высокая обводненность. Геологические показатели и показатели разработки комплексно влияют на обводнение скважин. Быстрому росту обводненности способствует применяемая на месторождении система заводнения, которая в результате неоднородности пласта по проницаемости не обеспечивает равномерной разработки залежи.

Литература

- 1. Годовой отчет по результатам 2014-2018 года ПАО «Саратовнефтегаз».
- 2. Официальный сайт ПАО «Саратовнефтегаз» [Электронный ресурс]. Режим доступа: http://www.sng.ru/ (дата обращения: 01.11.2019).
- Кочнева О.Е., Ендальцева И. А. Причины и анализ обводненности башкирско-серпуховской залежи Уньвинского нефтяного месторождения Соликамской депрессии //Вестник Пермского Университета. Геология. – 2012. – №. 3 (16).
- 4. Кочнева О. Е., Лимонова К. Н. Оценка обводненности скважин и продукции Яснополянской залежи Москудьинского месторождения //Вестник Пермского национального исследовательского политехнического университета. Геология, нефтегазовое и горное дело. 2014. №. 10.
- 5. Шевелев М. Б. Повышение эффективности разработки нефтяных месторождений с переслаивающимися коллекторами в условиях техногенного трещинообразования. 2013.

ОЦЕНКА ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ТЕХНОЛОГИИ ЗАКАЧКИ УГЛЕКИСЛОГО ГАЗА В ПЛАСТ

А.И. Людкевич, С.В. Репчук

Научный руководитель - доктор PhD B.C. Рукавишников

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Необходимость развития минерально-сырьевой базы обуславливает ввод в разработку месторождений в отдаленных труднодоступных районах. При этом отсутствие местных потребителей и большое расстояние до центров переработки и сбыта газа зачастую ставит проблему утилизации ПНГ и сдерживает реализацию новых проектов. В данной работе обосновывается возможность обеспечения рентабельности утилизации ПНГ в сочетании с высокой эффективностью разработки новых месторождений.

Целью работы является оценка экономических показателей при переработке $\Pi H \Gamma$ в CO_2 для использования в MУH на нефтегазоконденсатном месторождении.

В качестве объекта исследования нами было выбрано месторождение X, слагаемое продуктивными пластами HO_1^{1} , HO_3 , HO_5 , $\mathrm{M}_{1\text{-}10}$; расчеты производились для куста №20. Месторождение расположено в 30 км от УПН и введено в сезонную эксплуатацию в марте 2018 г. Пик добычи нефти согласно проектному документу составит 265 тыс. т. в 2034 г., ПНГ − 183 млн. м³ в 2035 г.

Согласно сформированной в рамках проекта схеме процесса разработки, установка получения ${\rm CO_2}$ будет находиться на УПН, где производится отделение ПНГ из продукции скважин всего лицензионного участка.

Получение CO_2 из ПНГ представляет собой не что иное, как аминный процесс: ПНГ сгорает, образуя дымовые газы, которые проходят несколько стадий очистки, после чего отделившийся CO_2 компримируется, осущается и охлаждается для хранения в специальных емкостях.

Полученный на УПН CO₂ необходимо транспортировать на месторождение до точки закачки. В нашем случае существует 2 варианта транспортировки: 1. Строительство трубопровода длиной 40 км до куста №20 месторождения X с расположенными на нем насосными станциями. 2. Перевозка жидкого CO₂ автоцистернами по автодороге круглогодичного использования. Поступивший на месторождение CO₂ разгружается в промежуточные емкости для хранения и дальнейшей закачки в нагнетательные скважины при помощи насосов высокого давления.

Для двух вариантов транспортировки CO₂ и внесения изменений в систему наземной инфраструктуры были рассчитаны дополнительные инвестиции на реализацию МУН (таблица).

Дополнительные инвестиции на реализацию МУН

Таблица

Вариант 1. Трубопроводный транспорт			Вариант 2. Перевозка СО2 автоцистернами		
Наименование	кол- во	Сумма, млн. руб.	Наименование	кол- во	Сумма, млн. руб.
Капитальные затраты		1 272,71	Капитальные затраты		832,75
2 Установки получения CO ₂ производительностью 120 т/сут с 2×50 м ³ емкостями хранения жидкого CO ₂ (ASCO) + CMP	2	748,5	2 Установки получения CO2 производительностью 120 т/сут с 2×50 м ³ емкостями хранения жидкого CO2 (ASCO) + CMP	2	748,5
Артезианская скважина с дебетом 300 м ³ /сут	4	12,3	Артезианская скважина с дебетом 300 м ³ /сут	4	12,3
Насосная станция перекачки CO ₂	2	118,9	Заправочная станция для автоцистерн производительностью 240 т/сут	2	3,2

СЕКЦИЯ 17. ЭКОНОМИКА МИНЕРАЛЬНОГО И УГЛЕВОДОРОДНОГО СЫРЬЯ. ПРИРОДОРЕСУРСНОЕ ПРАВО

Наименование	кол- во	Сумма, млн. руб.	Наименование	кол- во	Сумма, млн. руб.
Трубопровод среднего давления $D=80\ \text{мм},$ $L=40\ \text{км}$	1	342,3	Автоцистерна для перевозки жидкого CO ₂ на 25 м ³ + седельные тягачи	3	18,04
Емкость промежуточного хранения CO_2 50 M^3	3	26,01	Емкость промежуточного хранения CO ₂ 50 м ³	3	26,01
Насос высокого давления для закачки CO ₂ в скважину	9	24,7	Насос высокого давления для закачки CO_2 в скважину	9	24,7
Эксплуатационные затраты		317,96	Эксплуатационные затраты		321,21
Химреагенты для работы установки	0,53 т/сут	293,3	Химреагенты для работы установки	0,53 т/сут	293,3
Ингибиторная защита	0,04 T/cyT	24,66	Ингибиторная защита	0,04 T/cyT	24,66
			Обслуживание автоцистерн, тягачей		3,25
Итого		1 590,67	Итого		1 153,96

В случае транспортировки трубопроводным транспортом затраты составили 1 590,67 млн. руб. Из них Капитальные затраты – 1 272,71 млн. руб., эксплуатационные затраты – 317,96 млн. руб. Основные статьи затрат – установка получения СО2, трубопровод и насосные станции. В случае перевозки СО2 автоцистернами затраты составили 1 153,96 млн. руб., из них капитальные затраты – 832,75 млн. руб., эксплуатационные – 321,21 млн. руб.

Согласно данным, полученным от специалистов по обустройству месторождения X, строительство автодороги до куста № 20 на данный момент не планируется. В связи с этим далее был принят к расчету вариант 1. В случае, если строительство автодороги будет осуществлено, вариант 2 более предпочтителен ввиду меньших затрат.

На основании полученных данных были рассчитаны показатели экономической эффективности в актуальных сценарных условиях ПАО «Роснефть». По результатам инвестиционной оценки накопленный дисконтированный денежный поток (NPV) за рентабельный период проекта составил 575 млн. руб.

В ходе работы было выполнено моделирование процесса разработки участка месторождения с учетом прироста КИН. Произведен расчет дополнительной добычи нефти за счет МУН. Предложена технологическая схема производства, хранения, транспортировки, закачки и утилизации СО2.

Согласно предложенной схеме разработки и обустройства куста: - определены объекты капитального строительства и требуемые ресурсы, а также рассчитаны дополнительные инвестиции для реализации МУН. На основании полученных данных – рассчитаны показатели экономической эффективности. По результатам оценки получены следующие результаты:

- Дополнительные капитальные затраты на реализацию МУН по вариантам составили 1 272 млн. руб. и 833 млн. руб. соответственно;
- Накопленный дисконтированный денежный поток (NPV) при повышении КИН на 18 % составил 575 млн. руб.

Подводя итог можно сказать, что технология является перспективной для разработки отдаленных месторождений с низким уровнем утилизации ПНГ. Помимо экономического фактора, захоронение (секвестрация) углекислого газа в геологических пластах рассматривается как перспективный способ борьбы с парниковым эффектом [4].

Литература

- Гумеров Ф.М. перспективы применения диоксида углерода для увеличения нефтеотдачи пластов // Актуальные вопросы исследований пластовых систем месторождений углеводородов. – Москва. 2011. – № 2 – С. 93–109:
- Медведев К.Ю. Перспективы применения газовых методов с целью повышения коэффициента извлечения нефти // Recent Studies of Applied Sciences. - Kiev, 2015. - № 8. - C. 10-17;
- Трухина О.С., Синцов И.А. Опыт применения углекислого газа для повышения нефтеотдачи пластов // Успехи современного естествознания. – Москва, 2016. – № 3. – С. 205–209; Череповицын А.Е., Сидорова К.И., Буренина И.В. Экономическая оценка проектов закачки СО2 в нефтяные
- месторождения // Нефтегазовое дело. Уфа, 2014. №5 С. 337–356.
- Balbinski E. CO2 flooding of UKCS reservoirs //Sharp IOR News letter. 2003. № 4. 85 p.
- Heddle G., Herzog H., Klett M. The economics of CO2 storage //Eds Massachusetts Institute of Technology, USA. 2003.