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Abstract
Let f (λ) =

∑∞
n=0 αnλ

n be a function defined by power series with complex coefficients
and convergent on the open disk D(0,R) ⊂ C, R > 0 and x, y ∈ B, a Banach algebra,
with xy = yx. In this paper we establish some upper bounds for the norm of the
Čebyšev type difference f (λ)f (λxy) – f (λx)f (λy), provided that the complex number λ
and the vectors x, y ∈ B are such that the series in the above expression are
convergent. Applications for some fundamental functions such as the exponential
function and the resolvent function are provided as well.
MSC: 47A63; 47A99
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1 Introduction
For two Lebesgue integrable functions f , g : [a,b]→R, consider the Čebyšev functional:

C(f , g) :=


b – a

∫ b

a
f (t)g(t)dt –


(b – a)

∫ b

a
f (t)dt

∫ b

a
g(t)dt. (.)

In , Grüss [] showed that

∣∣C(f , g)∣∣ ≤ 

(M –m)(N – n), (.)

provided that there exist real numbers m,M, n, N such that

m ≤ f (t)≤ M and n≤ g(t) ≤ N for a.e. t ∈ [a,b]. (.)

The constant 
 is best possible in (.) in the sense that it cannot be replaced by a smaller

quantity.
Another, however, less known result, even though it was obtained by Čebyšev in 

[], states that

∣∣C(f , g)∣∣ ≤ 


∥∥f ′∥∥∞
∥∥g ′∥∥∞(b – a), (.)

provided that f ′, g ′ exist and are continuous on [a,b] and ‖f ′‖∞ = supt∈[a,b] |f ′(t)|. The
constant 

 cannot be improved in the general case.
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The Čebyšev inequality (.) also holds if f , g : [a,b] → R are assumed to be absolutely
continuous and f ′, g ′ ∈ L∞[a,b], while ‖f ′‖∞ = ess supt∈[a,b] |f ′(t)|.
A mixture between Grüss’ result (.) and Čebyšev’s one (.) is the following inequality

obtained by Ostrowski in  []:

∣∣C(f , g)∣∣ ≤ 

(b – a)(M –m)

∥∥g ′∥∥∞, (.)

provided that f is Lebesgue integrable and satisfies (.), while g is absolutely continuous
and g ′ ∈ L∞[a,b]. The constant 

 is best possible in (.).
The case of Euclidean norms of the derivative was considered by Lupaş in [] in which

he proved that

∣∣C(f , g)∣∣ ≤ 
π

∥∥f ′∥∥


∥∥g ′∥∥
(b – a), (.)

provided that f , g are absolutely continuous and f ′, g ′ ∈ L[a,b]. The constant 
π is the

best possible.
Recently, Cerone and Dragomir [] have proved the following results:

∣∣C(f , g)∣∣ ≤ inf
γ∈R

‖g – γ ‖q · 
b – a

(∫ b

a

∣∣∣∣f (t) – 
b – a

∫ b

a
f (s)ds

∣∣∣∣
p

dt
) 

p
, (.)

where p >  and 
p +


q =  or p =  and q = ∞, and

∣∣C(f , g)∣∣ ≤ inf
γ∈R

‖g – γ ‖ · 
b – a

ess sup
t∈[a,b]

∣∣∣∣f (t) – 
b – a

∫ b

a
f (s)ds

∣∣∣∣, (.)

provided that f ∈ Lp[a,b] and g ∈ Lq[a,b] (p > , 
p +


q = ; p = , q = ∞ or p = ∞, q = ).

Notice that for q = ∞, p =  in (.) we obtain

∣∣C(f , g)∣∣ ≤ inf
γ∈R

‖g – γ ‖∞ · 
b – a

∫ b

a

∣∣∣∣f (t) – 
b – a

∫ b

a
f (s)ds

∣∣∣∣dt
≤ ‖g‖∞ · 

b – a

∫ b

a

∣∣∣∣f (t) – 
b – a

∫ b

a
f (s)ds

∣∣∣∣dt (.)

and if g satisfies (.), then

∣∣C(f , g)∣∣ ≤ inf
γ∈R

‖g – γ ‖∞ · 
b – a

∫ b

a

∣∣∣∣f (t) – 
b – a

∫ b

a
f (s)ds

∣∣∣∣dt
≤

∥∥∥∥g – n +N


∥∥∥∥∞
· 
b – a

∫ b

a

∣∣∣∣f (t) – 
b – a

∫ b

a
f (s)ds

∣∣∣∣dt
≤ 


(N – n) · 

b – a

∫ b

a

∣∣∣∣f (t) – 
b – a

∫ b

a
f (s)ds

∣∣∣∣dt. (.)

The inequality between the first and the last term in (.) has been obtained by Cheng
and Sun in []. However, the sharpness of the constant 

 , a generalization for the abstract
Lebesgue integral, and the discrete version of it have been obtained in [].
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For other recent results on the Grüss inequality, see [–], and the references therein.
In order to consider a Čebyšev type functional for functions of vectors in Banach alge-

bras, we need some preliminary definitions and results as follows.

2 Some facts on Banach algebras
Let B be an algebra. An algebra norm on B is a map ‖ · ‖ : B→[,∞) such that (B,‖ · ‖) is
a normed space, and, further

‖ab‖ ≤ ‖a‖‖b‖

for any a,b ∈ B. The normed algebra (B,‖·‖) is aBanach algebra if ‖·‖ is a complete norm.
We assume that the Banach algebra is unital, this means that B has an identity  and

that ‖‖ = .
Let B be a unital algebra. An element a ∈ B is invertible if there exists an element b ∈ B

with ab = ba = . The element b is unique; it is called the inverse of a and written a– or 
a .

The set of invertible elements of B is denoted by InvB. If a,b ∈ InvB then ab ∈ InvB and
(ab)– = b–a–.
For a unital Banach algebra we also have:
(i) if a ∈ B and limn→∞ ‖an‖/n < , then  – a ∈ InvB;
(ii) {a ∈ B : ‖ – b‖ < } ⊂ InvB;
(iii) InvB is an open subset of B;
(iv) the map InvB 	 a 
−→ a– ∈ InvB is continuous.
For simplicity, we denote λ, where λ ∈ C and  is the identity of B, by λ. The resolvent

set of a ∈ B is defined by

ρ(a) := {λ ∈C : λ – a ∈ InvB};

the spectrum of a is σ (a), the complement of ρ(a) in C, and the resolvent function of a is
Ra : ρ(a)→ InvB, Ra(λ) := (λ – a)–. For each λ,γ ∈ ρ(a) we have the identity

Ra(γ ) – Ra(λ) = (λ – γ )Ra(λ)Ra(γ ).

We also have σ (a) ⊂ {λ ∈ C : |λ| ≤ ‖a‖}. The spectral radius of a is defined as ν(a) =
sup{|λ| : λ ∈ σ (a)}.
If a, b are commuting elements in B, i.e. ab = ba, then

ν(ab)≤ ν(a)ν(b) and ν(a + b) ≤ ν(a) + ν(b).

Let B a unital Banach algebra and a ∈ B. Then
(i) the resolvent set ρ(a) is open in C;
(ii) for any bounded linear functionals λ : B →C, the function λ ◦Ra is analytic on ρ(a);
(iii) the spectrum σ (a) is compact and nonempty in C;
(iv) for each n ∈ N and r > ν(a), we have

an =


π i

∫
|ξ |=r

ξn(ξ – a)– dξ ;

(v) we have ν(a) = limn→∞ ‖an‖/n.

http://www.journalofinequalitiesandapplications.com/content/2014/1/294
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Let f be an analytic functions on the open disk D(,R) given by the power series f (λ) :=∑∞
j= αjλ

j (|λ| < R). If ν(a) < R, then the series
∑∞

j= αjaj converges in the Banach algebra
B because

∑∞
j= |αj|‖aj‖ < ∞, and we can define f (a) to be its sum. Clearly f (a) is well

defined and there are many examples of important functions on a Banach algebra B that
can be constructed in this way. For instance, the exponential map on B denoted exp and
defined as

expa :=
∞∑
j=


j!
aj for each a ∈ B.

If B is not commutative, then many of the familiar properties of the exponential function
from the scalar case do not hold. The following key formula is valid, however, with the
additional hypothesis of commutativity for a and b from B:

exp(a + b) = exp(a) exp(b).

In a general Banach algebra B it is difficult to determine the elements in the range of the
exponential map exp(B), i.e. the element which have a ‘logarithm’. However, it is easy to
see that if a is an element in B such that ‖ – a‖ < , then a is in exp(B). That follows from
the fact that if we set

b = –
∞∑
n=


n
( – a)n,

then the series converges absolutely and, as in the scalar case, substituting this series into
the series expansion for exp(b) yields exp(b) = a.
It is well known that if x and y are commuting, i.e. xy = yx, then the exponential function

satisfies the property

exp(x) exp(y) = exp(y) exp(x) = exp(x + y).

Also, if x is invertible and a,b ∈R with a < b then

∫ b

a
exp(tx)dt = x–

[
exp(bx) – exp(ax)

]
.

Moreover, if x and y are commuting and y – x is invertible, then

∫ 


exp

(
( – s)x + sy

)
ds =

∫ 


exp

(
s(y – x)

)
exp(x)ds

=
(∫ 


exp

(
s(y – x)

)
ds

)
exp(x)

= (y – x)–
[
exp(y – x) – I

]
exp(x)

= (y – x)–
[
exp(y) – exp(x)

]
.

Let f (λ) =
∑∞

n= αnλ
n be a function defined by power series with complex coefficients

and convergent on the open disk D(,R)⊂ C, R >  and x, y ∈ B with xy = yx. In this paper

http://www.journalofinequalitiesandapplications.com/content/2014/1/294
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we establish some upper bounds for the norm of the Čebyšev type difference

f (λ)f (λxy) – f (λx)f (λy) (.)

provided that the complex number λ and the vectors x, y ∈ B are such that the series in
(.) are convergent. Applications for some fundamental functions such as the exponential
function and the resolvent function are provided as well.
Inequalities for functions of operators in Hilbert spaces may be found in [–], the

recent monographs [–], and the references therein.

3 The results
We denote by C the set of all complex numbers. Let αn be nonzero complex numbers and
let

R :=


lim sup |αn| n
.

Clearly  ≤ R ≤ ∞, but we consider only the case  < R≤ ∞.
Denote by

D(,R) =

⎧⎨
⎩{z ∈ C : |z| < R}, if R < ∞,

C, if R = ∞,

consider the functions

λ 
→ f (λ) :D(,R)→C, f (λ) :=
∞∑
n=

αnλ
n

and

λ 
→ fA(λ) :D(,R)→C, fA(λ) :=
∞∑
n=

|αn|λn.

Let B be a unital Banach algebra and  its unity. Denote by

B(,R) =

⎧⎨
⎩{x ∈ B : ‖x‖ < R}, if R < ∞,

B, if R = ∞.

We associate to f the map

x 
→ f (̃x) : B(,R)→ B, f (̃x) :=
∞∑
n=

αnxn.

Obviously, f˜ is correctly defined because the series
∑∞

n= αnxn is absolutely convergent,
since

∑∞
n= ‖αnxn‖ ≤ ∑∞

n= |αn|‖x‖n.
In addition, we assume that s :=

∑∞
n= n|αn| < ∞. Let s :=

∑∞
n= |αn| < ∞ and s :=∑∞

n= n|αn| <∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/294
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With the above assumptions we have the following.

Theorem  Let λ ∈ C such that max{|λ|, |λ|} < R < ∞ and let x, y ∈ B with ‖x‖,‖y‖ ≤ ,
and xy = yx. Then:

(i) We have

∥∥f (̃λ · )f (̃λxy) – f (̃λx)f (̃λy)
∥∥

≤ √
ψ min

{‖x – ‖,‖y – ‖}fA(|λ|) (.)

where

ψ := ss – s . (.)

(ii) We also have

∥∥f (̃λ · )f (̃λxy) – f (̃λx)f (̃λy)
∥∥

≤ √
min

{‖x – ‖,‖y – ‖}fA(|λ|)
× {

fA
(|λ|)[|λ|f ′

A
(|λ|) + |λ|f ′′

A
(|λ|)] – [|λ|f ′

A
(|λ|)]}/. (.)

Proof Form≥  and since xy = yx we have

m∑
n=

m∑
j=

αnαjλ
nλj(xn – xj

)
yn

=
m∑
n=

m∑
j=

αnαjλ
nλjxnyn –

m∑
n=

m∑
j=

αnαjλ
nλjxjyn

=
m∑
j=

αjλ
j

m∑
n=

αnλ
nxnyn –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn

=
m∑
j=

αjλ
j

m∑
n=

αnλ
n(xy)n –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn (.)

for any λ ∈C.
Taking the norm in (.) we have

∥∥∥∥∥
m∑
j=

αjλ
j

m∑
n=

αnλ
n(xy)n –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn

∥∥∥∥∥
≤

m∑
n=

m∑
j=

|αn||αj||λ|n|λ|j∥∥(
xn – xj

)
yn

∥∥

≤
m∑
n=

m∑
j=

|αn||αj||λ|n|λ|j∥∥xn – xj
∥∥∥∥yn∥∥

≤
m∑
n=

m∑
j=

|αn||αj||λ|n|λ|j∥∥xn – xj
∥∥‖y‖n

http://www.journalofinequalitiesandapplications.com/content/2014/1/294
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≤
m∑
n=

m∑
j=

|αn||αj||λ|n|λ|j∥∥xn – xj
∥∥

= 
∑

≤j<n≤m

|αn||αj||λ|n|λ|j∥∥xn – xj
∥∥, (.)

for any λ ∈C andm ≥ .
Observe that

L :=
∑

≤j<n≤m

|αn||αj||λ|n|λ|j∥∥xn – xj
∥∥

=
∑

≤j<n≤m

|αn||αj||λ|n|λ|j
∥∥∥∥∥
n–∑
�=j

(
x�+ – x�

)∥∥∥∥∥
=

∑
≤j<n≤m

|αn||αj||λ|n|λ|j
∥∥∥∥∥
n–∑
�=j

x�(x – )

∥∥∥∥∥
≤ ‖x – ‖

∑
≤j<n≤m

|αn||αj||λ|n|λ|j
n–∑
�=j

‖x‖� (.)

for any λ ∈C andm ≥ .
We have

n–∑
�=j

‖x‖� ≤ (n – j) max
�∈{j,...,n–}

‖x‖� ≤ (n – j) max
�∈{,...,m–}

‖x‖�

and then

L ≤ ‖x – ‖ max
�∈{,...,m–}

‖x‖�
∑

≤j<n≤m

|αn||αj||λ|n|λ|j(n – j). (.)

From the first inequality in (.) and since ‖x‖ <  we have

∥∥∥∥∥
m∑
j=

αjλ
j

m∑
n=

αnλ
n(xy)n –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn

∥∥∥∥∥
≤ ‖x – ‖

∑
≤j<n≤m

|αn||αj||λ|n|λ|j(n – j)

= ‖x – ‖
m∑
n=

m∑
j=

|αn||αj||λ|n|λ|j|n – j|. (.)

(i) Using the Cauchy-Bunyakovsky-Schwarz inequality for double sums,

m∑
n=

m∑
j=

pn,jan,jbn,j ≤
( m∑

n=

m∑
j=

pn,jan,j

)/( m∑
n=

m∑
j=

pn,jbn,j

)/

,

http://www.journalofinequalitiesandapplications.com/content/2014/1/294
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where pn,j,an,j,bn,j ≥  for n, j ∈ {, . . . ,m}, we have
m∑
n=

m∑
j=

|αn||αj||λ|n|λ|j|n – j|

≤
( m∑

n=

m∑
j=

|αn||αj||λ|n|λ|j
)/( m∑

n=

m∑
j=

|αn||αj||n – j|
)/

=
√


( m∑
n=

|αn||λ|n
)[ m∑

n=

|αn|
m∑
n=

n|αn| –
( m∑

n=

n|αn|
)]/

(.)

for any λ ∈C andm ≥ .
From (.) and (.) we get the inequality

∥∥∥∥∥
m∑
j=

αjλ
j

m∑
n=

αnλ
n(xy)n –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn

∥∥∥∥∥
≤ √

‖x – ‖
( m∑

n=

|αn||λ|n
)

×
[ m∑

n=

|αn|
m∑
n=

n|αn| –
( m∑

n=

n|αn|
)]/

. (.)

Since the series

∞∑
j=

αjλ
j,

∞∑
n=

αnλ
n(xy)n,

∞∑
j=

αjλ
jxj,

∞∑
n=

αnλ
nyn

are convergent in B,
∑∞

n= |αn||λ|n is convergent and the limit

lim
m→∞

[ m∑
n=

|αn|
m∑
n=

n|αn| –
( m∑

n=

n|αn|
)]/

exists, then by letting m → ∞ in (.) we deduce the desired result in (.) for x. Due to
the commutativity of xwith y, a similar result can be stated for y, and taking theminimum,
we deduce the desired result.
(ii) Using the Cauchy-Bunyakovsky-Schwarz inequality for double sums,

m∑
n=

m∑
j=

pn,jan,j ≤
( m∑

n=

m∑
j=

pn,j

)/( m∑
n=

m∑
j=

pn,jan,j

)/

where pn,j,an,j ≥  for n, j ∈ {, . . . ,m}, we also have

m∑
n=

m∑
j=

|αn||αj||λ|n|λ|j|n – j|

≤
( m∑

n=

m∑
j=

|αn||αj||λ|n|λ|j
)/( m∑

n=

m∑
j=

|αn||αj||λ|n|λ|j|n – j|
)/

http://www.journalofinequalitiesandapplications.com/content/2014/1/294
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=
√


( m∑
n=

|αn||λ|n
)

×
[ m∑

n=

|αn||λ|n
m∑
n=

n|αn||λ|n –
( m∑

n=

n|αn||λ|n
)]/

(.)

for any λ ∈C andm ≥ .
From (.) and (.) we have

∥∥∥∥∥
m∑
j=

αjλ
j

m∑
n=

αnλ
n(xy)n –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn

∥∥∥∥∥
≤ √

‖x – ‖
( m∑

n=

|αn||λ|n
)

×
[ m∑

n=

|αn||λ|n
m∑
n=

n|αn||λ|n –
( m∑

n=

n|αn||λ|n
)]/

(.)

for any λ ∈C andm ≥ .
If we denote f (u) :=

∑∞
n= αnun, then for |u| < R we have

∞∑
n=

nαnun = uf ′(u)

and

∞∑
n=

nαnun = u
(
ug ′(u)

)′.

However

u
(
ug ′(u)

)′ = ug ′(u) + ug ′′(u)

and then

∞∑
n=

nαnun = ug ′(u) + ug ′′(u).

Therefore

∞∑
n=

n|αn||λ|n = |λ|f ′
A
(|λ|) + |λ|f ′′

A
(|λ|)

and

m∑
n=

n|αn||λ|n = |λ|f ′(|λ|)

for |λ| < R.

http://www.journalofinequalitiesandapplications.com/content/2014/1/294
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Since all the series whose partial sums are involved in (.) are convergent, then by
letting m → ∞ in (.) we deduce the desired inequality (.) for x. Due to the commu-
tativity of xwith y, a similar result can be stated for y, and taking theminimum, we deduce
the desired result. �

Remark  If R = ∞, Theorem  holds true. Moreover, in this case the restrictions
‖x‖,‖y‖ ≤  need no longer be imposed.

Remark  We observe that if the power series f (λ) =
∑∞

n= αnλ
n has the radius of conver-

gence R > , then

∞∑
n=

|αn| = fA(),
∞∑
n=

n|αn| = f ′
A() + f ′′

A ()

and

∞∑
n=

n|αn| = f ′
A().

In this case ψ is finite and

ψ = lim
m→∞

[ m∑
n=

|αn|
m∑
n=

n|αn| –
( m∑

n=

n|αn|
)]/

=
{
fA()

[
f ′
A() + f ′′

A ()
]
–

[
f ′
A()

]}/.
Therefore, if λ ∈C with |λ|, |λ|, |λ|‖x‖, |λ|‖y‖ < R, then from (.) we have

∥∥f (̃λ · )f (̃λxy) – f (̃λx)f (̃λy)
∥∥

≤ √

{
fA()

[
f ′
A() + f ′′

A ()
]
–

[
f ′
A()

]}/
×min

{‖x – ‖,‖y – ‖}fA(|λ|). (.)

Corollary  Under the assumptions of Theorem  we have the inequalities

∥∥f (̃λ · )f (̃λx) – f ̃(λx)
∥∥ ≤ √

ψ‖x – ‖fA
(|λ|) (.)

provided λ ∈C with |λ|, |λ|, |λ|‖x‖ < R, and

∥∥f (̃λ · )f (̃λx) – f ̃(λx)
∥∥

≤ √
‖x – ‖fA

(|λ|)
× {

fA
(|λ|)[|λ|f ′

A
(|λ|) + |λ|f ′′

A
(|λ|)] – [|λ|f ′

A
(|λ|)]}/ (.)

provided λ ∈C with |λ|, |λ|‖x‖ < R.
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Theorem  Let f (λ) =
∑∞

n= αnλ
n be a function defined by power series with complex co-

efficients and convergent on the open disk D(,R)⊂C, R > , and x, y ∈ B with xy = yx and
‖x‖,‖y‖ < .
If λ ∈C with |λ|, |λ|‖x‖, |λ|‖y‖ < R, then

∥∥f (̃λ · )f (̃λxy) – f (̃λx)f (̃λy)
∥∥ ≤ min

{‖x – ‖
 – ‖x‖ ,

‖y – ‖
 – ‖y‖

}[
f A

(|λ|) – fA
(|λ|)], (.)

where

fA (λ) :=
∞∑
n=

|αn|λn (.)

has the radius of convergence R.

Proof As pointed out in (.), we have

L ≤ ‖x – ‖
∑

≤j<n≤m

|αn||αj||λ|n|λ|j
n–∑
�=j

‖x‖�

≤ ‖x – ‖
m–∑
�=

‖x‖�
∑

≤j<n≤m

|αn||αj||λ|n|λ|j (.)

for any λ ∈C andm ≥ .
Denote

Km :=
∑

≤j<n≤m

|αn||αj||λ|n|λ|j.

We obviously have

Km =



( m∑
n,j=

|αn||αj||λ|n|λ|j –
m∑
n=

|αn||λ|n
)

=



[( m∑
n=

|αn||λ|n
)

–
m∑
n=

|αn||λ|n
]
.

From (.) and (.) we get the inequality

∥∥∥∥∥
m∑
j=

αjλ
j

m∑
n=

αnλ
n(xy)n –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn

∥∥∥∥∥
≤ ‖x – ‖

m–∑
�=

‖x‖�

×
[( m∑

n=

|αn||λ|n
)

–
m∑
n=

|αn||λ|n
]
, (.)

for any λ ∈C andm ≥ .
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Since all the series whose partial sums are involved in (.) are convergent, then by
lettingm→ ∞ in (.) we deduce the desired inequality (.) for x. Due to the commu-
tativity of xwith y, a similar result can be stated for y, and taking theminimum, we deduce
the desired result. �

Remark  Since the power series fA (λ) :=
∑∞

n= |αn|λn is not easy to compute, we can
provide some bounds for the quantity

Df
(|λ|) := f A

(|λ|) – fA
(|λ|),

where |λ| < R, as follows.
If |λ| <  and a�∞ := supn∈N{|an|} < ∞, then

Km ≤ a�∞
∑

≤j<n≤m

|λ|n|λ|j

=


a�∞

[( m∑
n=

|λ|n
)

–
m∑
n=

|λ|n
]

and by takingm → ∞ in this inequality we get

Df
(|λ|) ≤ 


a�∞

[(


 – |λ|
)

–


 – |λ|
]

(.)

for |λ| < .
If |λ| <  and

a� := lim
m→∞

[( m∑
n=

|αn|
)

–
m∑
n=

|αn|
]
< ∞

then

Km ≤ max
n∈{,...,m}

|λ|n
∑

≤j<n≤m

|αn||αj|

≤ 


[( m∑
n=

|αn|
)

–
m∑
n=

|αn|
]

and by takingm → ∞ in this inequality we get

Df
(|λ|) ≤ 


a� (.)

for |λ| < .
If the series

∑∞
n= |αn| and ∑∞

n= |αn| are convergent, then

Df
(|λ|) ≤ 



[( ∞∑
n=

|αn|
)

–
∞∑
n=

|αn|
]

(.)

for |λ| < .
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If |λ| < , p,q >  with 
p +


q = , and

a�q := lim
m→∞

[( m∑
n=

|αn|q
)

–
m∑
n=

|αn|q
]
< ∞

then by Hölder’s inequality we have

Km ≤
( ∑
≤j<n≤m

|αn|q|αj|q
)/q( ∑

≤j<n≤m

|λ|pn|λ|pj
)/p

≤
{



[( m∑
n=

|αn|q
)

–
m∑
n=

|αn|q
]}/q

×
{



[( m∑
n=

|λ|pn
)

–
m∑
n=

|λ|pn
]}/p

and by takingm → ∞ in this inequality we get

Df
(|λ|) ≤ 


a/q�q

[(


 – |λ|p
)

–


 – |λ|p
]/p

(.)

for |λ| < .
If the series

∑∞
n= |αn|q and ∑∞

n= |αn|q are convergent, then

Df
(|λ|) ≤ 



[( ∞∑
n=

|αn|q
)

–
∞∑
n=

|αn|q
]/p[(


 – |λ|p

)

–


 – |λ|p
]/p

(.)

for |λ| < .

The following result also holds.

Theorem  Let f (λ) =
∑∞

n= αnλ
n be a function defined by power series with complex co-

efficients and convergent on the open disk D(,R)⊂C, R > , and x, y ∈ B with xy = yx and
‖x‖,‖y‖ < .
If p,q >  with 

p +

q =  and λ ∈ C with |λ|, |λ|p, |λ|‖x‖, |λ|‖y‖ < R, then

∥∥f (̃λ · )f (̃λxy) – f (̃λx)f (̃λy)
∥∥

≤ 

min

{ ‖x – ‖
( – ‖x‖p)/p ,

‖y – ‖
( – ‖y‖p)/p

}

× ϕ/q[f A (|λ|p) – fA
(|λ|p)]/p, (.)

where

ϕ := lim
m→∞

m∑
n,j=

|αn||αj||n – j| (.)

is assumed to exist and be finite.
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Proof Using Hölder’s inequality for p,q >  with 
p +


q =  and (.), we have

L ≤ ‖x – ‖
∑

≤j<n≤m

|αn||αj||λ|n|λ|j(n – j)/q
( n–∑

�=j

‖x‖�p

)/p

≤ ‖x – ‖
(m–∑

�=

‖x‖�p

)/p ∑
≤j<n≤m

|αn||αj||λ|n|λ|j(n – j)/q (.)

for any λ ∈C andm ≥ .
Applying Hölder’s inequality once more we have

∑
≤j<n≤m

|αn||αj||λ|n|λ|j(n – j)/q

≤
( ∑
≤j<n≤m

|αn||αj||λ|n(n – j)
)/q( ∑

≤j<n≤m

|αn||αj||λ|pn|λ|pj
)/p

=

(



m∑
n,j=

|αn||αj||n – j|
)/q

×
(



[( m∑
n=

|αn||λ|np
)

–
m∑
n=

|αn||λ|np
])/p

=



( m∑
n,j=

|αn||αj||n – j|
)/q

×
[( m∑

n=

|αn||λ|np
)

–
m∑
n=

|αn||λ|np
]/p

(.)

for any λ ∈C andm ≥ .
From (.) and (.) we get the inequality

∥∥∥∥∥
m∑
j=

αjλ
j

m∑
n=

αnλ
n(xy)n –

m∑
j=

αjλ
jxj

m∑
n=

αnλ
nyn

∥∥∥∥∥
≤ 


‖x – ‖

(m–∑
�=

‖x‖�p

)/p( m∑
n,j=

|αn||αj||n – j|
)/q

×
[( m∑

n=

|αn||λ|np
)

–
m∑
n=

|αn||λ|np
]/p

, (.)

for any λ ∈C andm ≥ .
Since all the series whose partial sums are involved in (.) are convergent, then by

lettingm → ∞ in (.) we deduce the desired inequality (.) for x. Due to the commu-
tativity of xwith y, a similar result can be stated for y, and taking theminimum, we deduce
the desired result. �
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Remark  Observe that

[
f A

(|λ|p) – fA
(|λ|p)]/p =D/p

f
(|λ|p)

and then further bounds for the inequality (.) may be provided by the use of Remark .
However the details are not mentioned here.
We can obtain a simpler upper bound for ϕ as follows.
Using the Cauchy-Bunyakovsky-Schwarz inequality for double sums

m∑
n=

m∑
j=

pi,jai,j ≤
( m∑

n=

m∑
j=

pi,j

)/( m∑
n=

m∑
j=

pi,jai,j

)/

,

where pi,j,ai,j ≥  for i, j ∈ {, . . . ,m}, we have

m∑
n,j=

|αn||αj||n – j| ≤
( m∑
n,j=

|αn||αj|
)/( m∑

n,j=

|αn||αj||n – j|
)/

=
√


m∑
n=

|αn|
[ m∑

n=

|αn|
m∑
n=

n|αn| –
( m∑

n=

n|αn|
)]/

(.)

form ≥ .
If the series

∑∞
n= |αn| is finite and ψ , defined by (.), is finite, then from (.) we have

ϕ ≤ √


∞∑
n=

|αn|ψ . (.)

We observe that, if the power series f (λ) =
∑∞

n= αnλ
n has the radius of convergence R > ,

then ψ is finite and

ψ =
{
fA()

[
f ′
A() + f ′′

A ()
]
–

[
f ′
A()

]}/.
We have from (.) the inequality

ϕ ≤ √
fA()

{
fA()

[
f ′
A() + f ′′

A ()
]
–

[
f ′
A()

]}/. (.)

4 Some examples
As some natural examples that are useful for applications, we can point out that, if

f (λ) =
∞∑
n=

(–)n

n
λn = ln


 + λ

, λ ∈D(, );

g(λ) =
∞∑
n=

(–)n

(n)!
λn = cosλ, λ ∈C;

h(λ) =
∞∑
n=

(–)n

(n + )!
λn+ = sinλ, λ ∈C;

l(λ) =
∞∑
n=

(–)nλn =


 + λ
, λ ∈D(, ),

(.)
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then the corresponding functions constructed by the use of the absolute values of the
coefficients are

fA(λ) =
∞∑
n=


n

λn = ln


 – λ
, λ ∈ D(, );

gA(λ) =
∞∑
n=


(n)!

λn = coshλ, λ ∈C;

hA(λ) =
∞∑
n=


(n + )!

λn+ = sinhλ, λ ∈C;

lA(λ) =
∞∑
n=

λn =


 – λ
, λ ∈D(, ).

(.)

Other important examples of functions as power series representations with nonnegative
coefficients are

exp(λ) =
∞∑
n=


n!

λn, λ ∈C,



ln

(
 + λ

 – λ

)
=

∞∑
n=


n – 

λn–, λ ∈D(, );

sin–(λ) =
∞∑
n=

(n + 
 )√

π (n + )n!
λn+, λ ∈D(, );

tanh–(λ) =
∞∑
n=


n – 

λn–, λ ∈D(, );

F(α,β ,γ ,λ) =
∞∑
n=

(n + α)(n + β)(γ )
n!(α)(β)(n + γ )

λn, α,β ,γ > ,λ ∈D(, );

(.)

where  is the Gamma function.
If we apply the inequality (.) to the exponential function, then we have

∥∥exp[λ( + xy)
]
– exp

[
λ(x + y)

]∥∥ ≤ √
emin

{‖x – ‖,‖y – ‖} exp(|λ|) (.)

for any x, y ∈ B with xy = yx, ‖x‖,‖y‖ < , and λ ∈C.
If we take y = –x in (.), then we get

∥∥exp[λ(
 – x

)]
– 

∥∥ ≤ √
emin

{‖x – ‖,‖x + ‖} exp(|λ|) (.)

for any x ∈ B with ‖x‖ <  and λ ∈ C.
If we apply the inequality (.) for the exponential functions we also have

∥∥exp[λ( + xy)
]
– exp

[
λ(x + y)

]∥∥
≤ √

min
{‖x – ‖,‖y – ‖}|λ|/ exp(|λ|), (.)

for any x, y ∈ B with xy = yx, ‖x‖,‖y‖ < , and λ ∈C.
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If we take y = –x in (.), then we get

∥∥exp[λ(
 – x

)]
– 

∥∥ ≤ √
min

{‖x – ‖,‖x + ‖}|λ|/ exp(|λ|). (.)

Now, consider the function f (λ) :=
∑∞

n= λn = 
–λ

, λ ∈ D(, ). If we apply the inequality
(.) for this function, then we get the result

∥∥( – λ)–( – λxy)– – ( – λx)–( – λy)–
∥∥

≤ √
min

{‖x – ‖,‖y – ‖}|λ|/( – |λ|)– (.)

for any x, y ∈ B with xy = yx, ‖x‖,‖y‖ < , and λ ∈C with |λ| < .
We have in particular the inequalities

∥∥( – λ)–
(
 – λx

)– – ( – λx)–
∥∥ ≤ √

‖x – ‖|λ|/( – |λ|)– (.)

and

∥∥( – λ)–
(
 + λx

)– – (
 – λx

)–∥∥
≤ √

min
{‖x – ‖,‖x + ‖}|λ|/( – |λ|)– (.)

for any x ∈ B with ‖x‖ <  and λ ∈ C with |λ| < .
Now, if we take λ = 

γ
with |γ | >  then we get from (.) the inequality

∥∥γ (γ – )–(γ – xy)– – γ (γ – x)–(γ – y)–
∥∥

≤ √
min

{‖x – ‖,‖y – ‖}|γ |–/(|γ | – 
)–|γ |,

which is equivalent with

∥∥(γ – )–(γ – xy)– – (γ – x)–(γ – y)–
∥∥

≤ √
min

{‖x – ‖,‖y – ‖}|γ |/(|γ | – 
)–

for any x, y ∈ B with xy = yx, ‖x‖,‖y‖ < , and γ ∈C with |γ | > .
If we use the resolvent function notation, then we have the following inequality:

∥∥(γ – )–Rxy(γ ) – Rx(γ )Ry(γ )
∥∥

≤ √
min

{‖x – ‖,‖y – ‖}|γ |/(|γ | – 
)– (.)

for any x, y ∈ B with xy = yx, ‖x‖,‖y‖ < , and γ ∈C with |γ | > .
In particular, we have

∥∥(γ – )–Rx (γ ) – R
x(γ )

∥∥ ≤ √
‖x – ‖|γ |/(|γ | – 

)– (.)

for any x ∈ B with ‖x‖ <  and γ ∈C with |γ | > .
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Remark  Similar inequalities may be stated for the other power series mentioned at the
beginning of this paragraph. However, the details are not presented here.
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