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Abstract 

An enhancement of the piezoelectric properties of lead-free materials, which allow conversion of 

mechanical energy into electricity, is a task of great importance and interest. Results of first-

principles calculations of piezoelectric/electromechanical properties of the Ba(1-x)SrxTiO3 (BSTO) 

ferroelectric solid solution with perovskite structure are presented and discussed. Calculations are 

performed within the linear combination of atomic orbitals (LCAO) approximation and periodic-

boundary conditions, using advanced hybrid functionals of the density-functional-theory (DFT). 

A supercell model allows to investigate multiple chemical compositions x. In particular, three 

BSTO solid solutions with x = 0, 0.125, 0.25 are considered within the experimental stability 

domain of the ferroelectric tetragonal phase of the solid solution (x<0.3). The configurational 

disorder with x=0.25 composition is also investigated explicitly considering the seven possible 

atomic configurations corresponding to this composition. It is predicted that Sr-doping of BaTiO3 

makes it mechanically harder and enhances its electromechanical/piezoelectric properties which 

are important for relevant applications. 
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Introduction 

In recent years, there has been an enormous interest in the efficient capture of environmental 

energy through the use of energy-harvesting devices that transform mechanical energy into 

electricity (refs 1 and 2 and references therein). In this respect, one of the most efficient ways is 

to utilize the piezoelectricity of nano-ferroelectrics.3–5 In particular, ABO3-type perovskite 

ferroelectrics are used for many technological applications and therefore have been intensively 

studied for a long time.6–8 Lead-free BaTiO3 (BTO) and SrTiO3 (STO, an incipient ferroelectric) 

perovskites are among the most studied members of this class of materials. 

The rapid progress of computational methods, on the one hand, and of the parallel 

performance of modern computer architectures, on the other hand, nowadays allow us to 

calculate the elastic and piezoelectric properties of perovskites based on a very accurate ab initio 

(first-principles) approach. Indeed, several calculations of piezoelectric properties of BTO 

crystals have recently been reported. In particular, Khalal et al.9 and Meng et al.10 studied elastic 

and piezoelectric properties of BTO in the tetragonal phase, whereas Mahmoud et al.11 calculated 

piezoelectric, dielectric, elastic and photoelastic properties of BTO in its low-temperature 

rhombohedral phase. 

From a structural point of view, both BTO and STO exhibit a cubic (paraelectric) phase at 

high temperature, where each Ti ion is octahedrally coordinated to six oxygen ions. This structure 

belongs to a centrosymmetric space group, Pm-3m (SG 221), and therefore cannot reveal ferro- 

and piezoelectricity, which are specific properties of non-centrosymmetric lattices. However, 

upon cooling, Ti ions are displaced along one of the cube main axes, which leads to a series of 

phase transitions. While STO undergoes a phase transition from the paraelectric cubic phase (SG 

221) to another paraelectric tetragonal phase (I4/mcm, SG 140) at 105 K (ref 12), BTO undergoes 
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three consecutive ferroelectric transitions: at 393 K the crystalline symmetry reduces from cubic 

(SG 221) to tetragonal (P4mm, SG 99), then to orthorhombic (Amm2, SG 38) at 278 K and, 

lastly, to rhombohedral (R3m, SG 160) below 183 K (ref 11). 

In this study, we focus our attention on the tetragonal (room temperature) ferroelectric BTO 

phase, which is the most interesting for technological applications.6 An enhancement of the 

piezoelectric, ferroelectric and dielectric properties of perovskites can be achieved by engineering 

a lattice strain.8,13 Partial replacement of atoms is one of the effective ways to produce lattice 

strain. Solid solutions near a morphotropic phase boundary, separating two crystal symmetries, 

are known to exhibit anomalously high piezoelectric and dielectric responses.14 BTO is 

commonly doped by various impurity atoms, in order to improve its dielectric and 

electromechanical properties. In particular, a series of experimental papers was devoted to Ba(1-

x)SrxTiO3 (BSTO) solid solutions with perovskite structure (refs 6, 7 and 15 and references 

therein) with a focus on dielectric properties. An artificial superlattice constructed from the two 

perovskites (e.g., BTO and STO) can also be applied to enhance piezoelectric and dielectric 

responses.16,17 

The aim of this paper is the study of the electromechanical/piezoelectric properties of the 

tetragonal BSTO solid solution by means of first-principles calculations. The elastic and 

piezoelectric constants are computed, which show that the Sr-doping of BTO enhances its 

electromechanical properties. Advantage of Ba(1-x)SrxTiO3 solid solution, in contrast to BTO, is 

that the structural phase transition, which occurs in BTO at 5°C, shifts to lower temperatures at x 

increases.18 As the result, there is no phase transition in BSTO in a wide temperature range 

around room temperature, what leads to a temperature-stable piezoelectric property, which is 

important for practical applications. 
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Computational Details 

First-principles calculations are performed with the CRYSTAL14 code for quantum-chemical ab 

initio simulations,19,20 which computes elastic and piezoelectric (direct and converse) tensors 

within a fully-automated procedure. The PBE0 hybrid DFT-HF exchange-correlation functional21 

is used, which already proved reliable for piezoelectric properties.11,12 Hay and Wadt effective 

small core pseudopotentials22–24 are used for Ba, Ti and Sr atoms, with 5s2, 5p6, 6s2 valence 

electrons for Ba; 3s2, 3p6, 3d2, 4s2 for Ti and 4s2, 4p6, 5s2 for Sr. The oxygen atoms are described 

by an all-electron basis set. The basis sets for Ba, Sr and Ti are taken from ref 25, where these 

were optimized for BTO and STO crystals, while the basis set for oxygen is taken from ref 26. 

All basis sets are available on the CRYSTAL website.27 

In order to define an optimal set up for the calculations on the BSTO solid solution, we 

started from the calculation of the lattice constants, electronic properties, elastic and piezoelectric 

constants for several phases of BTO and STO crystals, and compared our results with both 

available experimental data and previous results of ab initio calculations (see below). 

Additionally, we performed calculations of lattice constants, band gap, bulk modulus, elastic and 

piezoelectric constants for the tetragonal BTO phase. Calculations have been performed with 

three hybrid functionals (see ref 20). The first one is the PBE0 functional, which combines PBE 

exchange functional with 25% of Hartree-Fock (HF) exchange and the PBE correlation 

functional. In the second, the exchange part in the PBE0 functional was replaced by the WCGGA 

(Wu-Cohen) exchange functional28 with the same HF fractions (25%). This functional is 

designated in this paper as WC functional. Lastly, the third functional — B1WC combines the 

WCGGA exchange functional with 16% HF and the PWGGA (Perdew-Wang) correlation 

functional. 
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Our computational set up has been calibrated in terms of accuracy and computational time. In 

particular, the five thresholds governing the truncation of infinite lattice sums in the two-electron 

integral evaluation have been set to 8, 8, 8, 8, 16, and a regular Monkorst-Pack mesh of points in 

reciprocal space has been used, whose shrinking factor has been set to 12 and 6 for bulk and 

supercell calculations, respectively. These parameters ensure converged results. 

A structural model for the BSTO solid solution has been built, which consists of a 2×2×2 

supercell of the tetragonal BTO primitive unit cell. Such the supercell consists of 8 primitive 

BTO unit cells and, hence, it contains 40 atoms. In the supercell calculations, we have studied 

Ba(1-x)SrxTiO3 solutions with different compositions (i.e. Sr/Ba ratio), where Ba atoms are 

progressively replaced by Sr atoms. Thus, the calculations are performed for artificial ordered 

BSTO superstructures. We have performed calculations for three different Sr concentrations: 

without substitution (x=0.0; SC0); 1 Ba atom is replaced with 1 Sr atom (x=0.125; SC1); 2 Ba 

atoms are replaced with 2 Sr atoms (x=0.25; SC2). For the x=0.125 composition, any of the 8 Ba 

atoms in the cell could be substituted with a Sr atom. We replaced the Ba atom at the origin of the 

coordinate system — atom with coordinates (0,0,0) — to preserve as much symmetry as possible. 

For the x=0.25 composition, 2 Ba atoms are replaced with 2 Sr atoms: the one at the origin and a 

second one. All 7 possible configurations are here considered. 

 

Results and Discussion 

Before investigating the mechanical and piezoelectric response of BSTO solid solutions, we have 

calculated the elastic tensors for all the 4 phases of BTO, the piezoelectric (direct and converse) 

tensors for the 3 ferroelectric phases of BTO, and the elastic constants for cubic STO. Structural 

and elastic properties as well as the band gaps of the cubic phases of BTO and STO are given in 



7 
 

Table 1, where they are also compared with existing experimental data and with previous 

theoretical investigations performed with the same PBE0 functional. The cubic crystal system 

exhibits the simplest form of the symmetric elastic tensor, with only three independent constants 

(C11, C12, C44). The agreement of our calculated values with previous theoretical investigations is 

remarkable, which confirms the accuracy of our computational setup. As expected, when 

comparing the calculated values for the elastic constants of these two high-temperature cubic 

phases with the experimental counterparts, they are found to be systematically larger, because 

thermal expansion was neglected in the calculations at this stage. Calculations for both cubic 

phases, BTO and STO, give indirect band gaps (Table 1). While for BTO the difference between 

indirect and direct values of band gap is very small (~30 meV), for STO this discrepancy is 

calculated significantly larger (~0.3 eV). The experimental difference in the direct and indirect 

band gap energies for a cubic STO is 0.5 eV (ref 35), slightly larger than calculated value. The 

absolute values of the calculated band gap energies are larger by ~25% than the experimental 

ones, which is much better than typical underestimate known for GGA-type functionals.25 

The results of our BTO calculations in tetragonal phase are given in Table 2 (structural 

properties and band gap) and Table 3 (elastic and piezoelectric constants), along with available 

experimental values. As one can see, the PBE0 functional gives better agreement with 

experimental data for a=b lattice constant, while the WC and B1WC functionals — for c constant 

and tetragonal ratio c/a. 

The computations of the BTO in the tetragonal phase predict an indirect band gap, which is 

very close for PBE0 and WC functionals, 4.08 eV (cf. 4.1 eV in ref 29 and 4.2 eV in ref 11), both 

larger than the experimental values31 (see Table 2). On the other hand, the band gap, calculated 

by means of the B1WC functional, is very close to experimental data. The same is true for the 

cubic phase of BTO and STO — the B1WC band gap is closer to the experiments than that for 
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the PBE0 functional. Thus, the B1WC functional is well suited for the band gap calculations. 

Note also that the band gap likely depends more on the correlation part of functional rather than 

on the exchange one. Note that the calculations for tetragonal STO phase (SG 140) confirm the 

results of previous41 hybrid calculations on the direct nature of the band gap as lowest in energy 

(unlike the STO cubic phase). The PBE0 calculations show that the band gap increases by 11 

meV in the STO tetragonal phase as compared to the cubic phase (cf. 12 meV in ref 41). 

The elastic tensor for the tetragonal phase of BTO (SG 99) has 6 independent constants, 

whereas direct and converse piezoelectric tensors only 3 independent components. The elastic 

and piezoelectric constants can be theoretically given as sums of purely electronic "clamped-ion" 

and nuclear (atomic) relaxation contributions. The results of the calculations for both the 

electronic contribution (“Clamped”) and the total values (“Total”), including nuclear relaxation, 

are presented separately in Table 3. Almost for all elastic constants (except for C12) the electronic 

contribution is larger than the total one, since the nuclear relaxation contributions for the elastic 

constants are negative. If the atoms are not allowed to relax ("clamped-ion" case), imposing of 

deformation shows more rigid material compared to the opposite case when atoms relax and thus 

the internal stress is reduced. As the result, we obtained larger elastic constants for the electronic 

term. 

From Table 3 it is clearly seen that the origin of the piezoelectricity in BTO arises from the 

nuclear relaxation whereas the electronic "clamped-ion" contribution is rather small. 

The calculated PBE0 bulk modulus for BTO in the tetragonal phase is 113 GPa. Previously 

calculated values (with the same functional) are 117 GPa (ref 11) and 112 GPa (ref 29). For both 

cubic and tetragonal phases we obtained a good agreement with previous theoretical results and 

experimental data for the lattice constants and elastic properties. A rather large discrepancy is 

however observed between calculated and experimental values of the piezoelectric constants. 
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Note, however,  a broad dispersion of relevant experimental data. Therefore, we focus mainly on 

the trends in electromechanical property changes rather than in absolute values. The results of our 

calculations show that the PBE0 functional provides a slightly better description of piezoelectric 

properties, and, further, in tables we present only the results of PBE0 calculations. 

The calculated Mulliken atomic charges for BTO in cubic and tetragonal phases are 

presented in Table 4. Our computed charges coincide with those in ref 29, calculated for the 

cubic phase. These charges indicate a considerable covalent contribution to the Ti-O chemical 

bonds, and small variation in charges of non-equivalent O ions in the tetragonal phase. 

As mentioned above, to model the BSTO solid solution, we used 40 atom supercells. Any of 

the 8 Ba atoms in such supercells could be replaced by Sr atoms. When no Ba atoms are 

substituted, the x=0 chemical composition is called SC0. When only one Ba atom is replaced 

(SC1), the Sr atom is put at the origin of the coordinates, to maximize the residual point-

symmetry. When two Ba atoms are replaced (SC2), the first Sr is placed at the origin and the 

second Sr replaces one of the 7 remaining Ba atoms. By default, we consider the second atom 

with fractional coordinates (0.5,0.5,0.5) in the supercell. We discuss below the effect of 

configurational disorder. 

The results of our calculations for the elastic and piezoelectric properties of the BSTO solid 

solution for x = 0, 0.125 and 0.25 are reported in Table 5, where they are compared with those of 

the BTO tetragonal bulk crystal (with 5 atoms in the unit cell). First of all, we notice that all 

elastic and most of piezoelectric constants of the x=0 case (SC0) coincide with those computed 

for the bulk BTO phase. However, this is not the case for the piezoelectric constants e15=e24 and 

d15=d24, which show a large discrepancy. Unlike these two calculations which are expected to 

provide exactly the same results for a low-temperature stable phase, this is not guaranteed when a 

high-temperature phase is studied at 0 K (as performed in the standard DFT calculations). 
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Indeed, in this case, a mechanical lattice instability occurs (related to presence of the vibrational 

modes with imaginary frequencies in the k-point other than the Γ in the phonon Brillouin zone) 

when the fourth strain component (according to Voigt’s notation) is applied to the lattice, which 

is a shear strain involving lattice angle deformations and a drastic symmetry reduction (from 8 to 

2 operations). This analysis is confirmed by purely electronic "clamped-ion" calculations without 

nuclear relaxation, which provide the same piezoelectric constants both for the unit cell (bulk) 

and the supercell (SC0) calculations. 

Let us now analyze the effect of an increased concentration of Sr-doping on the elastic and 

piezoelectric properties of the BSTO solid solution as a function of concentration x (Table 5). 

The main elastic constants of the system increase as a function of Sr concentration, which makes 

the system more rigid. Interestingly, a clear systematic (almost linear) increase of the 

piezoelectric response is also observed. Indeed, the absolute values of all piezoelectric constants 

increase with the Sr content. An enhancement of the piezoelectric response by 13÷30% is 

documented for the x=0.25 composition. The considerable effect of the substitution of Ba with Sr 

atoms on the electronic polarization properties is also observed in the atomic charges. The 

Mulliken atomic charges of Sr atoms are 1.88 e, compared to 1.80 e for Ba atoms in the 

unperturbed BTO, which corresponds to a more ionic bonding. At the same time, the atomic 

charges of Ba and Ti atoms in the solid solution are practically unchanged. 

We studied the limited Sr concentration range of x=0÷0.25 because, as known from 

experimental data,18,42,43 at room temperature and around x≈0.3 the BSTO solid solution 

undergoes the ferroelectric to paraelectric transition, from the tetragonal to cubic phase. For 

higher Sr concentrations, the solid solution thus exhibits a cubic symmetry without piezoelectric 

properties. 
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When studying the solid solution, one has to take into account the configurational disorder of 

the system. For a given structural model (here, a supercell containing 40 atoms), many 

independent structural configurations could exist for a given chemical composition. For the 

x=0.25 composition, two of the eight Ba atoms are substituted with Sr atoms. The first Ba atom, 

which was replaced by Sr atom, was located at the origin of the coordinates. In Table 6 we report 

selected structural, elastic and piezoelectric features of the 7 possible configurations obtained by 

substituting, one at a time, the other 7 Ba atoms by Sr. Our supercell contains 2 pairs of 

symmetry-related Ba atoms: (0.5,0,0.5)–(0,0.5,0.5) (marked with an asterisk in Table 6) and 

(0.5,0,0)–(0,0.5,0) (marked with two asterisks). If one of them is replaced with a Sr atom, the 

equivalence is lost in both pairs and the symmetry of the system reduces from tetragonal down to 

orthorhombic. For example, when atoms (0,0,0) and (0.5,0.5,0.5) are replaced, the symmetry is 

still tetragonal, which implies that a=b≠c and that there are equivalent elements in the elastic and 

piezoelectric tensors, but when atoms (0,0,0) and (0.5,0,0.5) are replaced, the symmetry becomes 

orthorhombic with a≠b≠c and without equivalence among elastic and piezoelectric constants. 

The results, reported in Table 6, clearly demonstrates that in this case the configurational 

disorder is only marginally affecting the average properties of the solid solution. The elastic 

constants are almost independent of the particular selected configuration with differences among 

configurations less than 4%. Most piezoelectric coefficients also show a little dispersion as the 

function of different atomic configurations. Here it is necessary to mention that the differences of 

the electronic energies for these configurations are so small (<0.09 eV) that no reliable 

conclusion could be drawn about relative configuration stabilities. More detailed analysis based 

on the Gibbs free energies would be necessary which is beyond the scope of the present study. 

Note in conclusion that it was predicted44 for the ordered BSTO structure that it is 

thermodynamically unstable with respect to the heterophase mixture BTO and STO, i.e. spinodal 
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decomposition of the solid solution should occur (ordered solid solutions were discussed in refs 

45 and 46). As a consequence, at relative small concentration of Sr, clusters of STO could arise in 

a predominantly BTO matrix. However, this process could be very slow due to very slow 

diffusion rate of cations in solid solution, especially at room temperature. 

 

Conclusions 

We performed the first theoretical study of the electromechanical/piezoelectric properties of the 

tetragonal (room temperature) Ba(1-x)SrxTiO3 solid solution by means of first-principles 

calculations based on advanced hybrid functionals of the density-functional-theory. The supercell 

model was used for calculation of electromechanical properties of perovskite solid solutions. 

Three compositions (x=0, x=0.125 and x=0.25) have been considered within the range where the 

solid solution is experimentally known to exhibit a ferroelectric behavior. 

The present calculations clearly predict that the BaTiO3 perovskite becomes mechanically 

harder when Ba atoms are progressively substituted with Sr atoms. Interestingly, a significant and 

almost linear enhancement of the piezoelectric properties of BaTiO3 is predicted upon 

substitution of Ba with Sr atoms. Indeed, the e33 direct piezoelectric coefficient is found to 

increase by ~30% for x=0.25. Our calculations revealed that the nuclear relaxation rather than the 

electronic term contributes mainly to the BTO and BSTO piezoelectricity. On the other hand, the 

configurational disorder marginally affects the computed mechanical and piezoelectric properties 

of the BSTO solid solution. The study of other dopants, e.g. Ca, would be of interest. 
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Tables 

 

 

  This study PBE0 Expt 

BTO, SG 221 

a, Å 3.993 3.98 11; 3.99 29 3.996 30 

Eg
*, eV 3.97 4.0 11,29 3.2 31 

C11, GPa 328.5   206 25; 255 32 

C12, GPa 120.5   140 25; 82 32 

C44, GPa 147.7   126 25; 108 32 

B, GPa 189.8 194 11; 189 29 162 11,29; 195 11 

STO, SG 221 

a, Å 3.901 3.91 33 3.905 34 

Eg
**, eV 4.16 (4.47) 3.9 (4.2) 33 3.25 (3.75) 35 

C11, GPa 367.6 370 12 317.6 36 

C12, GPa 113.6 114 12 102.5 36 

C44, GPa 134.2 133 12 123.5 36 

B, GPa 198.2 199 12; 195 33 179 37 

* The experimental band gap energy31 for BTO corresponds to temperature around 130°C, i.e. 

above the phase transition temperature. 

** Indirect (direct) band gap. 

PBE0 — earlier calculated data. 

 

Table 1. Lattice Constant a, Band Gap Eg, Elastic Constants Cij and Bulk Modulus B for the 

Cubic Structures of BTO and STO. 
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  PBE0 WC B1WC Expt 

Lattice constants, Å 

a=b 3.971 3.950 3.962 3.992 30 

c 4.131 4.032 4.050 4.036 30 

c/a 1.040 1.021 1.022 1.011 

Band gap, eV 

Eg
* 4.08 4.07 3.26 3.38 (3.27) 31 

* Experimental values31 at room temperature for light polarized parallel (and perpendicular) to the 

ferroelectric c axis. 

Data are calculated using PBE0, Wu-Cohen (WC) and B1WC functionals. 

 

Table 2. Structural Properties and Band Gap of BTO for Tetragonal Phase (SG 99). 
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  PBE0 WC B1WC 
Expt* 

  Total Clamped Total Clamped Total Clamped 

Elastic constants, GPa 

C11=C22 302.7 314.1 337.5 346.1 325.1 333.4 222; 275 

C12 120.8 118.1 127.8 126.9 124.4 122.8 134; 179 

C13=C23 88.4 115.0 98.0 123.2 96.1 118.7 111; 152 

C33 118.6 309.3 166.4 346.9 159.8 333.8 151; 165 

C44=C55 89.8 129.3 116.6 142.1 110.4 135.5 61.1; 54.4 

C66 141.2 141.2 149.5 149.5 142.8 142.8 134; 113 

B 112.6 181.5 143.3 198.4 138.7 191.2 134 11; 141 11 

Direct piezoelectric constants, C/m2 

e15=e24 10.116 0.199 9.205 0.148 9.354 0.152 34.2 38 

e31=e32 0.686 0.274 0.804 0.230 0.763 0.233 -0.7 38 

e33 3.293 -0.471 4.357 -0.399 4.213 -0.403 6.7 38 

Converse piezoelectric constants, pC/N=pm/V 

d15=d24 112.674 1.536 78.935 1.041 84.699 1.120 392 39; 564 40 

d31=d32 -6.062 1.296 -5.038 0.964 -5.296 1.013 -34.5 39; -33.4 40 

d33 36.811 -2.485 32.126 -1.835 32.733 -1.928 85.6 39; 90 40 

* Ref 32 and references there. 

Data are calculated using PBE0, Wu-Cohen (WC) and B1WC functionals. Purely electronic 

(“Clamped”) contribution and total values of constants (“Total”), including nuclear relaxation 

contribution, are presented. 

 

Table 3. Bulk Modulus (B), Elastic and Piezoelectric Constants of BTO for Tetragonal Phase 

(SG 99). 
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  Ba Ti O1 O2 O3 

SG 221 1.797 2.392 -1.396 -1.396 -1.396 

SG 99 1.801 2.367 -1.361 -1.403 -1.403 

 

Table 4. Mulliken Atomic Charge (e) for Cubic (SG 221) and Tetragonal (SG 99) BTO Phases. 

 

  



23 
 

 

  Bulk SC0 SC1 SC2 

Elastic constants, GPa 

C11=C22 302.7 302.6 307.3 311.5 

C12 120.8 120.8 120.4 120.2 

C13=C23 88.4 88.5 89.3 90.5 

C33 118.6 118.3 123.5 130.3 

C44=C55 89.8 89.8 92.6 95.8 

C66 141.2 141.2 133.4 137.3 

B 112.6 112.5 116.1 120.7 

Direct piezoelectric constants, C/m2 

e15=e24 10.116 -2.101 -2.397 -2.717 

e31=e32 0.686 0.679 0.740 0.839 

e33 3.293 3.294 3.719 4.270 

Converse piezoelectric constants, pC/N=pm/V 

d15=d24 112.674 -23.381 -25.895 -28.350 

d31=d32 -6.062 -6.124 -6.522 -6.947 

d33 36.811 36.987 39.546 42.404 

“Bulk” — perfect crystal, SC0 — without substitution of atoms, SC1 — 1 Ba atom (at the 

coordinate origin) is replaced with Sr atom, SC2 — 2 Ba atoms (at the coordinate origin and with 

fractional coordinates (0.5,0.5,0.5)) are replaced with 2 Sr atoms. B — bulk modulus. 

 

Table 5. Elastic and Piezoelectric Constants, Calculated for Perfect Bulk Crystal BTO (SG 99) 

and 3 Supercells. 
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  SC2 (replacement of 2 Ba atoms: with coordinates (0,0,0) and another one) 

  xyz xy0 0yz* x0z* 0y0** x00** 00z 

Lattice constants, Å 

a 7.909 7.913 7.907 7.910 7.9080 7.9079 7.910 

b =a =a 7.910 7.907 7.9079 7.9080 =a 

c 8.136 8.128 8.142 8.142 8.142 8.142 8.132 

Elastic constants, GPa 

C11 311.5 312.7 313.326 311.932 312.079 313.315 313.0 

C12 120.2 121.7 119.068 119.063 119.794 119.785 119.7 

C13 90.5 89.4 89.334 91.345 90.326 90.776 90.2 

C22 =C11 =C11 311.901 313.295 313.319 312.006 =C11 

C23 =C13 =C13 91.266 89.299 90.876 90.220 =C13 

C33 130.3 134.6 130.935 130.956 129.911 129.679 135.6 

Direct piezoelectric constants, C/m2 

e31 0.839 0.802 0.811 0.836 0.793 0.759 0.817 

e32 =e31 =e31 0.838 0.812 0.755 0.798 =e31 

e33 4.270 4.190 4.206 4.205 4.124 4.131 4.199 

Converse piezoelectric constants, pC/N=pm/V 

d31 -6.947 -6.278 -6.599 -6.943 -6.731 -7.009 -6.313 

d32 =d31 =d31 -6.923 -6.580 -7.002 -6.734 =d31 

d33 42.404 39.469 41.451 41.439 41.323 41.444 39.356 

Second Ba atoms, which are replaced with Sr atoms, are specified in the title of the columns (the 

first is atom at the coordinate origin). Designations of atoms: xyz — atom with fractional 

coordinates (0.5,0.5,0.5), xy0 — with coordinates (0.5,0.5,0) etc. 

 

Table 6. Lattice Constants and Selected Elastic and Piezoelectric Constants of the BSTO Solid 

Solution for the x=0.25 Chemical Composition, as Calculated for All Possible Atomic 

Configurations. 
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