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ABSTRACT  
 
Two types of ZnO ceramics were fabricated and characterized by XRD, SEM methods. The radioluminescence spectra were 

measured within the 300–550 K range. The defect luminescence band peaking at ~2.35 eV is the dominant one in 

radioluminescence spectra in both of the fabricated ceramics. The thermostimulated luminescence (TSL) glow-curves were 

measured after X-ray irradiation at 300 K. It was concluded that the complex overlapping peak within the 320–450 K 

temperature range consists of two components (~360–375 K and 400–420 K). The ratio of component intensities differs in 

both ceramics. The positions of high temperature TSL components (480–520 K) also differ in both samples; therefore not only 

sintering conditions but also the properties of the initial powder are very important for characteristics of TSL. A linear 

dependence of peak intensity on irradiation dose was observed up to ~3 kGy for ceramic 1 and up to 9 kGy for ceramic 2.   
 
 
 

 
1. Introduction 

 
In recent years the ZnO attracted many researchers due to its possible 

applications as transparent conductive electrodes [1], particle detectors [2], 

fast scintillators [3], sensors [4] and others. 
 

Due to recent advances in nanotechnology it is possible to obtain ZnO in 

nanocrystal form as well as ZnO coatings or thin films resulting in the large 

amount of new studies and new applications for this material. The most 

comprehensive review article [5] summarizes information of mechanical, 

chemical, electrical, and optical properties of ZnO. 

 

The luminescence of two types is usually observed – the near-band or 

exciton luminescence and defects luminescence. The exciton lumi-nescence is 

in near-UV range (375 nm) and is very fast: for example, in ZnO single 

crystal free exciton luminescence lifetime at room tempera-ture is 440 ps and 

can be used for fast scintillators [3,5]. The defect luminescence is in visible 

range: 480–650 nm and exhibits non-exponential decay up to hundreds of 

microseconds [6]. The detailed mechanism of 2.3 eV luminescence is not still 

proven despite numerous studies. The peak position of defect luminescence 

band, its intensity and decay kinetics are very sensitive to the type and 

morphology of ZnO as well as to the synthesis method used, annealing 

conditions, doping and other parameters. Unfortunately, up to now the defect 

pairs  

 

 
 
 

 
responsible for the luminescence are not completely identified. The intrinsic 

defects participating in luminescence process are zinc or oxygen vacancies as 

well as zinc and oxygen interstitials. The concen-tration of one or the others 

depends on stoichiometry, surface states and doping. This explains the fact 

that the defect luminescence band characteristics are different for single 

crystal, nanocrystals, thin films and ceramics. Green luminescence with peak 

position at 2.45 eV can be described with model consisting of the oxygen 

vacancy (donor) and zinc vacancy (acceptor) as a recombination centers. The 

yellow (2.2 eV) and red (1.75 eV) luminescence bands are usually associated 

with impurities. The red luminescence is observed at high temperatures when 

the green luminescence is quenched [5]; however, the model of red 

luminescence centers is not known yet. 

 
It is considered that the ZnO is radiation resistant material [7]. However, 

the intensive thermostimulated luminescence (TSL) is ob-served after 

irradiation at T < 50 K [6,8]. The TSL after irradiation at T  
> 300 K was observed in several papers: ZnO nanoparticles [9,10], nanorods 

[11,12] and ceramics [13]. The analysis of published results shows significant 

difference in peak positions and glow curve inten-sities in different ZnO 

samples. TSL peak position depends on ceramic sintering temperature. The 

irradiation with X-rays results in recharging of defects present before 

irradiation – not creation of new ones. The origin of TSL is thermal release of 

charge carriers from defects. 
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For dosimetric properties it is important to obtain material with glow 

peaks at high temperature (excludes the fading effect at room temperature), 

good TSL reproducibility as well as luminescence spectrum should not 

coincide or be close to spectrum of heater thermal radiation (far from IR 

spectral region). The identification of defects responsible for TSL is very 

important; however, previous publications do not include the strong evidence 

of the defects involved in TSL as well as any information on luminescence 

spectral distribution within glow peaks at T > 300 K. ZnO ceramic has only 

one crystallographic mod-ification and it is easy to prepare as compared with 

commercial TLD500 dosimeter from α-Al2O3:C single crystal. 

 
The main purpose of this research is to study radioluminescence and TSL 

(including the spectral distribution) in ZnO ceramics fabri-cated from 

nanopowders. The use of the same TSL equipment and X-ray irradiation 

doses allows us to compare the TSL in two different ceramics. The evaluation 

of the dosimetric characteristics of ZnO ceramics was performed after 

irradiation with X-rays at room tem-perature. 

 

 
2. Experimental procedure 

 
2.1. Synthesis of nanopowders and ceramics 

 
Nanopowders were obtained by two different methods. First method is 

pulsed electron beam evaporation from metallic Zn target in oxygen 

atmosphere (32–35 Pа). The method is described in detail in [14,15]. 

Agglomerated nanopowder of ZnO–Zn in hexagonal phase with a specific 

surface up to 36 m
2
/g was obtained. From this powder the ceramic was 

sintered (sample 1): nanopowder was pressed in tablets under 800 MPa 

pressure and then sintered for 60 min at 1200 °C. 

 
The SEM images of initial powder and sample 1 fabricated from it are 

shown in Fig. 1a and b respectively. The powder is composed from 30 to 50 

nm ZnO nanoparticles. The grain sizes in ceramic are 0.8– 4.0 µm; density is 

3.98 g/cm
3
 (or 71% of ZnO crystal density).  

Second method used for the synthesis of ZnO nanopowder is the solar 

physical vapor deposition (SPVD) [16]. The powder was prepared in the 

Heliotron reactor (PROMES CNRS, France). The SEM image of ZnO 

nanoparticles is shown in Fig. 2a. The particles have tetrapod form; only 

hexagonal phase was detected by XRD. From this nano-powder the ceramic 

sample (sample 2) was sintered in a similar fashion to sample 1: powder 

weight 0.2 g; tablet prepared under 800 MPa pressure; diameter: 10 mm; 

sintering temperature: 1100 °C, sintering time: 30 min; sintering atmosphere: 

air. The SEM image of prepared sample 2 is shown in Fig. 2b. 

 

The grain sizes in sample 2 are 1–4 µm and it contains fewer pores  

 

 

than sample 1.  
From the SEM images one can conclude that the physical processes 

during the sintering of the sample 1 and sample 2 are different; however, this 

might be due to slight differences in starting nanopow-ders. 

 

The energy-dispersive X-ray spectroscopy (EDX) measurements show 

that for e-beam prepared powders the ratio of oxygen concentra-tion to Zn 

concentration is 18.43/81.57 (wt%), whereas for SPVD powder the ratio is 

20.22/79.78 (wt%). Stoichiometric ZnO exhibits the ratio 19.99/80.3 wt%; 

therefore, the e-beam powder has excess amount of Zn but SPVD powder – 

excess amount of oxygen. The EDX experiments not showed the presence of 

impurities, although the presence of residual impurities is not excluded. The 

luminescence bands due to impurities were not detected. 

 

 

 

 

 

2.2. Radioluminescence and TSL measurements 

 

The luminescence was measured under X-ray irradiation. X-ray tube (40 

kV, 10 mA, W target) with dose rate ~0.3 kGy/min was used for 

radioluminescence excitation as well as for TSL experiments. The spectra 

were detected using the Andor Shamrock B-303i spectrometer with a CCD 

camera Andor DU-401A-BV. The 150 l/mm diffraction grating with the blaze 

wavelength 800 nm was used. Optical filters were not used on this system 

during the measurements. The correction for spectral sensitivity was not 

performed. 
 

The TSL measurements were performed from room temperature up to 700 

K with heating rate 2 K/s in vacuum. The thermal irradiation at temperatures 

above 550 K was taken into consideration and experi-mentally subtracted 

from TSL glow curves. Two channels were used for TSL registration. First 

one (CCD camera, same as for radiolumines-cence measurements) allows to 

obtain the spectral distribution of TSL peaks and register data in 3d space (I-

T-λ). However, the photosensi-tivity of this system is low in comparison to 

photomultiplier tube (PMT); therefore, for the low intensity TSL signal 

registration Hamamatsu H8259-2 PMT was used. To lower the infrared 

emission from the heating element, 660 nm shortpass filter was used before 

photodetector. The both channels were registering TSL signal simulta-

neously. 

 

SEM and EDX analysis was conducted on SEM electron microscope 

(Lyra, Tescan). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. SEM images of ZnO nanopowder prepared by e-beam evaporation (a) and sample 1 fabricated from this nanopowder (b). 

 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. SEM images of nanopowder prepared by SPVD method (a) and sample 2 fabricated from SPVD nanopowder (b). 

 
3. Results and discussion 

 
3.1. Radioluminescence spectra 

 
3.1.1. Sample 1  

Radioluminescence was used for characterization of defect states of 

studied samples. The radioluminescence spectra at room temperature and at 

450 K of sample 1 are shown in Fig. 3. Two groups of luminescence bands – 

the 375 nm excitonic luminescence (not shown) and 530 nm defect 

luminescence were observed. The defects lumines-cence band shape shows 

that there is contribution from overlapping peaks; therefore, the defect 

luminescence band was decomposed using two Gaussian peaks at 2.346 eV 

(528 nm) and 2.09 eV (593 nm). The intensity ratio of these bands is ~3.8 and 

remained constant for temperatures in 300–500 K range. We estimated the 

thermal quench-ing of both components and found that the thermal activation 

energy is 0.3 eV – same for both bands (Fig. 4). Additional luminescence 

band in lower energy side of radioluminescence spectra was not detected up 

to 550 K. 

 
The intensity of X-Ray induced luminescence increases during irradiation 

and saturates after 60 min. This indicates that the lumines-cence occurs due to 

recharging of limited number of defects. In addition, it means that the charge 

carriers are trapped at defects and TSL is possible. 

 
The normalized spectra measured at the start of the irradiation and after 

60 min coincide; therefore, the same defects are responsible for luminescence 

at initial stage of irradiation and after saturation and the recharging of already 

existing defects in sample 1 takes place.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Arrhenius plot for 2.0 and 2.3 eV bands in sample 1.  
 
3.1.2. Sample 2  

The radioluminescence spectra for sample 2 were measured in the same 

temperature region: 300–550 K. Fig. 5a. shows the radiolumi-nescence 

spectrum at room temperature. Spectra decomposition gives two Gaussian 

peaks at ~2.12 eV and ~2.35 eV at 300 K. The peak positions are close to that 

for sample 1, however, the ratio of amplitudes is ~1.85 at 300 K, considerably 

different from that for sample 1 (~3.8). This could mean that in sample 2 the 

contribution of 2.12 eV band in luminescence spectra is higher than in sample 

1. Inset in Fig. 5a shows the growth of 2.35 eV peak with irradiation time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Radioluminescence spectra at 300 K (a) and at 450 K (b) in sample 1. 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Radioluminescence spectra at 300 K (a) and at 450 K (b) in sample 2. Inset shows the luminescence intensity dependence on irradiation time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Arrhenius plot of 2.3 eV band in sample 2.  

 
Intensity increase is non-linear and the saturation occurs after 10 min. 

Additional short wave bands were not detected in radioluminescence spectra. 

 
The activation energy for green luminescence (2.35 eV) is ~0.32 eV (Fig. 

6). For both of the samples the activation energy is approximately the same, 

which indicates that the luminescence centers are the same in both samples. 

Slight difference in peak position and activation energy is due to different 

environment of luminescence centers. 

 
3.2. TSL 

 
3.2.1. Sample 1  

After X-ray irradiation at 300 K, several peaks were observed at 

temperatures 370 K, 420 K and 480 K. TSL glow curves for sample 1  

 
are shown in Fig. 7. The TSL was measured after different irradiation times. 

Inset shows the peak intensity dependence on acquired radiation dose. The 

TSL intensity growth is close to linear for irradiation times up to 10 min (TSL 

signal is proportional to irradiation dose up to ~3 kGy). The intensity of TSL 

was sufficient for measuring of spectral distribution of luminescence. It is 

important to note that the TSL spectrum does not coincide with 

radioluminescence spectra at the same temperatures. Long-wave bands at 2.0 

eV and 1.75 eV dominate in TSL spectra whereas the 2.35 eV peak (dominant 

in radioluminescence) is very weak. Low energy luminescence bands were 

determined in TSL spectra of ZnO ceramics earlier [8], but for low 

temperature TSL peaks. 

 
3.2.2. Sample 2  

TSL intensity in sample 2 (Fig. 8) is much lower than that in sample  
1. Three glow peaks at 370 K, 400 K and 490–520 K were detected. Peak 

positions are close to those observed for sample 1 suggesting that the traps 

could be similar; however the trap depth is not the same. The peak intensity 

ratio is slightly dependent on irradiation dose. Nevertheless, under irradiation 

up to 30 min (9 kGy) the linear dependence of peak intensity on irradiation 

dose is observed (insert in Fig. 8). We were unable to record the spectral 

distribution in TSL maxima for this sample due to the intensity of TSL being 

too low. 
 

The analysis of results presented in literature [9–13] shows that the 

position and intensity of TSL peaks vary considerably. Mainly the 

nanoparticles were under investigation in these studies. Two groups of peaks 

were reported – 370–480 K and 470–590 K. In some studies the high 

temperature peak at 620–650 K was observed. TSL and integrated TSL dose 

dependence was studied for ceramics in [13] and three peaks (450 K, 560 K 

and 630 K) were detected. After β-particle irradiation, the linear dose 

dependence in dose range 25–800 Gy with good 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. TSL and TSL intensity dependence on irradiation time (inset) for ceramic 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. TSL and TSL intensity dependence on irradiation time (inset) for sample 2. 

 
 



 
reproducibility was observed, thus one can conclude that the trap depth in 

different ZnO materials depends on method of sample preparation. In present 

study the same experimental equipment was used for TSL measurements in 

two samples fabricated from different types of nanopowders; however, the 

peak positions vary only slightly. The peak within 320–450 K range consists 

of two (~360–375 K and 400–420 K) but the ratio of peak intensities differs 

in both samples. The peak in temperature region 480–520 K was detected in 

both samples, but peak position is not the same. It should be noted that not 

only sintering conditions but also the properties of the initial powder used for 

ceramic sintering are very important. Both sintering process and raw materials 

(nanopowders) will determine defect and trap types, their concentra-tion and, 

consequently, TSL characteristics. 

 
The open question is the nature of the recombination centers in ZnO. It is 

widely accepted that the green luminescence is due to oxygen vacancies [6 

and references therein]. However, the dominant recombi-nation centers in 

TSL processes are those responsible for 2.0 eV and 1.7 eV luminescence, for 

example, oxygen interstices (Oi), LiZn [5]. 

 
4. Conclusion 

 
Two ZnO samples were fabricated from ZnO nanopowders synthe-sized 

using two different methods. The radioluminescence spectra, TSL glow 

curves and TSL spectra were studied. The radioluminescence spectra consists 

of two peaks with peak positions 2.10–2.16 eV (yellow component) and 

2.33–2.35 eV (green component). The minor differ-ences in peak positions 

can be described with different crystal fields of luminescence centers (grain 

sizes, pores, defects or local stress on grain boundaries). In addition, the ratios 

of green to yellow luminescence bands intensities are considerably different: 

~3.8 for sample 1 and ~1.4 for sample 2. The thermal activation energy is 

~0.3 eV for 2.35 eV band in both ceramics. We do not observe the changes in 

radioluminescence spectra after long irradiation; however, the peak intensity 

increases and saturation occurs after 60 min. The main TSL peak is in 

temperature region of 410 K in sample 1 and 380 K in sample 2. Relatively 

weak TSL peak was observed in 480–520 K temperature region. 

Consequently, trap depth are different and depend on fabrication method of 

ceramics and properties of initial powders. The linearity of TSL intensity on 

irradiation dose was observed in 3–9 kGy dose region; however, the linearity 

range for dose is different in studied samples. 
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