
Master Thesis

Using reward shaping and cooperative
asynchronous method to accelerate the

training process of reinforcement learning

Xiaohui Zhu

A Thesis Submitted to the Department of Computer Science
and Communications Engineering, the Graduate School of

Fundamental Science and Engineering of Waseda University in
Partial Fulfillment of the Requirements for the Degree of

Master of Engineering

Student ID

Date of Submission

Advisor

Research Guidance

5118F116-6

July 18th, 2020

Prof. Toshiharu Sugawara

Research on intelligent software

CONTENTS

Contents

1 Introduction 3

2 Related Work 5

3 Preliminaries 7

3.1 k-Nearest Neighbors Algorithm . 7

3.2 Potential-based Reward Shaping (PBRS) 7

3.3 Deep Reinforcement Learning . 8

3.3.1 Deep Q-learning . 8

3.3.2 Actor-Critic . 8

4 Proposed Method 10

4.1 trajectory action meta-reward model . 10

4.1.1 k-NN-based reward prediction . 10

4.1.2 Meta-reward model . 12

4.2 Full experience exchange . 13

5 Experiments 16

5.1 Experiment for TAMRM . 16

5.1.1 Cart pole problem . 16

5.1.2 Mountain car problem . 18

5.1.3 Maze problem . 19

5.1.4 Discussion for our reward model . 22

5.2 Experiment for FEE . 23

5.2.1 Cart pole problem . 23

5.2.2 Mountain car problem . 23

5.2.3 Discussion for FEE . 24

5.3 Experiment for TAMRM+FEE . 25

5.4 Disscussion . 27

6 Conclusion 28

7 Acknowledgment 29

i

Abstract

In recent years, systems with deep reinforcement learning (DRL) have attained
excellent performance in a number of challenging tasks in robot and game AI do-
mains. However, a major limitation of such applications is the demand for massive
amounts of training data. Thus, it always needs a long time to train a DRL agent,
especially when the reward of the environment is not easy to learn (sparse or origi-
nal reward uncertainty). In this thesis, we proposed two methods to speed up the
process of DRL. First, the reward shaping method, we present a reward model,
trajectory action meta-reward model, to shape the training rewards in real-time for
deep reinforcement learning of motions with discrete action space. Without using
the expert data and having to hand-craft the reward model, our meta-reward model
and reward shaping method use the combination of the agent’s self-demonstrations
and the potential-based reward shaping (PBRS) method, to make the neural net-
works converge faster in every task. Second, based on the asynchronous reinforce-
ment learning (A3C), we introduced a learning method with using the cooperative
multi-agent deep reinforcement learning settings. Through sharing the meaningful
experience, not only the fail but also the success, we make the asynchronous agents
in RL more cooperative so that reduce the training time of DRL. We experimentally
evaluated our proposed methods and compared the performances of classic motion
control problems in long-horizon environments, and in the video games. The result
showed that our proposed methods could speed up the DRL in the classic control
problems of an agent in various environments.

1

1 INTRODUCTION

1 Introduction

In recent years, deep reinforcement learning (DRL(Mnih et al., 2015)) has achieved many

impressive results, such as playing video game and robot domains. However, the learning

process requires a huge number of trials, so it is necessary to provide massive amounts

of training data for the agent Thus, it always takes a long time to train a DRL agent,

especially when the reward of the environment is sparse or the original reward model

contains uncertainty in the long horizon environment that makes it difficult for the agent

to learn.

Recently, meta-reinforcement learning has been found to be a useful way to improve

learning efficiency and the ability to accelerate the learning process for task adapta-

tion (Vanschoren, 2018; Santoro et al., 2016; Vinyals et al., 2016). For meta-learning

in reinforcement learning (RL), one of the most popular algorithms is model-agnostic

meta-learning (MAML) (Finn et al., 2017), which learns a versatile initialization of model

parameters θ through reusing the data that the agent used to successfully solve the task

in the environment. However, it is not easy to use MAML due to its slow running because

it has to compute a great number of gradients backpropagated in neural networks.

To accelerate the DRL process, apart from using meta-learning, reward shaping is

one of the useful and powerful solutions to reduce the amount of training data, and its

goal is to shape the original rewards into a better reward structure that makes it easier for

the DRL agent to learn to solve various problems. Potential-based reward shaping (PBRS)

through the state of the agent and potential reward function is an effective method for

directly shaping the rewards from the training environment (Ng et al., 1999; Eck et al.,

2013; Badnava and Mozayani, 2019; Grześ, 2017), but it had poor performance and thus

slowed the learning convergence when using it in DRL. To shape the reward for a DRL

agent, the human teacher approach is useful to train the agents to navigate to earn more

training rewards in practice (Saunders et al., 2018; Knox and Stone, 2012; Abel et al.,

2017; Christiano et al., 2017). Furthermore, Ibarz et al. (Ibarz et al., 2018) proposed a

reward shaping method that used the expert demonstrations to pre-train the agent and

the annotator to label the data. Obviously, the limitation of this method is the difficulty in

getting expert demonstrations in various environments; thus, we often have to hand-craft

the reward model while pre-training.

This paper focuses on the learning of motion of an agent, which is a control program

for a mobile robot, vehicle, drone, or computer game player, to accelerate learning its

3

1 INTRODUCTION

movement or operations in various tasks. We assume that the activities of the agent can

be expressed by the trajectory that is usually a long sequence of actions, so the agent’s

tasks are long horizon problems. Because these trajectory data describe the successful

experiences of solving tasks, we attempt to make more use of these trajectory data so that

the agent can identify how to execute the tasks efficiently by shaping the training reward.

By using the shaped reward proposed here, the distribution of rewards in the environment

is modified to make the agent learn faster to successfully control the movement so that

we can reduce the training time.

Then, we propose a trajectory action meta-reward model (TAMRM (Xiaohui and

Toshiharu, 2020)) based on k-nearest neighbors (k-NN) and PBRS for DRL to learn how

to execute the given tasks efficiently by adjust the training reward. Our contributions

are: (1) this meta-reward model does not need the expert demonstration data by using

the agent’s self-demonstrations to shape the reward for training, and (2) this meta-reward

model requires only a reasonable amount of memory and can predict the rewards in real

time with fewer calculations without extra gradient backpropagation (Zou et al., 2019).

This model is versatile in the sense that it can be used in both the actor-critic method

(AC method) (Sutton and Barto, 2011) and the deep Q-learning using the deep Q-network

(DQN) (Mnih et al., 2015). This model also makes the agent learn faster and makes

the PBRS more suitable for the DRL. We experimentally evaluated our reward shaping

method by solving classic motion control problems in long horizon environments with a

simple deep neural network for the AC method and the Q-learning.

On the other hand, asynchronous reinforcement learning(Mnih et al., 2016) is also

a useful approach to accelerate the learning process by using the multi-core structure

of the CPU. Unlike DQN, where a single agent represented by a single neural network

interacts with a single environment, asynchronous reinforcement learning utilizes multi-

ple incarnations in all the threads in order to learn more efficiently. In the Multi-Agent

Reinforcement Learning (MARL), we know that if cooperation is done intelligently, each

agent can benefit from other agents’ training information, episodic experience, or learned

knowledge. (Tan, 1993) Therefore, we proposed a method to make multiple incarnations

solve problems cooperatively by sharing the experience. We also experimented this coop-

erative asynchronous learning method in classic motion control problems in long-horizon

environments to accelerate to it. Furthermore, we show that combining the TAMRM

and proposed cooperative asynchronous learning method can speed up the DRL, through

experiment whose results were shown in section 5.

4

2 RELATED WORK

2 Related Work

There are many studies on improving learning efficiency to reduce the amount of training

data or training time. For example, reward shaping is a very effective way to speed up

training (Mataric, 1994; Laud, 2004). PBRS modifies the original reward function by

using potential-based shaping functions Φ(s) to make RL methods (e.g., Q-learning) con-

verge faster (Ng et al., 1999; Asmuth et al., 2008; Harutyunyan et al., 2014). PBRS

usually depends on state s, but it has also been extended to potential-based advice

(PBA) (Wiewiora et al., 2003) to include action a in potential function Φ(s, a). It has

also been extended to dynamic PBRS (Devlin and Kudenko, 2012) by introducing time t

into potential function Φ(s, t). Marom and Rosman (Marom and Rosman, 2018) proposed

a reward shaping framework based on the Bayesian method in Q-learning for executing

complex tasks. Besides, by combining it with expert demonstrations for the complex

tasks, the PBRS in RL became more powerful (Brys et al., 2015). Zou et al. (Zou et al.,

2019) used a method, which is similar to MAML, to pre-train the dueling deep Q-network

(dueling-DQN (Wang et al., 2015)) and used the PBRS for fast convergence. On the other

hand, our work differs from these efforts in that we shape the reward for the agent in the

DRL without any pre-training stage.

Inverse reinforcement learning is also an effective way to find the reward function by

using the expert demonstrations (Ng et al., 2000; Ziebart et al., 2008; Abbeel and Ng,

2004; Suay et al., 2016). By combining the imitation learning and the DRL, Wu (Wu and

Tian, 2017) created a hand-coded RL reward function designed by experienced human

experts for a learning agent. Hester et al. (Hester et al., 2018) proposed a framework of the

deep Q-learning from demonstrations (DQfD) and Ibraz et al. (Ibarz et al., 2018) trained

a deep neural network to model the reward function by using expert demonstrations and

real-time expert feedback and then used its predicted rewards to train a DQN. In our work,

however, we do not need any professional demonstrations and feedback from experienced

people; we just use the agent’s self-demonstrations to shape the rewards in a real-time

manner instead.

In multi-agent reinforcement learning (MARL) framework, cooperative agents can ac-

celerate the learning process with the teacher-student communication among the agents(Zhu

et al., 2019)(Torrey and Taylor, 2013). A more experienced agent (teacher) can advise

another agent (student) which action to take in a state. To make all the agents of RL

play a role as teacher-student and cooperative, experience sharing is one of the useful

5

2 RELATED WORK

ways.(Tan, 1993) (Da Silva et al., 2017).

Moreover, not only in the multi-agent system, recently, experience sharing (ES) tech-

niques had been used to homogeneous agents and non-dynamic environments(Souza et al.,

2019) . In ES, each training agent will submit their problem to requests board in the

episode stage, and then, in the sharing stage, each agent will check the problem on the

requests board and share the successful experience with the corresponding agent, which

made the RL agents play the role of learner or teacher to speed up the learning process.

As the asynchronous reinforcement learning would create multiple homogeneous agents

in all the threads, thus, in this thesis, we proposed a ES setting to make the agents in

asynchronous reinforcement learning cooperative and further acceleration for DRL.

6

3 PRELIMINARIES

3 Preliminaries

3.1 k-Nearest Neighbors Algorithm

k-NN (Cover and Hart, 1967) is a simple algorithm that stores all the available data

that are already classified and then classifies the new data into one of the classes using a

similarity measure (e.g., distance functions, such as the Euclidean distance and Manhattan

distance) based on the class labels of k neighbors. k-NN is also used for regression by

calculating its average value. Parameter ‘k’ in k-NN refers to the number of nearest

neighbors to include in the majority of the voting processes. The advantage of the k-

nearest neighbors algorithm is that it is simple to implement and has high accuracy, but

its accuracy is greatly affected by the selection of parameter k. It also needs to perform

a great number of calculations when there is a large amount of sample data in memory.

3.2 Potential-based Reward Shaping (PBRS)

Reward-shaping function F : S × A× S → R is used to modify original reward function

R to make the RL methods (e.g., Q-learning) converge faster using more “instructive”

rewards. It usually resides in the same functional space as the reward function and

transforms the original Markov decision process (MDP), MDP(S,A, T, γ, R), into another

shaped MDP(S,A, T, γ, R
′
), where R

′
= R+F . In the MDP, S is the state space, A is the

action space, T is the state transition probability, γ is the discount factor, and R is the

original reward function, i.e., the reward from the environment. Of all possible shaping

functions, the potential-based shaping functions (Ng et al., 1999) lead to the optimal

policy, as summarized below.

R
′
= R + F (S,A, S

′
), (1)

F (S,A, S
′
) = γΦ(s)− Φ(s

′
). (2)

Φ(s) is the potential function that theoretically can be an arbitrary function that repre-

sents the state reward correctly. Generally, it is suggested to use the optimized value of

s ∈ S, V ∗(s), where

V ∗(s) = maxa∈AQ
∗(s, a). (3)

Therefore, the real-time reward is updated by: R
′
= R + γV ∗(s)− V ∗(s′).

It is possible that an agent will adjust the Q-value effectively and adapt the training

environment quickly by making use of the shaped reward. The PBRS is a simple method

7

3 PRELIMINARIES

to accelerate the process of the RL but is not used in the DRL; in contrast to the Q-table

based method, the DRL uses the neural network with randomly initialized weight and

bias to approximate the Q-values. Therefore, the shaped reward may be inappropriate

before adapting it sufficiently because the output from the network may be incorrect;

thus, if it is used to update the real-time reward, this may result in a failure of learning

or slow learning, especially with a long horizon or sparse reward, which needs a long time

to adjust the parameter values of the network. In this paper, we attempt to make the

PBRS method more effective in the DRL by using our proposed method.

3.3 Deep Reinforcement Learning

Deep-reinforcement learning (DRL) (Sutton and Barto, 2011) applies the deep learning

technique for RL to decide tasks to do next in a complex environment. The most popular

and powerful RL methods are Q-learning and actor-critic (AC).

3.3.1 Deep Q-learning

DQN (Mnih et al., 2015) uses a neural network to approximate the Q-values, and the

agent chooses the action whose Q-value is the highest (value-based). With experience

replay and a fixed target Q-network, the DQN exhibited good performances in various

domains, and it may even outperform human behaviors. In the DQN, the neural network

θt at time t is updated to minimize the loss function:

L(s, a|θt) = (r + γmaxa∈AQ(s
′
, a|θt)−Q(s, a|θt))

2
,

where r is a reward from the environment. Then, network θt+1 is updated for the next

time:

θt+1 = θt + α5θ L(θt),

where α is the learning rate, and γ is the discount rate.

3.3.2 Actor-Critic

AC is an efficient RL method that combines value-based methods and policy-based meth-

ods. In the AC method based on neural networks, the policy network θ plays the role

of an actor that selects actions (policy-based), and the value network $ plays the role

of a critic that measures how good each action taken is (value-based). In the advantage

actor-critic (A2C) (Mnih et al., 2016) method in the DRL, the policy and the values are

8

3 PRELIMINARIES

updated as follows:

∆θ = α ∗ (Q$(s, a)− V$) ∗ 5θlogπθ(s, a),

∆$ = β ∗ (R(s, a) + γV$(s
′
)− V$(s)) ∗ 5$V$(s),

where α and β are the learning rates, and γ is the discount rate. V$(s) is the output from

the value network and Q$(s, a) = R(s, a) + γV ∗(s
′
), where s

′
is the next state. πθ(s, a)

is a value function, measuring how good action a is in situation s.

9

4 PROPOSED METHOD

4 Proposed Method

4.1 trajectory action meta-reward model

People often use their experiences or the contents of their memory to compare the current

situation with similar situations in their memory to learn/decide what action is beneficial

and thus will do it next. In our studies, the agent retains the sequence of actions that

led to a desirable result in an episode as trajectory data {(a0, a1....aL)}, where L is the

length of the sequence and is also the time to finish the task or the length of the episode.

When L ≥ Llong, where Llong is a positive integer, we define it as a long horizon task (we

set it to 100 in our experiments below). Then, these desirable data are stored in memory

pool D in the agent.

We attempt to know the situation of the agent from the current trajectory data,

so, inspired by k-NN, we propose a method to find similar situations by comparing the

distance between the current trajectory data of the agent and the data in memory pool

D. By imitating a human decision, if the agent’s current trajectory is close to one of good

data in memory pool D, we attempt to give a more positive prediction reward for the

agent; otherwise, a smaller negative prediction reward will be given. By combining our

prediction method with the PBRS to fix the output of the neural network, we propose a

meta-reward model to predict the training reward in a real-time manner.

Figure 1 shows the view of the trajectory action meta-reward model (TAMRM) to

update the rewards of the current action for the agent. In our reward model, we make

use of the Q-value of the agent’s networks to calculate F (S,A, S
′
) with Formulae (2) and

(3) and take advantage of the action chosen by the agent to calculate the value of the

k-NN-based reward prediction method below. Finally, we use these two values to shape

the original reward to make the agent’s learning faster.

4.1.1 k-NN-based reward prediction

We store the pair of the trajectory data and associated total reward di = {(ai0, ai1....aiLi
, Ri)}

of the agent in each episode (episode reward) in memory pool D to predict the rewards

for future tasks, where Ri is the total reward calculated using only the original rewards

from the environment. Note that we choose the best data, which has the highest episode

reward, from memory pool D. When the memory pool is full and the episode reward of

the new trajectory data is greater than the minimum episode reward in the memory pool,

the trajectory data with the minimum episode reward is replaced with the new data so

10

4 PROPOSED METHOD

Figure 1: Trajectory action meta-reward model.

Figure 2: Example of encoding the up, right, down, and left actions.

that the data in the pool can be guaranteed to be the best historical trajectory data.

In this prediction method, first, we will compute the distance between trajectory

data di ∈ D and current trajectory data d at each time t in the training stage as follows:

disi = ‖di − d‖ =
t∑

j=0

|aj − a
′

j|2, N ≤ t ≤ Lmin

where aj and a
′
j are the j-th actions in di and d, t is the current time, Lmin is the minimum

length of trajectory data in memory pool D, and N > 0 is the start threshold.

To compute the distance between actions |aj−a
′
j|, we use one-hot encoding to encode

the action space, as shown in Fig. 2. Note that the length of the trajectory data in the

memory pool may be different, so in this case, we set the minimum length (Lmin) of the

trajectory data in the memory pool to the end threshold. If current time t is greater than

Lmin and the episode does not terminate, the reward prediction will be stopped, and the

agent will use the original reward from the environment; then, it continues training. Note

that to avoid over imitating the historical trajectory data, by setting an integer N > 0

in the training process, the original environment reward will be used to train the agent

11

4 PROPOSED METHOD

before the N timestep, and after N timesteps, we start to predict the reward for the

agent. If the episode stops quickly within several timesteps or the length of the episode

is short, we have to set N to a small value.

Second, based on distance disi, we calculate probabilities Pi with all trajectory data

∀di ∈ D.

Ratei =

∑
di∈D disi

disi

Pi =
Ratei∑
di∈D Ratei

These probabilities indicate how similar the current agent’s situation (expressed by the

current trajectory) is to the trajectory data in the memory pool.

Then, we calculate real-time rewards r(t) for the current action of the agent:

xi =
Ri −mini∈DRi

maxi∈DRi −mini∈DRi

f(t) =
k∑
i∈D

xiPi (4)

r(t) = ef(t) − e
1
2 , (5)

where xi is the normalized episode reward of trajectory data di in D, so xi ∈ [0, 1]. Note

that in Formula (4), similar to k-NN, we set the k best values to choose the k largest

probabilities P1, P2,Pk and normalize episode rewards xi to calculate f(t). k cannot

be greater than the size of D, so 1 ≤ k ≤ |D|. By using Formula (5), we can calculate

the predicted reward based on the agent’s self-demonstration data in a real-time manner

and use it in our reward model in the next part.

4.1.2 Meta-reward model

By combining the k-NN-based reward prediction and the PBRS, we propose the meta-

reward model, TAMRM, to tune the training rewards Rmeta for the agent calculated by:

Rmeta = R + α ∗ r(t) + β ∗ F (s, a, s
′
),

where R is the original reward from the environment, αandβ are the reference rates, and

F (s, a, s
′
) is defined by taking into account Formulae (2) and (3) as follows:

F (s, a, s
′
) = γV ∗(s

′
)− V ∗(s).

12

4 PROPOSED METHOD

With the proposed k-NN-based reward prediction method, we can obtain the predicted

rewards from successful experience data to make the reward easier and the learning faster.

By using the PBRS, we can adjust the output values from the neural network effectively.

The learning procedure of reinforcement learning based on this model is shown in Algo-

rithm 1. Unlike with off-policy DRL (e.g., DQN) in the on-policy DRL (e.g., AC and

A2C), we can use the obtained shaped reward directly to train the agent using the expe-

rience data from the replay buffer, not samples.

Note that in our model, one task corresponds to one memory pool D. When the

agent switches to a new task, a new pool will be built, and the agent will store the new

task’s trajectory data in this new pool. In the training process, when the initial state

or the destination of the task is to be changed, we define that the agent has started to

perform a new task.

Algorithm 1 Off-policy DRL with meta-reward model

Initialize neural network and replay buffer B
Initialize meta-reward model and pool D
for each task do

if memory pool is not full then
run the agent under policy ε-greedy and store experienced data {st, at, R, st+1} in
replay buffer B
update network with experience samples from B by gradient descent

else
run the agent under policy ε-greedy
if timesteps < N then

store experience data {st, at, R, st+1} in B
else

store shaped data {st, at, Rmeta, st+1} in B
end if
update network with experience samples from B by gradient descent if off-policy
learning.

end if
store the trajectory data{(a0, a1....at, Ri)} in D.

end for

4.2 Full experience exchange

In asynchronous reinforcement learning, each agent has independent MDPs with similar

goals. In our proposed method, experience is defined as a tuple {st, at, R, st+1}, represent-

ing a transition taken by an agent from one state to another and the response received

13

4 PROPOSED METHOD

Figure 3: Full Experience Exchange-collection stage.

Figure 4: Full Experience Exchange-learning stage.

from the training environment. We try to make the agents in asynchronous reinforcement

learning to solve a problem cooperatively by sharing the experience.

In this thesis, the baseline asynchronous reinforcement learning algorithm is Asyn-

chronous Advantage Actor-Critic (A3C)(Mnih et al., 2016). Based on the global A2C

network, in multi-threads, training agents will be created to learn to solve the problem

in environment. Since each agent is created by the parameters of the global network.

Therefore, the problems and successes that agents encounter in the training environment

are common to all. Thus, sharing experiences from the training process, we believe, can

effectively accelerate the training process.

Different from the approach of ES(Souza et al., 2019), we extending the vision of each

agent that sharing all the meaningful experience with others, both success, and failure,

called Full Experience Exchange (FEE) as shown in Algorithm 2. We divide this method

14

4 PROPOSED METHOD

into two stages: collection and learning stage. In the collection stage, we will collect all

the problems and success experiences among all the asynchronous agents to the global

experiences pool. In the learning stage, each agent searches its experiences pool and

submits the solved experiences to the global memory pool, and then the agent begins

learning and update the networks. Each agent learns a policy independently from others,

and interacts with them only for the purpose of sharing experiences. Meanwhile, for

avoiding a great amount of communication cost, we limit the communication between the

agents to once each episode. Through sharing the experiences, we make the asynchronous

agents learn to solve the problem cooperatively.

Algorithm 2 Full Experience Exchange

Initialize agent and environment
Initialize fail experience memory pool DF and success experience memory pool DS
while in train process do

for each agent in the environment do
agent plays episode
push the K batch size fail and success experiences to the DF , DS

end for
for each agent in the environment do

agent check the fail experiences to recognize the problems in this episode
if agent has success experiences corresponding the problem then

push the experiences to the DS
end if
agent learns the experiences from DF and DS

end for
end while

K is the most important parameter in our FEE method. To avoid a great amount of

calculation, the k value can not be set too large. As the experience is defined as a tuple

{st, at, R, st+1}, we share the k batch size experience {(st−k, at−k, R, st−k+1),, (st, at, R, st+1)}
around all the agents in our FEE method.

15

5 EXPERIMENTS

5 Experiments

In this section, we divided our experiment section into three parts: the TAMRM part,

the FEE part, the TAMRM+FEE part to evaluate our proposed methods, and used the

OpenAI’s Gym framework and Tkinter to build up our test environments.

5.1 Experiment for TAMRM

In this part, we evaluated our method using three standard deep reinforcement learning

environments (the cart pole, mountain car, and maze problems) and compared the exper-

imental results using our meta-reward model with those using the conventional methods

(deep Q-learning and A2C) using PBRS. Note that these neural networks have the same

parameters and structures.

5.1.1 Cart pole problem

The cart pole problem (Fig. 5) is a classic discrete action problem in reinforcement learn-

ing. It has a dense reward: a reward of +1 is provided for every timestep that the pole

remains upright, and a reward of -1 is provided when the pole is at an angle of more

than 15 degrees from the vertical. It usually has a long horizon but has a short horizon

if the episode ends negatively when the pole is more than 15 degrees from the vertical

or the cart moves more than 2.4 units from the center. Because the original rewards of

the cart pole problem do not distinguish between the desired situation (i.e., keeping the

pole in an upright position) and dangerous ones (i.e. where the pole is just about to fall),

it is inefficient to learn to solve this problem. By using OpenAI’s environment Gym to

train the agent, the observation of the cart pole problem is represented by the array that

expresses the position and velocity of the cart and pole. Then, we use this array as the

input to train the neural network. The output of the network is the action of left or right

to control the car.

The basic setting for the experiment is as follows. An episode terminated after 200

timesteps; thus, the maximum episode reward was 200. The cart pole problem defines the

“solution” as getting an average reward of 195.0 over 100 consecutive trials. The agent

was trained using the A2C. We used k-NN with k = 20 and set the size of the memory

pool to |D| = 30 and set the reference rates to αandβ = 0.8. We used an MLP with two

hidden layers of size 20 for the A2C.

The results of the cart pole problem are shown in Fig. 6. By using the meta-reward

16

5 EXPERIMENTS

model, the agent could solve the problem in the 455th episode, which is faster than other

methods because the TAMRM evaluated the reward for current actions using data in the

memory pool that made the agent’s action closer to that of the trajectory data of the high

episode reward history. However, for the PBRS, before converging the neural networks,

Figure 5: Cart pole problem.

Figure 6: Results of cart pole problem.

the output of the networks might not be accurate enough, and if we used these

inaccurate values to shape the rewards, it might mislead the agent. Both the A2C and

A2C+PBRS could not solve the task within 1000 episodes because the learning was not

so easy with the original reward scheme; therefore, we need a more tailored reward scheme

17

5 EXPERIMENTS

so that the agent can learn the appropriate actions, and our proposed method can be one

of the probable methods.

5.1.2 Mountain car problem

Similar to the cart pole problem, the mountain car problem (Fig. 7) has a dense reward.

However, it usually has a long horizon because an episode will terminate only when the

car arrives at the goal at the top of the mountain, so the length of an episode is likely to

be long in the beginning. In the training process, the environment reports the position

and velocity of the car as observational data, and they are fed to the neural network. The

output of the network is the action of push left, no push, or push right to control the car

to the goal.

Figure 7: Mountain car problem.

In this environment, we used the deep Q-learning to test our proposed method in

off-policy DRL. We set the size of the memory pool in the meta-reward model to 20, α, β

= 1, and k = 20. Note that in the mountain car problem, the fewer the steps to arrive

at the goal, the higher the episode reward is. For the simple DQN, we use an MLP with

two hidden layers of size 20, and the initial epsilon value was set to 0.1. The decay rate

was 0.9, replay buffer size was 50,000, and learning rate was 0.005.

In the long horizon environment, as indicated by the results of the experiment shown

in Fig. 8, the DRL agent needed more time to fix the output of neural networks. Therefore,

if we used the incorrect value of the network, the PBRS made it more difficult for the agent

to converge Q-values. With the TAMRM, the agent could retrieve the history of the data

in the memory pool and make the agent’s behavior change direction toward successful self-

18

5 EXPERIMENTS

Figure 8: Results of mountain car task.

demonstrations; thus, the network could converge faster than the conventional methods.

These experimental results indicated that our method was also useful in the off-policy

RL.

5.1.3 Maze problem

The maze problem is a standard long horizon and sparse reward environment for training

a DRL agent. We build an 8 × 8 maze in which the red mark is the start point and the

yellow mark is the end point; the black marks are the walls, as shown in Fig. 9. Before

arriving at the goal, the reward from the environment is 0, and when the agent gets to

the goal, it can get a reward of +1. Maze search failure is defined when an agent cannot

arrive at the goal within 10,000 steps.

In this environment, the DQNs of the agents have an MLP with two hidden layers

of size 10, replay buffer size was 20,000, and epsilon was 0.1. The decay rate was 0.9, and

the learning rate was 0.01. We used the agent’s coordinate data in this maze as the input

to the networks of agents, and the network output is the action of up, down, left, or right

to control the agent.

Static structure maze In the first test, the size of the memory pool and k in the

meta-reward model were 10 and α = 0.8, β = 0.3 (for a sparse reward environment, it is

19

5 EXPERIMENTS

Figure 9: The maze environment.

Table 1: Total number of steps comparison in maze

Used network Total steps in 200 episodes

DQN with meta-reward model 127478
Conventional DQN 137599
DQN with PBRS 1433215

suggested to set β and memory size to small values). The maze environment is shown in

Fig. 9.

As indicated by the results of this experiment shown in Fig. 10 and listed in Table 1,

the agent that used the DQN with the PBRS found it difficult to solve the maze problem

because its rewards were sparse since the rewards were 0 before arriving at the goal.

When the rewards were 0, the networks were hard to converge, and the PBRS with the

output value of networks estimated the training reward incorrectly, so the PBRS agent

performed poorly in this task. On the other hand, using the TAMRM, the agent could

reduce the 0 training reward and update the training rewards in every step by referring to

the historical trajectory that successfully got to the goal. The agent with the conventional

DQN could also exhibit good performance but lower performance than that of the agents

using the TAMRM.

20

5 EXPERIMENTS

Figure 10: Results of static structure in the Maze problem.

Modified maze In this experiment, we set a new situation in the maze that after

100 episodes, the start point was changed, as shown in Fig. 11. We used the same

settings of the DQN and the meta-reward model. Then, we compared the running results

with our proposed method with those of the conventional DQN because the difference of

performances with these methods was small.

Figure 11: Modified structure in the maze.

After the 100th episode, because the place of the start point was changed, the agent

had to learn to solve a new task. As indicated by the results shown in Fig. 12, the

conventional DQN was affected by the previous tasks, and because the agent received 0

rewards before arriving at the goal, the agent needed more time to correct its behavior

for the new start point. In our reward model, after starting to perform the new task,

21

5 EXPERIMENTS

Figure 12: Results of modified structure in the Maze problem.

the agent could build a new memory pool to record the new trajectory data to shape the

reward, instead of using the old pool. Through shaping the reward, we could reduce the

effects of the previous task and make the agent focus more on the new task so that the

neural network converged fast even for the modified maze.

5.1.4 Discussion for our reward model

The original reward from the training environment may be correct, but it is often difficult

for the agent to learn because the original reward structure usually cannot express the

current situation correctly or cannot navigate the course of the correct actions effectively;

thus, the agent can be unaware of the subsequent rewards, good or bad. In our proposed

reward model, based on the original environment rewards, we used historical trajectory

data of the agent to try to make the rewards for each action more sensitive to good

trajectory data during the training process. For example, in the cart pole experiment,

unlike the original reward that gives +1 every time and so may make the agent think

that all actions are good, our reward model tried to shape the rewards to make the agent

recognize the current actions that are possible to get better or worse results in the future;

thereby, the use of our method could solve the cart pole problem fast and effectively.

Similar to the cart pole problem, the agent in the mountain car problem could recognize

how fast to arrive at the goal by giving different rewards for the different actions by

22

5 EXPERIMENTS

referring to the agent’s self-experience using our model. In the maze experiment, the

original rewards from the environment were sparse, but our proposed meta-reward model

changed the sparse reward structure by adding a few rewards to the zero-reward actions

and thus the obtained reward structure could navigate the agent to the goal faster. Using

our shaped rewards, we can also refresh the output structure of the network quickly for

the new task, just like the maze experiment with the modified structure. Thus, our reward

model had better performance in the experiment above by shaping the rewards.

5.2 Experiment for FEE

In this part, we evaluated our FEE method using Asynchronous Advantage Actor-Critic

(A3C)(Mnih et al., 2016) algorithm at classical control problem and compared the exper-

iment result with ES. We train our asynchronous reinforcement agent with 12 threads,

which means that 12 agents learn to solve the problem concurrently.

5.2.1 Cart pole problem

In the basic setting of FEE, we set the share memory size K = 5 and we used an MLP with

two hidden layers of size 100 for the global network structure for the A3C. In general,

when getting a negative reward is failure experiences and getting a positive reward is

success experiences. However, the CartPole problem had a dense structure that agents

can get +1 positive reward at each timestep before the pole falling down. Therefore, in

this experiment, we defined the negative reward as the fail experience and the successful

experience corresponds to fail experience. For example, if there is the fail experience

(st, at, rt, st + 1), rt < 0, the successful experience is (st, a
′
t, r

′
t, s

′
t + 1), r

′
t >= 0.

The experiment results are shown in Fig. 13. Our memory sharing method (red line)

had a better performance in controlling the cart to prevent the pole from falling over. All

the cart agents shared their successful and fail experience, and learn together so that all

agents can realize and learn all the problems and solved ways as quickly as possible. For

the ES method, the agent only learns its own problem and the solved experiences from

other agents. Thus, the FEE method can solve this problem within 200 episodes that it

is learning faster than the ES method.

5.2.2 Mountain car problem

In the basic setting of our FEE, we set the share memory size K = 15 that we shared the

15 batch experiences about failure and success. In this problem, the car arrived at the

23

5 EXPERIMENTS

Figure 13: Result of CartPole problem with FEE and ES

mountain is a successful experience and fails to arrive at the mountain within 10000 steps

is fail experience and the successful experience is the car get to the mountain that gets a

positive reward.

As the result shows in Fig. 14, our proposed method spent less time to train the

car to climb to the mountain. In this stable environment, various successful experiences

(arrived at the mountain) of the asynchronous agent were shared with others and were

learned repeatedly. Thus, the global network can convergence faster. In the ES method,

the successful experiences between agents are not sufficiently shared, so that our method

had a better performance in this problem.

5.2.3 Discussion for FEE

For the conventional A3C algorithm, each asynchronous agent individually learns the

problem and updates the global network. Our FEE method makes the asynchronous

agent become cooperative by sharing the meaningful(fail and success) experiences under

the student-teacher role. Through the meaningful experiences flow among all the asyn-

chronous agents, that experiences would be relearned and the agent can learn to solve the

problem and avoid failure faster. For example, in CartPole problem, the various experi-

ence about the pole fell down of all the agents would be shared and learned so that the

agent can realize the different types of fail experience as fast as possible and learn to avoid

happening again. In Mountain car problem, all the agents shared their own experience of

24

5 EXPERIMENTS

Figure 14: Result of Mountain car problem with FEE and ES

how to arrive at the top of the mountain to others. So, agents can understand and learn

various successful experiences to get to the top faster. Thus, our FEE method effectively

improves the learning speed by sharing the experiences which make all the agents learn

cooperatively in the teacher-student role.

5.3 Experiment for TAMRM+FEE

In the section above, We demonstrate that our proposed TAMRM model and FEE meth-

ods are effective in accelerating the process of reinforcement learning. We assume that if

we use the reward model and FEE method to train the agent at the same time, we can

further accelerate the deep learning process of reinforcement learning. In this part, we

experimented with the agent as the player to learn the motions of the bird to pass the

pipe in the Flappy Bird video game.

Flappy Bird video game is a side-scrolling game where the agent must successfully

navigate through gaps between pipes. The up arrow causes the bird to accelerate upwards.

If the bird makes contact with the ground or pipes, or goes above the top of the screen,

the game is over. For each pipe it passes through it gains a positive reward of +1. Each

time a terminal state is reached it receives a negative reward of -1 and others times, it

receives a 0 reward. Thus, it is a classical control problem with long-horizon and sparse

environment.

In this experiment, the baseline asynchronous algorithm is A3C, and we set the

25

5 EXPERIMENTS

network structure as Fig. 15. Obviously, when get the negative reward is failure experience

and when get the positive reward is success experience. In the FEE method, we set the

K = 3. In the meta-reward model, we set the size of the memory pool and k in the

meta-reward model were 10 and α = 0.7, β = 0.1. Note that, we use only one reward

model, that all asynchronous agents share the same meta-reward model (Fig. 16). The

red line shows the experiences sharing action among all the agents.

Figure 15: The network structure of Flappy Bird video game

Figure 16: Training structure

As Fig. 17 shows, our accelerated method(TAMRM+FEE) can improve the learning

speed of the conventional A3C method in a long-horizon, sparse environment. In this

video game, the difficulty for the bird to learn is the 0 reward which made the agent could

not know the situation was good for passing the pipe or was going to fail (terminal state).

Through our meta-reward model, we reduced the happening of the 0 rewards and revised

26

5 EXPERIMENTS

the reward to try to predict whether going to pass the pipe or closing to the terminal

state in the future by referring to the historical trajectory data. For the FEE, as all the

asynchronous agents shared the experience to pass the pipe and the fail experience to the

terminal state, all these meaningful experiences were relearned that made the agent easier

to learn to pass the pipe and get the positive reward.

Figure 17: The result of Flappy Bird video game

5.4 Disscussion

In this section, we trained our method in discrete action space long-horizon environment

with sparse or dense reward structure. We got the desired data and proved our proposed

methods are effective to accelerate the deep reinforcement learning. The meta-reward

model made the single-agent easier to learn with the revised reward and FEE made all

asynchronous single-agents cooperatively learn to solve the problem that could save the

training time. Meanwhile, we can train the agent with both TAMRMA and FEE that

reward model to help the single-agent learn faster and FEE made all the asynchronous

single-agent become cooperative that made the global network convergence faster in asyn-

chronous reinforcement learning. Also, by reasonably setting the size of our reward model

and shared experiences, we can effectively avoid a lot of extra calculations.

27

6 CONCLUSION

6 Conclusion

In this thesis, we attempted to accelerate the learning process of reinforcement by two

ways: (1) shaping the reward to tell the agent how to learn, (2) sharing the experiences

to make all asynchronous agents learn cooperatively just like a group. To shape the

reward, we proposed a reward model, TAMRM, which is simple to implement and uses

only the historical trajectory data of itself to automatically shape the training reward in

real time to make the agent learn efficiently and effectively by giving good rewards. For

the sparse reward structure, our reward model, TAMRM, can revise the sparse structure

by instead the 0 rewards with prediction reward based on the trajectory data. For the

dense reward structure, our reward model revise the original reward and made it easier

to learn. For our FEE method, it makes the asynchronous agents learn to solve the

control problem cooperatively with sharing the experiences just like playing as the role of

teacher that telling others what should do in order to solve the problem. The important

point is that our reward model did not need the expert demonstration data or extend any

structure in the neural network and can get the easier to learn reward by less calculation.

Theoretically, it can be used in all types of reinforcement learning methods based on

reward. To make the asynchronous reinforcement learning become cooperative, we used

the experience shaping setting of multi-reinforcement learning that sharing meaningful

experiences among the agents to make global network convergence faster. Our FEE

method extended the horizon of each agent which made them understand all the failure

and successful experience each episode, not only it’s own but also other agents. Thus,

each agent could more effectively learn to avoid failure and approach to success.

In our reward model, because we limited the one-hot encoding to encode the action

space and have to calculate the distance between sequences of actions, our method is

effective with a discrete action space, such as simple motions of agents, but we need to

extend our method to apply it to other types of applications with continuous action space.

Also, the FEE method had a limitation about the parameter K. To avoid a great amount

of gradient backpropagation calculations, we could not set the K too large. However, if

we set the K too small, the learning efficiency of this method would be reduced. So, in

this future work, we will attempt to extend the current method to make it applicable

to other problems by using other encoding methods to solve the limitation of TAMRM,

and we will try to find a method to calculate the optimal K value based on the training

situation to extend the FEE method.

28

7 ACKNOWLEDGMENT

7 Acknowledgment

I work this dissertation with my professor Sugawara. I would like to express my gratitude

from the bottom of my heart for his consistent support, encouragement, and patience

throughout this process. I thank my parents for believing me constantly and the help of

all lab members.

29

REFERENCES

REFERENCES

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1. ACM.

Abel, D., Salvatier, J., Stuhlmüller, A., and Evans, O. (2017). Agent-agnostic human-in-the-loop
reinforcement learning. arXiv preprint arXiv:1701.04079.

Asmuth, J., Littman, M. L., and Zinkov, R. (2008). Potential-based Shaping in Model-based
Reinforcement Learning. In AAAI, pages 604–609.

Badnava, B. and Mozayani, N. (2019). A new potential-based reward shaping for reinforcement
learning agent. arXiv preprint arXiv:1902.06239.

Brys, T., Harutyunyan, A., Suay, H. B., Chernova, S., Taylor, M. E., and Nowé, A. (2015). Re-
inforcement learning from demonstration through shaping. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017). Deep rein-
forcement learning from human preferences. In Advances in Neural Information Processing
Systems, pages 4299–4307.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27.

Da Silva, F. L., Glatt, R., and Costa, A. H. R. (2017). Simultaneously learning and advising in
multiagent reinforcement learning. In Proceedings of the 16th conference on autonomous
agents and multiagent systems, pages 1100–1108.

Devlin, S. M. and Kudenko, D. (2012). Dynamic potential-based reward shaping. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems, pages
433–440. IFAAMAS.

Eck, A., Soh, L.-K., Devlin, S., and Kudenko, D. (2013). Potential-based reward shaping for
POMDPs. In Proceedings of the 2013 international conference on Autonomous agents and
multi-agent systems, pages 1123–1124.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1126–1135. JMLR. org.

Grześ, M. (2017). Reward shaping in episodic reinforcement learning. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pages 565–573. International
Foundation for Autonomous Agents and Multiagent Systems.

Harutyunyan, A., Brys, T., Vrancx, P., and Nowé, A. (2014). Off-policy shaping ensembles in
reinforcement learning. arXiv preprint arXiv:1405.5358.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan,
J., Sendonaris, A., Osband, I., et al. (2018). Deep q-learning from demonstrations. In
Thirty-Second AAAI Conference on Artificial Intelligence.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and Amodei, D. (2018). Reward learning
from human preferences and demonstrations in Atari. In Advances in Neural Information
Processing Systems, pages 8011–8023.

Knox, W. B. and Stone, P. (2012). Reinforcement learning from simultaneous human and MDP
reward. In AAMAS, pages 475–482.

Laud, A. D. (2004). Theory and Application of Reward Shaping in Reinforcement Learning.
PhD thesis, University of Illinois at Urbana-Champaign, USA. AAI3130966.

30

REFERENCES

Marom, O. and Rosman, B. (2018). Belief reward shaping in reinforcement learning. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Mataric, M. J. (1994). Reward functions for accelerated learning. In Machine Learning Proceed-
ings 1994, pages 181–189. Elsevier.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In Inter-
national conference on machine learning, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540):529.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, volume 99, pages 278–287.

Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016). Meta-learning
with memory-augmented neural networks. In International conference on machine learning,
pages 1842–1850.

Saunders, W., Sastry, G., Stuhlmueller, A., and Evans, O. (2018). Trial without error: To-
wards safe reinforcement learning via human intervention. In Proceedings of the 17th In-
ternational Conference on Autonomous Agents and MultiAgent Systems, pages 2067–2069.
International Foundation for Autonomous Agents and Multiagent Systems.

Souza, L. O., Ramos, G. d. O., and Ralha, C. G. (2019). Experience sharing between cooperative
reinforcement learning agents. arXiv preprint arXiv:1911.02191.

Suay, H. B., Brys, T., Taylor, M. E., and Chernova, S. (2016). Learning from demonstration for
shaping through inverse reinforcement learning. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, pages 429–437.

Sutton, R. S. and Barto, A. G. (2011). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the tenth international conference on machine learning, pages 330–337.

Torrey, L. and Taylor, M. (2013). Teaching on a budget: Agents advising agents in reinforcement
learning. In Proceedings of the 2013 International Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS ’13, page 1053–1060, Richland, SC. International Founda-
tion for Autonomous Agents and Multiagent Systems.

Vanschoren, J. (2018). Meta-learning: A survey. arXiv preprint arXiv:1810.03548.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks for one
shot learning. In Advances in neural information processing systems, pages 3630–3638.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N. (2015). Duel-
ing network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581.

Wiewiora, E., Cottrell, G. W., and Elkan, C. (2003). Principled methods for advising rein-
forcement learning agents. In Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pages 792–799.

Wu, Y. and Tian, Y. (2017). Training Agent for First-Person Shooter Game with Actor-Critic
Curriculum Learning. In 5th International Conference on Learning Representations, ICLR
2017. OpenReview.net.

31

REFERENCES

Xiaohui, Z. and Toshiharu, S. (2020). Meta-reward model based on trajectory data with k-
nearest neighbors method. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages YY–ZZ. IEEE.

Zhu, C., Leung, H.-f., Hu, S., and Cai, Y. (2019). A q-values sharing framework for multi-
ple independent q-learners. In Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 2324–2326. International Foundation for
Autonomous Agents and Multiagent Systems.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K. (2008). Maximum Entropy Inverse
Reinforcement Learning. In Proceedings of the 23rd National Conference on Artificial In-
telligence - Volume 3, AAAI’08, pages 1433–1438. AAAI Press.

Zou, H., Ren, T., Yan, D., Su, H., and Zhu, J. (2019). Reward shaping via meta-learning. arXiv
preprint arXiv:1901.09330.

32

	Introduction
	Related Work
	Preliminaries
	k-Nearest Neighbors Algorithm
	Potential-based Reward Shaping (PBRS)
	Deep Reinforcement Learning
	Deep Q-learning
	Actor-Critic

	Proposed Method
	trajectory action meta-reward model
	k-NN-based reward prediction
	Meta-reward model

	Full experience exchange

	Experiments
	Experiment for TAMRM
	Cart pole problem
	Mountain car problem
	Maze problem
	Discussion for our reward model

	Experiment for FEE
	Cart pole problem
	Mountain car problem
	Discussion for FEE

	Experiment for TAMRM+FEE
	Disscussion

	Conclusion
	Acknowledgment

