices of the larger cycle in X, such that all
degrees become b. With the mentioned modifications we complete the proof of the
theorem by imitating the above steps for the even case.

3.3 Remarks

In the previous section, we have constructed a pair of connected b-regular graphs
where one has a perfect matching, and the other one not, for every b ≥ 5. The
smallest example, which was shown in Figures 3.1 and 3.3, is a pair of 5-regular
graphs on 42 vertices. The 6-regular example contains 44 vertices. In general, if b is
odd the example contains b2 + 5b− 8 vertices, and if b is even the example contains
b2 + 3b− 10 vertices.

We remark that for some b ≥ 5 we can create smaller examples than the above
explained one with a slightly different switching set. However, we do not know how
to modify the construction to make it work for b ≤ 4. In fact, if b ≤ 2 there exist no
non-isomorphic cospectral graphs (see [27] by van Dam, Haemers). Moreover, we
observed that this method cannot work for b = 3.

Remark 3.3.1. If b = 3 it can be seen that there cannot exist a Godsil-McKay
switching between a graph with a perfect matching and one with none.

Furthermore, Stephen Hartke checked by computer all 3-regular pairs of cospec-
tral graphs on at most 20 vertices and found no example. So it is not unlikely
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that among 3-regular graphs a cospectral pair does not exist. Hence the following
problem remains open.

Problem 3.3.2. Is there any pair of b-regular, cospectral graphs for b ∈ {3, 4} such
that exactly one of them has a perfect matching?

Let me mention another similar question which is also intriguing and, as far as
I know, it is still open.

Problem 3.3.3. Is there any pair of b-regular, cospectral graphs such that their
chromatic index are different? Or equivalently is the chromatic index of a regular
graph determined by its spectrum?

That problem asks for two cospectral, regular graphs G1 and G2 such that the
edge set of G1 can be partitioned into b perfect matchings, but this cannot be done
with the edge set of G2. Notice that in our construction one of the graphs did not
have any perfect matchings at all. Although the other one has a perfect matching
but after deleting an arbitrary perfect matching from it the remaining graph does
not have a perfect matching. Thus in our construction both of the graphs have
chromatic index b+ 1 by Vizing’s theorem.



Chapter 4

Partition dimension of projective
planes

4.1 Introduction

In graph theory, a large number of different concepts were introduced to distinguish
or identify every vertex in a given graph. Notably the vertices are usually distin-
guished via adjacency to a certain set of vertices — like in case of identifying codes
in graphs and distinguishing sets or locating-dominating sets [31, 40, 42, 43] — or
via distance from a certain set of vertices — like in case of resolving sets, metric and
partition dimension (see Bailey, Cameron and Chartrand, Salehi, Zhang [34, 36]).
In this chapter we will study the latter concept on a highly symmetric graph family
which appears naturally in many branches of combinatorics, namely on the incidence
graphs of projective planes.

As in Definition 2.1.2, we denote the distance of two vertices u and v in a
connected graph G with d(u, v). For an ordered setW = {w1, w2, . . . , wk} of vertices
in a connected graph G and a vertex v of G, the k-vector (ordered k-tuple)

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))

is referred to as the (metric) representation of v with respect to W . The set W
is called a resolving set for G if the vertices of G have distinct representations. A
resolving set containing a minimum number of vertices is called a minimum resolving
set of G. The number of vertices of a minimum resolving set is the so-called metric
dimension and denoted by µ(G).

The distance concept was naturally generalized to subsets of points due to Char-
trand et al. [36]. For an ordered k-partition S = {S1, S2, . . . , Sk} of V (G) and a
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vertex v of G, the representation of v with respect to S is defined as the k-vector

r(v|S) = (d(v, S1), d(v, S2), . . . , d(v, Sk))

where d(v, Si) := mins∈Si
d(v, s) for i = 1, 2, . . . , k. The partition S is called a

resolving partition if the k-vectors r(v|S), v ∈ V (G), are distinct. The minimum k

for which there is a resolving k-partition of V (G) is the partition dimension pd(G)
of G. We note that the notation also make sense if S is any family of sets. Generally,
we say that a set system separates a vertex set if no two vertices have equal distances
from every set of the set system.

Both dimension concepts has been widely investigated, see [34, 37, 45] for surveys.
Although they are analogously defined and there are connections between the two
parameters, in general, they are not similar in nature. To illustrate this phenomenon,
we recall some results concerning µ(G) and pd(G).

Result 4.1.1 (Chartrand et al. [36]). pd(G) ≤ µ(G) + 1 for all graphs G.

Result 4.1.2 (Chappell et al. [37]). For any given natural numbers α and β with
3 ≤ α ≤ β + 1, there exists a graph G where µ(G) = β and pd(G) = α.

The study of dimension parameters concerning incidence graphs of designs or
geometries has been initiated only recently by Bailey and others in [32, 33, 37, 12].
Note that a similar concept of identifying codes in special graphs is also studied
recently [38, 42].

Let Πq be an arbitrary finite projective plane of order q with point set P and
line set L. As in Definition 2.3.2 we denote the plane by PG(2, q) if we assume that
the plane is built on a finite field Fq. The incidence graph of a plane Πq is denoted
by G(Πq) (see Definition 2.2.4). We will denote the classes of the bipartite graph
G(Πq) by P [G(Πq)] and L[G(Πq)], corresponding to points and lines, respectively.
Similarly, we introduce this notation for any subset Z of the vertex set of G(Πq) in
general, namely P [Z] will denote those vertices of Z which correspond to the points
of Πq and L[Z] will denote those vertices of Z which correspond to the lines of Πq.
The metric dimension of this incidence graph was determined by Héger and Takáts
in [12].

Result 4.1.3 (Héger,Takáts [12]). If q is large enough, then µ(G(Πq)) = 4q − 4.

Chappell, Gimbel and Hartman [37] gave bounds on the partition dimension
pd(G) in terms of the diameter diam(G) of the graph G and investigated the case
diam(G) = 2. They mentioned that investigating the order of a graph with given
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partition dimension and diameter appears to be more difficult when the diameter
exceeds two. The incidence graph of projective planes provides an infinite family for
well structured graphs of diameter three, so this can also be considered as a partial
motivation for the following problem, besides Result 4.1.3 by Héger and Takáts.

Problem 4.1.4. Determine the partition dimension of the incidence graph of a
finite projective plane.

We determine the partition dimension of the incidence graph G(Πq) of the pro-
jective plane Πq up to a constant factor 2. Our main results are as follows.

Theorem 4.1.5. The partition dimension of the incidence graph of a projective
plane of order q is at least (2 + o(1)) log2 q.

Theorem 4.1.6. The partition dimension of the incidence graph of a projective
plane of order q is at most (4 + o(1)) log2 q.

Note that in view of a general bound of Theorem 3.1 in Chappell [37] concerning
the maximal degree of the graph, pd(G(Πq)) ≥ log3(q + 2).

In the next section we prove Theorem 4.1.5, and the section after that is devoted
to derive Theorem 4.1.6 using probabilistic and graph theoretic tools. A survey on
applications of the probabilistic method in finite geometry can be found in a paper
of Gács and Szőnyi [39]. Finally, we discuss open problems in the last section of this
chapter.

4.2 Proof of the lower bound

We are going to show that pd(G(Πq)) is at least of size (2 + o(1)) log2 q.
To this end, let us consider a resolving partition S with sets
{P1,P2, . . . ,Pr,L1,L2, . . . ,Ls,M1,M2, . . . ,Mt} such that Pi ⊆ P [G(Πq)],
Lj ⊆ L[G(Πq)] and Mk is a mixed subset containing vertices from both P [G(Πq)]
and L[G(Πq)]. Since S is a resolving partition we know that for all vertices of the
incidence graph the corresponding vectors are pairwise different. Let us examine
the possible values of the coordinates of these vectors depending on the type
(corresponding to point or line) of the vertex v.
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1. If v ∈ P [G(Πq)], then

• d(v,Pi) =

 0 v ∈ Pi
2 otherwise.

• d(v,Lj) =

 1 there is a line in Lj which is incident with v
3 otherwise.

• d(v,Mk) =


0 v ∈Mk

1 there is a line in Mk which is incident with v
2 otherwise.

2. If v ∈ L[G(Πq)], then

• d(v,Lj) =

 0 v ∈ Lj
2 otherwise.

• d(v,Pi) =

 1 there is a point in Pi which is incident with v
3 otherwise.

• d(v,Mk) =


0 v ∈Mk

1 there is a point in Mk which is incident with v
2 otherwise.

Note that if there is a partition class which contains only one type of vertices,
then by this last observation one can distinguish all the vertices of P [G(Πq)] from
the vertices of L[G(Πq)]. Moreover, if we consider two vertices which are of the same
type then their vector is different if they are not in the same partition class. But we
know that there is a partition class which contains at least q2+q+1

s+t many lines and
also there is a class which contains at least q2+q+1

r+t many points.
For these lines, their representation vectors are the same in the coordinates

corresponding to the subsets Lj. The number of coordinates remaining to distinguish
two such lines depends on the type of their partition class. Namely, if this class is
a class with just lines then it’s r + t but when this class is a mixed class then it’s
just only r + t− 1. Since the values of these remaining coordinates could only be 1
or 3 for the coordinates corresponding to a subset Pi and could only be 1 or 2 for
the mixed classes because they do not contain these. Hence the following inequality
has to hold:

2r+t−1 ≥ q2 + q + 1
s+ t

.
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By the principle of duality (see Definition 2.2.3 and the next paragraph) a similar
argument works for the points, too. It gives that

2s+t−1 ≥ q2 + q + 1
r + t

.

We would like to minimize r + s + t under the above conditions. One can
easily see that the minimum could be reached by taking s = r = 0 (Note: in this
setup one should be careful because the points and the lines are not automatically
distinguished). In that case the two conditions happen to be the same:

t · 2t−1 ≥ q2 + q + 1.

Hence the theoretical lower bound on the partition dimension number follows.

4.3 Proof of the upper bound

Here we prove that pd(G(Πq)) ≤ (4 + o(1)) log2 q. First, we will outline the con-
struction that provides the desired bound and introduce some key tools. Next, we
prove two lemmas concerning the main ingredients of our constructions. Finally, we
show that the construction is indeed a resolving partition.

Notation 4.3.1. Choose an incident pair of point P̃0 and line ˜̀0 and call them the
support of the construction (see Figure 4.1a). Denote the points incident to ˜̀

0 by
P̃i (i ∈ [0, q]) and the lines incident to P̃0 by ˜̀

i (i ∈ [0, q]). We call the point set
{P̃i : 0 < i ≤ q} and line set { ˜̀i : 0 < i ≤ q} major points and major lines in the
construction, respectively. The set C := {P̃i : 0 < i ≤ q} ∪ { ˜̀i : 0 < i ≤ q} is the
core of the construction. Let us call the points and lines which are not in the core
common points and common lines (altogether the common vertices).

Construction 4.3.2. Our partition set system H consists of 4 subsystems:

H = {H0} ∪ H1 ∪H2 ∪ {H−1},

where H1 = ⋃k
i=1Hi, H2 = ⋃k+l

i=k+1Hi. H0 is defined as H0 := {P̃i | i ∈ [1 . . . q]},
furthermore H−1 is defined so that it completes the system, that is, ⋃k+l

i=−1Hi =
P [G(Πq)] ∪ L[G(Πq)] with H−1 being disjoint from any other Hi.

Let us define the set system H1. Any H ∈ H1 is built up as follows: choose a
major point P̃i and a major line ˜̀

j which will be the base of the set H. Divide the
point set ˜̀j \ P̃0 into two equal parts (if q is odd then divide it into two almost equal
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(a) The support of the construction (b) Example of a ζ-set

Figure 4.1:

parts, i.e. of size
⌈
q
2

⌉
and of size

⌊
q
2

⌋
). Put the points of the first part into H and

put also every line determined by P̃i and points of the second part. This way |H| = q

will hold for every element of H1. Any subset of P ∪ L that can be created this way
is called a ζ-set (on the base point P̃i and base line ˜̀j). We include Figure 4.1b here
to help the reader imagine a ζ-set.

Approximately k ≈ 3 log2 q ζ-sets will be chosen randomly in such a way that
almost all points and lines are uniquely determined by the distances from the sets of
H1, if we restrict ourselves to the common vertices.

Finally, H2 consists of l ≈ log2 q sets which will distinguish all of the remaining
non-separated pairs of vertices.

Through the following lemmas, we show the existence of such set systems.

Lemma 4.3.3. One can choose k suitable ζ-sets in such a way that they separate
almost all pair of elements from (P \ {P̃i}) and from (L \ { ˜̀i}). There can be at
most m(k) pairs in total which remained unseparated with

m(k) =
2
(
q2

2

)
2k .

Proof. First, we choose k points and k lines from the major point and line set
uniformly at random, and index them by P̃i and ˜̀

i, i ∈ [1 . . . k]. Next, we choose k
ζ-sets (on the base points P̃i and base line ˜̀i, by taking b q2c points from each line ˜̀i
uniformly at random, leaving the support point intact. This enables us to calculate
the expected value of not-separated pairs.
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We distinguish the cases when the pair is a pair of point or pair of lines, but note
that the two cases are similar due to the symmetry of the ζ-sets and the duality of
the structure.

In the calculation below, we omit the integer part for transparency (that is, we
consider the case q is even) but it is straightforward to see that the reasoning works
for the q odd case as well.

Let Q and Q′ be two random points in P\{P̃i}. The probability of the separation
essentially depends on two factors: whether or not QQ′ intersects ˜̀0 in a point P̃t,
t ∈ [1 . . . k]; and whether or not one of Q and Q′ is incident to ˜̀

t. These subcases
provide the following for a random point pair:

P(Q,Q′ not separated by k random ζ-set) =

P(Q,Q′ not separated by k random ζ-set & QQ′ ∩ ˜̀0 6∈ {P̃t, t ∈ [1 . . . k]})+

P(Q,Q′ not separated by k random ζ-set & QQ′ ∩ ˜̀0 ∈ {P̃t, t ∈ [1 . . . k]})

≤ q − k + 1
q + 1

(
q − 2
2q − 2

)k
+ k

q + 1

q − 1
q

(
q − 2
2q − 2

)k−1
 .

Indeed, suppose first that QQ′ intersects ˜̀0 in a point outside P̃t, t ∈ [1 . . . k].
That case, for every ζ-set H on the base P̃i, ˜̀i, d(Q,H) 6= d(Q′, H) holds if exactly
one of the lines P̃iQ, P̃iQ′ belongs to H, hence the probability of separation by H
is at least

q
2

q−1 . (Note that equality does not hold here as Q or Q′ might be a point
of the ζ-set.)

On the other hand, if QQ′ intersects ˜̀
0 in a point P̃t, t ∈ [1 . . . k], then the

above argument works for all but one ζ-set, H (on the base P̃t, ˜̀t). However, if
Q 6∈ ˜̀

t, Q
′ 6∈ ˜̀

t, then d(Q,H) = d(Q′, H) surely holds, while if Q ∈ ˜̀
t, or Q′ ∈ ˜̀

t,
then d(Q,H) 6= d(Q′, H) only if Q or Q′ is a point in H.

An easy calculation shows that

q − k + 1
q + 1

(
q − 2
2q − 2

)k
+ k

q + 1

q − 1
q

(
q − 2
2q − 2

)k−1
 <

(1
2

)k
.

Taking into consideration the number of point pairs, and the dual case for the
number of line pairs, we obtain a bound on the expected value of the non-separated
point pairs and line pairs:
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E(not separated pairs by k random ζ-set) =

2
(
q2

2

)
P(Q,Q′ not separated by k random ζ-set) <

2
(
q2

2

)
2k .

The statement thus follows.

Lemma 4.3.4. One can choose a system H2 of dlog2 qe disjoint sets consisting of
both points and lines which are disjoint to the ζ-sets and to the major points as well
such that with these new sets the corresponding representations of the vertices will
be pairwise different.

Proof. Let us look at a table of the representations of the vertices so far, with Hij

denoting a chosen ζ-set on base point P̃i and base line ˜̀j.
P̃0 P̃1 . . . . . . P̃q P1 . . . Pq2 ˜̀

0
˜̀
1 . . . ˜̀

j . . . ˜̀
q `1 . . . `q2

H0 2 0 . . . 0 . . . 0 2 1 3 . . . 3 . . . 3 1
Hij ∈ H1 2 2 . . . 2 1 2 . . . 2 0/1/2 2 2 . . . 2 1 2 . . . 2 0/1/2

Considering this table, one can determine which pairs of vertices could have the
same representation:

1. pairs of common vertices not being separated after Lemma 4.3.3,

2. pairs of major points and also pairs of major lines (which are not basis of ζ-sets
in H1),

3. the support line and some common lines and dually the support point and
some common points may form some non-separated pairs.

These are the only possibilities which we need to take care of with the suitable
choice of H2. We will build up an element H of H2 in the following way. By using
the known results in the theory of searching sets we can define L[H], and then
P [H] will be chosen in the same way dually. Before that we need some structural
observations.

We make an auxiliary graph X with vertex set consisting of those common
vertices which are in the remaining non-separated pairs and two such vertices are
joined with an edge if they have the same representation so far. Clearly X is just the
disjoint union of some cliques. Moreover, by the choice of H0 in every clique either
every vertex is a point of Πq or every vertex is a line of Πq. Just for convenience let us
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assume that we choose k = d3 log2 qe+ 3 ζ-sets in the first part of the construction.
It means by Lemma 4.3.3 that we have at most q

8 pairs of vertices which have not
been separated yet. Hence the number of edges in X is at most q

8 . Together with
the observation above we get that X has at most q

4 vertices.
Modify X a little bit by adding the support point and line to it if needed (let

us call the graph we get this way X ′), namely whenever there is a common point or
line which is non-separated from the support point or line respectively. There are
three options for P̃0 (and similarly for ˜̀0):
• P̃0 has already been separated from every other vertex in G(Πq).

• P̃0 has the same representation as some of the points of X, hence joins that
clique in X ′.

• P̃0 has the same representation as a common point not in X (hence it’s exactly
one vertex), therefore they both inserted into X ′ with an edge between them.

Either way the number of vertices in X ′ is at most q
4 + 4. Denote the vertices

in X ′ ∩ P [G(Πq)] with P [X ′] and similarly L[X ′] will denote the vertices in X ′

corresponding to a line of Πq. By the note above we know that there is no edge in
X ′ between P [X ′] and L[X ′].

Now let us recall the notion of a searching set for a search problem. Roughly
speaking we would like to distinguish all elements of a set by pointing out some
subsets and create a 0-1 vector for every element of the set where the value of
the jth coordinate is 1 if and only if this element is inside the jth chosen subset.
These distinguishing subsets are also called searching sets. It is known that for an n
element set we need dlog2 ne such searching sets to reach our goal by distinguishing
all of the elements of the set.

The main idea behind the selection of L[H] is based on these searching sets.
Namely, we will consider a family of searching sets on the q major points and also
on P [X ′] and on L[X ′] too, with sizes half of their corresponding domain set. For
an H ∈ H2 we will choose one of the searching sets for the major points, for P [X ′]
and also for L[X ′]. Let us denote these searching sets with T (H), Q(H) and R(H)
respectively. We can assume that P̃0 and ˜̀

0 are always outside of every chosen
searching set without loss of generality.

We are going to prove that we can find q
2 such common lines (they will form

L[H]) which satisfy the following properties:
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• through every point in T (H) there is exactly one line from L[H],

• through every point in Q(H) there is exactly one line from L[H],

• they are not going through any point of P [X ′] \Q(H) =: Q(H)C ,

• they are not in L[X ′] \R(H) =: R(H)C ,

• they have not been assigned to any set in our construction yet.

Figure 4.2: An appropriate searching set

Let us call those common lines which satisfy the last three requirements free
lines. Let us make another auxiliary graph denoted by Y which is a bipartite graph
where the first class consists of the vertices of T (H) and the other class is just
P [G(Πq)] \

(
∪q+1
i=0 P̃i

)
\Q(H)C and there is an edge between two vertices (obviously

from different classes) iff the line defined by these two vertices is a free line. We
need to give a lower bound on the number of free lines through an arbitrary point
from T (H) and also from Q because of the first two requirements.

Consider a point v ∈ T (H). Through this point there are q common lines but it
may happen that this point was chosen as a base to a ζ-set therefore it is possible
that q

2 of these common lines were used before. Since we are not going to use
lines through the points of Q(H)C and lines from R(H)C it could rule out another
|Q(H)C | + |R(H)C | = 1

2

(
q
4 + 4

)
= q

8 + 2 lines through v. Furthermore, if v was in
some searching sets on the major points before this phase then in every such case
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there was one line which was inserted into that particular set from H2. This gives
us a lower bound on the number of free lines through an arbitrary point of T (H):

|{free lines through v ∈ T (H)}| ≥ q − q

2 −
(
q

8 + 2
)
− log2 q = 3q

8 − log2 q − 2

Note that the degree of v in Y is at least q ·
(

3q
8 − log2 q − 2

)
because every free

line through v has q points on it which correspond to q edges in the graph. Consider
now an arbitrary point u ∈ Q(H). Through u there are q

2 common lines which meets
the support line in T (H). Again we do not want to use lines through the points of
Q(H)C and lines from R(H)C which could rule out q

8 + 2 lines just as above. If u
was in some searching sets on P [X ′] before this phase then in every such case there
was one line which was inserted into that particular set from H2. Hence:

|{free lines through u ∈ Q(H)}| ≥ q

2 −
(
q

8 + 2
)
− log2 q = 3q

8 − log2 q − 2

Now we can see that if q is large enough then there are many free lines through
these points in Y . Moreover, for an arbitrary point u ∈ Q(H) if we ignore those lines
which contains another point of Q(H) then there is at least 3q

8 −log2 q−2−
(
q
8 + 2

)
=

q
4 − log2 q − 4 such free lines through u. Let us consider the points of Q(H) one
by one then we can choose an edge (thus a free line) for the first one which fulfills
the requirements and does not contain any other points from Q(H). Drop the
meeting point of this line and the support line for any other points of Q(H) because
of the first requirement. Then we can continue this in a greedy way because of
the counting above (for the last member of Q(H) we drop another at most q

8 + 2
meeting points but the number of free lines through that point is still at least
q
4 − log2 q − 4−

(
q
8 + 2

)
= q

8 − log2 q − 6).
Now we just need to choose one line through every uncovered points of T (H)

carefully. Note that if we drop those lines through these points which meet Q(H)
(and in parallel delete the q edges for each of them from Y ) then again there remains
at least 3q

8 − log2 q−2−
(
q
8 + 2

)
= q

4− log2 q−4 free lines through them. By choosing
from the free lines greedily works again because of the calculations above. Dually
one can construct P [H] in a similar way which completes the set H ∈ H2. By
repeating this argument we can construct dlog2 qe such sets in H2 (we included the
decreasing of the degrees above therefore this greedy approach will work).

In the preceding paragraphs we just showed a way of choosing log2 q sets all of
which fulfills the requirements for its lines and dually for its points, too. The only
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thing remaining to verify is that these sets in H2 really take care of every pair of
non-separated vertices after choosing H0 and H1.

The major points (and dually the major lines) are indeed separated because for
a particular H ∈ H2 those major points will have coordinate 1 which are inside
T (H) since we chose a line going through them and the other major points have
coordinate 2. Since we chose a family of searching sets on these major points then
eventually they will be distinguished at the end. If we examine all of the other
remaining pairs we can notice that the coordinates for P̃0 and ˜̀

0 will be 2 for every
set in H2 and for a particular H ∈ H2 the points of Q(H) will have coordinate at
most 1 (we chose a line through them and maybe we put them into P [H]) but for
the points of Q(H)C the coordinate is surely 2 (did not choose a line through them
and we exclude them from being in P [H]). Similar arguments hold for the lines of
R(H) and R(H)C . Again, since we chose a family of searching sets on the P [X ′]
and on L[X ′] all of the remaining pairs will be separated, too.

Observe that by adding all of the non-used vertices of G(Πq) to H−1 we obtain
a resolving partition indeed, with 1 + (3dlog2 qe + 3) + dlog2 qe + 1 ≤ 4dlog2 qe + 5
classes which completes the proof of Theorem 4.1.6.

Remark 4.3.5. One can easily see that in these Lemmas we do not rely heavily on
the parity of q, if q is odd everything still works with slight modifications. Indeed, the
probability that a point pair Q,Q′ is not separated by k random ζ-sets is still at most
1
2k in Lemma 4.3.3 if q is odd, and likewise in Lemma 4.3.4, the inequalities were
not sharp in the conditions of the greedy algorithm and hold in the corresponding
case as well.

4.4 Further related problems and remarks

Although the lower and upper bounds we proved do not match, we strongly believe
that the construction given in the upper bound is optimal in some sense. The reason
for this is the following: one has to create a set system where the majority of the sets
contain neither more points nor more lines than cq for a small constant c. Indeed,
the result of Blokhuis [35] implies that cq lines are incident with at least roughly
c
c+1q

2 points, hence a set containing this many lines assign the same distance for the
majority of the points.
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This observation in fact improves our lower bound via the result of Katona [41]
on separating systems of given size, but only in the remainder term. Thus several
questions remain open concerning the optimal construction.

Problem 4.4.1. Can the above bounds be improved if the plane is coordinatized,
that is, G is the incidence graph of the plane PG(2, q)?

Problem 4.4.2. Prove that there exists a constant c for which pd(G(Πq)) = (c +
o(1)) log2 q.

Our construction is mainly based on sets of collinear points and lines forming a
pencil, in order to separate approximately half of the lines (incident to the points)
from the other lines and do the same for the points for every set in the resolving
partition. Note that the points of a maximal arc and the dual configuration has the
same property. This motivates the following natural question.

Problem 4.4.3. Does there exist a set of disjoint ovals in Πq of cardinality c log2 q

(c ≤ 4) which separates the lines of the projective plane Πq?

A related problem only requires a set of ovals to cover (intersect) every line.

Problem 4.4.4. What is the minimal cardinality of a set of (disjoint) ovals in Πq

for which no line is skew to all of them?

It is believed, see Illés, Szőnyi, Wettl and Ughi [44, 46], that the order of mag-
nitude is O(log q) for q odd, which provides O(q log q) points on the plane, even the
size of small minimal blocking (point)sets is much less. Note that the q even case is
completely different, where 3 ovals can cover every line in the Galois plane PG(2, q)
due to Illés, Szőnyi and Wettl [44].

Our result can also be considered as a first step to the determination of the par-
tition dimension of incidence graphs of symmetric structures in general, analogously
to the metric dimension case.





Chapter 5

Spreading linear triple systems
and expander triple systems

5.1 Introduction

A Steiner triple system S of order n, briefly STS(n), consists of an n-element set V
and a collection of triples (or blocks) of V , such that every pair of distinct points in
V is contained in a unique block. It is well known due to Kirkman [63] that there
exists an STS(n) if and only if n ≡ 1, 3 (mod 6), these values are called admissible.
Steiner triple systems correspond to triangle decompositions of the complete graph
G = Kn. In the context of triangle decompositions of a graph G, an edge will always
refer to a pair of vertices which is contained in one triple of a certain triple system,
E(G) denotes the edge set of G, while |S| is the number of triples in the system,
which obviously equals 1

3 |E(G)| in the case of triple systems obtained from triangle
decompositions of a graph G.

A nontrivial Steiner subsystem of S is a STS(n′) induced by a proper subset
of V , with n′ > 3. Speaking about a subsystem, we always suppose that it is of
order greater than 3. Similarly, we call a subset V ′ ⊂ V of the underlying set of
a triple system F nontrivial if it has size at least 3 and it is not an element of
the triple system. Our aim is to generalize and strengthen the results concerning
the subsystem-free property of Steiner triple systems, and in general, linear triple
systems, also called linear 3-graphs.

This chapter is devoted to the study of two main features of linear triples systems
in an extremal hypergraph theory aspect. The first property is the expander property
while the second is the so-called spreading property. In 1973, Erdős formulated the
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following conjecture.

Conjecture 5.1.1 (Erdős, [57]). For every k ≥ 2 there exists a threshold nk such
that for all admissible n > nk, there exists a Steiner triple system of order n with the
following property: every t+ 2 vertices induce less than t triples of S for 2 ≤ t ≤ k.

This conjecture is still open, although recently Glock, Kühn, Lo and Osthus
[61] and independently Bohman and Warnke [50] proved its asymptotic version. In
other words, this conjecture asserts the existence of arbitrarily sparse Steiner triple
systems.
One should note here that it is also a natural question whether typical Steiner
triple systems are sparse in a very robust sense, namely that they do not contain
Steiner subsystems. Indeed, this is equivalent to avoid a set of t < n vertices
inducing quadratically many, 1

3

(
t
2

)
triples. The first result in this direction was due

to Doyen [55], who proved the existence of at least one subsystem-free STS(n) for
every admissible order n. In the language of triangle decompositions of the edge set,
a subsystem-free STS may be seen as a decomposition where every subset V ′ ⊂ V (G)
contains at least one edge which belongs to a triangle not induced by V ′. In order
to capture this phenomenon and its generalisation, we require some notation and
definitions.

Definition 5.1.2. Given a 3-uniform linear hypergraph F (i.e. linear triple system),
let E(F) be the collection of vertex pairs (x, y) for which there exists a triple (x, y, z)
from the system F , containing x and y. The corresponding graph G(F) is referred
to as the shadow of the system.

Definition 5.1.3. Consider a graph G = G(V,E) that admits a triangle decomposi-
tion. This decomposition corresponds to a linear triple system F . For an arbitrary
set V ′ ⊂ V , N(V ′) denotes the set of its neighbours:

z ∈ N(V ′)⇔ z ∈ V \ V ′ and ∃xy ∈ E(G[V ′]) : {x, y, z} ∈ F .

The closure cl(V ′) of a subset V ′ w.r.t. a (linear) triple system F is the smallest
set W ⊇ V ′ for which |N(W )| = 0 holds. Note that the closure uniquely exists for
each set V ′. We call a (linear) triple system F spreading if cl(V ′) = V for every
nontrivial subset V ′ ⊂ V .

Consequently, a STS(n) is subsystem-free if and only if |N(V ′)| > 0 holds for all
nontrivial subsets V ′ of the underlying set V of the system. Note that Doyen used
the term non-degenerate plane for STSs with the spreading property [55, 56].
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Two natural extremal questions arise here. The first one concerns the lower
bound on |N(V ′)| in terms of |V ′| in the case of Steiner triple systems, while the
second one seeks for edge-density conditions on triangle decompositions of general
graphs G = G(V,E), i.e. linear triple systems, where the condition |N(V ′)| > 0
must hold for all nontrivial subsets of V .

Problem 5.1.4 (Expander STSs). Does there exist an infinite family of Steiner
triple systems STS(n) such that for some ε > 0, |N(V ′)|

|V ′| ≥ ε for every nontrivial
V ′ ⊂ V (G) provided that |V ′| ≤ |V |

2 ? How large ε > 0 can be?

This can be interpreted as the analogue of the expander property of graphs and
the vertex isoperimetric number [47]. Similar generalized concepts for expanding
triple systems were introduced very recently by Conlon and his coauthors [52, 53],
see also the related paper [59] by Fox and Pach. Observe however that their definition
is slightly different for a triple system to be expander.

Problem 5.1.5 (Sparse spreading linear triple systems). What is the minimum size
ξsp(n) of a linear spreading triple system F on n vertices?

For these triple systems, the closure of any nontrivial subset with respect to the
underlying graph of the triple system is the whole system.

Note that one might require only a weaker condition, namely that the closure of
any nontrivial subset of the triple system F (i.e. consisting of at least two triples)
should be the whole system. In applications this condition is equally important,
since it models whether every set of hyperedges has a direct influence on the whole
system. For this concept, we introduce the following notation.

Notation 5.1.6. A triple system F is weakly spreading if cl(V ′) = V holds for
every

V ′ = V (F ′) : F ′ ⊆ F , |F ′| > 1.

Problem 5.1.7 (Sparse weakly spreading linear triple systems). What is the mini-
mum size ξwsp(n) of a linear weakly spreading triple system F on n vertices?

Our main results are as follows.

Theorem 5.1.8. For odd prime number p, there exists a Steiner triple system
STS(3p) of order 3p, for which |N(V ′)| ≥ |V ′| − 3 holds for every V ′ ⊂ V (G)
of size |V ′| ≤ |V |

2 .

The result is clearly sharp.
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Corollary 5.1.9. For every sufficiently large n, there exists a Steiner triple system
STS(n) of order n, for which

|N(V ′)| ≥ |V ′| − 3

for every V ′ ⊂ V (G) of size |V ′| ≤ |V |
2 , where n ∈ [n− n0.525, n]. Consequently, for

every n one can find a Steiner triple system S of size |S| = (1 + o(1))n2

6 which is
almost 1-expander.

As we will see, much smaller edge density compared to that of STSs’ still enables
us to construct spreading linear triple systems.

Theorem 5.1.10. For the minimum size of a spreading linear triple system, we
have

0.1103n2 < ξsp(n) <
( 5

36 + o(1)
)
n2 ≈ 0.139n2

Surprisingly, the weak spreading property does not require a dense structure at
all.

Theorem 5.1.11. For the minimum size of a weakly spreading linear triple system,
we have

n− 3 ≤ ξwsp(n) < 8
3n− 6

√
n.

5.2 Expander property of Steiner triple systems

In order to prove Theorem 5.1.8, we recall first the STS construction of Bose and
Skolem for n = 6k+ 3 where 2k+ 1 is a prime number, and the well-known Cauchy-
Davenport theorem with its closely related variant, the result of Dias da Silva and
Hamidoune about the conjecture of Erdős and Heilbronn. We refer to the book of
Tao and Vu [67] on the subject.

Result 5.2.1 (Cauchy-Davenport). For any prime p and nonempty subsets A and
B of the prime order cyclic group Zp, the size of the sumset A+B = {ai + bj | ai ∈
A, bj ∈ B} can be bounded as |A+B| ≥ min{p, |A|+ |B| − 1}.

Result 5.2.2 (Erdős-Heilbronn conjecture, Dias da Silva and Hamidoune ’94). For
any prime p and any subset A of the prime order cyclic group Zp, the size of the
restricted sumset A+̇A = {ai + aj | ai 6= aj ∈ A} can be bounded as |A+̇A| ≥
min{p, 2|A| − 3}.
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Construction 5.2.3 (Bose and Skolem, case n = 6k + 3). Let the triple system S
be defined in the following way. The underlying set is partitioned into three sets of
equal sizes, V (S) = A ∪ B ∪ C, where |A| = |B| = |C| = 2k + 1. Elements of each
partition class are indexed by the elements of the additive group Z2k+1. The system
S contains the triple T , if

• T = {ai, bi, ci}, i ∈ Z2k+1, or

• T = {ai, aj, bk}, i 6= j ∈ Z2k+1, k = 1
2(i+ j), or

• T = {bi, bj, ck}, i 6= j ∈ Z2k+1, k = 1
2(i+ j), or

• T = {ci, cj, ak}, i 6= j ∈ Z2k+1, k = 1
2(i+ j).

See Stinson [66] for further details and generalisations.

Proof of Theorem 5.1.8. Consider a subset V0 = A0 ∪B0 ∪C0 of the underlying set
V (S) = A ∪ B ∪ C, where |V0| ≤ n

2 . In order to bound N(V0), we prove a lower
bound on V0 ∪ N(V0). Observe that a vertex v belongs to V0 ∪ N(V0) if and only
if there exist two elements of V0 together which they form a triple of S. Let us
denote by A∗, B∗, C∗ the restrictions of V0 ∪N(V0) to the partition classes A,B,C.
The structure of Construction 5.2.3 and Results 5.2.1 and 5.2.2 in turn implies
the following sets of inequalities of type Cauchy–Davenport and Erdős–Heilbronn,
respectively.

|A∗| ≥ min{p, | − A0|+ |B0| − 1} if |A0|, |B0| > 0,

|B∗| ≥ min{p, | −B0|+ |C0| − 1} if |B0|, |C0| > 0,

|C∗| ≥ min{p, | − C0|+ |A0| − 1} if |C0|, |A0| > 0.

(5.2.1)

|A∗| ≥ min{p, 2|C0| − 3},

|B∗| ≥ min{p, 2|A0| − 3},

|C∗| ≥ min{p, 2|B0| − 3}.

(5.2.2)

Note that in the Erdős-Heilbronn-type inequalities (5.2.2), the lower bound can be
improved by one if the set consists of a single element. We distinguish several cases
according to the sizes of the sets A0, B0, and C0.

First suppose that two of these partition sets are empty. In this case, one Erdős-
Heilbronn-type inequality (5.2.2) in turn provides the desired bound.
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Next suppose that exactly one of these sets, say C0, is empty. Thus we may apply
two Erdős-Heilbronn type and one Cauchy-Davenport type inequality to obtain

|(A∗ \ A0) ∪ (B∗ \B0) ∪ (C∗ \ C0)| ≥

min{p, |A0|+ |B0| − 1} − |A0|+ min{p, 2|A0| − 3} − |B0|+ min{p, 2|B0| − 3}.

Hence it is enough to show that

min{p, |A0|+ |B0|−1}+ min{p, 2|A0|−3}+ min{p, 2|B0|−3} ≥ 2(|A0|+ |B0|)−3

holds when both sets consist of at least two elements, otherwise the proof is straight-
forward. Then, depending on the relation between p, |A0| and |B0|, we may apply
either 3p ≥ 2(|A0|+ |B0|) or p ≥ {|A0|, |B0|} ≥ 2 to get the desired bound.

Finally, suppose that none of A0, B0, C0 are empty, i.e., we can apply all the
inequalities of (5.2.1) and (5.2.2). In order the finish the proof, consider the following
proposition, the proof of which is straightforward.

Proposition 5.2.4. Suppose that z ≥ min{p, q1} and z ≥ min{p, q2} holds for
z, q1, q2 ∈ Z. Then

z ≥ min{p, dλq1 + (1− λ)q2e}

also holds for λ ∈ [0, 1].

We apply Proposition 5.2.4 where |A0|, |B0| and |C0| takes the role of z with the
corresponding lower bounds of (5.2.1) and (5.2.2) and λ = 1

3 , which provides

|A∗| ≥ min
{
p,

1
3(2|C0| − 3) + 2

3(|A0|+ |B0| − 1)
}

|B∗| ≥ min
{
p,

1
3(2|A0| − 3) + 2

3(|B0|+ |C0| − 1)
}

|C∗| ≥ min
{
p,

1
3(2|B0| − 3) + 2

3(|C0|+ |A0| − 1)
} (5.2.3)

By summing them up, this would imply a slightly weaker bound

|A∗ ∪B∗ ∪ C∗| ≥ 2(|A0|+ |B0|+ |C0|)− 5.

However, it is impossible to have equality in all the inequalities of (5.2.3). Indeed,
suppose that C0 has the least size among the three sets A0, B0, C0. Then we could
have use a better lower bound (|A0| + |B0| − 1) for |A∗| in the first line of (5.2.3),
which would yield an improvement of at least 4

3 except when |C0| ≥ |A0| − 1 and
|C0| ≥ |B0|−1 moreover one of these inequalities is strict, say the one corresponding
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to B0. But in the latter case, we still get an improvement of 2
3 corresponding to

|A∗| ≥ min{p, 1
3(2|C0| − 3) + 2

3(|A0|+ |B0| − 1)}, and we get another improvement
of 2

3 corresponding to |C∗| ≥ min{p, 1
3(2|B0| − 3) + 2

3(|C0| + |A0| − 1)}, as B0 is a
set of least size among the three sets A0, B0, C0 as well. Thus by taking the ceiling,
we get the desired bound.

5.3 Spreading linear triple system

5.3.1 Proofs – lower bounds

Doyen [55] proved the existence of spreading Steiner triple systems for every admis-
sible order n, and applied the name non-degenerate plane for such systems. In this
section, we investigate how much sparser a linear triple system can be to keep its
spreading property. It follows immediately that such a system F should be dense
enough compared to a STS(n). Indeed, the complement of the shadow G(F) must
be triangle-free, which in turn implies 1

12n
2 < |F| according to the theorem of Mantel

and Turán.

Proof of Theorem 5.1.10, lower bound. Our aim is to obtain an upper bound on
E(G), the number of edges not covered by the triples of a linear spreading system
that is denoted by F . We start with three simple observations.

(1) G does not contain K3.

(2) For every claw K1,3 in G, the leaves cannot determine a triple of F .

(3) For every pair of triples of F which share a vertex, the corresponding 5-vertex
graph in G cannot contain more than 3 edges.

Let F denotes a 4-vertex subgraph of the shadow G obtained from a triple T of
F and a vertex adjacent to exactly one vertex of the triple in G. Such a vertex is
called the private neighbour of T . Counting the pairs of edges of G, we get that the
number of F subgraphs of G is ∑

v

(
d(v)

2

)
.

Indeed, every such pair adjacent non-edge vu, vu′ spans an edge hence determines
the triple {u, u′, u′′} by observation (1), and vu′′ must be an edge in G in view of
observation (2).



38 Spreading linear triple systems and expander triple systems

On the other hand, every subgraph F can be determined by a triple T and one
of its private neighbours. Let the value of the triple T , Val(T ) denote the number
of private neighbours of the triple T , i.e., the number of F subgraphs corresponding
to the triple. We thus obtain

∑
v

(
d(v)

2

)
=
∑
T∈F

Val(T ). (5.3.1)

Observe that |F| = 1
6(2

(
n
2

)
−∑v d(v)), moreover Val(T ) ≤ n−3 clearly holds for

every triple T . By the application of the bound Val(T ) ≤ n− 3, one would directly
derive E(G) ≤

√
13−1
12 n2 + O(n) ≈ 0.21n2 from Equation 5.3.1. However, this upper

bound on Val(T ) cannot be sharp for every triple: if the value of a triple is much
larger than n

2 , then many triples have value less than n
2 . To understand better this

situation, take a triple T = {v1, v2, v3}, and denote by N∗i the vertices which are
connected only to vi from the triple {v1, v2, v3}, for i ∈ {1, 2, 3}.

Observation 5.3.1. G[N∗1 ∪N∗2 ∪N∗3 ] is a complete graph.

Proof. Indeed, since every pair of vertices from this class has a common non-
neighbour, thus they must be joined in G to avoid a K3 in G.

Now we define a new graph G = G(F) as follows: we assign a vertex to every
triple T ∈ F , and we join T and T ′ if a pair from each span a C4 in G.

Proposition 5.3.2. Suppose that T ∼ T ′ in G. Then Val(T ) + Val(T ′) ≤ n.

Proof. Without loss of generality, we may suppose that T = {v1, v2, v3}, T ′ ⊃ {u,w},
and {u,w} ⊂ N∗1 . Observe that Val(T ) = |N∗1 ∪ N∗2 ∪ N∗3 |. On the other hand,
Observation 5.3.1 implies that each vertex of the private neighbourhood set N∗1 ∪
N∗2 ∪N∗3 is connected to at least 2 vertices of T ′, hence Val(T ′) ≤ n− Val(T ).

We partition the vertex set of G to vertices with Val(T ) ≥ n
2 (class A) and with

Val(T ) < n
2 (class B). Consider now the bipartite graph G[A,B]. We obtain lower

and upper bound in this bipartite graph as follows.
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Proposition 5.3.3.

deg(T ) ≥ 1
3

(
Val(T )

2

)
if T ∈ A,

deg(T ′) ≤
(
n− Val(T )

2

)
if T ′ ∈ B, T ∼ T ′.

Proof. To prove the first bound, observe that every neighbour of T = {v1, v2, v3}
in G[A,B] corresponds to a pair of vertices in one of the sets N∗i (i = 1, 2, 3) that
supports a C4 in G, so

deg(T ) =
∑

i∈{1,2,3}

(
|N∗i |

2

)
≥ 1

3

(
Val(T )

2

)

by Jensen’s inequality.
To prove the second bound, observe that if T ′ and T ′′ span a C4 in G and T ′

and T also span a C4 in G by T ′ having two vertices in N∗i , then the pair from T ′′

supporting the C4 must be in V \ ⋃iN∗i . This in turn implies the assertion by the
formula Val(T ) = |N∗1 ∪N∗2 ∪N∗3 |.

Proposition 5.3.2 and 5.3.3 enables us to improve the upper bound on the average
value of the triples Val(T ) ≤ n− 3, and is carried out in the following Lemma.

Lemma 5.3.4. Suppose that a weighted bipartite graph G(A,B) is given under the
set of conditions

• Val : A→ [n2 , n] and Val : B → [0, n2 ) holds for the weight function;

• Val(v) + Val(v′) ≤ n ∀vv′ ∈ E(G) ;

• deg(v) ≥ 1
3

(
Val(v)

2

)
if v ∈ A;

• deg(v′) ≤
(
n−Val(v)

2

)
if v′ ∈ B, vv′ ∈ E(G).

Then ∑
v∈V (G)

Val(v) ≤ τn · |V (G)|, (5.3.2)

where τ ≈ 0.51829 is the unique local extremum of the rational function z(1−z)(3−2z)
4z2−6z+3

in the interval z ∈ [1
2 , 1].
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We finish the proof by applying Lemma 5.3.4, and then return to the proof of
Lemma 5.3.4. Equality (5.3.1) and the bound (5.3.2) together gives

∑
v∈V (G)

(
d(v)

2

)
=
∑
T∈F

Val(T ) < 0.5183 · n|F| (5.3.3)

On the other hand, since |F| = 1
6(2

(
n
2

)
−∑v∈V (G) d(v)), this provides

n

(∑
v∈V (G) d(v)

n

)2

+
(0.5183n

3 − 1
) ∑
v∈V (G)

d(v) ≤ 0.5183
3 (n3 − n2)

by the AMQM inequality. Introducing E(G) = 1
2
∑
v∈V (G) d(v), we get a quadratic

inequality for E(G) in terms of n, which gives the desired bound E(G) < 0.169n2 +
O(n).

Proof of Lemma 5.3.4. Instead of considering it as an involved convex optimisation
problem, the general idea is to obtain a biregular bipartite graph in which the
vertices has larger average value and optimise the average in the class of biregular
bipartite graphs. The proof is carried out in three main steps.

First take a vertex v0 of maximal value. We claim that for all of its neighbours
v′ ∈ B, the inequalities corresponding to them in Lemma 5.3.4 would hold with
equalities:

(i) Val(v′) = n− Val(v0),

(ii) deg(v′) =
(
n−Val(v0)

2

)
,

or else the average value could be increased. The claim for (i) is straightforward,
while for (ii) suppose that v′ ∈ N(v0) has smaller degree. Then one could take
1
3

(
Val(v0)

2

)
disjoint copies of G, add a new vertex v∗0 (of value Val(v0)) and join to

every copy of v′. Hence the conditions were fulfilled, while the average value would
be increased.

Similar argument shows that for each u ∈ A for which N(v0) ∩ N(u) 6= ∅,
deg(u) = 1

3

(
Val(u)

2

)
. Suppose it is not the case. Then for any v′ ∈ N(v0) ∩ N(u)

one could delete the edge uv′ in G, then take 1
3

(
Val(v0)

2

)
disjoint copies of the derived

graph and finally add a new vertex v∗0 (of value Val(v0)) and join to every copy of
v′.

Without loss of generality we can assume that for each u ∈ A for which
|N(v0) ∩ N(u)| = λu > 0 with a maximum value vertex v0, every neighbour v′
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of u is connected to a vertex of maximum value. Consider the following construc-
tion. We take m · deg(u) disjoint copies of G for an arbitrarily chosen m ∈ Z+ and
redistribute the neighbours of the copies of u in such a way that m · λu copies are
each joined to deg(u) distinct vertices from the copies of N(v0) ∩ N(u), and the
rest of the copies of u are each joined to deg(u) distinct vertices from the copies of
N(u) \N(v0). Since m can be chosen arbitrarily, this step can be performed at the
same time for each such vertex u (as m can be chosen as the least common multiple
of all of the corresponding degrees).

In order to maximize the average value of the vertices, we can clearly delete all
but one connected components of the graph, and hence we assume that every vertex
v′ ∈ B is connected to a vertex of maximum value. Now let us rewrite the average
value as

1
|V (G)|

∑
v∈V (G)

Val(v) = 1
|V (G)|

∑
v∈A

Val(v) +
∑

v′∈N(v)

Val(v′)
d(v′)

 .
Observe that the contribution of each vertex v ∈ A to the average is the weighted
sum

Val(v) +∑
v′∈N(v)

Val(v′)
d(v′)

1 +∑
v′∈N(v)

1
d(v′)

.

According to our previous considerations, we may assume that for all v′ ∈ B, we
have Val(v′) = n−Val(v0), moreover d(v′) =

(
n−Val(v0)

2

)
. In order to show that all the

vertices of A have the same degree we may compare the corresponding contributions
of a vertex v0 of maximum value and some other vertex u ∈ A which has the second
largest value.

Clearly either

Val(v0) + (n− Val(v0))d(v0)
d(v′)

1 + d(v0)
d(v′)

≥
Val(u) + (n− Val(v0)) d(u)

d(v′)

1 + d(u)
d(v′)

,

or
Val(v0) + (n− Val(v0))d(v0)

d(v′)

1 + d(v0)
d(v′)

<
Val(u) + (n− Val(v0)) d(u)

d(v′)

1 + d(u)
d(v′)

.

In both cases once again we can apply the above argument of copying the graph,
eliminating a vertices of a certain degree and redistributing its neighbourhood for
among new vertices of another fixed degree. This way we eliminate either the ver-
tices of maximum degree or of second maximum degree, while the average value is
monotonically increasing. Doing so repeatedly, after a suitable number of steps we
end up with a bipartite graph where all vertices v ∈ A have the same degree.
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The argument implies that in order to determine the maximum of the average
value under the constraints of Lemma 5.3.4, it is enough to determine the maximum
average value in the class of biregular subgraphs as the third step to finish the proof.

To this end, consider the maximum of the function

w →
w
(
n−w

2

)
+ 1

3(n− w)
(
w
2

)
(
n−w

2

)
+ 1

3

(
w
2

)
in the interval w ∈ [n2 , n], which is an equivalent reformulation of the problem.
Introducing z = w

n
, we obtain the function

z → n
z(1− z)(3− 2z − 4

n
)

4z2 − 6z + 3− 3−2z
n

on the domain z ∈ [1
2 , 1]. One can verify that

n
z(1− z)(3− 2z − 4

n
)

4z2 − 6z + 3− 3−2z
n

≤ n
z(1− z)(3− 2z)

4z2 − 6z + 3 ,

which in turn implies the statement of the theorem.

Proof of Theorem 5.1.11, lower bound. Take an arbitrary triple T1 of the weakly
spreading system F . Observe that there must exist a triple T2 sharing a common
vertex with T1, otherwise their union would violate the weakly spreading property.
From now on, the weakly spreading condition guarantees the existence of an ordering
of the triples T1, T2, . . . Tm of F , such that

|Tk ∩
k−1⋃
i=1

Ti| ≥ 2 (∀k ≤ m).

This in turn implies the lower bound. Notice that it is sharp for 5 ≤ n ≤ 10.

5.3.2 Upper bounds – construction for sparse spreading sys-
tems

We will construct a spreading triple system F on n = 6p + 3 vertices for every p
such that p is an odd prime number, with |E(G(F))| ≈ 5

12n
2.

Construction 5.3.5. The vertex set of F is the disjoint union of 6 smaller sub-
sets (we refer to them as classes), namely V = A ∪ B ∪ C ∪ A′ ∪ B′ ∪ C ′, where
|A| = |B| = |C| = p + 1 and |A′| = |B′| = |C ′| = p. Denote the elements of A
with a0, a1, . . . , ap−1 and a special vertex a. Similarly B = {b0, b1, . . . , bp−1, b} and
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C = {c0, c1, . . . , cp−1, c}. For A′, B′, C ′ we note the corresponding vertices by α, β, γ
respectively, and index their elements again from 0 up to p− 1. The set of triples in
F are defined as follows:

• black triples:

– between A and B′: {a, aj, βj} (for 0 ≤ j ≤ p−1); and {ai, a2j−i (mod p), βj}
(for 0 ≤ i 6= j ≤ p− 1)

– between B and C ′: {b, bj, γj} (for 0 ≤ j ≤ p−1); and {bi, b2j−i (mod p), γj}
(for 0 ≤ i 6= j ≤ p− 1)

– between C and A′: {c, cj, αj} (for 0 ≤ j ≤ p−1); and {ci, c2j−i (mod p), αj}
(for 0 ≤ i 6= j ≤ p− 1)

• brown triples:

– between A′ and B: {αi, α2j−i (mod p), bj} (for 0 ≤ i 6= j ≤ p− 1)

– between B′ and C: {βi, β2j−i (mod p), cj} (for 0 ≤ i 6= j ≤ p− 1)

– between C ′ and A: {γi, γ2j−i (mod p), aj} (for 0 ≤ i 6= j ≤ p− 1)

• orange triples:

– between A \ {a}, B \ {b} and C \ {c}: {ai, bj, ci+j (mod p)} (for 0 ≤ i, j ≤
p− 1)

– between A′, B′ and C ′: {αi, βj, γi+j+1 (mod p)} (for 0 ≤ i, j ≤ p− 1)

– {a, b, c}

• red triples:
{a, αj, bj}, {b, βj, cj} and {c, γj, aj} (for 0 ≤ j ≤ p− 1)

• blue triples:
{a, γj, cj}, {b, αj, aj} and {c, βj, bj} (for 0 ≤ j ≤ p− 1)

Proposition 5.3.6. The triple system F defined in Construction 5.3.5 has the
spreading property.

Proof. The first step is to verify the statement for those sets V ′ which have a large
enough intersection with either A∪B ∪C or A′ ∪B′ ∪C ′, by the application of the
Cauchy–Davenport theorem.
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Figure 5.1: Black, brown and orange triples and {a, b, c}

Figure 5.2: Red and blue triples through a

Observation 5.3.7. Let us denote the set (A \ {a})∪ (B \ {b})∪ (C \ {c}) by U . If
|V ′∩U | > 3 or |V ′∩ (A′∪B′∪C ′)| > 3, and V ′ intersects with at least two different
classes then cl(V ′) = V .

Indeed, without loss of generality, suppose to the contrary that there exists a
set |V ′ ∩ (A′ ∪ B′ ∪ C ′)| > 3 with A0 = V ′ ∩ A′, B0 = V ′ ∩ B′, C0 = V ′ ∩ C ′

from which C0 has the least size (smaller than p), such that cl(V ′) = V ′. Apply
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the Cauchy–Davenport theorem (Result 5.2.1) for A0 and B0 to obtain |A0 +B0| ≥
min{|A0|+ |B0|− 1, p} > |C0|. Thus the orange triples with their additive structure
ensure that |cl(V ′) ∩ C ′| > |C0|, a contradiction.

In the rest of the proof, we point out that no matter how we choose a nontrivial
set V ′ of 3 elements {x, y, z}, its closure contains at least 4 elements form either U or
A′∪B′∪C ′, coming from more than one classes, thus the application of Observation
5.3.7 in turn completes the proof.

1. {x, y, z} ⊂ A ∪B ∪ C:

a) |{x, y, z} ∩ {a, b, c}| = 0:

a1) If the starting elements are not in the same class (A, B or C) then
two of them from different classes determine a new element (moreover
it cannot be the special vertex) from the third class via an orange
triple and now we have 4 elements of the closure in U not from the
same class.

a2) Without loss of generality we can assume that x = ai, y = aj, z = ak

from A \ {a}. By using black and brown triples ai, aj determine
some βl; ai, ak determine some βm (m 6= l) and βl, βm determine
some cs ∈ C \ {c}.

b) |{x, y, z} ∩ {a, b, c}| = 1, without loss of generality let us assume that
z = a:

b1) If x, y are in different classes then they determine a new element from
the third class via an orange triple thus we have got now 4 elements:
ai, a, bj, ck. From a and ck we get γk due to a blue triple. If j 6= k then
bj and γk determine some bm through a black triple, and the closure
meets U in more than 3 elements. If j = k then i = 0 must hold,
therefore b is in the closure from bk and γk, moreover β0 also in the
closure from a and a0. Now b and β0 determine c0 and we are done
unless i = j = k = 0. In that case one can verify that the closure
contains {a0, b0, c0, α0, β0, γ0, a, b, c} and by α0 and β0 we get that γ1

is in the closure via an orange triple hence γ0 and γ1 determine a p+1
2

via a brown triple that is the fourth element from U .
b2) If x, y are in the same class then a, x and a, y determine different

elements of the same class from A′ ∪ B′ ∪ C ′ therefore these two
elements determine a new element of U hence we trace back to case
a).
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c) |{x, y, z} ∩ {a, b, c}| = 2, without loss of generality let us assume that
z = a and y = b:

c1) if x = ci ∈ C \ {c} then a and ci determine γi via a blue triple, then
b and γi determine bi ∈ B \ {b} due to a black triple therefore we
trace back to case b1).

c2) if x = bi ∈ B \ {b} then b and bi determine γi via a black triple, then
a and γi determine ci ∈ C \ {c} therefore we trace back to case b1).

c3) if x = ai ∈ A \ {a} then b and ai determine αi via a blue triple, then
a and αi determine bi ∈ B \{b} due to a red triple therefore we trace
back to case b1).

2. {x, y, z} ⊂ A′ ∪B′ ∪ C ′:

One can deduce that this case can be discussed precisely the same way as case
1.a).

3. |{x, y, z} ∩ (A ∪B ∪ C)| = 2:

Assume that {y, z} ⊂ A ∪B ∪ C and x ∈ A′ ∪B′ ∪ C ′.

a) |{y, z} ∩ {a, b, c}| = 0:

a1) If y and z are not in the same class then they determine a new non-
special element from the third class. Together with the element from
A′ ∪ B′ ∪ C ′ one of these elements will form a triple which gives
another new element from A∪B ∪C. Either the closure meets U in
more than 3 elements or trace back to case 1.b).

a2) Without loss of generality we can assume that z = ai and y = aj.
These two elements determine some βk due to a black triple. Now if
x = βl then from βk and βl we can get a cm and then apply 1.a1). If
x = γl then at least one of the pairs γl, ai or γl, aj can determine a
new element γm and we get a situation like in case 2. If x = αl then
αl, βk determine some γm and we get back the previous case.

b) |{y, z} ∩ {a, b, c}| 6= 0:

Without loss of generality suppose that z = a. Now a together with the
element from A′ ∪ B′ ∪ C ′ will determine a new element from U hence
we trace back to case 1.b) or 1.c).
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4. |{x, y, z} ∩ (A ∪B ∪ C)| = 1:

a) If the two elements from A′ ∪ B′ ∪ C ′ are in different classes then via
an orange triple they determine a new element from the third class and
together with the element from A ∪ B ∪ C they can determine at least
one new element which is either in A′ ∪B′ ∪C ′ and we are done or from
A ∪B ∪ C thus trace back to case 3.

b) If the two elements from A′ ∪ B′ ∪ C ′ are in the same class then they
determine a new element from U and we trace back to case 3.

We continue with a construction which shows a linear upper bound on the min-
imum size of weakly spreading systems. This will be derived from the upper bound
of Theorem 5.1.10 and completes the proof of the upper bound of Theorem 5.1.11.

Construction 5.3.8 (Crowning construction). Consider a linear spreading system
F on n vertices and ξsp(n) = 1

3

((
n
2

)
− Cn2

)
triples, with the appropriate constant

C. Assign a new vertex v(xy) to every not-covered edge xy of the underlying graph
G = G(F), and add newly formed triples by taking {{x, y, v(xy)} : xy 6∈ G}.

Proposition 5.3.9. Construction 5.3.8 provides a weakly spreading system on n+
Cn2 vertices with 1

3

((
n
2

)
+ 2Cn2

)
triples, hence we obtain

ξwsp(N) ≤ 2
3N + 1

6CN.

Proof. It is easy to verify that any two triples, whose underlying set is denoted by
V ′, determine at least three vertices which are not newly added such that they do
not form a triple in F . By the spreading property of F , we get that cl(V ′) contains
all points besides the new ones. Through the newly formed triples we get that
actually every vertex is contained in cl(V ′).

Proof of Theorem 5.1.11, upper bound. Applying Proposition 5.3.9 with C = 1
12 in

turn provides the upper bound.

5.4 Related results and open problems

In this section we point out several related areas. First we discuss the connection
to the topic of Latin squares, a message of which is that similar structures often
provide constructions for the problem in view.
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5.4.1 Latin squares

A Latin square of order n is an n×n matrix in which each one of n symbols appears
exactly once in every row and in every column. A subsquare of a Latin square is a
submatrix of the Latin square which is itself a Latin square. Note that Latin squares
of order n and 1-factorizations of complete bipartite graphs Kn,n are corresponding
objects. We will apply the following theorem due to Maenhaut, Wanless and Webb
[64], who were building on the work of Andersen and Mendelsohn [48].

Result 5.4.1 (Maenhaut, Wanless and Webb, [64]). Subsquare-free Latin squares
exists for every odd order.

Note that for prime order the statement follows from the Cauchy–Davenport the-
orem. The construction presented below not only gives a simple weakly spreading
construction, but it may provide an ingredient to a possible extension of Construc-
tion 5.3.5, where the triangle decomposition of the balanced complete tripartite
graph, denoted by the set of orange triples, were obtained by a Cauchy–Davenport
argument in the prime order case.

Construction 5.4.2. Take a subsquare-free Latin square of odd order n with row
set U , column set V and symbol set W . We assign a triple system T on U ∪ V ∪W
to the Latin square as follows. Let T = {ui, vj, wk} ∈ T if and only if wk is the
symbol in position (i, j) in the Latin square.

Proposition 5.4.3. Construction 5.4.2 yields that the minimum size of a weakly
spreading triple system is at most ζwsp(n) ≤ n2

9 for n ≡ 3 (mod 6).

Proof. Observe first that every pair of elements from different classes is contained
exactly once in the system T . Thus we have to show that there does not exist
a subsystem spanned by U ′ ⊆ U , V ′ ⊆ V and W ′ ⊆ W for which every pair or
elements from different classes is contained exactly once in triple of the subsystem.
Clearly the existence would only be possible if 1 < |U ′| = |V ′| = |W ′| < n but such
a system would be equivalent to a Latin subsquare, a contradiction.

5.4.2 Influence maximization

A social network represented by the graph of relationships and interactions in a group
of individuals plays a fundamental role as a medium for the spread of information,
ideas, and influence among its members. Models for the processes where some sort
of influence or information propagate through a social network have been studied
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in a number of domains, including sociology, psychology, economy and computer
science. The influence of a set of nodes is the (expected) number of active nodes
at the end of the propagation process in the model and the influence maximization
asks for the set of given size which has the largest influence. In one of the models,
called the threshold model (see Chen [51]) there exists a threshold value t(v) for
every vertex v ∈ V and in each discrete step a vertex is activated if it has at least
t(v) active neighbours. For more details we refer to the recent surveys [49, 58] and
to the pioneer papers of Domingos and Richardson [54] and Kempe et. al. [62].

Mostly in models of social networks one only considers the graph of relationships,
however in applications the propagation may depend more on whether an individual
is influenced by the majority of the group members of social groups he or she belongs
to. In that context, one has to describe the groups as hyperedges of a hypergraph,
and in case of linear 3-graphs, the propagation of a vertex set V would clearly
influence its closure cl(V ). Hence our results determine bounds on the number of
3-sets needed so that every set of 3 vertices besides the triples themselves, or every
pair of triples has maximum influence.

5.4.3 Connectivity, backward and forward 3-graphs

First we recall the concept of k-vertex-connectivity of hypergraphs, which is strongly
related to the properties in view, and introduce a new edge-connectivity concept for
triple systems.

Definition 5.4.4. A hypergraph F is k-vertex connected if the removal of any k−1
vertices and adjacent edges results a connected hypergraph. A 3-uniform hypergraph
F is strongly connected if every vertex partition U ∪ (V \U) induces a triple T with
|T ∩ U | = 2, provided |U | ≥ 4.

The latter definition implies that if the partition classes U and (V \U) are large
enough, then triples of type |T ∩ U | = 2 and |T ∩ U | = 1 both should appear. The
condition |U | ≥ 4 enables us to apply this concept for linear 3-graphs. We note that
the spreading property is stronger than the strong connectivity, while the weakly
spreading property is weaker.

Observation 5.4.5. A Steiner triple system is subsystem-free, that is, spreading if
and only if it is strongly connected. Every spreading linear triple system is strongly
connected. Every strongly connected 3-graph is weakly spreading.

Notice that the converse is not true for the latter statements.
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Proposition 5.4.6. If a linear 3-graph F is not 2-vertex connected then it is not
weakly spreading.

Proof. If the 3-graph F is not connected, then the assertion is obvious. Suppose
now that there is a vertex v whose removal makes the 3-graph disconnected. This
means one can find two triples T , T ′ ∈ F sharing v as a common vertex, with T \ v
and T ′ \ v being in distinct connected components after the removal of v. Hence the
cl({T, T ′}) = {T, T ′}.

Finally, we underline that the weakly spreading property is not a local one, as the
condition cl(V ′) ⊃ V ′ restricted to every pair of triples, V ′ = V (F ′) with |F ′| = 2
by no means imply weakly spreading. This follows from the construction below.

Construction 5.4.7. Consider the complete graph Kn on n vertices n > 3, and
add a vertex vij to every graph edge vivj. The obtained triple system F(n) =
{{vi, vj, vij}|i 6= j ≤ n} on

(
n
2

)
+ n vertices with

(
n
2

)
hyperedges has the property

that every pair of triples generate at least one further triple, but their closure will
correspond to either F(3) or F(4).

We finish this subsection by mentioning a connection to directed hypergraphs.
A directed hyperedge is an ordered pair, E = (X, Y ), of disjoint subsets of vertices
where X is the tail while Y is the head of the hyperedge. Backward, resp. forward
3-graphs are defined as directed 3-uniform hypergraphs with hyperedges having a
singleton head, resp. tail, see Gallo et al. [60]. These objects have many applications
in computer science, operations research, bioinformatics and transport networks.
It is easy to see that if one directs each triple of a linear 3-graph in all possible three
ways to obtain a backward edge, then the connectivity, described above, of the triple
system and the connectivity of the resulting directed hypergraph are equivalent.

5.4.4 Further results and open problems

We also mention the recent related work of Nenadov, Sudakov and Wagner [65]
on embedding partial Steiner triple system to a small complete STS, and in gen-
eral, embedding certain partial substructures to complete structures. In the spread-
ing problem of linear 3-graphs, one may consider the triples of the hypergraph as
collinearity prescription for triples of points, and under this condition the aim would
be to embed the partial linear space to an affine of projective plane of small order.
Here if two triples T, T ′ is incident to the same line, then the points of cl({T, T ′})
would also be incident.
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While our Theorem 5.1.8 on the expander property was sharp, our results The-
orem 5.1.10 and 5.1.11 concerning spreading and weakly spreading determined the
corresponding parameter only up to a small constant factor. The authors believe
that if n is large enough, then neither of the bounds are sharp; however it seems a
hard problem to asymptotically determine the exact values, similarly to many other
extremal problems in hypergraph theory. Let us finish with several open problems.

Problem 5.4.8. Is the asymptotically best upper bound on the minimum size ξwsp(n)
of a linear weakly spreading triple system obtained by the Crowning Construction
5.3.8 from an optimal construction for ξsp(n)?

Although the lower bound ξwsp(n) is tight for n ≤ 10, we conjecture that this
might be the case, meaning that (C + o(1))n ≤ ξwsp(n) for some C > 1.

Problem 5.4.9. Generalize the results to r-uniform (linear) hypergraphs F .

In order to do this, one should define the neighbourhood and closure accordingly:
a vertex z in the neighbourhood of V ′, if and only if there exist a hyperedge F ∈ F
containing z such that

• either |F ∩ V ′| ≥ r
2 (majority rule)

• or |F ∩ V ′| ≥ t, t < r fixed (large intersection).

Problem 5.4.10. Prove the existence of Steiner triple system STS(n) of arbitrary
admissible order n, for which

|N(V ′)| ≥ |V ′| − 3

for every V ′ ⊂ V (G) of size |V ′| ≤ |V |
2 .





Chapter 6

Upper chromatic number of
PG(n, q) and blocking sets

6.1 Introduction

Throughout the chapter, letH denote a hypergraph with point set V and edge set E.
A strict N -coloring C of H is a coloring of the elements of V using exactly N colors;
in other words, C = {C1, . . . , CN} is a partition of V where each Ci is nonempty
(1 ≤ i ≤ N). Given a coloring C, we define the mapping ϕC : V → {1, 2, . . . , N} by
ϕC(P ) = i if and only if P ∈ Ci. We call the numbers 1, . . . , N colors and the sets
C1, . . . CN color classes. We call a hyperedge H ∈ E rainbow (with respect to C) if
no two points of H have the same color; that is, |H ∩Ci| ≤ 1 for all 1 ≤ i ≤ N . The
upper chromatic number (or shortly UCN) of the hypergraph H, denoted by χ̄(H),
is the maximum number N for which H admits a strict N -coloring without rainbow
hyperedges. Let us call such a coloring proper or rainbow-free. It is easy to see that
for an ordinary graph G (that is, a 2-uniform hypergraph), χ̄(G) is just the number
of connected components of G.

As one can see, the above defined hypergraph coloring problem is a counterpart
of the traditional one, where we seek the least number of colors with which we can
color the vertices of a hypergraph while forbidding hyperedges to contain two vertices
of the same color. The general mixed hypergraph model, introduced by Voloshin
[7, 8], combines the above two concepts. This mixed model is better known but here
we do not discuss it; the interested reader is referred to [9].

It is clear that if we find a vertex set T ⊂ V inH which intersects every hyperedge
in at least two points, then by coloring the points of T with one color and all the other
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points of V by mutually distinct colors, we obtain a proper, strict (|V | − |T | + 1)-
coloring.

Definition 6.1.1. Let H = (V ;E) be a hypergraph, t a nonnegative integer. A
vertex set T ⊂ V is called a t-transversal of H if |T ∩H| ≥ t for all H ∈ E. The
size of the smallest t-transversal of H is denoted by τt(H).

Definition 6.1.2. We say that a coloring of H is trivial if it contains a monochro-
matic 2-transversal.

As seen above, the best trivial colorings immediately yield a lower bound for
χ̄(H).

Proposition 6.1.3.
χ̄(H) ≥ |V | − τ2(H) + 1.

Two general problems are to determine whether this bound is sharp (for a par-
ticular class of hypergraphs), and to describe the colorings attaining the upper chro-
matic number. In this chapter, the hypergraphs we consider consist of the points of
the n-dimensional projective space PG(n, q) over the finite field GF(q) of q elements
with its k-dimensional subspaces as hyperedges, n ≥ 2, 1 ≤ k ≤ n − 1. We denote
this hypergraph by H(n, k, q). The study of this particular case was started in the
mid-nineties by Bacsó and Tuza [13], who established general bounds for the upper
chromatic number of arbitrary finite projective planes (considered as a hypergraph
whose points and hyperedges are the points and lines of the plane). We will use
a notation which was introduced in Chapter 2, namely Equation (2.3.1), for the
number of points in a n-dimensional projective space of order q.

Result 6.1.4 (Bacsó, Tuza [13]). Let Πq be an arbitrary finite projective plane of
order q, and let τ2(Πq) = 2(q + 1) + c(Πq). Then

χ̄(Πq) ≤ q2 − q − c(Πq)
2 + o(√q).

Note that Proposition 6.1.3 claims χ̄(Πq) ≥ q2 − q − c(Πq). Recently, Bacsó,
Héger, and Szőnyi have obtained exact results for the Desarguesian projective plane
PG(2, q).

Result 6.1.5 (Bacsó, Héger, Szőnyi [14]). Let q = ph, p prime. Suppose that
either q > 256 is a square, or p ≥ 29 and h ≥ 3 odd. Then χ̄(PG(2, q)) = θ2 −
τ2(PG(2, q)) + 1, and equality is reached only by trivial colorings.
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In this work, we determine χ̄(H(n, k, q)) and aim not only to characterise trivial
colorings as the only ones achieving the upper chromatic number of the hypergraph
H(n, k, q), but to obtain results showing that proper colorings of H(n, k, q) using a
little less number of colors than χ̄(H(n, k, q)) are trivial; in other words, to prove
that trivial colorings are stable regarding the number of colors. For the sake of
convenience, we will formulate our results in three theorems for the hypergraph
H(n, n− k, q). We note that if k < n

2 , then τ2(H(n, n− k, q)) = 2θk, where equality
can be reached by the union of two disjoint k-spaces, but not much is known if
k ≥ n

2 .

Theorem 6.1.6. Let n ≥ 3, 1 ≤ k < n
2 , and assume that q ≥ 17 if k = 1 and

q ≥ 13 if k ≥ 2. Then

χ̄(H(n, n− k, q)) = θn − τ2(H(n, n− k, q)) + 1 = θn − 2θk + 1.

Theorem 6.1.7. Let n ≥ 2, q = ph, p prime, 1 ≤ k ≤ n− 1. Suppose that

• δ = 1
2

(
(
√

2− 1)qk − 3θk−1 − 8
)
≥ 0 and q ≥ 11 if h = 1,

• δ = 1
2

(
qk−1 − θk−2 − 3

)
, k ≥ 2 and q ≥ 25 if h ≥ 2.

Under these assumptions the following hold:
a) If k < n

2 , then any rainbow-free coloring of H(n, n− k, q) using

N ≥ θn − τ2(H(n, n− k, q)) + 1− δ = θn − 2θk + 1− δ

colors contains a monochromatic pair of disjoint k-spaces, and hence is trivial.
b) If k ≥ n

2 , then
χ̄(H(n, n− k, q)) < θn − 2θk + 1− δ.

Note that the stability gap δ in the above result is far much weaker in the non-
prime case (in particular, the case k = 1 is missing). The next theorem gives a much
better result at the expense of requiring much stronger assumptions on the order
and the characteristic of the field.

Theorem 6.1.8. Let n ≥ 2, q = ph, p prime, 1 ≤ k ≤ n− 1. Suppose that p ≥ 11,
q ≥ 239 and δ = qk

200 − θk−1. Then any rainbow-free coloring of H(n, n− k, q) using

N ≥ θn − 2θk + 1− δ

colors contains a monochromatic 2-fold k-blocking set, and hence is trivial.
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The requirements on q and N in the above theorem could be chosen differently,
see Remark 6.3.19 for the details. Note that Theorem 6.1.8 is not phrased in terms
of τ2(H(n, n − k, q)), the parameter found in the trivial lower bound Proposition
6.1.3. If k < n

2 , τ2(H(n, n− k, q)) = 2θk. If k = n
2 , then [15][Corollary 4.13] asserts

the existence of a double k-blocking set in PG(2k, q) of size 2qk + 2 qk−1
p−1 , where

q = ph, p > 5 prime, h ≥ 2. Thus, if p ≥ 409, then τ2(H(2k, k, q)) ≤ 2θk + δ, whence
Theorem 6.1.8 yields that the trivial bound is again sharp for H(2k, k, q), regardless
the exact value of τ2(H(2k, k, q)).

In finite geometrical language, t-transversals are called t-fold blocking sets. In
the proof of the above theorem, we rely on weighted 2-fold blocking sets as well, so
we devote the next section to this topic, and we obtain the following new result.
The precise definitions are given in the next section.

Theorem 6.1.9. Let B be a minimal weighted t-fold k-blocking set of PG(n, p), p
prime. Assume that |B| ≤ (t + 1

2)pk − 1
2 and t ≤ 3

8p + 1. Then B is the (weighted)
union of t not necessarily distinct k-dimensional subspaces.

This result, in fact, follows from the similar Theorem 6.2.5 about t (mod p) sets.

6.2 Small, weighted multiple (n− k)-blocking sets

In the sequel, we will use all of the notions which were introduced in Chapter 2,
particularly in Section 2.4. Moreover, we will use Results 2.4.3 and 2.4.4 several
times going forward. For the sake of convenience, we will consider (n− k)-blocking
sets throughout this section.

We refer to 1-fold and 2-fold blocking sets as blocking sets and double blocking
sets, respectively; the term multiple blocking set refers to a t-fold blocking set with
t ≥ 2. We call a point of weight one simple. It is easy to see that a weighted t-fold
k-blocking set must contain at least tθk points unless t ≥ q + 1. We include this
supposedly folklore result with proof for the sake of completeness.

Proposition 6.2.1. Let B be a t-fold (n − k)-blocking set in PG(n, q). If t ≤ q,
then |B| ≥ tθn−k.

Proof. We prove by induction on k. If k = 1, we may take a point P /∈ B (otherwise
|B| ≥ θn > qθn−1 and there is nothing to prove). There are θn−1 lines through P , each
containing at least t points of B, whence |B| ≥ tθn−1. Suppose now k ≥ 2. If B is an
(n−k+1)-blocking set then, by induction, |B| ≥ θn−k+1 = qθn−k+1 > tθn−k and we
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are done. If there is a (k−1)-space Π disjoint from B, then each of the θn−k distinct
k-spaces containing Π intersects B in at least t points, whence |B| ≥ tθn−k.

Note that t ≤ q is necessary here, as if B contains each point of an (n− k + 1)-
space with weight one, then B is a (q + 1)-fold (n− k)-blocking set of size θn−k+1 =
qθn−k + 1 < (q + 1)θn−k; moreover, adding s further (n− k)-spaces to B we obtain
a weighted (q + 1 + s)-fold (n− k)-blocking set of size less than (q + 1 + s)θn−k for
any s ≥ 0.

A stability result for weighted t-fold (n − k)-blocking sets of size close to this
lower bound was proven by Klein and Metsch [70, Theorem 11].

Result 6.2.2 (Klein, Metsch [70]). Let B be a weighted t-fold (n−k)-blocking set in
PG(n, q). Suppose that |B| ≤ tθn−k + rθn−k−2, where t and r satisfy the following:

a) 1 ≤ t ≤ q+1
2 ;

b) t+ r ≤ q, r ≥ 0 is an integer;

c) any blocking set of PG(2, q) of size at most q + t contains a line.

Then B contains the (weighted) union of t not necessarily distinct (n− k)-spaces.

Let us remark that for k = 1 (that is, when B is a t-fold weighted blocking set
with respect to lines), [70, Theorem 7] shows that condition c) can be omitted in
the above result. However, a blocking set of PG(2, q) not containing a line must
contain at least q +√q + 1 points in general (see [69] by Bruen), and, according to
the following result of Blokhuis, at least 3

2(q + 1) if q is prime, hence condition c)
holds accordingly.

Result 6.2.3 (Blokhuis [68]). Suppose that B is a blocking set in PG(2, p), p prime,
not containing a line. Then |B| ≥ 3

2(p+ 1).

Let us recall, what was already explained in Chapter 2, that the number of
(k + 1)-spaces containing a fixed k-space in PG(n, q) is θn−k−1. This can be seen
easily by taking an (n− k − 1)-space disjoint from the fixed k-space and observing
that each appropriate (k + 1)-space intersects it in a unique point.

6.2.1 Proof of Theorem 6.1.9

We prove a theorem closely related to Theorem 6.1.9 by considering an analogous
problem in a slightly more general setting.
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Definition 6.2.4. Let us call a weighted point set B in PG(n, q) a t (mod p) set
with respect to the k-dimensional subspaces if B intersects every k-space in t (mod p)
points (counted with weights), for 1 ≤ k ≤ n− 1.

Clearly, t (mod p) sets are t-fold blocking sets if t < p and, by Result 2.4.4, small
minimal t-fold blocking sets are t (mod p) sets.

Theorem 6.2.5. Let B be a t (mod p) set with respect to the k-dimensional sub-
spaces in PG(n, p), p prime. Suppose that t ≤ 3

8p+ 1 and |B| ≤ (t+ 1)θn−k + p− 2.
Then |B| = tθn−k and B consists of the weighted union of t not necessarily disctinct
(n− k)-spaces.

Proof. The proof will use induction on k. Clearly, B is a t-fold (n− k)-blocking set.
We will need the existence of a point not in B. This follows if |B| < θn. If p−1 ≥ t+1,
then our assumption gives |B| ≤ (p− 1)θn−1 + p− 2 = θn− 1− θn−1 + p− 2 < θn. If
p ≤ t+ 1, then from t ≤ 3

8p+ 1 it follows that p ≤ 3 must hold. If p = 2, then t = 1
and |B| ≤ (t+ 1)θn−1 + p− 2 = θn− 1. If p = 3, the problematic case is t = 2, when
|B| ≤ 3θn−1 + 1 = θn. If |B| = θn and B contains every point of the space, then it is
clearly a 1 (mod p) set for every subspace, in contradiction with t = 2. Hence we
always find a point not contained in B.
Case 1: k = 1 (and n ≥ 2). Notice first that every point of B has weight at most
t. Indeed, by taking the weights of the points modulo p, we may assume that no
point has weight at least p; and if t + 1 ≤ w(P ) ≤ p − 1 for a point P , then all
the θn−1 lines through P must contain at least p + t− w(P ) more weights, whence
|B| ≥ w(P ) + (p+ t− w(P ))θn−1 ≥ p− 1 + (t+ 1)θn−1, a contradiction.

It follows from Results 6.2.2 and 6.2.3 that the assertion holds if |B| = tθn−1,
hence we may assume that |B| > tθn−1 and prove by contradiction.

We will call lines that are neither t-secants (to B), nor contained fully in B long
lines; lines contained in B will be referred to as full lines. Non-t-secant lines are,
therefore, either full or long. Long lines exist as on any point not in B (an outer
point) we find a line intersecting B in more than t points, since |B| = tθn−1 would
follow otherwise. Suppose that the minimum weight of a long line is sp+ t. Clearly,
1 ≤ s ≤ t − 1 (the weight of a long line is at most tp). Let ` be a long line of
weight sp+ t, and let P ∈ `\B. We want to show that for any 2-space Π containing
`, there is a long line through P in Π different from `. Fix such a plane Π (if
n = 2, then this is unique) and suppose to the contrary. Let B′ = B ∩ Π. Then,
looking around from P in Π, |B′| = (p + 1)t + sp. Similarly as before, there must
be a non-t-secant line on any point R ∈ Π; in other words, long and full lines form
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a blocking set in the dual plane of Π. It follows that long lines cover each outer
point of Π exactly once. Moreover, the number of non-t-secant lines must be at
least 3

2(p + 1) for the following reason. By Blokhuis’ Result 6.2.3, a blocking set
of PG(2, p) of size less than 3

2(p + 1) contains a line. In our setting this situation
would result in a point Q through which all lines are either long or full. But then
(2t− 1)p+ t ≥ tp+ t+ sp = |B′| ≥ w(Q) + (p+ 1)(p+ t− w(Q)) ≥ t+ (p+ 1)p, a
contradiction even under t < 1

2p+ 1.
Let e be a t-secant to B′ (such a line exists as seen above). Let P1, . . . , Pr be

the mutually distinct points of e ∩ B′, 1 ≤ r ≤ t. Let h1(Pi) and h2(Pi) denote
the number of full and long lines on Pi, respectively, and let h1 and h2 be the total
number of full and long lines, respectively; then h1 +h2 ≥ 3

2(p+ 1). Looking around
from Pi we see that

(p+ 1)t+ sp = |B′| ≥ w(Pi) + (p+ 1)(t− w(Pi)) + h1(Pi)p+ h2(Pi)sp,

whence w(Pi)+s ≥ h1(Pi)+sh2(Pi). Let h′2 := h2−(p+1−r) be the number of long
lines intersecting e in a point of B′. Then h1+h′2 ≥ 3

2(p+1)−(p+1−r) ≥ 1
2(p+1)+r,

and we obtain that

t+ rs =
r∑
i=1

(w(Pi) + s) ≥
r∑
i=1

(h1(Pi) + sh2(Pi)) = h1 + sh′2 = h1 + s(h2− (p+ 1− r)),

whence

t ≥ h1 + s(h2 − (p+ 1)) > h1 + s

((
3(p+ 1)

2 − h1

)
− (p+ 1)

)
= h1 + s

(
p+ 1

2 − h1

)
= (s− 1)

(
p+ 1

2 − h1

)
+ p+ 1

2 .

As t < 1
2(p+ 1), it follows that s ≥ 2 and h1 >

1
2(p+ 1).

It is clear that there are at least p + 1 − r ≥ 2 long lines. Take now two long
lines and the h1 ≥ 1

2p+ 1 full lines one by one. The first line contains at least sp+ t

weights of B′. The second line may intersect it in a point of weight at most t, hence
we see at least sp more weights on it. Turning to the full lines, the ith full line
contains at least p+ 1− 2− (i− 1) = p− i points of B′ not contained by any of the
previous lines. Altogether we obtain

(p+ 1)t+ sp = |B′| ≥ 2sp+ t+
p
2 +1∑
i=1

(p− i) = 2sp+ t+
(
p

2 + 1
)
p−

(
p
2 + 2

2

)

= 2sp+ t+ p2

2 + p− p2

8 −
3p
4 − 1,
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whence
t ≥ 3

8p+ s+ 1
4 −

1
p
>

3
8p+ 1,

a contradiction. Thus we see that all planes containing ` indeed contain at least
one other long line through P , so we find at least 1 + θn−2 long lines through P ,
hence on all the θn−1 lines through P we find that |B| ≥ tθn−1 + (θn−2 + 1)sp =
tθn−1 + s(θn−1 − 1) + sp ≥ (t+ 1)θn−1 + p− 1, a contradiction.

Case 2: 2 ≤ k ≤ n− 1 (and n ≥ 3). Take a point P /∈ B in PG(n, p). Project
the points of B from P into an arbitrary hyperplane H. We get a weighted point set
B̃ ⊆ Π for which |B̃| = |B|. Let W be a (k − 1)-space in H, and let U = 〈P,W 〉 be
the k-space spanned by P and W . Then |W ∩ B̃| = |U ∩B|, hence B̃ is a t (mod p)
set with respect to (k − 1)-spaces in the (n − 1)-space H thus, by induction on k,
|B| = |B̃| = tθn−1−(k−1) = tθn−k. Results 6.2.2 and 6.2.3 finish the proof.

Theorem 6.1.9 now follows from Theorem 6.2.5 and the t mod p Result 2.4.4.

6.3 On the upper chromatic number of H(n, n −
k, q)

6.3.1 Proof of Theorems 6.1.6 and 6.1.7

The steps of the proof have a lot in common with those in [14]. We recall that we
want to color the points of PG(n, q) with as many colors as possible so that each
(n−k)-space contains two equicolored points. For two points P and Q, PQ denotes
the line joining them.

Definition 6.3.1. Let [m]q = qm−1
q−1 = qm−1 +qm−2 + . . .+q+1. Let [m]q! = ∏m

i=1[i]q,
where [0]q! = 1, and let [nm]q = [n]q !

[m]q ![n−m]q ! = (qn−1)(qn−1−1)...(qn−m+1−1)
(qm−1)(qm−1−1)...(q−1) denote the

number of m dimensional subspaces of an n dimensional vector space; thus the
number of m-spaces in PG(n, q) is

[
n+1
m+1

]
q
.

Note that [k+1
1 ]

q
= θk. Let us collect some facts regarding the above defined

q-binomial coefficients.

Lemma 6.3.2. Let q ≥ 2, n ≥ 1, s ≥ 0. Then

a) [n1]q = qn−1 + [n−1
1 ]q, that is, θn = qn−1 + θn−1;

b) the number of m-spaces containing a given k-space in GF(q)n is
[
n−k
m−k

]
q
;
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c) θs = [s+1
1 ]q <

(
1 + 1

q−1

)
qs ≤

(
1 + 2

q

)
qs;

d) if s ≤ n− 1, then

[
n+1
n−s+1

]
q

[n−1
s ]

q

≥ q2s.

Proof. The first statement is trivial. As for the second one, let U be the given
k-space. The quantity in question is just the number of (m − k)-spaces in the
(n − k)-dimensional quotient space GF(q)n/U . The third assertion is trivial for
s = 0; otherwise θs = qs + qs−1 + qs−1−1

q−1 < qs + (1 + 1
q−1)qs−1. Finally, regarding the

fourth: it is trivial if s = 0; for s ≥ 1,[
n+1
n−s+1

]
q

[n−1
s ]q

= [n+ 1]q![s]q![n− 1− s]q!
[n− s+ 1]q![s]q![n− 1]q!

= (qn+1 − 1)(qn − 1)
(qn−s+1 − 1)(qn−s − 1)

>
q2n+1 − 2qn+1

q2n−2s+1 − qn−s+1 = qn+s − 2q−s
qn−s − 1 >

qn+s − 2q−s + 1
qn−s

= q2s − 2q−n + qsq−n ≥ q2s,

as s ≥ 1 and q ≥ 2.

General notation and assumptions. Suppose that a strict proper coloring
C of H(n, n − k, q) using N colors is given. We denote the color classes of C by
C1, . . . , CN . For the sake of simplicity, we will compare the N with θn − 2θk + 1
(note that τ2(H(n, n − k, q)) = 2θk iff k < n

2 , and compare with the trivial lower
bound θn − τ2 + 1). We define the deficit d = d(C) of C by N = θn − 2θk + 1 − d,
which, in principle, may be negative as well. Without loss of generality we may
assume that C1, . . . , Cm are precisely the color classes of size at least two for some
m ≥ 1. Let B = B(C) = ∪mi=1Ci.

Definition 6.3.3. We say that a color class C colors the (n−k)-space U if |C∩U | ≥
2.

As every (n−k)-space must be colored by at least one of the color classes among
C1, . . . , Cm, we clearly see that B is a 2-fold k-blocking set.

Proposition 6.3.4.
a) m = |B| − 2θk − d+ 1

b) m ≤ 2θk + d− 1

c) |B| ≤ 4θk + 2(d− 1)
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Proof. The first assertion follows from θn − |B| + m = N = θn − 2θk + 1 − d. As
|Ci| ≥ 2 for all 1 ≤ i ≤ m, |B| ≥ 2m. This and the previous equality imply
m ≤ 2θk + d− 1 and |B| ≤ 4θk + 2(d− 1).

Lemma 6.3.5. A color class C colors at most
(
|C|
2

)
[n−1
k ]

q
distinct (n− k)-spaces.

Proof. If C colors an (n− k)-space U , then U contains a line spanned by the points
of C. The number of such lines is at most

(
|C|
2

)
. By Lemma 6.3.2, the number of

(n− k) spaces containing a given line is
[
n−1

n−k−1

]
q

= [n−1
k ]

q
.

The next proposition says that B cannot be too large; roughly speaking, |B| ≤
(4−

√
2)qk + 2d+ o(qk).

Proposition 6.3.6. Suppose that d ≤ αqk, and q >
(

5√
2 − 2− α− 4

q

)−1
> 0. Then

|B| < (4−
√

2)qk + 4θk−1 + 2d+ 2.

Proof. As every (n − k)-space must be colored, by Lemma 6.3.5 and convexity we
have n+ 1
n− k + 1


q

≤
m∑
i=1

(
|Ci|
2

)n− 1
k


q

≤
((
|B| − 2(m− 1)

2

)
+ (m− 1)

)n− 1
k


q

.

By Lemma 6.3.2 d) and Proposition 6.3.4 a), b)

q2k ≤
(
|B| − 2(m− 1)

2

)
+ (m− 1) ≤

(
4θk − |B|+ 2d

2

)
+ 2θk + d− 2.

Suppose to the contrary that |B| ≥ 4θk−
√

2qk+2d+2 = (4−
√

2)qk+4θk−1 +2d+2
(here we use Lemma 6.3.2 a)). Then by the assumption and Lemma 6.3.2 c), the
right-hand-side of the above expression is at most(√

2qk − 2
2

)
+ 2θk + d− 2 < q2k −

(
5√
2
− 2

(
1 + 2

q

)
− α

)
qk + 1 < q2k,

a contradiction.

The following lemma will be very useful as it provides us large color classes if
B is not large. The proof is based on Result 2.4.3. Right now, we do not need the
following stronger version of this lemma since our blocking set has no weights, but
respecting its future use we will state it in a more general setting. This version can
deal with colorings which come from weighted blocking sets.
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Lemma 6.3.7. Suppose that a color class C contains a simple essential point P of B.
Then there exists a set of simple points S ⊂ C \{P} such that |S| ≥ 3qk+θk−1−|B|,
and for any point Q ∈ S there exists an (n− k) space U such that U ∩ B = {P ;Q}
(so these points are essential for B). In particular, |C| ≥ 3qk + θk−1 + 1− |B|.

Proof. For Q ∈ B, Q 6= P , let P ∼ Q iff Q is also a simple point and there exists an
(n− k)-space U such that U ∩B = {P,Q}. As P is simple and essential, we find at
least one such point. Let {Q1, . . . , Qr} = {Q ∈ B : P ∼ Q}. For all 1 ≤ i ≤ r, take
a point Ri from PQi\{P,Qi}, and let R = {R1, . . . , Rr}. Then the set (B∪R)\{P}
is also a 2-fold k-blocking set. Thus B ∪ R contains two different minimal 2-fold
k-blocking sets, so by Harrach’s Result 2.4.3 we have |B| + r ≥ 3qk + θk−1. As
Q1, . . . , Qr must have the same color as P , the proof is finished.

Now we are ready to show that if B is not large, then it is, in fact, quite small.
Roughly speaking, if |B| < 3qk, then |B| < 2qk + 2d + o(qk). We will use that
3qk + θk−1 − 2θk = 3qk + θk−1 − 2

(
qk + θk−1

)
= qk − θk−1.

Proposition 6.3.8. Let β ≥ 2. Assume |B| ≤ 3qk + θk−1 + 1− β and (β − 4)qk >
(β + 4)θk−1 + β(2d+ β − 3). Then |B| < 2θk + 2d− 2 + β.

Proof. By Result 2.4.3 there is a unique minimal 2-fold k-blocking set B′ contained
in B. By Lemma 6.3.7 we know that if a color class contains a point of B′, then it
contains at least 3qk + θk−1 + 1− |B| points of it, while all other color classes in B
have at least two points. This and Proposition 6.3.4 a) imply that

|B| − 2θk + 1− d = m ≤ |B′|
3qk + θk−1 + 1− |B| + |B| − |B

′|
2 ≤

≤ 2θk
3qk + θk−1 + 1− |B| + |B| − 2θk

2 ,

so
(|B| − (2θk + 2d− 2))

(
3qk + θk−1 + 1− |B|

)
≤ 4θk.

The left-hand side expression is concave in |B|. Substituting either |B| = 2θk + 2d−
2 + β = 2qk + 2θk−1 + 2d− 2 + β or |B| = 3qk + θk−1 + 1− β we obtain

β
(
3qk + θk−1 − 2θk − 2d+ 3− β

)
≤ 4θk,

which, due to simple calculations and rearrangement, leads to (β − 4)qk ≤ (β +
4)θk−1 + β(2d + β − 3), a contradiction. As |B| ≤ 3qk + θk−1 + 1 − β, we conclude
that |B| < 2θk + 2d− 2 + β must hold.
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Using these results, we may assume that B is quite small. As shown by the
next proposition, this immediately gives the desired result on the upper chromatic
number provided that B contains the union of two disjoint one-fold blocking sets,
which property can be deduced from a stability type result on multiple blocking sets
like Theorem 6.1.9 or Result 6.2.2; however, the strength of the result obtained in
this way will be utterly dependent on the strength of the stability result.

Proposition 6.3.9. Suppose that B contains two disjoint k-blocking sets, U1 and
U2. If the coloring is nontrivial, then |U1|+ |U2| ≥ 4(3qk−|B|+ θk−1); in particular,
|B| ≥ 2.4qk + 0.8θk−1 and, if U1 and U2 are k-spaces, then |B| ≥ 2.5qk + 1

2θk−1.

Proof. We may assume that |B| < 3qk + θk−1, otherwise the assertions are trivial.
Then, by Result 2.4.3, B′ = U1 ∪ U2 is precisely the set of essential points of B.
If the coloring is not trivial, then there are at least two colors used in B′, say, red
and green. Without loss of generality we may take a red point P ∈ U1. By Lemma
6.3.7, we find a set S of essential points of B such that |S| = 3qk − |B| + θk−1, and
for each point Q ∈ S there is an (n − k)-space UQ such that B ∩ UQ = {P,Q}.
Thus all points of S are red. As U2 is a k-blocking set, ∀Q ∈ S : UQ ∩ U2 = {Q},
so S ⊂ U2. By interchanging the role of U1 and U2, we see that U1 and U2 both
contain at least 3qk − |B| + θk−1 red points. As the same holds for green points as
well, we find that 4(3qk − |B|+ θk−1) ≤ |U1|+ |U2| ≤ |B|, thus |B| ≥ 2.4qk + 0.8θk−1

in general; if U1 and U2 are k-spaces, substituting |U1| = |U2| = θk = qk + θk−1 gives
the assertion.

The next lemma shows under what conditions does Proposition 6.3.6 provide a
good enough bound on |B| to make Proposition 6.3.8 work with β = 5, the value we
will tipically use.

Lemma 6.3.10. Assume d ≤ αqk for some 0 ≤ α ≤ 1
2 . Suppose that either

1. k = 1, q ≥ 5 and d ≤ min
{
q
10 − 2, q(

√
2−1)
2 − 9

2

}
, or

2. k ≥ 2, q ≥ 13 and d ≤ qk

10 −
9qk−1

10 −
28qk−2

10 .

Then |B| ≤ 2θk + 2d+ 2.

Proof. It is easy to see that the requirement q >
(

5√
2 − 2− α− 4

q

)−1
> 0 of

Proposition 6.3.6 holds under α ≤ 1
2 and q ≥ 5, hence we can conclude that

|B| < (4 −
√

2)qk + 4θk−1 + 2d + 2. Thus to meet the assumptions of Proposition
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6.3.8 with β = 5, it is enough to have

qk > 9θk−1 + 5(2d+ 2) and (6.3.1)

(4−
√

2)qk + 4θk−1 + 2d+ 2 ≤ 3qk + θk−1 − 4 or, equivalently, (6.3.2)

(
√

2− 1)qk ≥ 3θk−1 + 2d+ 6. (6.3.3)

For k = 1, (6.3.1) and (6.3.3) demand d < q−19
10 and d ≤ q(

√
2−1)
2 − 9

2 .
For k ≥ 2, using Lemma 6.3.2 a) and c) we see that to satisfy (6.3.1) it is enough

to have
9
(

1 + 2
q

)
qk−1 + 10αqk + 10 ≤ qk,

hence, as k ≥ 2, it is sufficient to require

α ≤ 1
10 −

9
10q −

28
10q2 .

Regarding (6.3.3), we can similarly deduce that

(
√

2− 1)qk ≥ 3
(

1 + 2
q

)
qk−1 + 2αqk + 6

is enough, hence so is

α ≤
√

2− 1
2 − 3

2q −
6
q2 .

It is easy to see that the latter requirement is weaker for q ≥ 9, so the former one is
enough, which is positive if q ≥ 13. Thus under these conditions Proposition 6.3.8
yields |B| < 2θk + 2d + 3. As the quantities on both sides are integers, the proof is
finished.

Remark 6.3.11. If q ≥ 25, all conditions of Lemma 6.3.10 are satisfied under
d ≤ qk

10 − 2qk−1.

The considerations so far are enough to prove Theorems 6.1.6 and 6.1.7.

Proof of Theorem 6.1.6. We recall the assumptions n ≥ 3, 1 ≤ k < n
2 , q ≥ 17 if

k = 1 and q ≥ 13 if k ≥ 2. Under these, the requirements of Lemma 6.3.10 are
met for d ≤ −1, α = 0, so we conclude that |B| ≤ 2θk. Result 6.2.2 asserts that
B contains the union of two k-spaces (which are disjoint as B is not weighted).
Proposition 6.3.9 yields that either |B| ≥ 2.5qk + 0.5θk−1, a contradiction due to q
being large enough, or the coloring is trivial, in which case d ≥ 0, a contradiction.
Thus there is no coloring with d ≤ −1, in other words, χ̄(H(n, n−1, q)) ≥ θn−2θk+1.
Equality can be reached by trivial colorings since, as k < n

2 , we can always find two
disjoint k-spaces, whose union is clearly a 2-fold k-blocking set.
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Proof of Theorem 6.1.7. Suppose d ≤ 1
2

(
(
√

2− 1)qk − 3θk−1 − 8
)
and q ≥ 11, q

prime. As 11 >
(

5√
2 − 2− 1

4 −
4
11

)−1
≈ 1.08, we can apply Proposition 6.3.6 with

α = 1
4 to obtain |B| < (4 −

√
2)qk + 4θk−1 + 2d + 2 = 3qk + θk−1 − 6. Set β =

8. Then |B| ≤ 3qk + θk−1 + 1 − β and, using d < qk

4 − θk−1 − 4, we also have
(β − 4)qk > (β + 4)θk−1 + β(2d + β − 3), so Proposition 6.3.8 applies and yields
|B| < 2θk + 2d + 6 < 2.5qk. Hence, by Theorem 6.1.9, B contains two disjoint
k-spaces; call them U1 and U2. (Note that this is possible only if k < n

2 , hence
we obtain a contradiction for k ≥ n

2 showing that no proper coloring satisfies the
condition on d.) As |B| < 2.5qk, Proposition 6.3.9 claims that our coloring is trivial.

Suppose now that q is not a prime, and recall that our assumptions in this
case are q ≥ 25 and d ≤ 1

2

(
qk−1 − [k−1

1 ]
q
− 3

)
. To apply Lemma 6.3.10 we need d ≤

qk

10−2qk−1, which follows from d < qk−1

2 and q ≥ 25; hence we obtain |B| ≤ 2θk+2d+2.
The assumed upper bound for d is equivalent to 2d+ 2 ≤ (q − 2) qk−1−1

q−1 , so we may
apply Result 6.2.2 with t = 2 and r = q− 2 to see that B contains the union of two
disjoint k-spaces (again, k ≥ n

2 gives a contradiction). As |B| < 2θk + qk−1 < 2.5qk

clearly holds, Proposition 6.3.9 claims that the coloring is trivial.

Remark 6.3.12. We do not believe that the upper bound d . 0.2qk for the q prime
case in the above result is close to be sharp. We think that the limit should be
roughly d . 0.5qk but to achieve this, one needs to improve Propositions 6.3.6 and
6.3.8 significantly, or to use a different approach. Improving only Proposition 6.3.6
would allow us to prove the same assertion under d . 0.25qk (this is the best allowed
by Proposition 6.3.8).

6.3.2 Improvements when q is not a prime

We recall that B = B(C) denotes the union of color classes in the proper coloring C
with at least two elements, so B is a 2-fold k-blocking set in PG(n, q) colored in a
way that each (n− k)-space contains at least two points of B of the same color.

General assumptions. In the sequel, we will always assume q ≥ 25 and
d ≤ qk

10 − 2qk−1, thus by Remark 6.3.11 we have that |B| ≤ 2θk + 2d + 2 ≤ 2θk +
2( qk

10 − 2qk−1) + 2; this is the bound on the size of B we will use. Let B′ denote the
unique minimal 2-fold k-blocking set contained in B (which is the set of essential
points for B, cf. Result 2.4.3). We want to prove that B′ is monochromatic; to this
end, let us suppose to the contrary that B contains a red and a green essential point
as well. As |B| ≤ 2θk + 2d+ 2 ≤ 2.2qk − 2qk−1 + 2θk−2 + 2 ≤ 2.2qk < 5

2q
k − 1

2 , the t
mod p property (Result 2.4.4) holds for B′.
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We consider three cases depending on the relation between n and 2k. Our main
case is when n = 2k, in which situation the famous André–Bruck–Bose represen-
tation of projective planes shall be used to enable us using planar tools; the cases
n > 2k and n < 2k will be traced back to this one in the following way.

n < 2k:

If n < 2k then we simply embed this projective space into PG(2k, q). Color the
new points with new and pairwise different colors. After the embedding we get a
proper coloring of PG(2k, q) (a k-space of PG(2k, q) intersects the embedded n-space
containing B in a k + n− 2k = n− k dimensional subspace) without any change in
the color classes of size at least two, therefore we get to the situation of our main
case.

n > 2k:

In this case we will assume d ≤ qk

10 −2qk−1−1, which is one less than the general as-
sumption; hence, this will be the one we will have to meet to satisfy the assumptions
for all cases.

Let us embed PG(n, q) into PG(2n− 2k, q) and let us take an (n− 2k− 1)-space
V ⊂ PG(2n − 2k, q) which is disjoint from PG(n, q) (considered now as a given n-
space of PG(2n− 2k, q)); thus PG(2n− 2k, q) is generated by the original PG(n, q)
and V . We build a cone K upon the base B with vertex V ; that is, the cone K
consists of the points of the lines joining a point X ∈ B with a point Y ∈ V .

Lemma 6.3.13. For an arbitrary point P ∈ PG(2n− 2k, q) \ (PG(n, q) ∪ V) there
exist a unique pair of points X ∈ PG(n, q) and Y ∈ V such that the line defined by
X and Y contains P .

Proof. If a good pair X, Y exists then, clearly, the line XY is contained in 〈P,V〉∩
〈P,PG(n, q)〉, which is a subspace of dimension (n−2k−1+1)+(n+1)−(2n−2k) = 1.
Hence a line of this type is unique, and it defines the points X and Y in a unique
way.

The points of PG(2n − 2k) not in K get pairwise distinct new colors, and let
us color the points of K in the following way. The points of V will get the color
of an arbitrarily chosen point of B, and the points of K \ (B ∪ V) get the color of
their well-defined ancestor (the unique point X in Lemma 6.3.13) in B. Finally, let
us give weight two to the points of V . In this way, the coloring of PG(2n − 2k) is
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proper, since if an (n− k)-space U meets V then it is blocked by K trivially, and if
it is skew to V then 〈V , U〉 will be an (2n− 3k)-space such that it meets PG(n, q) in
an (n− k)-space W , thus W contains two points of B of the same color and, by the
cone structure, U contains two points of K of the same color. Also, the red and the
green essential points for B in PG(n, q) remain essential for K, hence K contains a
red and a green essential point of weight one.

Note that except for the points of the (n− 2k− 1)-space V , each point of K has
weight one; n− 2k − 1 = dim(V) ≤ 2n−2k

2 − 2 = dim(PG(2n−2k))
2 − 2; furthermore, the

number of points of K (with weights) is |B|+ 2|V|+ |B||V|(q− 1) = |B|+ 2θn−2k−1 +
|B|(qn−2k−1) = |B|qn−2k+2θn−2k−1, and as |B| = 2θk+2d+2 ≤ 2θk+2( qk

10−2qk−1),
we obtain |K| ≤ 2(θn−k−θn−2k−1)+2( qn−k

10 −2qn−k−1)+2θn−2k−1 = 2θn−k +2( qn−k

10 −
2qn−k−1), which is exactly our assumption for the main case.

The main case, n = 2k:

In both of the above cases, we ended up in a projective space of order n, n even,
whose points admit a proper coloring, and the union of the color classes of size at
least two form a 2-fold n

2 -blocking set B of size at most 2θn
2

+ 2( q
n
2

10 − 2q n
2−1) + 2,

which set is either non-weighted, or the set of points with weight more than one is
a subplane of dimension at most n

2 − 2, and all points in this subplane are of weight
two. In both cases, our indirect assumption assures that there exist red and green
essential points of weight one. From now on we fix this notation for the appropriate
dimensions and set n = 2k.

For future purposes, we need to find a hyperplane H that intersects B in at most
2.2θk−1 points and contains all points of weight two (if there is any). If k = 1,
we are done (otherwise B blocks every line of PG(2, q) at least three times, so
|B| ≥ 3(q + 1), a contradiction). Suppose now k ≥ 2. Then |B| ≤ 2.2θk − 4qk−1.
Let U−2 be the (k − 2)-space consisting of the points of weight two or, if there are
no such points, an arbitrary (k − 2)-space. Among the θk+1 distinct (k − 1)-spaces
containing U−2, there must be one, say, U−1, that contains no point of B \ U−2,
otherwise |B| ≥ θk+1 > 2.2θk, a contradiction. Among the θk distinct k-spaces
containing U−1 there must be one, say, U0, that contains at most two points of
B \ U−1, otherwise |B| ≥ 3θk > 2.2θk. Suppose now that the (k + i)-space Ui
contains at most 2.2qi points of B \ Ui−1 (0 ≤ i ≤ k − 3). Then among the θk−i−1

distinct (k+ i+ 1)-spaces containing Ui, there must be one, say, Ui+1, that contains
at most 2.2qi+1 points of B \ Ui, otherwise |B| > 2.2qi+1θk−i−1 = 2.2θk − 2.2θi >
2.2θk − 2.2θk−2 > 2.2θk − 4qk−1 ≥ |B|, a contradiction. To find an appropriate
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hyperplane Uk−1, we claim that among the θ1 = q + 1 distinct (2k − 1)-spaces
containing Uk−2 there is one that contains at most 2.2qk−1−2θk−2 points of B\Uk−2,
otherwise |B| >

(
2.2qk−1 − 2θk−2

)
(q + 1) = 2.2qk + 2.2qk−1 − 2(θk−1 − 1)− 2θk−2 =

2.2θk − 2θk−1− 4.2θk−2 + 2 = 2.2θk − 2qk−1− 6.2 qk−1−1
q−1 + 2 > 2.2θk − 4qk−1 ≥ |B|, a

contradiction (where we use q ≥ 25). Thus we find an (n− 1)-space Uk−1 such that

|B ∩ Uk−1| = |B ∩ U−2|+
k−1∑
i=0
|(B \ Ui) ∩ Ui+1| ≤ |B ∩ U−2|+ 2.2θk−2+

+2.2qk−1 − 2θk−2 ≤ 2θk−2 + 2.2θk−1 − 2θk−2 = 2.2θk−1.

We set H = Uk−1 to be the hyperplane (a (2k − 1)-space) admitting the properties
claimed. André [71] and independently Bruck and Bose [72, 73] developed a method,
the well-known André-Bruck-Bose representation, for representing translation planes
of order qh with kernel containing GF(q) in the projective space PG(2h, q). It arises
from a suitable (h− 1)-spread of the hyperplane at infinity in PG(2h, q). The affine
lines of the plane are h-dimensional subspaces containing the (h − 1)-spaces of the
(h − 1)-spread. The ideal points correspond to the elements of the spread. Thus a
point set intersecting every h-space yields a blocking set in the plane PG(2, qh).

It is well-known that an arbitrary (k − 1)-space can be mapped to any other
(k − 1)-space with a suitable linear transformation. By the previous observations
we can take a (k − 1)-spread S of H (i.e., a set of (k − 1)-spaces that partition H)
in such a way that if V exist it will be contained in one of the spread elements.
Moreover, this transitivity property allows us to choose such a Desarguesian (also
called regular) spread, too.

Remember that we have already assumed on the contrary that B′, the minimal
part of B, contains red and green essential points of weight one. By using Lemma
6.3.7 and the choice of H one can see that B′ must have both red and green affine
points. In the following we will show that the minimal part of B must be monochro-
matic which will give us a contradiction.

Let us define a point-line incidence structure Π = Π(H,S) in the following way:

• the points of Π are the points of PG(2k, q) \H and the elements of S;

• for each k-dimensional subspace U of PG(2k, q) such that U ∩H ∈ S, the set
(U \H) ∪ {U ∩H} is considered to be a line of Π, as well as S;

• a point is incident with a line if it is an element of it.

Then Π is well-known to be a projective plane of order q̃ := qk by the André-Bruck-
Bose representation, and since S is a Desarguesian spread, then Π ' PG(2, q̃).
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We will consider S as the line at infinity in Π, and a point of Π is called ideal or
affine according to whether it is on the ideal line or not.

Definition 6.3.14. From the coloring C of PG(2k, q), we define a coloring C̃ of the
points of Π in the following way.

• For an affine point P of Π, let P inherit its color naturally from the coloring
C.

• For an ideal point S ∈ S, we distinguish two cases. On the one hand, if each
point of S forms a singleton color class of C (i.e., B ∩ S = ∅), then let the
color of S be the color of an arbitrarily chosen point of S. On the other hand,
if there is a color class of C of size at least two containing a point of S (i.e.,
B ∩S 6= ∅), then color S with a color i such that Ci ∩S 6= ∅, |Ci| ≥ 2, and for
all j ∈ {1, 2, . . . , N} we have |Ci ∩ S| ≥ |Cj ∩ S|.

Note that C̃ is an N -coloring of Π that might not be strict.

Definition 6.3.15. From a weighted point set Z of PG(2k, q) with weight function
wZ, we define a weight function w̃Z on the points of Π in the following way.

• For an affine point P of Π, let w̃Z(P ) = wZ(P ) if P ∈ Z and w̃Z(P ) = 0
otherwise.

• For an ideal point S ∈ S, let w̃Z(S) = |S ∩ Z| (counted with weights; that is,
w̃Z(S) = ∑

P∈S wZ(P )).

For the point set Z, Z̃ denotes the weighted point set of Π corresponding to the
weight function w̃Z (zero weight points are not considered as elements of Z̃).

Consider now B̃ = B̃(C) (recall that B may be weighted). If S /∈ B̃, then the
points of S have pairwise distinct colors in C (and all are singletons). If S ∈ B̃ is of
weight one, then the color of S at C̃ is the same as the color of the unique point in
S ∩ B at C. We remark that for the union B(C̃) of color classes of size at least two
of C̃ in Π, B(C̃) ⊆ B̃, but equality does not follow immediately from the definitions.
In the sequel, we will work with B̃ using the property that every line of Π intersects
it in at least two equicolored points, yet we make the following, slightly stronger
observation.

Proposition 6.3.16. The coloring C̃ with the weight function w̃B is a proper
weighted coloring of Π; that is, every line of Π contains some points of the same
color whose weights add up to at least two.
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Proof. Let U be the k-space of PG(2k, q) corresponding to a line ` of Π, and let
S = U ∩H. If w̃B(S) ≥ 2, we are done. If w̃B(S) ≤ 1 (whence {P,Q} 6⊂ S follows),
then, as C is proper, U contains two distinct points of the same color with respect
to C, say, P and Q; note that {P,Q} ⊂ B. If both P and Q are affine points (which
is the case if w̃B(S) = 0), then we are also done. Suppose now P ∈ S, Q /∈ S and
w̃(S) = 1. Then, as P is the unique point of S ∩ B, the color of S at C̃ is the same
as the color of P at C, and so S and Q are two points of ` having the same color at
C̃.

It is clear from Definition 6.3.15 that B̃ and B̃′ (that is, the weighted point set
in Π obtained from B′) are weighted double blocking sets in Π of size (total weight)
|B̃| = |B| and |B̃′| = |B′|; however, B̃′ may not be minimal. Let B̂ be the unique
minimal weighted double blocking set contained in B̃ (cf. Result 2.4.3); then B̂ ⊂ B̃′

follows.

Proposition 6.3.17. If B̂ is monochromatic at C̃, then C is trivial.

Proof. Clearly, |B̂| ≥ 2(q̃+ 1) = 2qk + 2. Suppose that each point of B̂ is, say, green
at C̃. As B̂ is minimal, each ideal point S ∈ B̂ has weight at most two (the affine
points of B̂ have weight exactly one). An ideal point S ∈ B̂ as a (k−1)-dimensional
subspace in PG(2k, q) must contain at least one green point (with respect to C). By
the choice of H we know that |B′ ∩ H| ≤ 2.2θk−1. Therefore B′ contains at least
|B̂| − 2.2θk−1

2 ≥ 2qk + 2 − 1.1θk−1 green points. We recall our general assumptions
|B′| ≤ |B| ≤ 2.2θk − 4qk−1 + 2 and suppose to the contrary that C is not trivial.
Then B′ contains a point that is not green but, say, red. As B′ is minimal, this red
point is essential and simple thus Lemma 6.3.7 claims that the number of red simple
points is more than 3qk − |B′|, whenceforth |B′| > 2qk + 2 − 1.1θk−1 + 3qk − |B′|,
that is, |B′| ≥ 2.5qk − 0.55θk−1 follows, a contradiction. Hence B′ is all green, thus
C is trivial.

By Proposition 6.3.17, it is enough to show that B̂ is monochromatic. We will
do this along the same main ideas as in [14, Proposition 3.14]; however, the ideas
must have been adapted to the presence of weights. We need the following lemma.

Lemma 6.3.18. Let P ∈ B′ \ H. Then P is essential for B̃′ in Π; consequently,
P ∈ B̂.

Proof. Suppose to the contrary. Then every line of Π through P intersects B̃′ in
at least three points (with respect to w̃B′). This yields that for every S ∈ S, the
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k-space 〈P, S〉 of PG(2k, q) intersects B′ in at least three and thus, by Result 2.4.4,
in at least p + 2 points. As the qk + 1 distinct k-spaces of form 〈P, S〉, S ∈ S,
pairwise intersect in P only, we get 2.5qk ≥ |B| ≥ |B′| ≥ (p + 1)(qk + 1) + 1, a
contradiction.

Suppose that 2θk+2d+2 ≤ 2(q̃+1)+X for some X ∈ R. As |B| ≤ 2θk+2d+2 ≤
2θk+0.2qk−4qk−1+2 ≤ 2.2qk, we may assumeX ≤ 0.2q̃. By our indirect assumption
we know that B′ contains both red and green simple affine points. By Lemma 6.3.18
and the definition of C̃ we see that B̂ also contains both red and green affine (and
hence single) points.

If there are other color classes in C containing more than two points, replace
their color by red. In this way we obtain a nontrivial proper coloring C ′ such that
B̃(C) = B̃(C ′); thus it is enough to restrict our attention for colorings admitting only
two color classes of size more than one. Then the points of B̂ are also either red or
green and both colors actually occur in the affine part. Denote the set of red points
of B̂ by B̂r and the set of green ones by B̂g.

By Result 2.4.4, every line meets B̂ in 2 (mod pe) points, where e ≥ 1 is the
largest integer for which this property holds. Write |B̂| = 2(q̃ + 1) + c. Note that
since B̂ is a minimal double blocking set in Π, every point of it has weight at most
two; moreover, by its definition, all double points of B̂ are on the ideal line. It is
easy to see that if P ∈ B̂ is a single point, then there are at least q̃+1− q̃+c

pe bisecants
through it and if P is a double point, then there are at least q̃ + 1− 2q̃+c

pe bisecants
through it. If P ∈ B̂ is an affine single point, then at least q̃ + 1 − q̃+c

pe − (X − c)
of the bisecants through P to B̂ are bisecants to B̃ as well. Since C̃ is proper, the
points on these bisecants must have the same color as P . As there are both red and
green affine (and hence single) points of B̂, we find

|B̂r| ≥ (q̃ + 2)− q̃ + c

pe
− (X − c), (6.3.4)

|B̂g| ≥ (q̃ + 2)− q̃ + c

pe
− (X − c), (6.3.5)

which also immediately gives

|B̂r| = |B̂|−|B̂g| ≤ 2(q̃+1)+c−
(
q̃ + 2− q̃ + c

pe
− (X − c)

)
= q̃+ q̃ + c

pe
+X. (6.3.6)

Our aim now is to show that one of the color classes, say, the red class, contains
even more points than what was shown above, leading to a lower bound on |B̂| large
enough to get a contradiction. To this end we want to find an affine single red point



On the upper chromatic number of H(n, n− k, q) 73

in B̂ that has many non-bisecant lines through it on which there are more red points
than green.

For a line ` of Π, let n` = |`∩B̂|, nr` = |`∩B̂r|, ng` = |`∩B̂g|. Clearly, nr` +ng` = n`

holds for all line `. We denote the affine part of B̂ by B̂a and for a line ` different from
S, define n̄`, n̄r` , n̄

g
` similarly as above but with respect to B̂a. Again, n̄r` + n̄g` = n̄`

holds for every affine line `. Clearly, n` − 2 ≤ n̄` ≤ n` also holds. We recall Result
2.4.4 and pe ≥ 3. Observe that if n̄` = 0, then ` must meet the ideal line in a double
point of B̂; if n̄` = 1, then ` must meet the ideal line in a single point of B̂; and if
n̄` = 2, then ` must meet the ideal line outside of B̂. Also, n̄` > 2 ⇔ n` > 2. Let
us denote the set of single and double points of S by S1 and S2, respectively. With
these notations one can find the inequalities∑

`∈L\`∞, n̄`=1
n̄` ≤ |S1|q̃ and

∑
`∈L\`∞, n̄`=2

n̄` ≤ 2 · (q̃ + 1− |S1| − |S2|)q̃.

Clearly, we have ∑`∈L\`∞ n̄` = |B̂a| · (q̃+ 1). Let ∆ = |S1|+ 2|S2| = |B̂|− |B̂a|. Then

∑
`∈L\`∞, n`>2

n̄` =
∑

`∈L\`∞, n̄`>2
n̄` =

∑
`∈L\`∞

n̄` −

 ∑
`∈L\`∞, n̄`=1

n̄` +
∑

`∈L\`∞, n̄`=2
n̄`

 ≥
≥

∑
`∈L\`∞

n̄` − q̃(2q̃ + 2−∆) = (2(q̃ + 1) + c−∆)(q̃ + 1)− q̃(2q̃ + 2−∆) =

= (c+ 2)q̃ + (c+ 2−∆).

We will refer to a line ` as a long secant if n` > 2 holds. Let Lr be the set of affine
long secants with n̄r` > n̄g` ; define Lg and L= analogously. Without loss of generality
we may assume that ∑`∈Lr n̄r` ≥

∑
`∈Lg n̄g` , therefore

(c+2)q̃+(c+2−∆) ≤
∑

`∈L\`∞, n`>2
n̄` =

∑
`∈Lr

(n̄r`+n̄g`)+
∑
`∈Lg

(n̄r`+n̄g`)+
∑
`∈L=

(n̄r`+n̄g`) ≤

≤
∑
`∈Lr

2n̄r` +
∑
`∈Lg

2n̄g` +
∑
`∈L=

2n̄r` ≤
∑

`∈Lr∪L=
4n̄r` .

We call an affine long secant ` with n̄r` ≥ n̄g` an almost red line. From the last
inequality we get that there is a red affine point P ∈ B̂r such that the number of
almost red lines through P is at least

(c+ 2)q̃ + (c+ 2−∆)
4|B̂ar |

≥ (c+ 2)q̃ + (c+ 2−∆)
4|B̂r|

,

where B̂ar is the affine part of B̂r.
By the t (mod p) result (Result 2.4.4) we know that for a long secant `, n` ≥ pe+2

and since n` − 2 ≤ n̄`, we can deduce that n̄r` + n̄g` ≥ pe for all long secants. Hence,
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since P is an affine single red point, any almost red long secant through P contains
at least pe

2 −1 red points of B̂ different from P on it (counted with weights). Taking
into account the number of red points located on the bisecants through P (6.3.4)
and also the upper bound (6.3.6) on B̂r, this yields

(q̃+2)− q̃ + c

pe
− (X−c)+ (c+ 2)q̃ + (c+ 2−∆)

4|B̂r|
·
(
pe

2 − 1
)
≤ |B̂r| ≤ q̃+ q̃ + c

pe
+X.

Rearranging the above inequality gives

2X + 2(q̃ + c)
pe

− c− 2 ≥ (c+ 2)q̃ + (c+ 2−∆)
4|B̂r|

·
(
pe

2 − 1
)
.

From Result 2.4.4 we know that c + 2 ≥ q̃
pe+1 − 1. Applying this and also |B̂r| ≤

q̃ + q̃+c
pe +X we get

2X + 2(q̃ + c)
pe

− q̃

pe + 1 + 1 ≥

(
q̃

pe+1 − 1
)
q̃ +

(
q̃

pe+1 − 1−∆
)

4 ·
(
q̃ + q̃+c

pe +X
) ·

(
pe

2 − 1
)

Let us write X = γq̃. After that multiply both sides with the whole denominator
of the right (note that this is surely a positive number) and arrange everything to
the left side to get the following due to a lengthy computation:

q̃2pe
(
−1 + 16γ + 16γ2

)
+ 2q̃p2e + q̃2

(
10 + 40γ + 16γ2

)
+

+ q̃
2

pe
(24 + 32γ) + q̃c (16 + 32γ) + 16 q̃

2

pe
+ q̃pe (6 + 8γ) +

+ q̃c
pe

(40 + 32γ) + q̃ (16 + 8γ) + 32 q̃c
p2e + 16 c

2

p2e + 16c
2

pe
+

+8c+ 8 q̃
pe

+ 8 c
pe
− 2− 2∆ + 2p2e + 2∆p2e ≥ 0

(6.3.7)

If pe = q̃, then every line which is not a 2-secant to B̂ is contained completely in
B̂ (and the ideal point of it has weight two) since the affine points are single ones
and an ideal point has weight at most two. Hence if there exists a double point in
the ideal line then B̂ has to be the union of two complete lines and otherwise every
line is a 2-secant to B̂. In the first case we get a contradiction with Proposition 6.3.9
and in the latter case we get that the number of lines has to be equal to

(
|B̂|
2

)
, but

now |B̂| = 2(q̃ + 1). Hence pe = q̃ is not possible.
If pe < q̃, then the leading term in expression (6.3.7) is q̃2pe (−1 + 16γ + 16γ2).

If γ is chosen so that −1 + 16γ + 16γ2 < 0 and q and pe are large enough, then
the leading term overflow the remaining ones, hence we will get a contradiction
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and conclude that our coloring C must be trivial. The coefficient is negative if
1
γ
> 8 + 4

√
5 ≈ 16, 944 but then the remaining terms can be quite large. Thus at

this point we make a rather arbitrary choice of the parameters in our likes and, in
case someone would need a differently set result, we will make a remark on the other
possible choices.

Let us consider the non-negative expression on the left side of (6.3.7) as a function
f = f(q̃, pe, γ, c,∆). Clearly, f is increasing in c, ∆ and γ. By the definitions of ∆
and c we immediately see that ∆ ≤ 2(q̃ + 1) and c ≤ X = γq̃, thus g(q̃, pe, γ) :=
f(q̃, pe, γ, γq̃, 2(q̃ + 1)) ≥ 0 follows. Let us fix the value of γ = 1

100 . It means
that d ≤ δ, because |B̃| ≤ 2θk + 2d + 2 ≤ 2(q̃ + 1) + X = 2(q̃ + 1) + γq̃. Now
p2e · g

(
q̃, pe, 1

100

)
=

(6q̃ + 6)p4e +
(
−524

625 q̃
2 + 152

25 q̃
)
p3e +

(6603
625 q̃

2 + 304
25 q̃ − 6

)
p2e+

+
(25453

625 q̃2 + 202
25 q̃

)
pe + 201

625 q̃
2 ≥ 0

Since pe 6= q̃, we know that pe ≤ q̃
p
holds, and on the other hand, from Result

2.4.4 one can deduce that pe ≥ q̃
γq+3 − 1, which is equivalent to pe ≥ 99 − 30000

q̃+300 .
Since q̃ ≥ 239 and the characteristic p ≥ 11, we can increase the terms with positive
coefficients by changing pe to q̃

11 or by multiplying with q̃
239 . Moreover, we can

decrease the terms with negative coefficients by changing pe to 47, since the lower
bound on pe also increases as q̃ increases, therefore pe ≥ 99− 30000

239+300 ≈ 43, 341. With
these three elementary observations one can give an upper bound p2e · g(q̃, pe, 1

100) ≤

(6q̃ + 6)p3e · q̃11 +
(
−524

625 q̃
2 + 152

25 q̃
)
p3e +

(6603
625 q̃

2 + 304
25 q̃ − 6

)
p2e+

+
(25453

625 q̃2 + +202
25 q̃

)
pe + 201

625 q̃
2 =

(
−2014

6875

)
p3eq̃2 + 1822

275 p
3eq̃ + 6603

625 p
2eq̃2+

+304
25 p

2eq̃− 6p2e + 25453
625 peq̃2 + 202

25 p
eq̃+ 201

625 q̃
2 ≤

(
−2014

6875

)
p3eq̃2 + 1822

275 p
3e q̃

2

239+

+6603
625 p

2eq̃2 + 304
25 p

2eq̃−6p2e+ 25453
625 peq̃2 + 202

25 p
eq̃+ 201

625 q̃
2 =

(
− 435796

1643125

)
p3eq̃2+

+6603
625 p

2eq̃2+304
25 p

2eq̃−6p2e+25453
625 peq̃2+202

25 p
eq̃+201

625 q̃
2 ≤

(
− 435796

1643125

)
p2eq̃2·47+

+6603
625 p

2eq̃2 + 304
25 p

2eq̃ − 6p2e + 25453
625 peq̃2 + 202

25 p
eq̃ + 201

625 q̃
2 =

(
−4997

2629

)
p2eq̃2+

+304
25 p

2eq̃−6p2e+25453
625 peq̃2+202

25 p
eq̃+201

625 q̃
2 ≤

(
−4997

2629

)
peq̃2·47+304

25 p
e q̃

2

11−6p2e+
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+25453
625 peq̃2 + 202

25
q̃2

11 + 201
625 q̃

2 =
(
−78054538

1643125

)
peq̃2 − 6p2e + 7261

6875 q̃
2 ≤

≤
(
−78054538

1643125

)
· 47q̃2 − 6p2e + 7261

6875 q̃
2 = − 3666827907

1643125 q̃2 − 6p2e < 0,

which is a contradiction, hence the coloring must be trivial. Thus we finished the
proof of Theorem 6.1.8. �

Remark 6.3.19. If one would like to choose a suitable γ, so that 1
γ
> 8 + 4

√
5 ≈

16, 944 still holds, then the conditions on the lower bound on q and on the charac-
teristic may change, which would lead to the corresponding lower bound on pe. After
properly adjusting the assumption on the characteristic of the field, then one can get
a contradiction by an analogous argument. For example we computed the conditions
on the variables in order to get a contradiction for γ = 1

20 and for γ = 1
50 .

γ = 1
20 : if p ≥ 151, q ≥ p2 γ = 1

50 : if p ≥ 17, q ≥ 479.
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Summary

The thesis treats problems from graph theory and most of them have some connec-
tions with finite geometry. Throughout the thesis we use some well-known results
such as the Godsil-McKay switching, the Cauchy-Davenport theorem, the Bose-
Skolem construction of Steiner triple systems, and the so-called t (mod p) result of
Ferret, Storme, Sziklai and Weiner.

In Chapter 3, we construct a family of infinitely many examples for two b-regular,
cospectral graphs so that exactly one of them has a perfect matching. It proves a
conjecture of Willem H. Haemers via the use of the Godsil-McKay switching. The
results of this chapter are joint with Jay Cummings and Willem H. Haemers.

In the last decade, the investigation of (semi-)resolving sets significantly accel-
erated. However, a similarly defined notion, the partition dimension, attracted less
interest. Together with Zoltán Lóránt Nagy, we determined the order of magni-
tude of the partition dimension of the incidence graph of finite projective planes in
Chapter 4.

The motivation for the results in Chapter 5 is the following embeddability ques-
tion. If some collinearity constraints are given on the triples of a point set, can then
we embed this prescribed structure into a projective plane of order q? It turns out
that the answer for this question depends on some kind of connectivity properties
of hypergraphs. These observations lead to the study of Steiner triple systems con-
taining no nontrivial subsystems, and to the existence of such Steiner triple systems
which are almost 1-expanders. The results of this chapter are joint with Zoltán
Lóránt Nagy.

Together with Tamás Héger and Tamás Szőnyi, we generalised their result (to-
gether with Gábor Bacsó) concerning the upper chromatic number of PG(2, q) in
Chapter 6. We investigate the upper chromatic number of the hypergraph formed
by the points and the k-dimensional subspaces of PG(n, q); that is, the most num-
ber of colors that can be used to color the points so that every k-subspace contains
at least two points of the same color. Clearly, if one colors the points of a double



84 Summary

(n − k)-blocking set with the same color, the rest of the points may get mutually
distinct colors. This gives a trivial lower bound, and we prove that it is sharp in
many cases. Furthermore, we prove that a stability phenomenon occurs here, be-
cause no matter how we color the points of PG(n, q) with slightly less number of
colors it must contain a monochromatic double (n−k)-blocking set, too. Due to this
relation with double blocking sets, we also prove that for t ≤ 3

8p + 1, a small t-fold
(weighted) (n−k)-blocking set of PG(n, p), p prime, must contain the weighted sum
of t not necessarily distinct (n− k)-spaces.



Összefoglalás

A disszertációban többségében olyan gráfelméleti problémákkal foglalkozunk, amik
kapcsolatban állnak a véges geometriával. A tézis során többek között olyan is-
mert eredményeket fogunk felhasználni, mint a Godsil-McKay switching, a Cauchy-
Davenport tétel, Bose és Skolem konstrukciója Steiner hármasrendszerekre, és az
úgynevezett t (mod p) eredménye a Ferret, Storme, Sziklai, Weiner szerzőnégyesnek.

A harmadik fejezetben végtelen sok példát adunk olyan gráfpárokra, amelyek b-
regulárisak, az adjacencia mátrixra vonatkozó spektrumuk megegyezik, mégis csak
pontosan az egyikük tartalmaz teljes párosítást. A bizonyítás a Godsil-McKay
switching alkalmazásán múlik, és így igazolja Willem H. Haemers korábbi sejtését.
A fejezetben szereplő eredmények Jay Cummings-szal és Willem H. Haemers-szel
közösek.

Az elmúlt évtizedben a (félig-)megoldóhalmazok vizsgálata jelentősen felgyorsult,
miközben a hasonlóan definiált partíció dimenzió fogalmával kevesebben foglalkoz-
tak. A negyedik fejezetben a Nagy Zoltán Lóránttal közös eredményünket tár-
gyaljuk. Sikerült meghatároznunk a véges projektív síkok illeszkedési gráfjának
partíció dimenziójának nagyságrendjét.

Az ötödik fejezetbeli eredményekhez a következő beágyazhatósági kérdésen
keresztül vezetett az út. Amennyiben adott néhány kollinearitási feltétel ponthár-
masokon, akkor ezt az előírt struktúrát be tudjuk-e ágyazni egy q-adrendű véges pro-
jektív síkba? Az derült ki, hogy ezen kérdés megválaszolásához jobban meg kellene
értenünk hipergráfok bizonyos összefüggőségi tulajdonságait. Ezek a megfigyelések
vezettek az olyan Steiner hármasrendszerek vizsgálatához, amik nem tartalmaz-
nak nemtriviális részrendszert, továbbá olyan Steiner hármasrendszer létezéséhez,
amelyek majdnem 1-expanderek. A fejezetbeli eredmények Nagy Zoltán Lóránttal
közösek.

Héger Tamással és Szőnyi Tamással közösen általánosítottuk a korábbi Bacsó
Gáborral közös eredményüket véges testre épített projektív síkok felső kromatikus
számáról. Mi annak a hipergráfnak a felső kromatikus számát vizsgáljuk, aminek
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csúcsai megfelelnek PG(n, q) pontjainak és a hiperélek pedig a k-dimenziós al-
tereknek; vagyis szeretnénk meghatározni azt a legnagyobb színszámot, amivel
megszínezhetők PG(n, q) pontjai úgy, hogy minden k-dimenziós altérben legyen
legalább két darab azonos színű pont. Nyilvánvaló, hogy ha egy kétszeres (n − k)-
lefogó ponthalmazt egyszínűre színezünk, akkor a többi pont lehet páronként külön-
böző színű. Ebből kaphatunk egy triviális alsó korlátot, és bizonyítjuk, hogy szá-
mos esetben ez éles is. Sőt igazoljuk, hogy itt egy stabilitási jelenség is megjelenik,
ugyanis ha csak egy kicsivel kevesebb színt használhatunk, akkor is biztosan lesz
a színezésünkben egy egyszínű kétszeres (n − k)-lefogó ponthalmaz. A kétszeres
lefogó ponthalmazokkal kapcsolatban sikerült belátnunk, hogy ha t ≤ 3

8p + 1 és p
prím, akkor egy kicsi t-szeres (súlyozott) (n − k)-lefogó ponthalmaz PG(n, p)-ben
mindenképp tartalmazza t darab nem feltétlenül diszjunkt (n − k)-dimenziós altér
súlyozott összegét.
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