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Abstract: Recent multi-channel astrophysics observations and the soon-to-be published new
measured electromagnetic and gravitation data provide information on the inner structure of the
compact stars. These macroscopic observations can significantly increase our knowledge on the
neutron star enteriors, providing constraints on the microscopic physical properties. On the other
hand, due to the masquarade problem, there are still uncertainties on the various nuclear-matter
models and their parameters as well. Calculating the properties of the dense nuclear matter,
effective field theories are the most widely-used tools. However, the values of the microscopical
parameters need to be set consistently to the nuclear and astrophysical measurements. In this work,
we investigate how uncertainties are induced by the variation of the microscopical parameters.
We use a symmetric nuclear matter in an extended σ-ω model to see the influence of the nuclear
matter parameters. We calculate the dense matter equation of state and give the mass-radius diagram
for a simplistic neutron star model. We present that the Landau mass and compressibility modulus of
the nuclear matter have definite linear relation to the maximum mass of a Schwarzschild neutron star.
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1. Introduction

The investigation of the structure of compact astrophysical objects like neutron stars, magnetars,
quark- or hybrid stars, etc. is an active novel research area as a child of astrophysics, gravitational
theory and experiment and nuclear physics. Thus far, the extreme dense state of the matter can not
be produced in today’s Earth-based particle accelerators, thus only celestial objects can be used for
tests. Electromagnetic measurements, such as X-ray- and gamma satellites, aim to measure properties
of these objects more and more accurately [1–4]. In parallel, radio array data [5] and the newly
discovered gravity waves provide a new way to probe their inner structure [6–8]. These observations
are particularly important inputs for the theoretical studies of dense nuclear matter [9,10].

From the theoretical point of view, first principle calculations based on lattice field theory are
still challenging at high chemical potentials present in compact stars [11–13]. Thus, effective theories
play an important role in studying the properties of cold dense nuclear matter [14,15]. Recent studies
show the importance of the correct handling of the bosonic sector in effective theories of nuclear
matter [16,17]; moreover, applying the functional renormalization group (FRG) method on the simplest
non-trivial nuclear matter, the effect of the microscopical parameters on neutron star observables were
shown in Refs. [18,19].

We note that we use the simplest nuclear matter for neutron stars without crust. Leptonic fields
were not included in the model; therefore, no β-equlibrium was taken into account. During the
calculations of the nuclear equation of state, the condition of charge neutrality was not imposed.
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We note, however, that this does not lead to the violation of the charge neutrality of the neutron
star itself, as there are no energy terms related to the electrical charges of the nucleons, and all the
hadronic fields considered are identical. The model effectively describes nuclear matter that consists of
interacting neutrons and neutral mesons that are parametrized to describe the saturation properties of
symmetric nuclear matter as in the case of the original Walecka-model [20]. These assumptions are
restricting but led us to investigate the consequences of varying the nuclear matter parameters in a
more clear nuclear environment like e.g., in Ref. [21]. We note that an ongoing extended theoretical
work is in progress for a more realistic case to compare astrophysical experimental data to our model.

In this paper, we study the connection between the parametrizations of effective nuclear
models and measurable properties of compact stars in three differently extended versions of the
σ-ω model. All of these include symmetric nuclear matter with various interaction terms in the bosonic
sector. After calculating the equation of state (EoS) corresponding to different parametrizations of these
models, the mass-radius (M-R) diagrams are calculated by solving the Tollmann–Oppenheimer–Volkoff
(TOV) equations. We show how sensitive the mass-radius relation is to differences in the bosonic sector.
The dependence of particular properties of compact stars (maximum mass and radius) is presented,
influenced by different saturation parameters of the symmetric nuclear matter.

2. The Extended σ-ω in the Mean Field Approximation

Here, we apply the most common mean field model of the dense nuclear matter, formulating the
extended σ-ω model [22,23] with the Lagrange-function taken from Refs. [20,24],

L = N f Ψ (i/∂ − mN + gσσ − gω /ω)Ψ +
1
2

σ
(

∂2
− m2

σ

)

σ − Ui(σ)−
1
4

ωµνωµν +
1
2

m2
ωω2, (1)

where Ψ is the fermionic nucleon field, N f = 2 is the number of nucleons, and mN , mσ, and mω are the
nucleon, sigma, and omega masses, respectively, for the usual scalar and vector fields. We introduced
the ωµν = ∂µων − ∂νωµ and the Yukawa coupling corresponding to the σ–nucleon and ω–nucleon
interactions is given by gσ and gω. We denote the general bosonic interaction terms with Ui(σ),
which can have thee different forms as the considered modified model cases for certain i,

U3 = λ3σ3,

U4 = λ4σ4,

U34 = λ3σ3 + λ4σ4.

(2)

In the mean field (MF) approximation, the kinetic terms are zero for the mesons and only
the fermionic path integral has to be calculated at finite chemical potential and temperature.
We consider here the symmetric nuclear matter to be in equilibrium, which includes the baryon
number conservation. Taking this into account, the standard procedure was applied minimizing the
free energy of the infinite symmetric nuclear matter at the zero temperature limit, where, for the proton
(np) and neutron (nn), the number of densities are equal, such as the proper chemical potentials, µp

and µn, respectively:
np = nn −→ µp = µn = µ. (3)

After applying this for all three cases in Equation (2) and substituting them into Equation (1),
the numerical solution can be obtained after parameter fitting.
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3. Parameter Fitting in the Extended σ-ω Model

As the general procedure, all the models’ considered cases in Equation (2) need to fit to the
nucleon saturation data found in e.g., Refs. [20,25]. In parallel to the effective mass, we introduced the
definition of the Landau mass

mL =
kF

vF
with vF =

∂Ek

∂k

∣

∣

∣

∣

k=kF

, (4)

where k = kF the Fermi-surface and Ek is the dispersion relation of the nucleons. The Landau mass
(mL) and the effective mass (m∗) are not independent in relativistic mean field theories,

mL =
√

k2
F + m∗2 . (5)

This is the reason why the Landau mass and the effective mass of the nucleons can not be fitted
simultaneously in the models we consider [25]. In this paper, we deal with this problem in the
following way. We fit all of the models two times: using the effective mass value from Table 1 and one
calculated from Equation (5) to reproduce the Landau mass value from Table 1.

Table 1. Nuclear saturation parameter data, from Refs. [20,25].

Parameter Value Unit

Binding energy, B −16.3 MeV
Saturation density, n0 0.156 fm−3

Nucleon effective mass, m∗ 0.6 mN MeV
Nucleon Landau mass, mL 0.83 mN MeV
Incompressibility, K 240 MeV

If the models with U3 and U4 type interaction terms are used, then there are not enough free
parameters to fit the data in Table 1. In these cases, the nucleon effective mass, saturation density,
and binding energy are fitted and the compression modulus is a prediction, given by

K = k2
F

∂2

∂k2
F

(ε/n) = 9n2 ∂2

∂n2 (ε/n) , (6)

which has a simple connection to the thermodynamical compressibility at the saturation density n0.
In the case of U34, all four parameters can be fitted simultaneously, and there is another way to

incorporate data regarding both Landau and effective mass. For this model, we consider a third fit,
where the value of the effective mass is chosen in a way that minimizes the error coming from not
fitting the two types of masses correctly. Technically, this value of the effective mass minimized the χ2

of the fit, with value
mopt = 0.6567 mN ≈ 616 MeV . (7)

Since the incompressibility is different for the model cases with different interaction terms,
we compared them in Table 2. For model cases with U3 and U4, there are two fits, for Landau and
effective mass that produce different incompressibility values because they do not have enough
free parameters to fit the correct value. However, for U34, there are enough parameters to fit the
incompressibility, so it has the same value for all three fits: for the Landau mass, for the effective mass
and for the optimal mass. As Table 2 presents incompressibility values for U3 with Landau fit, it is quite
close and the U34 results provide the best fit with the saturation nuclear matter parameters in Table 1.
These models differ in their predictions for higher densities of nuclear matter, which complicates the
description of the compact star interior.
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