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1 Introduction 
The generation of curves and surfaces by recursive subdivision is a well known technique 
in Approximation Theory and CAGD (Computer Aided Geometric Design). Our purpose 
is not to provide a review of such techniques but rather to provide an introduction to the 
theory of uniform subdivision which has been developed in recent years. In particular, we 
will concentrate attention on some of the practical tools which can be used in the study 
of continuity and differentiability of the limits of bivariate, uniform, binary subdivision 
schemes. 

The work presented here is but a small part of uniform subdivision theory. A much 
more extensive review of uniform subdivision is given in Dyn[3], where a full bibliography 
of the subject can be found, and the paper by Dahmen, Cavaretta and Micchelli[l] is a 
major contribution to the subject. The shorter review article of Caveratta and Micchelli[2] 
provides another introduction to this area. 

Ideally, an introduction to uniform subdivision would begin with a study of the uni-
variate case but, for brevity, we consider only the theory for the bivariate case. The 
multivariate case is then an immediate obvious generalization and the univariate case is 
but a simplification. The discussion is also restricted to the case of binary (diadic) sub-
division schemes, although the generalization to p-adic schemes is immediately apparent. 

Uniform subdivision schemes generate sets of ‘control points’ according to some fixed 
subdivision rule and, in the bivariate case, we are concerned with whether the points 
become dense on some continous, and possibly differentiable, limit surface. This concern 
will be resolved in a very simple way, namely, that for a continuously differentiable limit, 
divided differences will be converging to a continuous limit, and, for a continuous limit, 
differences will be converging to zero. After introducing some preliminary notation and 
theory in Section 2, the theory of differentiability is considered in Section 3 and the 
analysis for continuous limits is considered in Section 4. The theory is illustrated for the 
case of box splines in Section 3 and for the case of an interpolatory ‘butterfly’ subdivision 
scheme in Section 5. 

 

 

 



2 Preliminaries 

2.1 Binary subdivision scheme 
A bivariate, uniform, ‘binary subdivision scheme’ generates sets of ‘control points’ 

 { } ,...,2,1,0,::f 2 =ΖΖ∈∈= kRIf mkk αα    (2.1) 

according to the rule 
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where 
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The set 

 { }2::a ΖΖRIa ∈∈= αα     (2.5) 

is called the ‘mask’ of the scheme, where the ‘support’ 

 supp(a) := { }0:2 ≠∈ ααα ΖΖ     (2.6) 

is assumed finite. 

 As a simple example, consider the mask with 

 supp(a) = {-l,0,l}2.    (2.7) 

Then the binary subdivision scheme is described, for (i,j) 2ZZ∈ , by 
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The subdivision scheme (2.2) defines a bounded linear operator Sa on ( )2ΖΖ∞l , namely,   
for ( ) ( )2

a
2 f,f ΖΖSZZ ∞∞ ∈∈ ll  is defined by 
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The norm of this operator is 
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The subdivision scheme can now be written as 
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Figure 1: The (1,1) triangulation 
 
where 

 { } .::f 200 ΖΖ∈∈= αα
mRIf     (2.12) 

denotes the set of given initial control points. Finally, we associate with each subdivision  
operator Sa the bivariate Laurent polynomial 
 ( ) ( ) .,,:,,:,: 2121

2
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ΖΖ∈

α

α

α
α α    (2.13) 

For example, the subdivision scheme (2.8) has the Laurent polynomial 
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This is called the 'generating polynomial' for the subdivision scheme and provides an 
extremely useful tool for the analysis. 
 
2.2 The control polygon 

The control points  at level k, are associated with the diadic rectangular grid ,mk RIf ∈α

'domain points' 

  ( ) 22 ),(,2,22 ZZjiRIji kkk ∈=∈= −−− αα    (2.15) 

Hence the control points  at level k+1 are associated with the domain points ,γ,1
2 Ef k ∈+

+γα

                                          (2.16) Ε∈ΖΖ∈+ −−− γαγα ,,22 21kk

given on the finer diadic grid obtained by binary subdivision. We now consider a particular 

definition of a 'control polygon' whose vertices are the control points  ., 2ΖΖ∈αα
kf

Suppose the grid at level k is triangulated by subdivision along the (1,1) direction, 
giving triangles and ,  with vertices 1Tα

2
αT ,2ZZ∈α ( ) ( ){ }1,1,0,1,2 ++− αααk  and 

( ) ( ){ 1,0,1,1,2 ++− αααk }respectively, see Figure 1. The piecewise linear interpolant 
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on the (1,1) triangulation is now defined by 
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Where 
     (2.18) .2:,2: jtis k

j
k

i −=−= θθ
Thus 
 [ ]( ) ,,2f 2ZZfL kkk

k ∈=− αα α    (2.19) 
and we define  as the control polygon of f]f[ k

kL k with respect to the (1,1) triangulation. 
The control polygon with respect to the (—1,1) triangulation can be similarly defined. 

More generally, consider a rectilinear partition of the diadic points , along 2,2 ZZk ∈− αα
skew directions, which is then triangulated along either of the diagonals. A control polygon 
can then be defined with respect to this skew triangulation. Finally, a control polygon can 
be defined with respect to any rectilinear partition as the piecewise bilinear interpolant 
on that partition. The choice of the definition of an appropriate control polygon is usually 
determined a priori in the construction of a particular subdivision scheme. 
 

2.3 The fundamental solution and convergence 

Let 
      (2.20) 0: ϕϕ k

a
k S=

denote the subdivision scheme applied to the 'cardinal set' of initial scalar data 
 ( ){ }2

0,0,
00 ::: ZZa ∈== αδϕϕ α .    (2.21) 

Thus 
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We then have: 
Definition 1 (Uniform convergence.) The subdivision scheme is said to be uniformly 
convergent (with respect to the diadic point parameterization (2.15)) if there exists ∈ϕ  
( )2RIC  such that 

 ( ) .02suplim
2

=− −

∈∞→
αϕϕα

α

kk

ZZk
    (2.23) 

Equivalently, in terms of the behaviour of the control polygon sequence, 
 [ ] .0lim =−

∞∞→
ϕϕ k

kk
L     (2.24) 

If there exists such a continuous function ϕ , we call it the ‘fundamental solution’ of the 
subdivision scheme and write 
      (2.25) .0

a ϕϕ ∞= S
This function has the important property of having 'local support', since it can be shown 
that 
 ( ) ( ) ( ) ( )[ ]apsup}0,:,{:psup 2 ⊂≠∈= tsRIts ϕϕ ,   (2.26) 
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where [supp(a)] denotes the convex hull in 2RI  of supp(a) 2ZZ⊂ . In fact, 

 [ ]( ) [ ]( ) ( )[ ]apsupLpsupLpsup 1
1kk ⊂⊂ +
+

kk ϕϕ .   (2.27) 

The limit for bounded initial data f° can now be defined in terms of translates of the 
fundamental solution as 

 ( ) ( )
( )
∑
∈

−−=
2,

0
, ,:,

ZZji
ji jtisftsf ϕ .    (2.28) 

 The fundamental solution can be characterized in the following way: Observe that 

 ( ) ( )( ) ( )( ) ( )( )tsStsStsSts 2,2a2,2,, a
1

a
0

a
∞∞∞ === ϕϕϕ ,    (2.29) 

where it has been observed that, for cardinal initial data, 

 .     (2.30) a0
a

1 == ϕϕ S

Thus, from (2.28), 

 ( ) ( )
( )
∑
∈

−−=
2,

, 2,2:,
ZZji

ji jtisats ϕϕ     (2.31) 

This is called the 'functional equation' of the subdivision scheme and plays an important 
role in the study of uniform subdivision, see [1] and [3], although we will not pursue its 
study here. 
 A simple consequence of the definition of the binary subdivision scheme as in (2.3) is: 

Lemma 2 A necessary condition for uniform convergence is that 

 Ea
ZZ

∈=∑
∈

γ,1
2

2-γ
β

β      (2.32) 

This condition can be characterized in terms of the generating polynomial as 

 a(l,l) = 4, a(-l,-l) = a(l,-l) = a(-l,l) = 0.  (2.33) 

and implies that the subdivision scheme is invariant under affine transformations of the 
initial data in mRI . 
 
2.4 Examples 
We conclude this preliminary section by considering two simple examples of convergent 
binary subdivision schemes, the first of which will be used as a building block for the 
theory of Sections 3 and 4. 
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2..1 Piecewise linear scheme 
Consider the scheme (2.8) with 

a0,0 = 1, a-1,1 = a 1,-1 = 0, and a 1,0 = a -1,0 = a 0,1 = a 0,-1 = a 1,1 = a -1,-1 = 2
1 . (2.34) 

This scheme is symmetric with respect to the (1,1) triangulation and the limit of the 
scheme is the initial control polygon with respect to the (1,1) triangulation, since 
 L k + 1[fk + 1] = L k[fk] = L 0[f°].   (2.35) 
The scheme will be required in the later analysis and hence we distinguish its generating 
polynomial as 

 )(1:)( 1
2

1
121

1
22

1
112

1 −−−− ++++++= zzzzzzzzzl    (2.36) 

 )1)(1)(1( 21
1

2
1

12
1 zzzz +++= −− .    (2.37) 

The fundamental solution ϕ  for this case is the well known Courant hat function, namely 
the piecewise linear interpolant on the (1,1) triangulation having the value 1 at (0,0) and 
zero at all the other vertices of 2ZZ . 
 One can similarly define a piecewise linear binary subdivision scheme with respect to 
the (-1,1) triangulation which we leave as an exercise for the reader. 
 
2..2 Piecewise bilinear scheme 
Consider the scheme (2.8) with 

a0,0 = 1, a 1,0 = a -1,0 = a 0,1 = a 0,-1 = 2
1 , and a 1,1 = a -1,1 = a 1,-1 = a -1,-1 = 4

1 . (2.38) 

This scheme is symmetric with respect to the rectangular diadic grid and it is easily seen 
that the limit of the scheme is the initial bilinear control polygon with respect to the 
rectilinear partition of 2ZZ . Thus the scheme has a tensor product structure which is 
reflected in its generating polynomial factorization 

 ( ) ⎟
⎠
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⎜
⎝
⎛ ++⎟
⎠
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⎜
⎝
⎛ ++= −−

22
11

22
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12
11

12
1 11: zzzzza    (2.39) 

Here, each factor represents the generating polynomial of a univariate (piecewise linear) 
binary subdivision scheme and further factorization gives 

 ( ) ( )( )( )( 2
1

21
1

14
1 1111: zzzzza ++++= −− )     (2.40) 

(A significance of a factorization of the generating polynomial will become apparent in 
Subsection 3.2.) 
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3 Differentiable limits and Box splines 

3.1 Differentiability 
Given the set of control points fk at level k, l et 
    (3.1) }::{:f 2kk

γ
k

γγ ZZfffk ∈−=∆=∆ + αααα

define the set of 'differences' and 
    (3.2) }:2:{:f 2k

γ
k

γγ ZZffDD kk ∈∆== ααα

define the set of 'divided differences' along the direction ( ) ( 0,0\nm,γ 2ZZ∈= ) . Also, let 

 tnsm ∂∂+∂∂=∂ //:γ     (3.3) 

define the derivative operator along the direction 7 with respect to different) able func-
tions of (s,t). We now consider the divided difference sequence  and have the ∞

=0γ }{ k
kD ϕ

following: 

Theorem 3 (Differentiability.) Suppose there exists, ( )2RIC∈g , with supp ( )]a[supp⊂(g) , 
such that 
 .0)(2suplim -γ

2
=−

∈∞→
αϕα

α

kk

ZZk
S g     (3.4) 

Thus the divided differences of the binary subdivision scheme S&, with cardinal initial 
data, converge uniformly to a continuous, compactly supported function  (see Definition g
1). Then the subdivision scheme Sa is uniformly convergent with fundamental solution 
 ],[γ gI=ϕ      (3.5) 

where 

     (3.6) ∫ ∞−
+=

0

γ γ)),((:),]([ θθ dtstsI gg

defines the indefinite integral of g  along the direction γ . Thus 

 g=∂ ϕγ .     (3.7) 

Proof. Consider, in particular, G∈γ  := {(1,0), (0,1), (1,1)} and let  denote the ][ k
kL ϕ

piecewise linear interpolant of  with respect to the (1,1) triangulation, see (2.17). We kϕ
will show that  converges uniformly to . Since  is a continuous, piece-][{ κϕkL ][γ gI ][{ κϕkL
wise linear function, it can be written as the indefinite integral of its piecewise constant 
derivative along the 7 direction, that is 
 .    (3.8) ]][[][ γγ

κκ ϕϕ kk LIL ∂=

Also, observe that for all bounded, compactly supported functions f (with supp(f) ⊂  
[supp(a)]) 

 ∞∞≤ fCfI ][γ ,     (3.9) 
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where C is a constant dependent only on the support. We then have 
 ∞∞ −∂=−  ][]][[ ][][ γγγ gg ILLIL k
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k
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 ][max γγ gk
kl
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G
DLCDC ϕϕµµ

.   (3.10) 

Here, the first term on the the right hand side of the last inequality follows from the 
definition of Lk. For example, with γ  = (1,0), (2.17) gives 
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ϕϕ

 (3.11) 

and, by symmetry on the (1,1) triangulation, similar relations hold for  = (0,1) and γ
γ  = (1,1). Both terms on the right hand side of the last inequality of (3.10) tend to zero 
as , by the hypothesis (3.4). This completes the proof for the particular choice of ∞→k

G∈γ  and for general  the above proof can be generalized by defining L)0,0(\γ 2ZZ∈ k 

with respect to a skew triangulation. ⁭ 

3.2 Divided difference schemes and Box splines 

The previous theorem indicates that differentiability of the limits of uniform subdivision 
schemes is related to the behaviour of their divided differences. We now consider a 
special case where the divided differences themselves satisfy binary subdivision schemes. 
An illustration of this case for box spline subdivision schemes is then given. 

Proposition 4 (Difference and divided difference schemes.) Suppose that there exist 
Laurent polynomials b(z) and a(z) :=2b(z) such that 

 )()1()()1()( γ
2
1γ zazzbzza ∧−− +=+= ,   (3.12) 

where .  Then )0,0(\γ 2ZZ∈

 ,   (3.13) kkk
b

k DSDS ff and ff γa
1

γγ
1

γ ∧=∆=∆ ++

that is, the differences and divided differences satisfy binary subdivision schemes with 

generating polynomials b(z) and (z) respectively. ∧a

Proof. From (3.12), . Hence, from (2.2), γ++= ααα bba
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2

2-2-γ
11

γ
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βαβα∑
∈

++ −=  

 ).( γ2-
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ffb ββ
β

βα −= +
∈
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This is the subdivision scheme for the differences and multiplying both sides by 2-k-1 

gives the divided difference scheme. ⁭ 

Remark. In the case of a univariate uniform subdivision scheme, the existence of a dif-
ference and a divided difference scheme follows from the univariate form of Lemma 2. In 
this case a(-1) = 0, which implies that (1 + z-1) is a factor of the univariate polynomial 
a(z). In the bivariate case, however, factorization of the generating polynomial does not 
necessarily follow from (2.33). 

The function  of Theorem 3 can be considered as the limit of the divided difference g
scheme applied to the initial data . Thus 0

γϕD

    (3.15) γ),),((),(),( +−+−=
∧∧ tststs ϕϕg

cf. (2.28), where ∧ϕ  is the fundamental solution of the divided difference scheme. Thus 
application of (3.6) of Theorem 3 gives: 

Corollary 5 Suppose that there exists a uniformly convergent divided difference scheme, 
with generating polynomial a(z) satisfying (3.12) and with fundamental solution ∈∧ϕ  

)( RIC . Then the basic scheme Sa is uniformly convergent with fundamental solution 

 .    (3.16) ∫ +=
∧1

0
γ)),((),( θθϕϕ dtsts

More generally, we have: 
Corollary 6 Suppose that 

    (3.17) ),0,0(\γ),()1(2)( 2

1

γ ZZzazza i

n

i

in ∈+= ∧

=

−− ∏
where  is the generating polynomial of a uniformly convergent subdivision scheme )(za∧

with fundamental solution . Then the subdivision scheme S∧ϕ a is uniformly convergent 
with fundamental solution 

    (3.18) ....)γ...γ),((...),( 1n

1

0 11

1

0 nn ddtsts θθθθϕϕ ∫∫ +++= ∧

Box splines. A simple consequence of Corollary 6 is that it gives a binary subdivision 
development for the theory of box splines. For example, let )(za∧ = l(z) in (3.17), where 
l(z) is the generating polynomial of the piecewise linear scheme on the (1,1) triangulation. 
Then  is the piecewise linear Courant hat function on the triangulation with centre the ∧ϕ
origin. Equation (3.17) then gives the generating polynomial of a bivariate spline 
subdivision scheme with fundamental solution defined by (3.18). Each integral along a 
direction  in (3.18) corresponds to an increase by one of the polynomial degree and iγ
continuity of the fundamental spline along that direction. The survey paper [2] gives 
more details of such subdivision schemes. It can also be observed that the factorizations 
(2.37) and (2.40) reflect the simple fact that piecewise linear and bilinear schemes can 
be considered as the 'integrals' of piecewise constant schemes, although we have chosen 
here to define convergence of subdivision schemes with respect to their having continuous 
limits. 
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4 A C0 convergence analysis 

We now consider how to determine if a subdivision scheme  is uniformly convergent, ∧aS
in the case where the fundamental solution limit is not known explicitly. Here,  may )(za∧

be the generating polynomial of a basic scheme, or may correspond to the special case 
of schemes having divided difference polynomial factors as in (3.12) or (3.17). In a later 
subsection, we briefly consider the need to generalize the theory to ‘matricial schemes’, 
for the case where such special factorizations are not available. 
 
4.1 A preliminary result 
Proposition 7 Let Sc be a binary subdivision operator, with finite mask c, such that 
     (4.1) ,for  γ  0

2
2-γ Ec

ZZ

∈=∑
∈β

β

cf. (2.32). Then given any two directions  which generate a ,λ),0,0(\λ, 2 µµ ≠∈ ZZ
rectilinear partition of 2ZZ , there exist (non-unique) finite masks  and  such that λb µb
 µµ∆+∆= bλbλ SSSc .    (4.2) 

Proof. The subdivision operator Sc is defined for  by )(f 2ZZl∞∈

 .  γ,  ,)f( 2
2-γγ2

2

EZZfcS
ZZ

c ∈∈= ∑
∈

++ α
β

βαβα    (4.3) 

The proof of the lemma is then based on the observation that, for each , there exists E∈γ
a (non-unique) finite path through the mask c, covering all the non-zero coefficients, each 
step of which is taken along either the µor  λ  direction. The fact that the sum of coefficients 
is zero then means that the linear combination can be written as a sum of differences along 
the path, that is 
 .  γ,  ,)f( 2

2-γλ
λ

2-γγ2
22

EZZfbfbS
ZZZZ

c ∈∈∆+∆= ∑∑
∈

+
∈

++ α
β

βαµ
µ

β
β

βαβα   (4.4) 

for some finite masks  and . ⁭ λb µb
 
Remark. The proof of Proposition 7 can be argued in terms of the generating polynomial 
c(z) as follows: The hypothesis (4.1) is equivalent to the condition 
 c (l, 1) = c (-l, -1) = c (l, -1) = c(-l, 1) = 0.   (4.5) 
It can then be shown that this condition gives the generating polynomial decomposition 
    (4.6) ),()1()()1()( 2λγ2 zbzzbzzc µµ−− +−++−=

for some non-unique Laurent polynomials  and . The result (4.2) now follows )(λ zb )(zbµ

by applying the following lemma to each term of (4.6): 

Lemma 8 Suppose that 
    (4.7) ),0,0(\γ  ),()1()( 2γ2 ZZzbzzc ∈+−= −

for some Laurent polynomials c(z) and b(z). Then 
 .γb∆= SSc      (4.8) 
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4.2 Uniform convergence 
We wish to find conditions for which the scheme S& is uniformly convergent. Consider 
the control polygon sequence ∞

=
∧

0]}[{ k
k

kL ϕ  where, for example, Lk is the piecewise linear 
interpolation operator defined by (2.17), and k∧ϕ  denotes the values at level k produced 
by the subdivision scheme applied to cardinal initial data. Then we seek conditions for 
which  is a Cauchy sequence. Proposition 7 leads to: ∞

=
∧

0]}[{ k
k

kL ϕ

Lemma 9 Suppose that  satisfies the necessary convergence condition )(za∧

    (4.9) ,0)1,1()1,1()1,1(  ,4)1,1( =−=−=−−= ∧∧∧∧ aaaa
see Lemma 2. Then 
 ,,max{][][   

λ
 1 

1
∞∞

∧∧

∞

∧+∧
+ ∆∆≤−

l

k

l

kk
k

k
k CLL ϕϕϕϕ µ   (4.10) 

for ∈µλ, {(1,0), (0,1), (1,1)}, µ≠λ . More generally, defining Lk with respect to a skew 
triangulation, then (4.10) holds for the µλ,  directions defining any rectilinear partition of 
the points 2ZZ . 

Proof. Observe that, for any , )(f 2ZZl∞∈
 ,f]f[1

∞
=

∞+ lkL      (4.11) 

since any piecewise linear interpolant achieves its extreme values at the vertices. We thus 
have that 
 ,])[(][][  

1
 1 

1 ∞

∧
+∞

∧+∧
+ −=− ∧

k
lak

k
k

k
k SSLLL ϕϕϕ  

 ,)(  

∞
∧

∧−=
l

k
la SS ϕ  

 , 
c

∞

∧=
l

kS ϕ     (4.12) 

where 
     (4.13) )()(:)( zlzazc −= ∧

is a generating polynomial satisfying conditions (4.5). Thus Proposition 7 can be applied 
and (4.10) follows by expressing SC in the form (4.2). ⁭ 

We now make the simplifying assumption that there exist difference schemes for ∆  k 
λ
∧ϕ

and . Thus k ∧∆ ϕµ

    (4.14) )()1()(  and  )()1()( λλ zbzzazbzza
∧−∧∧−∧ +=+= µµ

where  and  are the generating polynomials for the difference schemes (see )(λ zb
∧

)(zb
∧µ

Proposition 4). Lemma 9 now leads to the following convergence result: 
Theorem 10 (Convergence.) Let  define a binary subdivision scheme having difference ∧aS

schemes  and  where the directions λb
∧S µ∧bS λ  and µ  define a rectilinear partition of 2ZZ . 

Furthermore, suppose that there exists a positive integer L such that the the Lth iterated 
difference operators have the 'contractive property' that 
 .1  and  1 L

b
L
b λλ << ∧∧ µSS     (4.15) 

Then  is uniformly convergent. ∧a
S
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The proof of Theorem 10 follows from the fact that the differences along the λ  and µ  
directions will be contracting over L steps. This condition, together with Lemma 9, can 
then be used to show that  Cauchy sequence and hence that the scheme ∞

=
∧

0
 }][{ k

k
kL ϕ

is uniformly convergent. 
To apply Theorem 10 we require the Lth iterated operators of the difference schemes, 

together with their norms. These are given by the following proposition: 

Proposition 11 Let  be the generating polynomial of a bivariate binary subdivision )(b z∧

scheme . Then  is defined by ∧
bS LS∧

b

 ),(f  ,:f)( 2][
2

2

ZZlfbS
ZZ

LL
Lb ∞

∈

∧

−
∈= ∑∧

β
ββαα   (4.16) 

with generating polynomial 

 )()...()(:)(
1L22][ −∧∧∧∧

= zbzbzbzb L    (4.17) 

and norm 

 .max:
2

L2L

][
2}12,...,0{b

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
∈

∧

−−∈
∧

ZZ

L

a

L bS
β

βα    (4.18) 

Proof. (Levin[6]) Define the z-transform 
 ∑

∈

∧=
2

.)f(:)(
ZZ

k
bk zSzG

α

α
α     (4.19) 

Then it is easily shown that 
 )()()( 2

1 zGzbzG kk
∧

+ =     (4.20) 

and hence that 

 )()()()(...)()()(
LL1L 2

0
][2

0
22 zGzbzGzbzbzbzG L

L
∧∧∧∧

==
−

.  (4.21) 

Equating coefficients then gives the Lth iterated subdivision operator defined by (4.16). 
The norm of this operator then immediately follows (cf. (2.10)). ⁭ 

 

4.3 Matricial schemes 

To prove convergence to differentiate limits using the theory of the previous subsection, 
we must assume that a(z) has divided difference generating polynomial factors . Also, )(za∧

in Theorem 10, the simplifying assumption has been made that  can be factored )(za∧

appropriately to give difference schemes along directions λ  and µ . A generalization of 
the theory to cover 'matricial schemes' avoids these simplifying assumptions. We thus 
conclude by briefly showing how matricial schemes arise in the study of differentiable 
limits by considering a generalization of Proposition 4: 
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Proposition 12 Let Sa be a binary subdivision operator with generating polynomial a(z) 
satisfying the necessary uniform convergence condition (2.33). Also, let λ  and µ  be two di-
rections defining a rectilinear partition of 2ZZ . Then given  there exist (non-),0,0(\γ 2ZZ∈
unique) Laurent polynomials b  )(2:)(),(2:)(  )(),( µγ,γ,λγ,λγ,γ,λγ, zbzazbzaandzbz == ∧∧ µµ

such that 
 ,λγ,λγ, bλbaγ µ∆+∆=∆ SSS     (4.22) 
 .λγ,λγ, aλaaγ µDSDSSD ∧∧ +=     (4.23) 

Proof. The operator 
 aγC

:γ SS ∆=      (4.24) 

has generating polynomial coefficients . Thus αα aaca −= +γ
γ :

     (4.25) )()1()( γγ zazzc −= −

and hence c(l, 1) = 0. Thus, using (2.33), it follows that c(z) satisfies condition (4.5) and 
hence 

   (4.26) )()1()()1()( γ,2λγ,λ2γ zbzzbzzc µµ−− +−++−=

for some non-unique Laurent polynomials  and . Proposition 7 then gives )(λγ, zb )(γ, zb µ

(4.22) and multiplying by 2-k-1 gives (4.23). ⁭ 

In the special case where 
     (4.27) )()1()( γ zbzza −+=

we obtain 
     (4.28) )()1()( γ2γ zbzzc −+−=

in the above proof. Hence Proposition 12 gives 

 γaaγγbaγ   and  DSSDSS =∆=∆     (4.29) 

where . This is the case of Proposition 4, when there exist difference and )(2)( zbza =∧

hence divided difference schemes. When such divided difference schemes are not available, 
we can take µ==   γand  λγ  in Proposition 12 to give the matricial divided difference 
scheme 

 .    (4.30) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∧∧

∧∧

+

+

k

k
λ

aa

aa
1k

1k
λ

f

f

f

f

,λ,

λ,λλ,

µµ µµµ

µ

D

D
SS

SS

D

D

This suggests the analysis of matricial schemes per se. 
 
5 Example of the Butterfly subdivision scheme 
We conclude this introduction to uniform subdivision by applying the theory to the inter-
polatory 'butterfly' subdivision scheme described in [4]. This scheme has been analysed 
by Dyn, Levin and Micchelli [5], who show that there exists an interval for a shape param-
eter ω  for which the scheme converges to a C1 limit. Here, we give more precise details 
of the calculation of the norm of the 2nd iterate of the appropriate subdivision operator. 
This calculation is equivalent to that of Qu [7], who uses a matrix norm approach. 
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The butterfly scheme is defined with respect to the (1,1) triangulation by 

  

( ) ( )
( )

( ) ( )
( )

( ) ( )
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⎪

⎭
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k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji
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k
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k
ji

k
ji

k
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k
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k
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k
ji

k
ji

k
ji

k
ji

ffff

fffff
ffff

fffff
ffff

fffff
ff

ω

ω
ω

ω
ω

ω

  (5.1) 

This scheme is symmetric with respect to the (1,1) triangulation and is interpolatory 
by definition of the first rule in (5.1). The description of the scheme is derived from      
the butterfly appearance of the individual masks for the second, third and fourth rules. 
The parameter ω  can be used to control the shape of the limit surface. The case ω  = 0 
gives the piecewise linear scheme of subsection 2.4.1 and the case 

16
1=ω  gives a scheme 

which reproduces cubic polynomials. Here we will indicate that 
21
10 << ω  is a sufficient 

condition for the scheme to have a  limit. 1C
The generating poynomial a(z), for the subdivision scheme defined by (5.1), has factor 

2
1 (l +z1

-1), 2
1 (l +z2

-1), and 2
1 (1+ z1

-1 z2
-1). Thus there exist uniform subdivision schemes for 

the divided difference sets for 7 = (1,0), (0,1), (1,1). We now seek conditions for ,fγ kD
which these divided difference schemes have C0 limits where by symmetry, it is sufficient 
to consider only γ  = (1,0). It will then follow, by Theorem 3, that the butterfly scheme 
converges to a C1 limit. 

Writing 
 ),()1()( 1

12
1 zazza ∧−+=     (5.2) 

then, with  and (-1,0)λ = (-1,-1)=µ , 
 ,)()1()(  and  )()1()( 1

2
1

1
λ1

2 zbzzzazbzza µ∧−−∧∧−∧ +=+=   (5.3) 
where 
  )(2(4)1)(81( :)( 2

212
2

1
1

1
1

2
2

2
2

1
1

2
1

121
λ zzzzzzzzzzzzzb +++++++−= −−−−∧

ωωω
   (5.4) )(2 3

2
2

1
2

2
3

1
2

2
2

12
1

1
1

21
1

2
2

1
2

2
1

1 zzzzzzzzzzzzzz +++++++− −−−−−−ω
with a dual expression for . The subdivision operator  has norm )(zb µ∧

λb
∧S 1λb

≥∧S . 

However, calculation of the generating polynomial )()( 2λλ zbzb
∧∧

 for the iterated operator 
λb

2
∧S leads to 

 )},(),(),(),(),(),({max 654321b
2
λ ωωωωωω AAAAAAS =∧   (5.5) 

where 

 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

++=
−+−+=

−+=
−+−+−+=

−+−+=
+−+−+++=

.6440    :    )(
,1126848    :    )(

,24104    :    )(
,61628452    :    )(

,2426644    :    )(
,11672984416    :    )(

22
6

22
5

22
4

2222
3

222
2

2222
1

ωωωω
ωωωωω

ωωωω
ωωωωωωωω

ωωωωωω
ωωωωωωωω

A
A
A
A
A
A

 (5.6) 
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Here, the expected sixteen terms in (5.5), see Proposition 11, reduce to six because of 
symmetries and repetitions. Also, by symmetry, the expression for µ∧

b
2S  is identical to 

(5.5). A careful analysis of the terms (5.6) now leads to 

 
12
10for    1b

2
b
2
λ <<<= ∧∧ ωµSS .   (5.7) 

In particular, 
12
1<ω  is obtained from the condition 1)(4 <ωA , where )(4 ωA  is the 

dominant term in (5.5) in the neighbourhood of 
12
1=ω . It now follows, from Theorem 

10, that the subdivision scheme for the divided difference converges to a C° limit, and 
hence the butterfly scheme converges to a C1 limit, for 

12
10 << ω . 

 
References 
[1] Cavaretta, A.S., W. Dahmen and C.A. Micchelli, Stationary subdivision, to appear in 

Memoirs of AMS. 

[2] Cavaretta, A.S., and C.A. Micchelli, The design of curves and surfaces by subdivision 
algorithms, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche 
and L.L. Schumaker (eds.), Academic Press, New York, 1989, 115-153. 

[3] Dyn, N., Subdivision schemes in CAGD, to appear in the proceedings of the 1990 
Lancaster Summer School on Multivariate Approximation. 

[4] Dyn, N., J.A. Gregory and D. Levin, A butterfly subdivision scheme for surface inter-
polation with tension control, ACM Trans, on Graphics 9, 1990, 160-169. 

[5] Dyn, N., D. Levin and C.A. Micchelli, Using parameters to increase smoothness of 
curves and surfaces generated by subdivision, Computer Aided Geometric Design 7, 
1990, 129-140. 

[6] Levin, D., Generating function techniques in the analysis of subdivision schemes, 
private communication. 

[7] Qu, R., Recursive subdivision algorithms for curve and surface design, Ph.D. Thesis, 
Department of Mathematics and Statistics, Brunei University, 1990. 

 

 

 

 

 

 

 

 

 

15 



 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 XB 2327647 9 

  


