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Abstract. The small radius hole polarons (self-trapped holes (STH) known also as the Vk 

centres) are very common color centers observed in alkali halides and alkaline-earth 

halides. Their mobility controls the rate of secondary reactions between electron and hole 

defects and thus radiation stability/sensitivity of materials. We have analysed here the 

correlation between the temperatures at which hole polarons  start migration in a series of 

alkali halides (fluorites, chlorides, bromides, iodides) and the lattice displacement around 

X2
- quasi-molecule. These results are especially important for identification of the self-

trapped holes, for example, in novel scintillating materials such as SrI2, as well as in a 

large family of perovskite halides and more complex halide materials. 

 

1. Introduction  

    The mobilities of small radius polarons affect properties of many insulating materials 

and thus attract considerable attention [1-3].  The self-trapped hole (STH) polarons 

(called Vk centres), in which a hole is shared by two nearest halogen ions, X2
-, are very 

common color centers created in alkali halides, alkaline-earth halides and some other 

halides under various kinds of irradiation (UV light, electrons, gamma rays, neutrons, 

heavy swift ions) [4-28] Their mobility controls the rate of secondary reactions between 

electron and hole defects and thus radiation stability/sensitivity of materials. 

    The hole polarons start to migrate and recombine above certain onset temperatures (in 

the range 50-200 K). Their diffusion-controlled decay has been observed by different 

experimental techniques in almost all alkali halides, as well as in some other binary 

halides, but also in complex halides, such as perovskite halides, ammonium halides, 

halide sodalites etc. [8, 11, 12, 15, 23, 25, 26 ] 

    In this paper, we review and analyse the STH migration temperatures for a series of 

alkali halides as a function of halogen-halogen (X-X) distance in a regular crystalline 

lattice as well as the bond length in isolated X2
- molecular ions.  
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2. Analysis of the STH migration  

 

Due to formation of chemical bond, the equilibrium distance of a X2
- hole polaron is 

smaller than the distance between two nearest host halogens in  perfect crystals and very 

close to that in a gas-phase molecule [29] (Fig. 1).  Above certain temperatures the STH 

migration occurs via a quasi-molecule reorientation by 60º or 90º (dependent on the fc.c. 

or b.c.c. lattice), during which one of the two halogens becomes a common partner in the 

old and new quasi-molecule (bond switching). Application of the small radius polaron 

theory to the Vk centers [30] has shown that its hopping probability W is expected to be 

an exponential function of the migration energy Ea 

                            

                                    W = ν0 exp (-Ea/kT),                                                (1) 

                             Ea = S hω/4,    S = A M ω Δ2      ,                                     (2) 

 

where ν0 is a pre-factor, S the so-called Huang-Rhys factor, dependent on the 

displacement Δ of the halogen from the regular lattice site after formation of the chemical 

bond (Fig. 1), ω is the LO optical phonon frequency, M the halogen mass, and A pre-

factor depending on the reorientation angle (A=0.9 for 60º). The hole 

delocalization/reorientation occurs when during thermal fluctuations one of halogens in 

the STH approaches the regular lattice site. Eqs. (1), (2) show  that a decrease of  

displacement Δ lowers the migration energy and hence the onset  temperature Tmigr at 

which hole migration begins. The latter may be defined by the temperature at which  STH 

performs one jump per second, W = 1 s-1 

 

                             Tmigr = A M ω Δ2 / 4k ln ν0
    ~ Δ2                                    (3), 

 i.e. is a quadratic function of the ionic displacement. 

 Tables 1 to 4 summarize the experimental  migration temperatures and inter-halogen 

distances for different types of crystalline structures – f.c.c., b.c.c., fluorite, and some 

more complicated structures (wurtzite, layered maltlockite etc) corresponding to four 

classes of halides – fluorites, chlorides, bromides, and iodides.    These literature data are 

used for analysing the dependence of the migration temperatures on the halogen-halogen 

distances in the above-mentioned four classes of halogen-containing solids (Figs. 2-5).    

    As one can see, the migration temperatures show a linear dependence on the 

displacement Δ, rather than the theoretically predicted quadratic one. (The first point with 
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0K corresponds to the equilibrium distances in free X2
- molecules.) The reason for this is 

not clear at the moment. What is more striking is that this linear dependence holds for 

each class, e.g. fluorides, irrespective on the specific lattice structure, e.g. f.c.c. LiF, 

fluorite CaF2, perovskite KMgF3. This observation clearly demonstrates that the main 

factor determining the migration temperature is the lattice displacement.  

 These results may be useful in the following cases: 

1. Very often thermoluminescence peaks or optical absorption annealing stages are 

attributed to the self-trapped holes, but it remains unclear, whether it is captured by 

impurities or self-trapped in a regular lattice. This linear relationship certainly helps to 

make a more specific conclusion.  

2. For STH in complex structures with several halogen-halogen distances, the linear law 

allows us to estimate the range of lattice sites where the STH could exist. For example, in 

there are 12 symmetrically distinct I–I ion pairs a novel efficient scintillator SrI2 [31-33], 

with a broad range of  the distances, 3.9–5.0 Å [32].  From our analysis for the iodides 

(Fig.5), we expect that migration temperatures of Vk centers  in SrI2   fall into range 50 -

100 K, respectively.  Indeed, Yang et al [33] have recently reported thermoluminescence 

of X-rayed  SrI2 :Eu consisting of 9 peaks, between LHeT and RT, including three peaks  

below 100 K. It is important, however, that the peak at 50 K dominates the 

thermoluminescence glow curve, which is more than an order of magnitude stronger than 

any other peak, which is typical for Vk centers in ionic solids.  The position of this peak 

corresponds to the lowest distance among all I–I pairs where the Vk center could be 

localized.    

This analysis indicates how to  interpret the thermoluminescence  peaks in this and 

similar complex materials, but also allows conclusions about stable local atomic 

configurations, in terms of the carrier self-trapping.  Moreover, it allows us  to understand 

how to use impurity doping of the material  for controling the channels of the electronic 

excitation relaxation.   

   Another example of complex materials is the  family of metal fluorohalides, which are 

important media for X –ray and neutron imaging [35-38]. In BaFCl  layered matlockite 

crystals, only Cl2
-  in-plane configuration was found (see Table 4).  Simple analysis of 

Fig.3 allows one to conclude that Vk  in-plane configuration with Tmig ~ 130 K  [35]  fits 

well the proposed linear relation, and to predict that the Vk  migration for out-of-plane 

configuration (with the distance of 2.72 A close to 2.71 Ǻ in free molecule)  could begin  

at very low temperatures.   This is why such Vk centers have not been observed in 
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commonly used experiments performed above LHeT.  We suggest  that  only  

experiments at temperatures below LHeT  could help to observe this type of defects.   

From the viewpoint of  scintillator engineering, materials are required with fast hole 

diffusion (and thus recombination) at room temperatures, which holds for STH with 

small lattice displacements and thus low delocalization temperatures, e.g. NaI.  

3.  It is established that Vk centers are produced and well studied in all fluoroperovskites 

(KMgF3 (Fig. 2), BaLiF3, KZnF3). We have demonstrated here that their thermal 

stability/ migration follow the same pattern as simple binary halides. This makes it 

possible to straightforwardly assess  the thermal stability of the STH for a wide range of 

AMX3 materials.  In forthcoming paper we plan to discuss the behavior of Vk centers  in 

more details.   

 

3. Conclusions 

A simple linear dependence of the migration temperatures of self-trapped holes in several 

classes of ionic solids was established as a function of the two halogen atom relaxation 

constituting the X2
- quasi-molecule from the regular lattice sites. As demonstrated in the 

paper, this correlation allows us to identify the STH and their structural configuration in 

various cases, including the promising scintillating material SrI2.  
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Table 1. Compilation of migration temperature of Vk centers in some metal halides, 

obtained via thermal annealing of optical absorption, EPR as well as TSL measurements. 

Alkali halides with NaCl-type lattice Cl-Cl distance = a/√2=0.707a, a is the Me-X 

distance. 

 

Material Type Lattice 

constant 

Halogen-

halogen 

distance 

Tmigr  (Vk) 

LiF NaCl 4.028 2.8482 125; 150 

NaF NaCl 4.634 3.2767 160; 180 

KF NaCl 5.348 3.7816 175; 210 

RbF NaCl 5.63 3.9810 216 

F2
-   1.90  

LiCl NaCl 5.14 3.6345 115, 120, 123 

NaCl NaCl 5.64 3.9881 150; 165; 168 

KCl NaCl 6.294 4.4505 205; 208; 210 

RbCl NaCl 6.582 4.6542 220;240 

Cl2
-   2.71  

LiBr NaCl 5.502 3.8905 122 

NaBr NaCl 5.978 4.2271 115; 134 

KBr NaCl 6.596 4.6641 160; 170;175 

RbBr NaCl 6.89 4.8720 170; 206 

Br2
-   2.90  

LiI NaCl 6.00 4.2426  

NaI NaCl 6.474 4.5778 58; 60 

KI NaCl 7.066 4.9964 105;110 

RbI NaCl 7.342 5.192 125 

I2
-   3.28  

 
 

Table 2. The same as Table 1 for alkali halides with CsCl-type lattice, Cl-Cl distance = a 

 

Material Type Lattice 

constant 

Halogen-

halogen 

distance 

Tmigr  (Vk) 

CsCl CsCl 4.123 4.123 202 

CsBr CsCl 4.286 4.286 122; 130 

CsI CsCl 4.5667 4.5667 60 (linear); 85 

(jump) 

NH4Cl CsCl 3.8756 3.8756 180 

NH4Br CsCl 4.0594 4.0594 120 

TlCl CsCl 3.8340 3.8340 Not found 

TlBr CsCl 3.97 3.97 Not found 

TlI CsCl 4.108 4.108 Not found 
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Table 3. The same as table 1 for metal halides with fluorite  lattice, F-F distance = 

a/2=0.5a 

 

Material Type Lattice 

constant 

Halogen-

halogen 

distance 

Tmigr  (Vk) 

CaF2 CaF2 5.4626 2.7313 126 K 

SrF2 CaF2 5.800 2.900 110; 120 

SrCl2 CaF2 6.9767 3.488 105 

CdF2 CaF2 5.3895 2.695 95 

 

 

Table 4. The same as Table 1 for several other halides with crystalline structures different 

from those in Tables 1-3.  

 

Material Type Lattice 

constant 

Halogen-

halogen 

distance 

Tmigr  (Vk) 

AgI wurtzite a=4.580; c=7.494 a=4.580 Not found 

NH4F wurtzite a=4.390; c=7.02 a=4.390 Not found 

KMgF3 perovskite a=3.93 a/√2=0.707a = 

2.78 

110 

BaFCl  (only 

Cl2
-) 

layered 

matlockite 

 4.11 (in-plane) 

2.72 (out-

of_plane) 

130 
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Fig.1. Schematic view of the STH in f.c.c. structure,  Δ is halogen displacement from the 

perfect lattice site as a result of the STH formation  

 

 

 

 
  

Fig. 2. Dependence of the STH delocalization and migration temperature for a series of 

fluorides as a function of halogen-halogen distances in the perfect crystal (see table 1)  
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Fig.3. The same as Fig.2 for chlorides,   

Fig.4. The same as Fig. 1 for bromides
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Fig.5. The same as Fig. 1 for iodides  
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