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Resting-state fMRI data of awake 
dogs (Canis familiaris) via group-
level independent component 
analysis reveal multiple, spatially 
distributed resting-state networks
Dóra Szabó  1*, Kálmán Czeibert  1, Ádám Kettinger2,3, Márta Gácsi1,4, Attila Andics1,5, 
Ádám Miklósi1,4 & Enikő Kubinyi  1

Resting-state networks are spatially distributed, functionally connected brain regions. Studying 
these networks gives us information about the large-scale functional organization of the brain and 
alternations in these networks are considered to play a role in a wide range of neurological conditions 
and aging. To describe resting-state networks in dogs, we measured 22 awake, unrestrained individuals 
of both sexes and carried out group-level spatial independent component analysis to explore whole-
brain connectivity patterns. In this exploratory study, using resting-state functional magnetic 
resonance imaging (rs-fMRI), we found several such networks: a network involving prefrontal, anterior 
cingulate, posterior cingulate and hippocampal regions; sensorimotor (SMN), auditory (AUD), frontal 
(FRO), cerebellar (CER) and striatal networks. The network containing posterior cingulate regions, 
similarly to Primates, but unlike previous studies in dogs, showed antero-posterior connectedness with 
involvement of hippocampal and lateral temporal regions. The results give insight into the resting-state 
networks of awake animals from a taxon beyond rodents through a non-invasive method.

Resting-state networks (RSNs) are spatially distributed, functionally connected brain regions, characterized by 
the correlation of the time series of spontaneous, low frequency (0.01–0.1 Hz) fluctuations of the blood-oxygen 
level dependent (BOLD) signal, usually acquired in the absence of a specific task, and measured via functional 
magnetic resonance imaging (fMRI). One widely used method to explore these whole-brain connectivity pat-
terns is spatial independent component analysis (ICA), a data driven, model-free method1. ICA is appropriate 
to describe networks in case of a species which brain’s functional characteristics are yet to be determined, as 
it does not require selection of a priori seed regions. This method attempts to discover statistically independ-
ent source signals from the measured observations, using non-linear transformations while looking for spatial 
independence2.

The structure and assumed tasks of RSNs are of high interest as they have the potential to provide information 
about the brain’s large scale functional organization1,3, and alternations in these networks have been found to 
correspond with various pathologies such as dementia or ADHD4. As a result, the number of human rs-fMRI 
studies grew rapidly in recent years, while only a handful of studies attempted to describe characteristics of RSNs 
in non-human animal species. To reveal phylogenetic changes and conserved core physiological mechanisms, it 
is crucial to compare a diverse range of non-human species5. To date, resting-state networks were investigated via 
fMRI in mice6, rats7, marmosets8 macaques9, prairie voles10, dogs11 and ferrets12. Sensorimotor networks, such as 
visual and/or somatosensory networks have been described in most animal resting-state fMRI studies, but sepa-
rete visual network(s) were only reported in prairie voles10, ferrets12, and in primates8. Salience-like networks so 
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far have been described in rodents6 and primates8, while fronto-parietal like components have been found so far 
only in prairie voles10 and primates9.

Although putative default mode networks have been described in all of the investigated species, the typi-
cal antero-posterior connectedness of the human default mode network was only found in superorder 
Euarchontoglires (primates and rodents), while the corresponding networks in superorder Laurasiatheria 
(described in ferrets12 and dogs11,13) were reported to show antero-posterior dissociation. Our goal was 
to investigate whether applying the currently available methods yield interpretable results with our setup 
(proof-of-concept) and if so, what kind of spatially distributed resting-state networks are detectable in a larger 
sample of awake, unrestrained family dogs in a resting-state fMRI setup, following up on previous reports11,13.

Methods
Subjects. We measured 22 family dogs (Canis familiaris) (age 6.41 ± 3.42 years (mean ± SD), range 2–13 
years, 10 females and 12 males, 7 golden retrievers, 5 border collies, 2 English cocker spaniels, 1 Labrador 
retriever, 1 labradoodle, 2 mongrels, 1 Chinese crested dog, 1 Cairn terrier, 1 Hungarian vizsla, 1 Australian 
shepherd). Training procedure has been described in detail in a previous study14, and was based on individual and 
social learning using positive reinforcement.

Experimental procedure. The experiment consisted of a 2-minute-long pretraining, to familiarize the dogs 
with the semi-continuous scanning procedure, and two 6-minute-long data collection runs. To provide sound 
protection, the dogs were wearing ear muffs. During scanning, dogs were lying with their eyes open, without pres-
entation of a fixation cross, with their handler being visible, but avoiding eye contact with the subject. Figure 1 
shows the dog’s in scanner position. The strap over the head was used to fixate the circular coil on the top of the 
dog’s head, not to restrain dog motion. Motion threshold for successful runs was set to a maximum of 2 mm (for 
each translation direction) and 2 degrees (for each rotation direction) during the whole run. During scanning, 
there was no eye contact between dog and owner, the owner was looking at the side of the scanner. Based on our 
experience, the dogs are usually not looking at the owner in this situation, the purpose of the presence of the 
human is to ensure that the dogs are comfortable and relaxed in this situation by providing dogs with a secure 
base. This relaxed state is essential to collect continous, 6 minutes long fMRI data from unrestrained dogs with-
out repositioning under this motion treshold. Our extended training is based on the premise that the dogs are 
not being rewarded during scanning. This is crucial in our case, as expectation of immediate reward (and such 
an expectation would need to be sustained for over 6 minutes, as the dogs still keep performing the task) would 
result in increased salivation and swallowing, which would cause larger movements than our motion thresh-
old. The dogs are conditioned to a specific ‘release procedure’ (the handler leaning into the bore of the scanner, 

Figure 1. The scanning setup. The strap over the head was used to fixate the circular coil on the top of the dog’s 
head, it does not restrain the dog.
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unstrapping the coil from the dog’s head), which starts only after the scanning has stopped, so based on their 
training & scanning experience, the dogs do not expect immediate reward in this context.

Ethics statement. All procedures were approved by the Ethical Committee of Eötvös Loránd University 
(KA-1719/PEI/001/1490-4/2015) and by the Government Office of Pest County Directorate of Food Chain 
Safety and Animal Health (XIV-I-001/520-4/2012), and conducted in accordance with relevant guidelines and 
regulations.

Image acquisition. Functional MRI acquisitions were performed on a Siemens Prisma 3 T scanner 
(Siemens Healthcare, Erlangen, Germany) using a Gradient Echo Echo Planar Imaging (GRE-EPI) sequence 
with TR = 2640 ms including a 500-ms delay at the end of each volume, and TE = 30 ms. We decided to introduce 
the delay for welfare reasons. During piloting we realized that our dogs seem to find continuous scanning less 
comfortable than protocols with short gaps between subsequent scans. The 500 ms delay was selected empiri-
cally during piloting to include the shortest gaps that the dogs are still comfortable with. The protocol had an 
in-plane Field-of-View 128 mm × 128 mm, using 2 mm in-plane resolution and 2 mm slice thickness, measuring 
31 slices with an inter-slice gap of 0.5 mm, using an excitation flip angle of 86°. Phase-encoding direction was set 
to left-right. A single loop coil (d = 11 cm) was used for signal detection, fixed onto the head of the dog and to 
the table of the scanner. In each run, 139 volumes were acquired, with the first 5 of them being discarded before 
processing, resulting in a total functional scanning time of 367 seconds/run. A T1-weighted anatomical scan was 
carried out separately as part of another study on each awake dog for spatial registration on a 3 T Philips Ingenia 
scanner (Philips Medical Systems, Best, The Netherlands), using a 3D Turbo Field Echo (TFE) sequence, with 
TR = 9.85 ms, TE = 4.6 ms, and an isotropic resolution of 1 mm.

Image analysis. FMRI preprocessing included affine realignment (6 parameters, least square aproach) and 
reslicing of the images of the individual runs in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), followed by man-
ual coregistration of the mean image to the individuals’ own structural T1 image in Amira 6.0 (Thermo Fisher 
Scientific). The individual structural images were normalized and transformed (linear, non-rigid transformation) 
to a stereotaxic breed-averaged, T2 weighted template brain15 with Amira. The resliced images were then coregis-
tered and normalized to this transformed mean functional image via SPM’s standard nonlinear warping function 
with 16 iterations and smoothed with an FWHM of 4 mm.

We applied band-pass filtering with a 0.01 and 0.1 Hz cutoff and linear detrending in CONN16. A single run 
had been censored due to exceeding motion threshold, after 127 scans (out of 134). As mean (scan-to-scan) 
motion was 0.035 ± 0.016 mm (mean ± SD), censoring of fMRI volumes during runs due to excessive motion, 
as applied by e.g.17 was deemed inappropriate, because only 3 volumes (each in separate runs) out of the 5975 
collected images during the study (0.05%) would have been affected by such a treshold. We decided against cen-
soring via removing volumes midrun from our functional datasets, because censoring in combination with fre-
quency filtering can introduce additional artefacts18 and excessive motion was very infrequent (scan-to-scan 
displacement larger than 0.2 mm occurred in only 5% of the scans). We applied published, averaged, segmented 
white matter (WM) and cerebrospinal fluid (CSF) dog MRI brain masks15 in our analysis as nuisance regressors 
to filter out non-neural signal fluctuations. These standard masks were applied to our normalized images. Figure 2 
shows a sample of the coregistration of the grey matter mask to a functional image.

Figure 2. Sample of the coregistration of the grey matter mask to the mean functional image. The standard grey 
matter mask from the Nitzsche atlas15 was applied to the normalized images.
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Independent component analysis. Independent Component Analysis (ICA) is a model-free, data driven 
method. Spatial ICA seeks components that are systematically non-overlapping, temporally coherent and max-
imally independent in space, without constraining the shape of the temporal response. We used the CONN 
software16 to carry out group level spatial ICA. CONN is a Matlab-based cross-platform software for the com-
putation, display, and analysis of functional connectivity in fMRI. ICA identifies a number of networks of highly 
functionally-connected areas. CONN’s implementation uses Calhoun’s group-level ICA approach19, with vari-
ance normalization pre-condititioning, subject concatenation of BOLD signal data along temporal dimension, 
group-level dimensionality reduction (to the target number of dimensions/components), fastICA for estimation 
of independent spatial components, and GICA1 backprojection for individual subject-level spatial map estima-
tion. We included the WM mask, CSF mask and the realignment parameters to estimate physiologic noise (e.g. 
cardiac and respiratory cycles) and included them as nuisance regressors to filter out non-neural signal fluctua-
tions. We applied a whole-brain mask to restrict the analysis space. Before the analysis, we also inspected QA plots 
regarding registration of the normalised functional images and the outline of the grey matter ROI. Anatomical 
labelling was carried out based on relevant anatomical brain atlases15,20–22. During evaluation of the components, 
we relied on the guidelines published in Griffanti et al.23. We inspected the components with multiple thresholds, 
with different planes, while looking at both positive and negative clusters. During evaluating the components, we 
took into account the location of the susceptibility artefact and took a conservative approach to avoid classifying 
components containing clusters predominantly from the affected area as neural signal. As currently there is little 
information regarding the location and extent of susceptibility artefact in case of different dog breeds’ functional 
brain scans, we created a guideline after going through and summarizing our raw images, looking for the regions 
which were affected by distortion/signal loss in the individual runs. Figure 3 shows the guideline we utilized dur-
ing our evaluation, to flag clusters which are likely to be the result of susceptibility. While increasing model order 
increases the functional neuroanatomical precision, it reduces the repeatability of the ICA decomposition24. As 
model orders of 10–20 were reported as most suitable to detect large functional network clusters24, we run gICA 
with model orders of 10, 15 and 20.

Assessing reproducibility of independent components. To evaluate the reproducibility of the result-
ing ICA components, we calculated the Dice similarity coefficient. The Dice similarity coefficient (DSC) is used 
to evaluate reliability or reproducibility of MRI volumes, providing a reproducibility validation metric via calcu-
lating a spatial overlap index. The value of a DSC ranges from 0, indicating no spatial overlap between two sets of 
binary segmentation results, to 1, indicating complete overlap25. In case of evaluating consistency of resting-state 
networks from ICA, a DSC value ≥0.3 is considered as good spatial overlap consistency in studies explicitly 
designed to investigate reproducibility26.

To get an estimate of spatial overlap consistency of our data, we split it into two parts (first and second run of 
the subjects), then we run two additional, separate subICAs and calculated the spatial overlap between these sets 
and the original ICA. First, to match the subICA components to the originals, we compared them to the original 
ICA components, and labelled them based on the followings: the ICA component having the highest DSC value 
for the original network component X was labelled X. If a component had the highest DSC value for multiple 
networks, the label with the highest DSC value was selected. If the highest DSC value for a network was below 0.3, 
it was labelled with a new letter.

Results
To evaluate the quality of the collected data regarding head motion, we calculated mean motion from the realig-
ment parameters. In our sample mean motion was 0.035 mm ± 0.016 mm (mean ± SD, n = 22), which is com-
parable to the reported mean motion values in human samples27. This confirms the effectiveness of our training 
procedure and shows the feasibility of carrying out resting-state measurements with awake unrestrained dogs.

Figure 3. Guideline to flag clusters with a high-risk of susceptibility. We considered the dashed red line as the 
boundary corresponding to the largest extent of the susceptibility artefact, clusters with a center (investigated 
with multiple thresholds) anterior to this line would have been considered as susceptibility artefact.
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Independent component analysis. The 15 component group level independent component analysis 
(gICA) contained thirteen components which showed characteristics of containing signals sources from primary 
of neural origin (Figs 4–16). We report regions surviving controlling for multiple comparisons with a voxel-wise 

Figure 4. Resting-state network component A from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p <0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. rostral 
composit gyrus, 2. cingulate gyrus, 3. straight gyrus, 4. Subcallosal area, 5. diagonal gyrus, 6. Left premotor 
area, 7. Medial cingulate gyrus, 8. Bilateral caudal regions of the cingulate gyrus, 9. splenial gyrus, 10. bilateral 
hippocampus, 11. bilateral parahippocampal gyrus, 12. caudal composit gyrus.
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threshold of p-FDR corrected <0.001 and a cluster threshold of p-FDR corrected <0.005. Component A (Fig. 4) 
covered parts of the rostral composit gyrus, rostral regions of the cingulate gyrus and the straight gyrus, the 
subcallosal area and diagonal gyrus; the left premotor area; medial and bilateral caudal regions of the cingu-
late gyrus and splenial gyrus, bilateral regions of the hippocampus and parahippocampal gyrus and the caudal 
composit gyrus. Component B (Fig. 5) included anterior brain regions in the prefrontal area, namely the genual 
gyrus, prorean gyrus, straight gyrus and dorsal anterior cingulate cortex. This component was located dorsally 

Figure 5. Resting-state network component B from the 15 component gICA. We report the results with a voxel-
wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are presented 
as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. genual gyrus, 2. 
prorean gyrus, 3. straight gyrus, 4. dorsal anterior cingulate cortex.
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from the frontal hubs of Component A. Component C (Fig. 6) was a right lateralized frontal network, including 
secondary somatosensory cortices, such as the right rostral composit gyrus, the right caudate nucleus and the 
right rostral suprasylvian gyrus. While this network was less extensive on the left side, it showed clear indications 
of bilaterality, covering parts of the frontal lobe, namely the left rostral composit gyrus and the prorean gyrus. 
We found two components which were in part symmetrical, one of them left while the other right lateralized. 

Figure 6. Resting-state network component C from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. right 
rostral composit gyrus, 2. right caudate nucleus, 3. right rostral suprasylvian gyrus, 4. left rostral composit 
gyrus, 5. prorean gyrus.
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Component D (Fig. 7) was left lateralized, including the left amygdala, left caudate nucleus, striatum, cerebellum, 
bilateral insular cortex, thalamus, fronto-parietal regions, the medial prefrontal cortex, and the mid cingulate 
gyrus. Component E (Fig. 8) covered the right amygdala, the striatum, the cerebellum, the right insular cortex, 
parts of the left visual corex, the septal nuclei, the left sylvian and ectosylvian gyrus. Component F (Fig. 9) covered 

Figure 7. Resting-state network component D from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1.left 
amygdala, 2. left caudate nucleus, 3. striatum, 4. cerebellum, 5. bilateral insular cortex, 6. thalamus, 7. medial 
prefrontal cortex, 8. mid-cingulate gyrus, 9. left rostral composit gyrus.
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regions at the junction of the frontal, temporal and parietal lobes, including frontal regions of the sensorimotoric 
cortex, the bilateral rostral ectosylvian gyrus and rostral suprasylvian gyrus. Component G (Fig. 10) covered 
the cerebellum and the mesencephalon (corpora quadrigemina). This component is analogue to cerebellar net-
works previously reported in human28 and non-human animal studies6,8. Component H (Fig. 11) consisted of the 

Figure 8. Resting-state network component E from the 15 component gICA. We report the results with a voxel-
wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are presented 
as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. right amygdala, 
2. Striatum, 3. Cerebellum, 4. right insular cortex, 5. left visual cortex, 6. septal nuclei, 7. left sylvian gyrus, 8. left 
ectosylvian gyrus.
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mid cingulate cortex, an integrative part of the external limbic circle, related to affective processes and memory. 
Component I (Fig. 12) covered the bilateral auditory cortices, namely the rostral and caudal part of the sylvian 
gyrus; middle, rostral and caudal parts of the ectosylvian gyrus; and the middle, rostral and caudal regions of the 
suprasylvian gyrus. Component J (Fig. 13) included the primer and associative sensory cortical areas, namely the 
bilateral marginal gyrus and the ectomarginal gyrus. Component K (Fig. 14) included the mid cingulate gyrus, 
frontal gyrus, genual gyrus, the pre- and postcruciate gyri, the splenial gyrus, the posterior cingulate gyrus and 

Figure 9. Resting-state network component F from the 15 component gICA. We report the results with a voxel-
wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are presented 
as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. sensorimotoric 
cortex, 2. bilateral rostral ectosylvian gyrus, 3. rostral suprasylvian gyrus.
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the parahippocampal gyrus. These regions correspond to the primer sensorimotoric, premotoric and supple-
menter motoric regions of the dog brain. Component L (Fig. 15) covered primary and secondary visual areas, 
sensory and visual-sensorimotor cortices, namely the marginal gyrus, the ectomarginal gyrus, the suprasylvian 
gyrus and occipital gyrus. Component M (Fig. 16) included primary visual areas, such as the occipital gyrus, 
ectomarginal gyrus and caudal suprasylvian gyrus. Component L & M both are networks consisting of regions 
involved in visual processing. Component N (Fig. 17) was classified as a noise component corresponding to large 

Figure 10. Resting-state network component G from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. 
cerebellum, 2. corpora quadrigemina.
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vessels. It covered the sinus cavernosus and the Willis’ circle, large veins and arteries located at the ventral part 
of the brain. Component O (Fig. 18) showed characteristics consistent with a motion artefact (a ring around the 
edge of the brain). We classified component O as motion artefact because it contained a ring around the edge of 
the brain (which was more visible when both the positive and negative clusters are displayed as they are com-
plementary) and the clusters did not follow known anatomical boundaries. In contrast, component M did not 
show these characteristics, it also contained bilateral frontal clusters which were not ring-like (slices 4–8) and 

Figure 11. Resting-state network component H from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. mid-
cingulate cortex.
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component M showed a pattern which was overlapping with brain regions known to process stimuli from the 
visual modality29–31.

Compared to the 15 component gICA, the 10 item gICA contained only one miscancellous/noise component, 
while multiple components showed signs of mixed signal sources merged together, rendering this modell less 

Figure 12. Resting-state network component I from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. 
rostral sylvian gyrus, 2. caudal sylvian gyrus, 3. middle ectosylvian gyrus, 4. rostral ectosylvian gyrus, 5. caudal 
ectosylvian gyrus, 6 middle suprasylvian gyrus, 7. rostral suprasylvian gyrus, 8. caudal suprasylvian gyrus.
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conlcusive (Table 1, Fig. 19). At model order 20, the cerebellar and medial visual components were both split in 
two, while the other components remained similar.

Assessing reproducibility of independent components. Labelling subset components. In subset 1 
(Table 2), no component was labelled as O, and in subset 2 (Table 3), no components were labelled as E, M (this 
component fused with L, the other visual component), and O. These nonmatching components usually were some 

Figure 13. Resting-state network component J from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. 
bilateral marginal gyrus, 2. ectomarginal gyrus.
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type of noisy combinations of the original networks (e.g. component Y in subset 2 contained parts of component 
A and F). The only original component which had no match in either of the subsets was component O, which we 
originally classified as a motion artefact.

Reproducibility across runs. After this, we calculated the DSC value between the two, labelled subICA compo-
nents (Table 4). Most of the RSNs (A, C, D, G, H, I, J, K, L) had good spatial overlap consistency (DSC > 0.25) 

Figure 14. Resting-state network component K from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. mid-
cingulate gyrus, 2. frontal gyrus, 3. gyrus genualis, 4. precruciate gyri, 5. postcruciate gyri, 6. splenial gyrus.
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except B (0.15) and F (0.16) which were also overlapping with some nonmatching components. The low DSC 
value of B is most likely a result of that in subset 2, two separate components showed a DSC value higher than 
0.3. As our study was not designed to carry out this analysis (hence the low number of datapoints), this high 
consistency in spatial overlap between separate ICAs shows the robustness and reproducibility of the reported 
components.

Figure 15. Resting-state network component L from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. 
marginal gyrus, 2. ectomarginal gyrus, 3. suprasylvian gyrus, 4. occipital gyrus.
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Discussion
In this exploratory study, our main aim was to test whether applying the currently available methods, which had 
been successfully used to explore resting-state networks in other species, yield interpretable results with our setup 
(proof-of-concept) and describe the spatial characteristics of these networks. To achieve this goal, we decided to 
use a data-driven method, which is not relying on a priori hypothesis regarding the supposed function of certain 
brain regions.

Figure 16. Resting-state network component M from the 15 component gICA. We report the results with 
a voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components 
are presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. 
occipital gyrus, 2. gyrus ectomarginalis, 3. caudal suprasylvian gyrus.
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We found multiple, spatially distributed RSNs in dogs, the evolutionarily most distant taxa from humans 
scanned without anesthesia so far. To evaluate spatial overlap consistency, we calculated the Dice coefficients of 
the components from separate ICAs, which corroborated the robustness of the results. The localisation of these 
network correspond to the gross functional anatomical regions of the dog brain as described in the main neu-
roanatomical textbooks32–35 (e.g. primary visual field, auditory cortex, limbic circuit, sensorimotor region) and 

Figure 17. Resting-state network component N from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15. 1. sinus 
cavernosus, 2. Willis’ circle.
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to the resting-state networks previously described in other species7–10,12, suggesting that our setup and analysis 
pipeline is suitable to detect resting-state networks in awake dogs.

Motion is still present in the data after standard pre-processing. The ICA method is able to deal with these 
structured noise effects via separating these in form of an additional (noise) ICA component36. The presence of 
such a component signals that the algorithm was successful at detecting and grouping the motion related fluctu-
ations together and not a sign of problems with data quality. ICA is often used in human studies to remove the 
effects of residual motion as part of automated denoising pipelines37.

Figure 18. Resting-state network component O from the 15 component gICA. We report the results with a 
voxel-wise FDR corrected p < 0.001 and cluster treshold of FDR corrected p < 0.005. gICA components are 
presented as thresholded T-maps, corrected for multiple comparisons, overlaid on the Nitzsche atlas15.
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We described two visual network components (L & M), a finding similar to that of macaques9 and humans38, 
with one network corresponding to primary visual areas (medial visual cortical areas) and another encompassing 
visual association areas. Interestingly, Component M also shows a similar location to the pDMN component 
reported in the previous dog study11. In our study, we found two lateralized networks (Component D & E) includ-
ing the striatum, amygdala, nucleus caudatus, cerebellum, insular cortex and thalamus, and a third, separate 
component covering the mid-cingulate gyrus (Component H). These regions are all nodes within the human 
saliency network39, and they may also play a similar role in dogs, but to determine the stability, repeatability 
and functional characteristics of this component(s), further studies are needed. Based on our findings, a neces-
sary next step is to investigate the functional connectivity specifically between these putative saliency nodes on 
another dataset. We also found a bilateral frontal component, a finding similar to the results from praire voles10, 
marmosets8 and macaques9, but not reported outside of the superorder Euarchontoglires (primates and rodents) 
taxon so far.

Our results indicate that awake, unrestrained dogs’ possess a network (Component A) showing 
antero-posterior connectedness, containing areas from both the prefrontal cortex and the anterior cingulate cor-
tex, with additional involvement of hippocampal regions. These regions correspond to regions indicated in the 
default mode network (DMN) described previously in humans40 and in animals8,10. However, the network we 
report here contains more regions than the traditional human DMN. For example, the composite gyrus, the 
hippocampi, splenial gyrus, and premotor area(although see40 on recent reports on the potential involvement 
of some of these additional regions in the human DMN). Therefore, it is problematic to label this component as 
DMN with only resting state ICA. In humans, specific regions of the DMN (MPFC, PCC and IPL) deactivate in 
response to a task. In order to definitively label the network we report here as the DMN, more research will need 
to show that analogous regions in the dog brain deactivate during a task. This dog network (Component A) does 
not include the parietal cortex. In humans, these parietal regions (angular gyrus, temporoparietal junction) are 
thought to be involved in complex cognitive processes such as accessing conceptual representations about events 
or items and theory of mind40, cognitive functions whose extent and level in dogs are debated41. Similarly to our 
findings, a putative DMN containing both the posterior cingulate cortex and frontal cortical areas have been des-
ribed in rats7, voles10, ferrets12, marmosets8 and macaques9 so far. Our results do not support previous results in 
dogs11, which suggested dissociation of anterior and posterior regions of a DMN-like network, however our study 
diverged in several aspects which could account for the different findings. We utilized a larger sample size (4 vs. 
22), longer data acquistion runs, different temporal filtering, lower dimensionality in the ICA. It is important to 
note that seed-based analysis (a model-driven approach) requires strong a priori hypothesis, a slight difference in 
the location of the spatial seed can have a significant impact on the spatial characteristics of the resulting RSNs36. 
Currently, we lack extensive fMRI studies regarding the functional properties of different dog brain regions, high 
resolution anatomical/cytological maps or molecular evidence to say which brain regions could be considered 
truly homologous e.g. how should be the dog cingulate gyrus divided into anterior, mid and posterior regions.

Component Involved brain areas

Similar 
components in 
gICA10

A
Rostal and caudal parts of the 
cingulate gyrus

1,2,6

B Prefrontal area —

C Frontal lobe 5

D Striatum (left lateralized) —

E Striatum (rigth lateralized) —

F
Frontal regions of the 
sensorimotoric cortex

5

G Cerebellum 3

H
External limbic circle (mid 
cingulate cortex)

—

I Bilateral auditory cortices 7

J
Primer and associative 
sensory cortical areas

9

K
Primer sensorimotoric, 
premotoric and supplementer 
motoric regions

8

L
Sensory and visual-
sensorimotor cortices

7,10

M Occipital lobe 4

N Artefact (large vessels) —

O Artefact (motion) —

Table 1. Spatial topography of ICA models at model orders of 15 and 10, listing the most characteristic brain 
regions. Capital letters refer to components from gICA15, while the numbers refer to components from the 
gICA10. Similarity is based on the involved brain regions and visual characteristics.
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Dogs have some advantage regarding the scanning setup when compared to other model animals in fMRI 
studies. After special training, dogs are suitable to be scanned without sedation, which is beneficial as anaes-
thesia has a large impact on resting state functional connectivity42, and unlike other non-human animal species 
scanned awake, there is no need of mechanical restraints either, which also have the risk of influencing rs-network 
connectivity43.

In case of the relatively long TR which we used in our study, physiological artifacts can alias into the band of 
interest. For human adults, a normal resting heart rate is between 60 and 100 beats per minute (bpm). Reports of 
resting heart rate in dogs seem to show a large variation depending on the context in which they were measured. 
Veterinary visits or research procedures in case of laboratory dogs are stressful situations to dogs, and heart rates 

Figure 19. Components from the 10 component gICA. Thresholded T-maps, corrected for multiple 
comparisons, overlaid on the Nitzsche atlas15.

Labelled 
component in 
subset 1 A B C D E F G H I J K L M N X

Network

A 0.47 0.22 0.09 0 0.01 0.02 0.12 0.01 0.12 0.01 0.05 0.05 0.03 0.07 0.13

B 0 0.47 0.16 0 0.03 0 0.04 0.01 0.02 0 0.06 0 0.01 0.08 0.01

C 0 0.07 0.44 0.09 0 0.21 0 0 0.09 0 0.04 0 0.01 0.01 0

D 0.1 0.19 0.17 0.35 0.01 0.03 0.05 0.08 0.08 0.04 0.03 0.02 0.06 0 0.02

E 0.03 0.07 0.14 0 0.38 0.07 0.07 0 0.1 0 0.02 0.02 0.02 0.02 0.07

F 0 0.02 0.01 0.23 0 0.71 0 0 0.11 0.16 0.09 0 0.02 0 0.03

G 0.15 0 0 0 0.05 0 0.76 0 0 0 0 0 0.01 0.03 0.03

H 0.18 0.03 0 0.01 0 0 0 0.42 0.02 0.07 0.02 0.29 0 0 0

I 0 0.01 0.01 0.1 0.06 0.05 0 0 0.74 0.03 0.01 0.03 0.13 0 0.04

J 0 0.01 0.01 0.04 0 0.08 0 0.09 0.03 0.76 0.07 0.24 0 0.26 0.06

K 0.06 0.02 0.05 0.15 0 0.07 0.01 0.08 0.02 0.15 0.73 0.01 0 0.01 0

L 0.05 0 0 0 0.01 0.01 0 0.05 0.02 0.04 0.02 0.77 0.32 0.09 0.22

M 0.06 0 0.01 0.03 0.04 0 0 0 0.06 0 0.02 0.1 0.74 0 0.01

N 0.04 0.05 0 0 0.01 0.01 0 0 0 0.12 0.01 0 0 0.72 0.01

O 0 0 0 0 0 0.06 0.01 0 0.26 0.04 0.05 0.22 0.05 0 0

Table 2. Dice similarity coefficients used for labelling the components of subset 1. Dice similarity coefficients 
over 0.3 are highlighted in bold.
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measured under these conditions reflects this. While the grand average of HR measured at veterinary visits44 and 
under laboratory conditions45 was around 124 beats/min, in another study, where dogs participated in a behav-
ioural experiment with minimal physical activity, the grand average of HR was only around 80 beats/min46 and 
in a polysomnography study, where dogs were resting with their owners (even less physical activity), the grand 
average HR was only around 70 beats/min (Bálint et al.47). Respiration rate is indeed higher than in adults, but it 
is similar to the respiration rate of children (approx. 30/min)48. ICA is suited to deal with such physiological noise 
(e.g. respiration, pulsation), resulting in components with clusters mainly located in the white matter, cerebro-
spinal fluid and blood vessels (particularly arteries)23. Hence, we believe that regressing out signals from these 
regions via masking takes this into account, as these fluctuations related to physiological noise are also present in 
the white matter and cerebrospinal fluid space.

Our study is the first dog fMRI study utilizing atlas-based brain segmentation, mainly due to a lack of pub-
lished brain masks delineating the limits of grey and white matter regions (while there is a binary atlas available, 
currently no probabilistic atlas exists). The creation, comparison and validation of such masks through different 
segmentation algorithms for dog brains is outside the scope of our current resting-state functional MRI study. 
Although we collected T1 weighted structural images from our subjects for the purpose of coregistration, the 
contrast of these images was not suitable to carry out reliable, individual segmentation based on intensity.

Labelled 
component in 
subset 2 A B C D F G H I J K L N Y Z V

Network

A 0.41 0.09 0.1 0.05 0.01 0.05 0 0.16 0 0.03 0.04 0.09 0.27 0.18 0.11

B 0 0.34 0.31 0.01 0.06 0.03 0.02 0.11 0 0.04 0 0.03 0 0.23 0.16

C 0 0.03 0.52 0.22 0 0 0 0.12 0 0.02 0 0 0.06 0 0.04

D 0.08 0.05 0.01 0.5 0.07 0.05 0.09 0.05 0.03 0.04 0.04 0.01 0.08 0.13 0.02

E 0.05 0 0.04 0.06 0.06 0.06 0.01 0.02 0 0.02 0.02 0.02 0.1 0.14 0.11

F 0 0 0.06 0.02 0.32 0 0.12 0 0.09 0.12 0 0 0.19 0 0.01

G 0.14 0 0 0.01 0 0.77 0 0.03 0 0 0 0.02 0.09 0.01 0.02

H 0.35 0 0 0.05 0 0 0.56 0 0.14 0.02 0.13 0 0.02 0 0.16

I 0 0 0.01 0.04 0.25 0 0.07 0.37 0.04 0.1 0.03 0 0.09 0.01 0.08

J 0.02 0 0.01 0.03 0.11 0 0.13 0 0.73 0.04 0.15 0.27 0.06 0 0.06

K 0.12 0 0.18 0.12 0.06 0.01 0.05 0 0.08 0.55 0 0.01 0.01 0 0.08

L 0.06 0 0 0.01 0.08 0 0.11 0 0.21 0 0.81 0.12 0 0.03 0.14

M 0.04 0 0 0.03 0.15 0 0 0 0 0 0.22 0 0 0 0.05

N 0.04 0.03 0.02 0.01 0 0 0 0.03 0 0 0.03 0.85 0 0.03 0.02

O 0.01 0 0 0 0.01 0.01 0.01 0.07 0.08 0.18 0.18 0 0.11 0 0.17

Table 3. Dice similarity coefficients used for labelling the components of subset 2. Dice similarity coefficients 
over 0.3 are highlighted in bold.

Subset1 A B C D F G H I J K L N Y Z V

Subset2

A 0.58 0.02 0 0.06 0 0.1 0.03 0.05 0.01 0.01 0.03 0.03 0.27 0.13 0.08

B 0.14 0.15 0.12 0.12 0.12 0.08 0.15 0.07 0.08 0.06 0.05 0.04 0.08 0.17 0.11

C 0.04 0.08 0.33 0.19 0 0.01 0.01 0.12 0.02 0 0.01 0.02 0.05 0.04 0.07

D 0.03 0.01 0 0.4 0.3 0 0.1 0 0.03 0.08 0.04 0 0.01 0.01 0

E 0.04 0 0 0.03 0.11 0.06 0.02 0.02 0.01 0 0.03 0.03 0.02 0.04 0.08

F 0.02 0 0.17 0.04 0.16 0.01 0.04 0.01 0.04 0.14 0.04 0.03 0.17 0 0.01

G 0.15 0.01 0.02 0.04 0.01 0.59 0 0.02 0 0.01 0.03 0.03 0.1 0.04 0.03

H 0.15 0 0 0.08 0.01 0 0.48 0 0.07 0.05 0 0 0 0 0.07

I 0.03 0.02 0.02 0.06 0.17 0.02 0.06 0.26 0.05 0.11 0.06 0.05 0.12 0.04 0.08

J 0.02 0 0.01 0.03 0.17 0.01 0.1 0 0.5 0.1 0.05 0.28 0.1 0 0.02

K 0.14 0 0.17 0.06 0.07 0.02 0.02 0.02 0.05 0.49 0.11 0.08 0.05 0.01 0.1

L 0.12 0 0.02 0.02 0.06 0 0.21 0.01 0.28 0.01 0.6 0.15 0.04 0.02 0.16

M 0.03 0 0.09 0.04 0.27 0 0.01 0.01 0.02 0 0.28 0.02 0.01 0 0.03

N 0.07 0.25 0.1 0.02 0.01 0.04 0 0.04 0 0 0.03 0.52 0.04 0.02 0.04

X 0.06 0 0 0.02 0.2 0.04 0.01 0.03 0.09 0.02 0.2 0.06 0.2 0.27 0.03

Table 4. Dice similarity coefficients of the two ICAs, run separately for the two runs. Labels of subset 1 are 
displayed in rows, while labels of subset 2 are columns. Dice similarity coefficients over 0.25 are highlighted in 
bold.
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While our subjects did not look at a fixation cross during scanning, a study with adults, where the authors 
applied seed-based analysis showed no significant difference between eyes open and a fixation cross condition 
regarding intranetwork connectivity strengths16 and in another study on human children, where ICA results of a 
movie watching condition and a no stimuli resting condition were compared, revealed no significant differences 
in within-network connectivity between rest and movie watching49. In addition, resting state networks have been 
also successfully extracted from task-based co-activation patterns50. Based on these studies, it is unlikely that the 
presence of a static human during scanning would have significantly altered the spatial extent of the described 
resting-state networks.

The dog subjects are willingly motionless during scanning for an extended period of time (as performing 
a conscious action inhibiting their movements), a situation more closely resembling the conditions of human 
rs-fMRI measurements. While one may argue that the dogs are executing a rewarded “task” and not really resting, 
it is important to keep in mind that humans also consciously perform the same “hold still” task during fMRI 
measurments and most often do so in exchange to some predetermined reward (in form of financial compensa-
tion). Additionaly, while resting state networks are usually analysed in data collected during rest, they are also 
present when performing cognitive tasks51.

Based on the current study, we cannot provide information whether the described networks should be con-
sidered task positive or task negative (a dichotomy that has been recently challenged, see e.g.52) or regarding 
their functional characteristics (e.g. how is dogs’ visual network operating compared to visual networks of other 
species). The identification of the networks, like in other animal studies was based on the anatomical properties 
of the network, without investigating whether they show deactivation during the performance of specific tasks (as 
in anesthetized prairie voles10, rats7 and awake marmosets8). The description of these dog resting-state networks 
provide information for future studies to set up more specific a priori hypotheses to test the functional character-
istics and interactions of the networks e.g. via also combining it with behavioural data.

Received: 10 September 2018; Accepted: 8 October 2019;

Published: xx xx xxxx

References
 1. van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: A review on resting-state fMRI functional connectivity. 

Eur. Neuropsychopharmacol. 20, 519–534, https://doi.org/10.1016/j.euroneuro.2010.03.008 (2010).
 2. Beckmann, C. F. Modelling with independent components. NeuroImage 62, 891–901, https://doi.org/10.1016/j.

neuroimage.2012.02.020 (2012).
 3. Park, H. J. & Friston, K. Structural and functional brain networks: from connections to cognition. Sci. 342, 1238411 http://www.

ncbi.nlm.nih.gov/pubmed/24179229{%}5Cnhttp://www.sciencemag.org/cgi/, https://doi.org/10.1126/science.1238411 (2013).
 4. Broyd, S. J. et al. Default-mode brain dysfunction in mental disorders: A systematic review. Neurosci. Biobehav. Rev. 33, 279–296, 

https://doi.org/10.1016/j.neubiorev.2008.09.002 (2009).
 5. Keifer, J. & Summers, C. H. Putting the “Biology” Back into “Neurobiology”: The Strength of Diversity in Animal Model Systems for 

Neuroscience Research. Front. Syst. Neurosci. 10, 1–9, https://doi.org/10.3389/fnsys.2016.00069 (2016).
 6. Sforazzini, F., Schwarz, A. J., Galbusera, A., Bifone, A. & Gozzi, A. Distributed BOLD and CBV-weighted resting-state networks in 

the mouse brain. NeuroImage 87, 403–415, http://linkinghub.elsevier.com/retrieve/pii/S1053811913009865, https://doi.
org/10.1016/j.neuroimage.2013.09.050 (2014).

 7. Lu, H. et al. Rat brains also have a default mode network. Proc. Natl. Acad. Sci. 109, 3979–3984, https://doi.org/10.1073/
pnas.1200506109 (2012).

 8. Belcher, A. M. et al. Large-Scale Brain Networks in the Awake, Truly Resting Marmoset Monkey. J. Neurosci. 33, 16796–16804, 
https://doi.org/10.1523/JNEUROSCI.3146-13.2013 (2013).

 9. Hutchison, R. M. et al. Resting-state networks in the macaque at 7T. NeuroImage 56, 1546–1555, https://doi.org/10.1016/j.
neuroimage.2011.02.063 (2011).

 10. Ortiz, J. J., Portillo, W., Paredes, R. G., Young, L. J. & Alcauter, S. Resting state brain networks in the prairie vole. Sci. Reports 1–11, 
https://doi.org/10.1038/s41598-017-17610-9 (2018).

 11. Kyathanahally, S. P. et al. Anterior–posterior dissociation of the default mode network in dogs. Brain Struct. Funct. 220, 1063–1076, 
https://doi.org/10.1007/s00429-013-0700-x (2015).

 12. Zhou, Z. C. et al. Resting state network topology of the ferret brain. NeuroImage 143, 70–81, http://linkinghub.elsevier.com/retrieve/
pii/S1053811916304645. https://doi.org/10.1016/j.neuroimage.2016.09.003 (2016).

 13. Robinson, J. L. et al. Characterization of Structural Connectivity of the Default Mode Network in Dogs using Diffusion Tensor 
Imaging. Sci. Reports 6, 36851, https://doi.org/10.1038/srep36851. (2016).

 14. Andics, A., Gácsi, M., Faragó, T., Kis, A. & Miklósi, A. Voice-sensitive regions in the dog and human brain are revealed by 
comparative fMRI. Curr. Biol. 24, 574–578 http://www.ncbi.nlm.nih.gov/pubmed/24560578, https://doi.org/10.1016/j.
cub.2014.01.058 (2014).

 15. Nitzsche, B. et al. A stereotaxic breed-averaged, symmetric T2w canine brain atlas including detailed morphological and 
volumetrical data sets. NeuroImage 1–11, https://doi.org/10.1016/j.neuroimage.2018.01.066 (2018).

 16. Patriat, R. et al. The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with 
eyes open, closed, and fixated. NeuroImage 78, 463–473 https://doi.org/10.1016/j.neuroimage.2013.04.013. NIHMS150003 (2013).

 17. Cook, P. F., Brooks, A., Spivak, M. & Berns, G. S. Regional brain activations in awake unrestrained dogs. J. Vet. Behav. 16, 104–112 
http://linkinghub.elsevier.com/retrieve/pii/S1558787815002014, https://doi.org/10.1016/j.jveb.2015.12.003 (2016).

 18. Power, J. D., Schlaggar, B. L. & Petersen, S. E. Recent progress and outstanding issues in motion correction in resting state fMRI. 
NeuroImage 105, 536–551, http://linkinghub.elsevier.com/retrieve/pii/S1053811914008702, https://doi.org/10.1016/j.
neuroimage.2014.10.044 (2015).

 19. Calhoun, V. D., Adali, T., Pearlson, G. D. & Pekar, J. J. A method for making group inferences from functional MRI data using 
independent component analysis. Hum. brain mapping 14, 140–51, http://www.ncbi.nlm.nih.gov/pubmed/11559959, https://doi.
org/10.1002/hbm (2001).

 20. Richard, N., Schummer, A. & Seiferle, E. Lehrbuch der Anatomie der Haustiere, Band IV: Nervensystem, Sinnesorgane, Endokrine 
Drüsen (Parey, 2003), 4th edn.

 21. Evans, H. E. & de Lahunta, A. Miller’s Anatomy of the Dog (Saunders, Missouri, 2012), 4th edn.
 22. Czeibert, K., Andics, A., Petneházy, Ö. & Kubinyi, E. A detailed canine brain label map for neuroimaging analysis. Biol. Futur. 70, 

112–120, https://doi.org/10.1556/019.70.2019.14 (2019).

https://doi.org/10.1038/s41598-019-51752-2
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.neuroimage.2012.02.020
https://doi.org/10.1016/j.neuroimage.2012.02.020
https://doi.org/10.1126/science.1238411
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.3389/fnsys.2016.00069
https://doi.org/10.1016/j.neuroimage.2013.09.050
https://doi.org/10.1016/j.neuroimage.2013.09.050
https://doi.org/10.1073/pnas.1200506109
https://doi.org/10.1073/pnas.1200506109
https://doi.org/10.1523/JNEUROSCI.3146-13.2013
https://doi.org/10.1016/j.neuroimage.2011.02.063
https://doi.org/10.1016/j.neuroimage.2011.02.063
https://doi.org/10.1038/s41598-017-17610-9
https://doi.org/10.1007/s00429-013-0700-x
http://linkinghub.elsevier.com/retrieve/pii/S1053811916304645
http://linkinghub.elsevier.com/retrieve/pii/S1053811916304645
https://doi.org/10.1016/j.neuroimage.2016.09.003
https://doi.org/10.1038/srep36851.
http://www.ncbi.nlm.nih.gov/pubmed/24560578
https://doi.org/10.1016/j.cub.2014.01.058
https://doi.org/10.1016/j.cub.2014.01.058
https://doi.org/10.1016/j.neuroimage.2018.01.066
https://doi.org/10.1016/j.neuroimage.2013.04.013
http://linkinghub.elsevier.com/retrieve/pii/S1558787815002014
https://doi.org/10.1016/j.jveb.2015.12.003
http://linkinghub.elsevier.com/retrieve/pii/S1053811914008702
https://doi.org/10.1016/j.neuroimage.2014.10.044
https://doi.org/10.1016/j.neuroimage.2014.10.044
http://www.ncbi.nlm.nih.gov/pubmed/11559959
https://doi.org/10.1002/hbm
https://doi.org/10.1002/hbm
https://doi.org/10.1556/019.70.2019.14


2 4SCIENTIFIC REPORTS |         (2019) 9:15270  | https://doi.org/10.1038/s41598-019-51752-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 23. Griffanti, L. et al. Hand classification of fMRI ICA noise components. NeuroImage 188–205, http://linkinghub.elsevier.com/retrieve/
pii/S1053811916307583, https://doi.org/10.1016/j.neuroimage.2016.12.036 (2016).

 24. Abou-Elseoud, A. et al. The effect of model order selection in group PICA. Hum. Brain Mapp. 31, 1207–1216, https://doi.
org/10.1002/hbm.20929 (2010).

 25. Zou, K. H. et al. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index. Acad. Radiol. 11, 178–189, 
https://doi.org/10.1016/S1076-6332(03)00671-8 (2004).

 26. Zhu, S., Fang, Z., Hu, S., Wang, Z. & Rao, H. Resting State Brain Function Analysis Using Concurrent BOLD in ASL Perfusion fMRI. 
PLoS One 8, 4–12, https://doi.org/10.1371/journal.pone.0065884 (2013).

 27. Van Dijk, K. R., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 
59, 431–438 http://linkinghub.elsevier.com/retrieve/pii/S1053811911008214, https://doi.org/10.1016/j.neuroimage.2011.07.044. 
NIHMS150003 (2012).

 28. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106, 
13040–13045, http://www.ncbi.nlm.nih.gov/pubmed/19620724, https://doi.org/10.1073/pnas.0905267106 (2009).

 29. Cuaya, L. V., Hernández-Pérez, R. & Concha, L. Our Faces in the Dog’s Brain: Functional Imaging Reveals Temporal Cortex 
Activation during Perception of Human Faces. PLOS One 11, e0149431, https://doi.org/10.1371/journal.pone.0149431 (2016).

 30. Dilks, D. D. et al. Awake fMRI reveals a specialized region in dog temporal cortex for face processing. PeerJ 3, e1115, http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=4540004{&}tool=pmcentrez{&}rendertype=abstract, https://doi.org/10.7717/
peerj.1115 (2015).

 31. Thompkins, A. M. et al. Separate brain areas for processing human and dog faces as revealed by awake fMRI in dogs (Canis 
familiaris). Learn. Behav, https://doi.org/10.3758/s13420-018-0352-z (2018).

 32. Nickel, R., Schummer, A. & Seiferle, E. Lehrbuch der Anatomie der Haustiere, Band IV: Nervensystem, Sinnesorgane, Endokrine 
Drüsen, 4 unveränderte edn. (Enke, Berlin u.a., 2003).

 33. Evans, H. E. & de Lahunta, A. Miller’s Anatomy of the Dog, 4 edn (Saunders, St. Louis, Missouri, 2012).
 34. Uemura, E. E. Fundamentals of Canine Neuroanatomy and Neurophysiology, 1 edn (Wiley-Blackwell, Ames, Iowa, 2015).
 35. Singh, B. Dyce, Sack, and Wensing’s Textbook of Veterinary Anatomy, 5 edition edn (Saunders, St. Louis, Missouri, 2017).
 36. Cole, D. M., Smith, S. M. & Beckmann, C. F. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. 

Front. systems neuroscience 4, 8, https://doi.org/10.3389/fnsys.2010.00008 (2010).
 37. Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. 

NeuroImage 95, 232–247, https://doi.org/10.1016/j.neuroimage.2014.03.034 (2014).
 38. Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-state connectivity using independent 

component analysis. Philos. Transactions Royal Soc. B: Biol. Sci. 360, 1001–1013, https://doi.org/10.1098/rstb.2005.1634 (2005).
 39. Menon, V. Salience Network, vol. 2, https://doi.org/10.1016/B978-0-12-397025-1.00052-X (Elsevier Inc., 2015).
 40. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: Component processes, 

dynamic control, and clinical relevance. Annals New York Acad. Sci. 1316, 29–52, https://doi.org/10.1111/nyas.12360.NIHMS150003 
(2014).

 41. Miklósi, Á. & Szabó, D. Modelling behavioural evolution and cognition in canines: Some problematic issues. Jpn. J. Animal Psychol. 
62, 69–89, https://doi.org/10.2502/janip.62.1.11 (2012).

 42. Liang, Z., Liu, X. & Zhang, N. Dynamic resting state functional connectivity in awake and anesthetized rodents. NeuroImage 104, 
89–99, http://linkinghub.elsevier.com/retrieve/pii/S1053811914008246, https://doi.org/10.1016/j.neuroimage.2014.10.013 (2015).

 43. Upadhyay, J. et al. Default-Mode-Like Network Activation in Awake Rodents. PLoS One 6, e27839, https://doi.org/10.1371/journal.
pone.0027839 (2011).

 44. Hezzell, M. J., Humm, K., Dennis, S. G., Agee, L. & Boswood, A. Relationships between heart rate and age, bodyweight and breed in 
10,849 dogs. J. Small Animal Pract. 54, 318–324, https://doi.org/10.1111/jsap.12079 (2013).

 45. Behar, J. A. et al. PhysioZoo: A Novel Open Access Platform for Heart Rate Variability Analysis of Mammalian Electrocardiographic 
Data. Front. Physiol. 9, https://doi.org/10.3389/fphys.2018.01390 (2018).

 46. Gácsi, M., Maros, K., Sernkvist, S., Faragó, T. & Miklósi, Á. Human Analogue Safe Haven Effect of the Owner: Behavioural and 
Heart Rate Response to Stressful Social Stimuli in Dogs. PLoS One 8, e58475, https://doi.org/10.1371/journal.pone.0058475 (2013).

 47. Bálint, A., Eleőd, H., Körmendi, J., Bódizs, R., Reicher, V., & Gácsi, M. Potential physiological parameters to indicate inner states in 
dogs: The analysis of ECG, and respiratory signal during different sleep phases. Frontiers in Behavioral Neuroscience, 13, 207, https://
doi.org/10.3389/fnbeh.2019.00207 (2019).

 48. Bennett, J. S., Cummings, A., Quimby, J. M. & D, P. Evaluation of the effects of hospital visit stress on physiologic variables in dogs. 
J. Am. Vet. Med. Assoc. 246, 212–215, https://doi.org/10.2460/javma.246.2.212 (2015).

 49. Gao, W., Short, S. J., Emerson, R. W., Gilmore, J. H. & Lin, W. Network-Level Connectivity Dynamics of Movie Watching in 6-Year-
Old. Children. Front. Hum. Neurosci. 9, 1–8, https://doi.org/10.3389/fnhum.2015.00631 (2015).

 50. Ray, K. L. et al. ICA model order selection of task co-activation networks. Front. Neurosci. 7, 1–12, https://doi.org/10.3389/
fnins.2013.00237 (2013).

 51. Calhoun, V. D., Kiehl, K. A. & Pearlson, G. D. Modulation of temporally coherent brain networks estimated using ICA at rest and 
during cognitive tasks. Hum. Brain Mapp. 29, 828–838, https://doi.org/10.1002/hbm.20581 (2008).

 52. Spreng, R. N. The Fallacy of a “Task-Negative” Network. Front. Psychol. 3, 1–5, https://doi.org/10.3389/fpsyg.2012.00145 (2012).

Acknowledgements
This project has received funding from the European Research Council (ERC) under the European Union’s 
Horizon 2020 research and innovation programme (Grant Agreement No. 680040), was supported by the 
National Research, Development and Innovation Office (Grant No. 115862K) for MG, the Hungarian Academy 
of Sciences [MTA-ELTE Comparative Ethology Research Group (Grant No. F01/031), MTA-ELTE Lendület 
Neuroethology of Communication Research Group (Grant No. 95025), the János Bolyai Research Scholarship 
of the Hungarian Academy of Sciences for EK and AA], Bolyai+ ÚNKP-18-4 New National Excellence Program 
of the Ministry of Human Capacities for EK, and the Eötvös Loránd University. Á.K. and Á.M. was supported 
by the Hungarian Brain Research Program (Grant No. 2017-1.2.1-NKP-2017-00002) and Á.M. received support 
from the Program of National Excellence (NKP 17, 2017-1.2.1-NKP-2017-00002) and the ELTE Institutional 
Excellence Program (783-3/2018/FEKUTSRAT) supported by the Hungarian Ministry of Human Capacities. We 
thank all dog owners participating in our study.

Author contributions
D.S.Z. conceived the experiment; D.S.Z., Á.K., M.G. conducted the experiment; D.S.Z., K.C. and Á.K. analysed 
the results. All authors reviewed the manuscript.

https://doi.org/10.1038/s41598-019-51752-2
http://linkinghub.elsevier.com/retrieve/pii/S1053811916307583
http://linkinghub.elsevier.com/retrieve/pii/S1053811916307583
https://doi.org/10.1016/j.neuroimage.2016.12.036
https://doi.org/10.1002/hbm.20929
https://doi.org/10.1002/hbm.20929
https://doi.org/10.1016/S1076-6332(03)00671-8
https://doi.org/10.1371/journal.pone.0065884
http://linkinghub.elsevier.com/retrieve/pii/S1053811911008214
https://doi.org/10.1016/j.neuroimage.2011.07.044
http://www.ncbi.nlm.nih.gov/pubmed/19620724
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1371/journal.pone.0149431
https://doi.org/10.7717/peerj.1115
https://doi.org/10.7717/peerj.1115
https://doi.org/10.3758/s13420-018-0352-z
https://doi.org/10.3389/fnsys.2010.00008
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1016/B978-0-12-397025-1.00052-X
https://doi.org/10.1111/nyas.12360.NIHMS150003
https://doi.org/10.2502/janip.62.1.11
http://linkinghub.elsevier.com/retrieve/pii/S1053811914008246
https://doi.org/10.1016/j.neuroimage.2014.10.013
https://doi.org/10.1371/journal.pone.0027839
https://doi.org/10.1371/journal.pone.0027839
https://doi.org/10.1111/jsap.12079
https://doi.org/10.3389/fphys.2018.01390
https://doi.org/10.1371/journal.pone.0058475
https://doi.org/10.3389/fnbeh.2019.00207
https://doi.org/10.3389/fnbeh.2019.00207
https://doi.org/10.2460/javma.246.2.212
https://doi.org/10.3389/fnhum.2015.00631
https://doi.org/10.3389/fnins.2013.00237
https://doi.org/10.3389/fnins.2013.00237
https://doi.org/10.1002/hbm.20581
https://doi.org/10.3389/fpsyg.2012.00145


25SCIENTIFIC REPORTS |         (2019) 9:15270  | https://doi.org/10.1038/s41598-019-51752-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Competing interests
The authors declare that the research was conducted in the absence of any commercial or financial relationships 
that could be construed as a potential conflict of interest. Link to multimedia model illustrating the dog resting 
state networks as a 3D composite image: (https://www.youtube.com/watch?v=0Q1sJgy3b5Ifeature=youtu.be). 
The original T-maps from the gICA 15, with a voxel-wise threshold of p-FDR corrected <0.001 and a cluster 
threshold of p-FDR corrected <0.005 are included as Supplementary Datasets in NIfTI format.

Additional information
Correspondence and requests for materials should be addressed to D.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-51752-2
https://www.youtube.com/watch?v=0Q1sJgy3b5Ifeature=youtu.be
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, sp ...
	Methods
	Subjects. 
	Experimental procedure. 
	Ethics statement. 
	Image acquisition. 
	Image analysis. 
	Independent component analysis. 
	Assessing reproducibility of independent components. 

	Results
	Independent component analysis. 
	Assessing reproducibility of independent components. 
	Labelling subset components. 
	Reproducibility across runs. 


	Discussion
	Acknowledgements
	Figure 1 The scanning setup.
	Figure 2 Sample of the coregistration of the grey matter mask to the mean functional image.
	Figure 3 Guideline to flag clusters with a high-risk of susceptibility.
	Figure 4 Resting-state network component A from the 15 component gICA.
	Figure 5 Resting-state network component B from the 15 component gICA.
	Figure 6 Resting-state network component C from the 15 component gICA.
	Figure 7 Resting-state network component D from the 15 component gICA.
	Figure 8 Resting-state network component E from the 15 component gICA.
	Figure 9 Resting-state network component F from the 15 component gICA.
	Figure 10 Resting-state network component G from the 15 component gICA.
	Figure 11 Resting-state network component H from the 15 component gICA.
	Figure 12 Resting-state network component I from the 15 component gICA.
	Figure 13 Resting-state network component J from the 15 component gICA.
	Figure 14 Resting-state network component K from the 15 component gICA.
	Figure 15 Resting-state network component L from the 15 component gICA.
	Figure 16 Resting-state network component M from the 15 component gICA.
	Figure 17 Resting-state network component N from the 15 component gICA.
	Figure 18 Resting-state network component O from the 15 component gICA.
	Figure 19 Components from the 10 component gICA.
	Table 1 Spatial topography of ICA models at model orders of 15 and 10, listing the most characteristic brain regions.
	Table 2 Dice similarity coefficients used for labelling the components of subset 1.
	Table 3 Dice similarity coefficients used for labelling the components of subset 2.
	Table 4 Dice similarity coefficients of the two ICAs, run separately for the two runs.


