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a b s t r a c t 

In minimally invasive surgery applications, the use of robotic manipulators is becoming 

more and more common to enhance the precision of the operations and post-operative 

processes. Such operations are often performed through an incision port (a pivot point) 

on the patient’s body. Since the end-effector (the handled surgical tool) move about the 

pivot point, the manipulator has to move about a remote center of motion. In this study, 

a 3-degrees-of-freedom parallel mechanism with 2R1T (R: rotation, T: translation) remote 

center of motion capability is presented for minimally invasive surgery applications. First, 

its kinematic structure is introduced. Then, its kinematic analysis is carried out by using 

a simplified kinematic model which consists of three intersecting planes. Then the dimen- 

sional design is done for the desired workspace and a simulation test is carried out to 

verify the kinematic formulations. Finally, the prototype of the final design is presented. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Use of robots in the medical field started by adapting industrial robots to surgical applications [ 3 , 8 ]. These industrial

robots were used after some modifications to guarantee surgical requirements such as safety and sterility. Firstly in 1985,

Kwoh et al. [8] used a PUMA 560 industrial robot to locate a neurosurgical tool next to the head of the patient. Recently

robots began to take place in surgical rooms as assistive devices for the surgeons [6] . However, industrial robots and surgical

robots differ from each other in their priorities. Taniguchi et al. [12] state that an industrial robot’s primary characteristics

are “high power" and "high speed" while a surgical robot’s are "safety" and "cleanness". 

Due to the specific requirements of surgical applications, highly specialized systems were needed over time [13] and

surgical robots have been developed to satisfy these requirements. Minimally invasive surgery (MIS) is one of these applica-

tions in which specifically designed surgical robots are commonly used. MIS is performed with surgical tools or instruments

inserted through a small hole on the patient’s body. This hole is also known as incision port, fulcrum, trocar or pivot point

depending on the MIS application. Surgeons and patients prefer MIS since these operations can be completed in reduced du-

rations with minimal pain and blood loss, and lower risk of infection. Post-operative processes also result in faster recovery

and smaller surgical scars [9] . 
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Fig. 1. Description of the motions of an endoscope with a remote center of motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taniguchi et al. [12] state that 27 endoscope robots have been developed between 1994 and 2009 and 8 of them have

been used on humans while others have been used on animals or stayed as a model. In most of these systems, the endo-

scope is positioned with a robotic arm and the surgeon controls this robotic arm with different tools or ways such as using

a controller, giving voice commands, making head movements or using an image processing system tracking the surgical

tools in the surgeon’s hand. Bihlmaier [2] explains the main examples of the motorized endoscope holding robots in litera-

ture in chronological order of development and states that most of them are designed for laparoscopic surgery applications

and have serial structures with various degrees-of-freedoms (dof). 

The kinematic design stage is one of the most important stages in designing an MIS robot since some crucial MIS con-

cerns such as safety, accuracy, dexterity and ergonomics are considered at this phase. Therefore, kinematic design consid-

erations such as pivoting motion, decoupled motion, back-drivability, redundancy, workspace and isotropy should be taken

into account to fulfil specific surgical requirements [7] . In this regard, pivoting motion through a remote center of motion

(RCM) is required due to the necessity of moving a tool or camera through/about an incision port in MIS. This requirement

can be satisfied in two different ways: by using a mechanical RCM or a non-mechanical RCM. The first way is to force the

surgical tool mechanically to move around a center of motion that is outside the robot’s structure. RCM is a point where

one or more rotational and translational movements are pivoted outside the mechanism. This concept allows MIS robots to

work in a larger space without touching the body of the patient while providing the desired pivoting movements of the

surgical tool. In addition, while the robot is operating, the patient and surgeon are automatically protected against the dam-

ages caused by any possible control or coordination error [6] . In robotic MIS systems, mechanical RCMs can be obtained by

using several concepts: isocenters, circular tracking arcs, parallelograms, synchronous belt transmissions, spherical linkages, 

parallel mechanisms and gear trains [7] . The second way is to use a non-mechanical RCM concept, where the desired piv-

oted motion is obtained at a virtual RCM by the control of a redundant robot. However, Liu et al. [11] state that compared

to non-mechanical ones, mechanical RCMs are more reliable and considered more suitable for clinical practice. 

In MIS, a surgical tool or instrument may have up to 4 (3 rotational + 1 translational) dof through the incision port:

pitch, yaw, roll and heave motions ( Fig. 1 ). For endoscope holding robots, pitch, yaw and heave motions are sufficient for

endoscope movements and the roll motion about the endoscope axis is usually unnecessary. These three motions define a

2R1T (R: rotation; T: translation) motion pattern where the translation direction is perpendicular to the plane defined by

the orthogonally intersecting rotation axes. In this case, the intersection point of the rotation axes is the RCM. 

Although there are several patents and papers on serial and hybrid manipulators with 2R1T motion, parallel manipulators

with 2R1T motion are not common. 2R1T parallel manipulators with a RCM presented by Li et al. [10] seem to have 3-URRR

and 3-UPRR kinematic structures with all three legs equally spaced about the end-effector axis, but no details are given

other than some figures. Nevertheless, the 3-URRR manipulator seems to have a similar architecture with the manipulator

presented in this study. Recently Ya ̧s ır and Kiper [14] have presented the structural synthesis of 2R1T manipulators with

RCM where all serial, hybrid and parallel architectures are considered. As a result of that study, the manipulator architecture

used in this study is selected for the detailed design. 

This study deals with the design of a parallel manipulator for an endoscope holding robot to be used in minimally

invasive transnasal surgeries. The robot is an assistive robot to work alongside the surgeon during the surgery. Hence, this

work is about designing a non-parasitic surgical robotic arm with a RCM which is capable of performing 2R1T motion such

that an endoscope can be precisely manipulated without affecting the access of the surgeon to the operation area. The paper

is organized as follows: In Section 2 , the kinematic structure of the manipulator is explained and then it is simplified by
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Fig. 2. Description of 2URRR-URR manipulator a) Top view on the patient, b) An auxiliary view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

using intersecting planes. Kinematic analysis and design of the parallel manipulator are presented in Section 3 , where a

slider-crank mechanism is designed for the middle leg of the manipulator and the link dimensions are optimized for the

desired workspace. A Matlab simulation is presented in Section 4 to verify the direct and inverse kinematics formulations

presented in Section 3 . The constructional design and a prototype are presented in Section 5 . Finally, Section 6 concludes

the paper. 

2. Description of the manipulator 

A 3-dof parallel manipulator with 2R1T motion pattern and RCM is selected among several other alternatives [14] . The

kinematic structure of the manipulator is 2URRR-URR which comprises 3 legs. The U joints of those legs can be arbitrarily

distributed on the base platform of the manipulator. As it can be observed from Fig. 2 a, the legs are placed on one side on

the base platform instead of distributing them symmetrically around the Z-axis. This is for the sake of providing the surgeon

with some robot link free space to facilitate the access of the surgeon to the surgical area. In Fig. 2 b, the kinematic diagram

of the 2URRR-URR manipulator is given. As can be seen, the axes of the three R joints on the base platform intersect at the

RCM point. The URR leg is selected as the middle leg and it is placed by rotating the first revolute joint axis by an angle

β from X-axis around Y-axis. The two URRR legs are selected as the side legs and they are placed by first rotating their first

revolute joint axes by an angle α1 and α2 from X-axis to both sides around Z-axis, then rotating them by an angle β around

Y-axis. The distance between the center of each U joint and the projection of the RCM point on the XY-plane is shown by

r and the distances between these centers and XY-plane are represented by h . The last R joints of the two URRR legs are

constructed by using circular sliders which slide on an arc attached to the endoscope group. 

Except for the first R joints of all legs and the R joints of URRR legs about the end-effector axis at E, all legs have three

parallel revolute joints which define the planes A 1 B 1 C 1 , A 2 B 2 C 2 and A 3 B 3 C 3 ( Fig. 3 ). It means that each leg can move on a

plane and the angle of this plane can be changed by a revolute joint whose axis is within that plane. Hence, a kinematic

diagram can be represented by a simpler model which consists of three planes intersecting along the end-effector axis and

the angle of each plane can be changed. As can be seen in Fig. 3 , there are three planes and each of them represents an RRR

leg. These planes are intersecting along � w - unit vector along the end-effector axis. The angles of the side planes are θ1 and

θ2 , which are also the joint variables associated with the R joints between the base platform and the side legs. Once θ1 and

θ2 are defined, the angle of the middle plane is already determined because they all have to include � w . For the middle leg,

the second R joint can be used to manipulate the distance |DE| = d . This joint angle is denoted as θ3 . Thus, θ1 , θ2 and θ3

are the input variables for the manipulator. Also, the unit normal vector of each plane is shown as � n 1 , � n 2 , � n 3 , respectively.
ˆ X (·) , ˆ Y (·) and 

ˆ Z (·) represent the elementary rotation matrices about X-, Y- and Z-axes, respectively. 
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Fig. 3. Simplified kinematic diagram of the manipulator with three intersecting planes. 

 

 

 

 

 

 

 

 

 

 

The end-effector axis remains at the intersection line of the three leg planes which always pass through the RCM, but can

be oriented as desired. Due to this architecture of the manipulator, the end-effector axis can only have a variable orientation

(2R motion) about the RCM and can slide through (1T motion) the RCM. Therefore, there is no parasitic motion of the end-

effector. Details of the structural design of non-parasitic manipulators with RCM can be found in [10] and [14] . With the

intersecting planes concept, direct and inverse kinematics of the mechanism can be easily formulated. This also facilitates

the controller design for the robot. 

3. Kinematic formulation and design 

In this section, first the kinematic formulation to be used for the kinematic analysis and design of the manipulator

is presented. Then, the direct and inverse kinematic analyses for position and velocity levels are presented. Finally, the

kinematic design studies are presented. 

3.1. Kinematic formulation 

It should be noted that from this point on, abbreviations for cosine and sine functions are used as “c” and “s” wherever

appropriate. Let φ be the angle of � w with respect to the XZ-plane (corresponding to the yaw motion) and ψ be the angle

of � w with respect to the YZ-plane (corresponding to the pitch motion). Then, � n 1 , � n 2 and 

�
 w vectors can be found as follows:

�
 n 1 = ̂

 Z ( α1 ) ̂  Y ( β) ̂  X ( θ1 ) 

[ 

0 

1 

0 

] 

= 

[ 

c α1 −s α1 0 

s α1 c α1 0 

0 0 1 

] [ 

cβ 0 sβ
0 1 0 

−sβ 0 cβ

] [ 

1 0 0 

0 c θ1 −s θ1 

0 s θ1 c θ1 

] [ 

0 

1 

0 

] 

= 

[ 

c α1 sβs θ1 − s α1 c θ1 

s α1 sβs θ1 + c α1 c θ1 

cβs θ1 

] (1) 
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Fig. 4. Kinematic diagrams for the middle leg: a) on � x 3 � z 3 −plane, b) on � y 3 � z 3 −plane. 

 

 

 

 

 

 

 

 

 

�
 n 2 = 

ˆ Z ( α2 ) ̂  Y ( β) ̂  X ( θ2 ) 

[ 

0 

1 

0 

] 

= 

[ 

c α2 sβs θ2 − s α2 c θ2 

s α2 sβs θ2 + c α2 c θ2 

cβs θ2 

] 

(2)

�
 w = 

[ 

s ψ 

−sφ√ 

1 − s 2 φ − s 2 ψ 

] 

= 

�
 n 1 × �

 n 2 

| � n 1 × �
 n 2 | (3)

where 

�
 n 1 × �

 n 2 = 

∣∣∣∣∣∣
−→ 

i 
−→ 

j 
−→ 

k 
c α1 sβs θ1 − s α1 c θ1 s α1 sβs θ1 + c α1 c θ1 cβs θ1 

c α2 sβs θ2 − s α2 c θ2 s α2 sβs θ2 + c α2 c θ2 cβs θ2 

∣∣∣∣∣∣
= 

[ 

( s α1 − s α2 ) cβsβs θ1 s θ2 + c α1 cβc θ1 s θ2 − c α2 cβs θ1 c θ2 

( c α2 − c α1 ) cβsβs θ1 s θ2 − s α2 cβs θ1 c θ2 + s α1 cβc θ1 s θ2 

s ( α2 − α1 ) 
(
c θ1 c θ2 + s 2 βs θ1 s θ2 

)
+ c ( α2 − α1 ) sβs ( θ1 − θ2 ) 

] 

(4)

For symmetrical positioning of the side legs, α1 = –α and α2 = α. Then, 

�
 n 1 × �

 n 2 = 

[ −sαs 2 βs θ1 s θ2 + cαcβs ( θ2 − θ1 ) 
−sαcβs ( θ1 + θ2 ) 

s 2 α
(
c θ1 c θ2 + s 2 βs θ1 s θ2 

)
+ c2 αsβs ( θ1 − θ2 ) 

] 

(5)

⇒ | � n 1 × �
 n 2 | = 

√ 

( −s αs2 βs θ1 s θ2 + c αc βs ( θ2 − θ1 ) ) 
2 + ( s αc βs ( θ1 + θ2 ) ) 

2 

+ 

(
s2 α

(
c θ1 c θ2 + s 2 βs θ1 s θ2 

)
+ c2 αs βs ( θ1 − θ2 ) 

)2 (6)

In Fig. 4. a, base segment DA 3 , leg chain A 3 B 3 C 3 , platform segment C 3 E and end-effector line ED are coplanar. DA 3 direc-

tion is obtained by rotating X-axis about Y-axis by angle β . So, the unit vector along DA 3 is � x 3 = [c β 0 –s β] T . Unit vector � w

along DE is already known. So, A 3 DE angle γ can be found as: 

γ = cos −1 ( � w · � x 3 ) = cos −1 
(

cβs ψ − sβ
√ 

1 − s 2 φ − s 2 ψ 

)
(7)

In local coordinates, � x 3 is located on the horizontal plane. So, locations of C 3 and B 3 are ( d − −i c 3 ) e 
i γ and f + a 3 e 

i θ3 ,

respectively. Then, ∣∣ iγ i θ3 

∣∣
( d − i c 3 ) e − f − a 3 e = b 3 (8) 
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3.1.1. Direct kinematics 

For direct kinematics, by using Eqs. (5) and (6) , the end-effector orientation angles ψ and φ are found as: 

ψ = sin 

−1 −sαs 2 βsθ1 sθ2 + cαcβs ( θ2 − θ1 ) ∣∣∣→ 

n 1 ×
→ 

n 2 

∣∣∣
φ = sin 

−1 sαcβs ( θ1 + θ2 ) ∣∣∣→ 

n 1 ×
→ 

n 2 

∣∣∣ (9) 

If all the terms at the left-hand side of Eq. (8) are divided by e i γ , the end-effector heave variable d can be found with

the following steps: ∣∣d − [
i c 3 + f e −iγ + a 3 e 

i ( θ3 −γ ) 
]∣∣ = b 3 ⇒ 

(
d −

[
i c 3 + f e −iγ + a 3 e 

i ( θ3 −γ ) 
])(

d −
[
−i c 3 + f e iγ + a 3 e 

−i ( θ3 −γ ) 
])

= b 3 
2 

(10) 

d 2 − 2 d [ f cγ + a 3 c ( θ3 − γ ) ] + [ f cγ + a 3 c ( θ3 − γ ) ] 
2 + [ c 3 − f sγ + a 3 s ( θ3 − γ ) ] 

2 − b 3 
2 = 0 

⇒ d = f cγ + a 3 c ( θ3 − γ ) + 

√ 

b 3 
2 − [ c 3 − f sγ + a 3 s ( θ3 − γ ) ] 

2 
(11) 

In Eq. (11) , when the sign in front of the square root is selected as positive, this corresponds to the assembly mode shown

in Fig. 4 . When the sign is negative, line C 3 E is in a mirror-symmetrical position with respect to a line passing through B 3 

and parallel to C 3 E. This assembly mode corresponding to the negative side is unfavorable, because in this mode the links

of the manipulator will be too much close to the patient’s head. The singular configuration where B 3 , C 3 and E are collinear

corresponds to the configuration where the transmission angle of the slider-crank linkage is zero, and as it is explained in

Section 3.2.2 , we designed the mechanism not to go near this configuration. Hence the slider-crank stays in the assembly

mode shown in Fig. 4 . 

3.1.2. Inverse kinematics 

For the inverse kinematics, since � w and 

�
 n 1 are orthogonal vectors, � w · � n 1 = 0 . Using Eqs. (1) and (3) , 

�
 w · � n 1 = 

⎡ 

⎢ ⎣ 

s ψ 

−sφ√ 

1 − s 2 φ − s 2 ψ 

⎤ 

⎥ ⎦ 

·

⎡ 

⎣ 

cαsβs θ1 + sαc θ1 

−sαsβs θ1 + cαc θ1 

cβs θ1 

⎤ 

⎦ = 0 

⇒ ( s ψsα − sφcα) c θ1 + 

[ 
( s ψcα + sφsα) sβ + 

√ 

1 − s 2 φ − s 2 ψ cβ
] 

s θ1 = 0 

(12) 

Consequently, the left leg actuated variable θ1 is found by solving Eq. (12) as 

θ1 = tan 

−1 sφcα − s ψsα

( s ψcα + sφsα) sβ + 

√ 

1 − s 2 φ − s 2 ψ cβ
(13) 

Following similar procedure with 

�
 w · � n 2 = 0 , the right leg actuated variable θ2 is found as 

θ2 = tan 

−1 sφcα + s ψsα

( s ψcα − sφsα) sβ + 

√ 

1 − s 2 φ − s 2 ψ cβ
(14) 

When both sides of Eq. (8) are squared, it yields, 

( dcγ + c 3 sγ − f − a 3 c θ3 ) 
2 + ( dsγ − c 3 cγ − a 3 s θ3 ) 

2 = b 3 
2 

2 a 3 ( dcγ + c 3 sγ − f ) c θ3 + 2 a 3 ( dsγ − c 3 cγ ) s θ3 = ( dcγ + c 3 sγ − f ) 
2 + ( dsγ − c 3 cγ ) 

2 + a 3 
2 − b 3 

2 

⇒ Ac θ3 + Bs θ3 = C 

(15) 

where A = 2 a 3 ( dcγ + c 3 sγ − f ) , B = 2 a 3 ( dsγ − c 3 cγ ) and C = ( dcγ + c 3 sγ − f ) 2 + ( dsγ − c 3 cγ ) 2 + a 3 
2 − b 3 

2 
. Let A = Mc δ,

B = Ms δ such that M = 

√ 

A 

2 + B 2 = | −−→ 

A 0 A 2 | and δ = atan2 ( A, B ) = � 

−−→ 

A 3 C 3 . Then, the middle leg actuated variable, θ3 is found

as: 

Ac θ3 + Bs θ3 = Mc ( θ3 − δ) = C ⇒ θ3 = δ − cos −1 ( C / M ) (16) 

θ3 = δ + cos −1 ( C / M ) corresponds to the configuration shown in Fig. 4 , where joint B 3 is to the right of line A 3 C 3 . θ3 =
δ + cos −1 ( C / M ) also satisfies Eq. (16) , but this assembly mode corresponds to the configuration where B 3 is to the left of

line A 3 C 3 . Such an assembly mode is not favorable, because joint B 3 would come closer to the patient’s head and A 3 B 3 link

may collide with the base link. For the selected workspace and selected link lengths in Section 3.2.2 , the crank and coupler

links of the slider-crank linkage never become collinear and assembly mode change does not occur. 
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3.1.3. Velocity level kinematics 

From Eqs. (3) and (5) , 

�
 w = 

⎡ 

⎢ ⎣ 

s ψ 

−sφ√ 

1 − s 2 φ − s 2 ψ 

⎤ 

⎥ ⎦ 

= 

1 

| � n 1 × �
 n 2 | 

⎡ 

⎢ ⎣ 

−sαs 2 βs θ1 s θ2 + cαcβs ( θ2 − θ1 ) 

−sαcβs ( θ1 + θ2 ) 

s 2 α
(
c θ1 c θ2 + s 2 βs θ1 s θ2 

)
+ c2 αsβs ( θ1 − θ2 ) 

⎤ 

⎥ ⎦ 

(17)

Therefore, the following equalities can be written: 

−sαs 2 βs θ1 s θ2 + cαcβs ( θ2 − θ1 ) 

s ψ 

= 

sαcβs ( θ1 + θ2 ) 

sφ
= 

s 2 α
(
c ( θ2 − θ1 ) − c 2 βs θ1 s θ2 

)
+ c2 αsβs ( θ1 − θ2 ) √ 

1 − s 2 φ − s 2 ψ 

(18)

Let 

f 1 ( θ1 , θ2 , φ, ψ ) = 

√ 

1 − s 2 φ − s 2 ψ [ −sαs 2 βs θ1 s θ2 + cαcβs ( θ2 − θ1 ) ] 

− s ψ 

{
s 2 α

[
c ( θ2 − θ1 ) − c 2 βs θ1 s θ2 

]
+ c2 αsβs ( θ1 − θ2 ) 

}
= 0 

(19)

f 2 ( θ1 , θ2 , φ, ψ ) = 

√ 

1 − s 2 φ − s 2 ψ sαcβs ( θ1 + θ2 ) 

− sφ
{

s 2 α
[
c ( θ2 − θ1 ) − c 2 βs θ1 s θ2 

]
+ c2 αsβs ( θ1 − θ2 ) 

}
= 0 

(20)

Eqs. (21) is obtained by taking the time derivative of Eqs. (19) and (20) . 

d f 1 
dt 

= 

∂ f 1 
∂ θ1 

˙ θ1 + 

∂ f 1 
∂ θ2 

˙ θ2 + 

∂ f 1 
∂φ

˙ φ + 

∂ f 1 
∂ψ 

˙ ψ = 0 

d f 2 
dt 

= 

∂ f 2 
∂ θ1 

˙ θ1 + 

∂ f 2 
∂ θ2 

˙ θ2 + 

∂ f 2 
∂φ

˙ φ + 

∂ f 2 
∂ψ 

˙ ψ = 0 

⇒ 

⎡ 

⎢ ⎣ 

∂ f 1 
∂ θ1 

∂ f 1 
∂ θ2 

∂ f 2 
∂ θ1 

∂ f 2 
∂ θ2 

⎤ 

⎥ ⎦ 

[ 

˙ θ1 

˙ θ2 

] 

= 

⎡ 

⎢ ⎣ 

−∂ f 1 
∂φ

−∂ f 1 
∂ψ 

−∂ f 2 
∂φ

−∂ f 2 
∂ψ 

⎤ 

⎥ ⎦ 

[ 

˙ φ

˙ ψ 

] 

(21)

where 

∂ f 1 
∂ θ1 

= 

√ 

1 − s 2 φ − s 2 ψ [ −sαs 2 βc θ1 s θ2 − cαcβc ( θ2 − θ1 ) ] − s ψ 

[
s 2 α

(
s ( θ2 − θ1 ) − c 2 βc θ1 s θ2 

)
+ c2 αsβc ( θ1 − θ2 ) 

]

∂ f 1 
∂ θ2 

= 

√ 

1 − s 2 φ − s 2 ψ [ −sαs 2 βs θ1 c θ2 + cαcβc ( θ2 − θ1 ) ] − s ψ 

[
s 2 α

(
−s ( θ2 − θ1 ) − c 2 βs θ1 c θ2 

)
− c2 αsβc ( θ1 − θ2 ) 

]

∂ f 1 
∂φ

= 

−sφcφ√ 

1 − s 2 φ − s 2 ψ 

[ −sαs 2 βs θ1 s θ2 + cαcβs ( θ2 − θ1 ) ] 

∂ f 1 
∂ψ 

= 

−sψcψ √ 

1 − s 2 φ − s 2 ψ 

[ −sαs 2 βs θ1 s θ2 + cαcβs ( θ2 − θ1 ) ] − cψ 

[
s 2 α

(
c ( θ2 − θ1 ) − c 2 βs θ1 s θ2 

)
+ c2 αsβs ( θ1 − θ2 ) 

]

∂ f 2 
∂ θ1 

= 

√ 

1 − s 2 φ − s 2 ψ sαcβc ( θ1 + θ2 ) − sφ

[ 

s 2 α
(
s ( θ2 − θ1 ) − c 2 βc θ1 s θ2 

)
+ c2 αsβc ( θ1 − θ2 ) 

] 

∂ f 2 
∂ θ2 

= 

√ 

1 − s 2 φ − s 2 ψ sαcβc ( θ1 + θ2 ) + sφ
[
s 2 α

(
s ( θ2 − θ1 ) + c 2 βs θ1 c θ2 

)
+ c2 αsβc ( θ1 − θ2 ) 

]

∂ f 2 
∂φ

= − sφcφsαcβs ( θ1 + θ2 ) √ 

1 − s 2 φ − s 2 ψ 

− cφ
[
s 2 α

(
c ( θ2 − θ1 ) − c 2 βs θ1 s θ2 

)
+ c2 αsβs ( θ1 − θ2 ) 

]

∂ f 2 
∂ψ 

= − sψ cψ sαcβs ( θ1 + θ2 ) √ 

1 − s 2 φ − s 2 ψ 

Some of the partial derivatives would become undefined if 
√ 

1 − s 2 φ − s 2 ψ = 0 . This term being zero corresponds to the

case where the endoscope axis is coplanar with the base plane. Such a configuration is quite far away from the selected

workspace presented in Section 3.2 , so it is guaranteed that such singularities are avoided. 
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For β = 0 (explained in Section 3.2.1 ), Eqs. (6) and (17) - (21) are simplified as follows: 

| � n 1 × �
 n 2 | = 

√ 

s 2 θ2 c 2 θ1 + c 2 θ2 s 2 θ1 − 2 c2 αc θ1 s θ1 c θ2 s θ2 + 4 s 2 αc 2 αc 2 θ1 c 2 θ2 (22) 

�
 w = 

⎡ 

⎢ ⎣ 

s ψ 

−sφ√ 

1 − s 2 φ − s 2 ψ 

⎤ 

⎥ ⎦ 

= 

1 

| � n 1 × �
 n 2 | 

⎡ 

⎣ 

cαs ( θ2 − θ1 ) 

−sαs ( θ1 + θ2 ) 

s 2 αc θ1 c θ2 

⎤ 

⎦ ⇒ 

cαs ( θ2 − θ1 ) 

s ψ 

= 

sαs ( θ1 + θ2 ) 

sφ
= 

s 2 αc θ1 c θ2 √ 

1 − s 2 φ − s 2 ψ 

(23) 

⇒ 

f 1 ( θ1 , θ2 , φ, ψ ) = 

√ 

1 − s 2 φ − s 2 ψ s ( θ2 − θ1 ) − 2 sψsαc θ1 c θ2 = 0 

f 2 ( θ1 , θ2 , φ, ψ ) = 

√ 

1 − s 2 φ − s 2 ψ s ( θ1 + θ2 ) − 2 sφcαc θ1 c θ2 = 0 

(24) 

d f 1 
dt 

= 

∂ f 1 
∂ θ1 

˙ θ1 + 

∂ f 1 
∂ θ2 

˙ θ2 + 

∂ f 1 
∂φ

˙ φ + 

∂ f 1 
∂ψ 

˙ ψ = 0 

d f 2 
dt 

= 

∂ f 2 
∂ θ1 

˙ θ1 + 

∂ f 2 
∂ θ2 

˙ θ2 + 

∂ f 2 
∂φ

˙ φ + 

∂ f 2 
∂ψ 

˙ ψ = 0 

⇒ 

⎡ 

⎢ ⎣ 

∂ f 1 
∂ θ1 

∂ f 1 
∂ θ2 

∂ f 2 
∂ θ1 

∂ f 2 
∂ θ2 

⎤ 

⎥ ⎦ 

[ 

˙ θ1 

˙ θ2 

] 

= 

⎡ 

⎢ ⎣ 

−∂ f 1 
∂φ

−∂ f 1 
∂ψ 

−∂ f 2 
∂φ

−∂ f 2 
∂ψ 

⎤ 

⎥ ⎦ 

[ 

˙ φ

˙ ψ 

] 

(25) 

where 

∂ f 1 
∂ θ1 

= −
√ 

1 − s 2 φ − s 2 ψ c ( θ2 − θ1 ) + 2 s ψsαs θ1 c θ2 
∂ f 1 
∂ θ2 

= 

√ 

1 − s 2 φ − s 2 ψ c ( θ2 − θ1 ) + 2 s ψsαc θ1 s θ2 

∂ f 1 
∂φ

= 

−sφcφs ( θ2 − θ1 ) √ 

1 − s 2 φ − s 2 ψ 

2 

∂ f 1 
∂ψ 

= 

−sψ cψ s ( θ2 − θ1 ) √ 

1 − s 2 φ − s 2 ψ 

− 2 cψsαc θ1 c θ2 

∂ f 2 
∂ θ1 

= 

√ 

1 − s 2 φ − s 2 ψ c ( θ1 + θ2 ) + 2 sφcαs θ1 c θ2 2 

∂ f 2 
∂ θ2 

= 

√ 

1 − s 2 φ − s 2 ψ c ( θ1 + θ2 ) + 2 sφcαc θ1 s θ2 

∂ f 2 
∂φ

= − sφcφs ( θ1 + θ2 ) √ 

1 − s 2 φ − s 2 ψ 

− 2 cφcαc θ1 c θ2 2 

∂ f 2 
∂ψ 

= − sψcψs ( θ1 + θ2 ) √ 

1 − s 2 φ − s 2 ψ 

Rearranging Eq. (15) : 

f 3 ( d, ψ, φ, θ3 ) = d 2 − 2 d [ f cγ + a 3 c ( θ3 − γ ) ] + [ f cγ + a 3 c ( θ3 − γ ) ] 
2 + [ c 3 − f sγ + a 3 s ( θ3 − γ ) ] 

2 − b 3 
2 = 0 (26) 

where γ = 

π
2 − ψ as can be found from Eq. (7) for β = 0. Therefore, f 3 does not depend on φ. Similarly, Eqs. (28) and

(29) are found using the total derivative in Eq. (27) : 

∂ f 3 
∂d 

˙ d + 

∂ f 3 
∂ψ 

˙ ψ + 

∂ f 3 
∂ θ3 

˙ θ3 = 0 (27) 

˙ θ3 = −
(

∂ f 3 
∂d 

˙ d + 

∂ f 3 
∂ψ 

˙ ψ 

)
/ 
∂ f 3 
∂ θ3 

(28) 

or 

˙ d = −
(

∂ f 3 
∂ψ 

˙ ψ + 

∂ f 3 
∂ θ3 

˙ θ3 

)
/ 
∂ f 3 
∂d 

(29) 

where 

∂ f 3 
∂d 

= 2 [ d − f cγ − a 3 c ( θ3 − γ ) ] 
∂ f 3 
∂ψ 

= −∂ f 3 
∂γ

= −2 d [ f sγ − a 3 s ( θ3 − γ ) ] + 2 c 3 [ f cγ + a 3 c ( θ3 − γ ) ] 

∂ f 3 
∂ θ3 

= 2 a 3 [ s ( θ3 − γ ) ( d − f cγ ) + c ( θ3 − γ ) ( c 3 − f sγ ) ] 

The angular speed in Eq. (28) would be undefined if ∂ f 3 / ∂ θ3 = 0, which happens when A 3 , B 3 and C 3 in Fig. 4 be-

come collinear. As explained in Section 3.1.2 , the manipulator never attains this singular configuration within the desired

workspace. The speed in Eq. (29) would be undefined if ∂ f 3 / ∂ d = 0, which happens if B 3 , C 3 and E in Fig. 4 become collinear.

As explained in Section 3.1.1 , the manipulator is designed to never attain this configuration. 
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The relationship between joint space and task space velocities are constructed as: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ f 1 
∂ θ1 

∂ f 1 
∂ θ2 

0 

∂ f 2 
∂ θ1 

∂ f 2 
∂ θ2 

0 

0 0 

∂ f 3 
∂ θ3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎣ 

˙ θ1 

˙ θ2 

˙ θ3 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−∂ f 1 
∂φ

−∂ f 1 
∂ψ 

0 

−∂ f 2 
∂φ

−∂ f 2 
∂ψ 

0 

0 −∂ f 3 
∂ψ 

−∂ f 3 
∂d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎣ 

˙ φ

˙ ψ 

˙ d 

⎤ 

⎥ ⎦ 

(30)

For the part involving the orientation of the end-effector axis only, ⎡ 

⎢ ⎣ 

∂ f 1 
∂ θ1 

∂ f 1 
∂ θ2 

∂ f 2 
∂ θ1 

∂ f 2 
∂ θ2 

⎤ 

⎥ ⎦ 

[ 

˙ θ1 

˙ θ2 

] 

= 

⎡ 

⎢ ⎣ 

−∂ f 1 
∂φ

−∂ f 1 
∂ψ 

−∂ f 2 
∂φ

−∂ f 2 
∂ψ 

⎤ 

⎥ ⎦ 

[ 

˙ φ

˙ ψ 

] 

⇒ 

[ 

˙ θ1 

˙ θ2 

] 

= 

ˆ J 

[ 

˙ φ

˙ ψ 

] 

(31)

where 

ˆ J = 

1 

∂ f 1 
∂ θ1 

∂ f 2 
∂ θ2 

− ∂ f 2 
∂ θ1 

∂ f 1 
∂ θ2 

⎡ 

⎢ ⎣ 

∂ f 2 
∂ θ2 

−∂ f 1 
∂ θ2 

−∂ f 2 
∂ θ1 

∂ f 1 
∂ θ1 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

−∂ f 1 
∂φ

−∂ f 1 
∂ψ 

−∂ f 2 
∂φ

−∂ f 2 
∂ψ 

⎤ 

⎥ ⎦ 

= 

1 

�

[
J 11 J 12 

J 21 J 22 

]
(32)

with J 11 = 

∂ f 1 
∂ θ2 

∂ f 2 
∂φ

− ∂ f 2 
∂ θ2 

∂ f 1 
∂φ

, J 12 = 

∂ f 1 
∂ θ2 

∂ f 2 
∂ψ 

− ∂ f 2 
∂ θ2 

∂ f 1 
∂ψ 

, J 21 = 

∂ f 2 
∂ θ1 

∂ f 1 
∂φ

− ∂ f 1 
∂ θ1 

∂ f 2 
∂φ

, J 22 = 

∂ f 2 
∂ θ1 

∂ f 1 
∂ψ 

− ∂ f 1 
∂ θ1 

∂ f 2 
∂ψ 

and � = 

∂ f 1 
∂ θ1 

∂ f 2 
∂ θ2 

− ∂ f 2 
∂ θ1 

∂ f 1 
∂ θ2 

. As

it is explained in Section 3.2 , the target workspace is far from singularities, so we do not get into details of singularity

analysis or determine the boundaries of the reachable workspace in this study. Here we just specify that for α = π /4 (the

chosen value in Section 3.2.1 ), singularity occurs for θ1 = ±π /2 and θ2 = ±π /2 in the joint space. These configurations

correspond to the case where the side leg planes (and hence the middle leg plane as well) are coplanar with the base

plane. Obviously, for our application, the manipulator never goes to this singular pose. Also, there are possible singularities

due to the passive joints in the side legs (extended and folded configurations of links A i B i and B i C i for i = 1, 2 - see Fig. 2 b),

but for the selected target workspace, the link lengths are selected to avoid such singularities. For evaluating the condition

number for ˆ J , 

ˆ J T ˆ J = 

1 

�2 

[ 

J 11 
2 + J 21 

2 J 11 J 12 + J 21 J 22 

J 11 J 12 + J 21 J 22 J 12 
2 + J 22 

2 

] 

(33)

∣∣ ˆ J T ˆ J − λˆ I 
∣∣ = 

1 
�2 

∣∣∣∣∣J 11 
2 + J 21 

2 − �2 λ J 11 J 12 + J 21 J 22 

J 11 J 12 + J 21 J 22 J 12 
2 + J 22 

2 − �2 λ

∣∣∣∣∣
= 

[(
J 11 

2 + J 21 
2 − �2 λ

)(
J 12 

2 + J 22 
2 − �2 λ

)
− ( J 11 J 12 + J 21 J 22 ) 

2 
]
/ �2 

= �2 λ2 −
(
J 11 

2 + J 12 
2 + J 21 

2 + J 22 
2 
)
λ + 1 = 0 

(34)

The eigenvalues of ˆ J T ˆ J are 

λ1 , 2 = 

J 11 
2 + J 12 

2 + J 21 
2 + J 22 

2 ∓
√ (

J 11 
2 + J 12 

2 + J 21 
2 + J 22 

2 
)2 − 4 �2 

2 �2 
(35)

Then, the condition number of ˆ J is found as: 

κ = 

√ 

max ( | λ1 | , | λ2 | ) 
min ( | λ1 | , | λ2 | ) (36)

The condition number in Eq. (36) is to be used in the kinematic design of the manipulator considering optimal force

transmission characteristics regarding the θ1 and θ2 inputs, and orientation of the end-effector. For the input angle θ3 and

the translation d of the end-effector, the transmission angle of a slider-crank mechanism in the middle leg plane is used for

design. 

3.2. Kinematic design 

For the kinematic design, firstly the workspace dimensions of the manipulator need to be defined. Since this manipulator

is to be used for transnasal pituitary gland surgeries, the workspace is the nasal cavity of a patient. To identify the motion

limits inside the nasal cavity, first, the computed tomography scans of a group of patients were investigated by Dede et al.
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Fig. 5. Dimensions of the slider-crank mechanism in the middle leg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5] . The nominal dimensions of the cavity are measured and then, a specifically designed measurement tool with an inertial

measurement unit was mounted on an endoscope. This endoscope is used on a cadaver with nominal nasal cavity dimen-

sions and it is moved around the borders of the nasal cavity. The measured rotational motions are recorded and later, they

were extended to cover the 99.7% confidence interval. The results indicate that the endoscope is moved 33 ° for pitch and

23 ° for yaw motion about the RCM and 95 mm for heave motion through the RCM for a transnasal operation. This means

the mechanism should have at least �ψ = 33 °, �φ = 23 ° and �d = 95 mm of motion ranges. Consequently, the workspace

ranges of the manipulator are chosen as �ψ = 40 °, �φ = 30 ° and �d = 100 mm. 

In Section 3.2.1 , the transmission characteristics of pitch and yaw motions are optimized based on the condition num-

ber and angles α and β are selected. The link-length dimensions of the side legs do not have a significant effect on the

input/output relationship of the manipulator because, except the R joints on the base platform, all the joints on the side

legs are passive. However, a dimensional design is performed for the middle leg in Section 3.2.2 and the same link length

dimensions are used for the side legs. 

3.2.1. Condition number optimization for pitch and yaw motions 

By applying Eq. (36) , the condition numbers for 5 ° < α < 85 ° and −45 ° < β < 45 ° are computed and tabulated in

Table 1 . Each cell in the table shows the maximum condition number is found in the workspace ranges: −15 ° < φ < 15 °
and −20 ° < ψ < 20 ° for the specific α and β angles. The cases where α = 0 ° and α = 90 ° correspond to the cases where

all or some of the fixed R joint axes on the base platform coincide, so these values are disregarded and α = 0 ° and α = 90 °
columns are not presented in the table. As highlighted in the table, the minimum condition number is obtained as 1.064 for

α = 45 ° and β = 0 °. 
Once the structural parameters are selected as α = 45 ° and β = 0 °, the condition numbers for the workspace of the

manipulator are tabulated with the shaded gradation in Table 2 . As can be seen, the maximum condition number value

1.064 is obtained for φ = 0 ° and ψ = ±20 °, which is still very close to 1. This means that the mechanism shows almost

fully-isotropic characteristics for pitch and yaw motions. So, the structural parameters α and β are optimized in terms of

transmission characteristics. 

3.2.2. Slider-crank design for the middle leg 

In the middle plane in Fig. 3 , the middle leg can be considered as a slider-crank mechanism with a crank A 3 B 3 , a con-

necting rod B 3 C 3 and link C 3 ED sliding along DE direction ( Fig. 5 ). The plane of this slider-crank mechanism can rotate about

the x 3 -axis. Also, the angle of the sliding direction of the slider can be changed by angle γ . For this slider-crank mechanism,

constant DEC 3 angle is chosen as 90 ° for maximum force transmission. Since β is previously selected as 0, h = 0 and f = r

(see Fig. 2 ). The choice of c 3 is arbitrary. However, numerical simulations show that c 3 = r results in better transmission

characteristics. Choice of r depends on the application. For our application, it is determined based on the average size of a

patient’s head. Consequently, only parameters a and b are to be designed. 
3 3 
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Table 2 

Condition numbers within the workspace for α = 45 ° and β = 0 °. 

Fig. 6. Design sheet of the slider-crank mechanism in Microsoft Excel. 

 

 

(

(

(

(

(

 

For the initial slider displacement, the distance between the center of mass and the tip of the endoscope is taken as a

reference value. For the specific endoscope that is used in this surgery, this distance is d 0 = 250 mm. As depicted in Fig. 5 ,

for the slider-crank mechanism, 

1) Eccentricity |A 3 G|: f s γ − c 3 
2) Initial slider displacement: d 0 = 250 mm 

3) Stroke: �d = 100 mm 

4) Effective workspace limits (at the end of the stroke): ±�d e = 20 mm 

5) Zero position at the center of the workspace: d = d 0 – �d + �d e = 170 mm 

To satisfy the workspace limits, �d = 100 mm and �γ = 40 °: γ min = 70 ° ≤ γ ≤ 110 ° = γ max . The following limiting

conditions on the link lengths in the limit configurations need to be taken into consideration: 

b 3 + a 3 ≥
√ 

( f s γmax − c 3 ) 
2 + ( d 0 − f c γmax ) 

2 = L max 

b 3 − a 3 ≤
√ 

( f s γmin − c 3 ) 
2 + ( d 0 − �d − f c γmin ) 

2 = L min 

(37) 
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Fig. 7. Minimum transmission angles for slider-crank mechanism within its workspace for 119 mm ≤ a 3 ≤ 160 mm and 159 mm ≤ b 3 ≤ 242 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

From Eqs. (37) , 

a 3 ≥ L max − L min 

2 

and a 3 + L min ≥ b 3 ≥ L max − a 3 (38)

The formulations are implemented in Microsoft Excel and the slider-crank mechanism is designed. A snapshot of the

Excel design sheet is depicted in Fig. 6 . On the left side of Fig. 6 , the design parameters and conditions are listed. After

specifying a 3 and b 3 values, γ angle and d values can be changed with corresponding spin buttons to compute the trans-

mission angle μ of the slider-crank mechanism. Due to footprint limitations, a 3 length should be less than 160 mm. From

Eqs. (38) 118.1 ° ≤ a 3 ≤ 160 ° and 158.6 ° ≤ b 3 ≤ 242.5 °. Thus, for these dimension ranges, the minimum transmission angles

are found throughout the workspace of the slider-crank mechanism and the results are tabulated with shaded gradation in

Fig. 7 . In Fig. 7 , the horizontal axis represents a 3 values from 119 mm to 160 mm and the vertical axis represents b 3 values

from 159 mm to 242 mm. The maximum value, 53.7 ° is obtained towards the middle left side of the graph while the min-

imum value of 21.4 ° is found on the top right-hand corner. The results for infeasible dimensions are not presented. After

considering the constructional constraints such as interference of the links a 3 and b 3 with each other and collision of the

link a with the motor that drives the slider-crank mechanism, the optimal solution with highest minimum transmission
3 
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Fig. 8. Kinematic analysis sheet of the manipulator in Microsoft Excel. 

Fig. 9. The rotational workspace of the endoscope inside the surgical area of a cadaver. 

 

 

 

 

 

 

 

 

 

 

 

 

angle is chosen for a 3 = 135 mm and b 3 = 195 mm. For these dimensions, the worst transmission angle value is obtained

as μmin 
∼= 

46.2 ° when γ = 88 ° and d = 150 mm. This configuration is presented in Fig. 6 . 

All kinematic formulations are crosschecked by a study in Microsoft Excel before starting detailed constructional design.

In Fig. 8 , design parameters are provided on the top left side. Then, direct and inverse kinematics analyses are performed.

As can be seen, the same arbitrary input values in the direct kinematics can be re-obtained as a result of the inverse

kinematics (blue highlights). By using the derivatives presented on the bottom left side of the figure, the Jacobian matrix

is obtained and highlighted with light green color. The Jacobian matrix shows that pitch ( ψ) and yaw ( φ) motions of the

end-effector are decoupled from the heave (d) motion due to the zero elements in the first and second rows of the third

column. However, the heave motion is coupled with other motions due to the non-zero off-diagonal elements in the last

row. 

4. Kinematic simulations 

A simulation test is carried out to verify the inverse kinematics and gain insight into the dynamics of the RCM mecha-

nism. The simulation model is developed by following the procedure defined in [4] . The CAD models of the parts (i.e. links,

joint structures) of the mechanism (presented in Section 5 ) are first assembled in SolidWorks with the suitable mating pro-

cedures to create the correct joint structures. Then, the assembled model is translated from SolidWorks to Matlab via the
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Fig. 10. Joint trajectories during the simulation tests. 

Fig. 11. CAD design of the 2URRR-URR manipulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simscape Multibody Link. As a result of this translation process, the model of the RCM mechanism is generated in Matlab

created by Simscape Multibody blocks. Finally, the inverse kinematics equations derived in Section 3.1.2 are included in the

simulation model via a Matlab Function block. 

The test scenario is developed by using the data acquired from experiments conducted by the neurosurgeons on a ca-

daver [1] . In this experiment, the neurosurgeons are asked to move the endoscope around the surgical space boundaries for

two times while they used the tip of the nose as the pivot point, which is a usual practice during their surgery procedures.

During this experiment, rotational motion data is acquired via an inertial measurement unit. This data is later processed

and used in the development of the rotational motion profile in the task space for the test scenario. This motion profile is

shown in Fig. 9 . 

During this experiment, the translational motion is not measured but it is obtained by the feedback from the neurosur-

geons. The neurosurgeons indicated that once they are inside the surgical area, the endoscope is moved at most ±5 mm. Ac-

cording to this information, the translational motion to be performed during the test is selected to be d = 200 + 5sin(0.2 π t)

mm. The reason to select this frequency of operation is due to the fact that it almost takes 10 s to complete a full scan of

the surgery area boundaries, which can be observed from Fig. 10 . In Fig. 10 , the joint trajectories are presented which are

obtained as a result of the inverse kinematics calculations. The simulation videos taken during this test is available in the

additional materials of this article. 

5. CAD design and prototype 

The detailed constructional design of the manipulator is shown in Fig. 11 . In the constructional design, the motor axes

of the side legs are fixed to the base platform while the motor axis of the middle leg coincides with the second joint

axis, hence it is not fixed. It rotates around the fixed R joint axis of the U joint. Also, the motors are connected to the

corresponding joints via capstan drives to have a compact design and back-drivability feature. For the side legs, the revolute

joints with the endoscope group are constructed by using sliding arc joints. The end-effector of the manipulator consists of

the endoscope and a quick-release mechanism. Therefore, the endoscope can be easily detached from the manipulator in

case of need during the surgery. While the endoscope is attached to the end-effector, they move as a single body. Lastly, the
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Fig. 12. The prototype of 2URRR-URR manipulator with the mock-up of a transnasal MIS case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prototype of the manipulator is manufactured and it is presented in Fig. 12 with a mock-up representing the workspace for

a transnasal MIS case. 

6. Conclusions 

A 3-dof endoscope holding robot for minimally invasive transnasal surgery applications is presented. This manipulator is

designed to be capable of 2R1T motion about/along a RCM. The leg structure is 2URRR-URR. The architecture of the manipu-

lator has been designed to be used as an assistive robot alongside the surgeon in a transnasal surgery by placing the legs on

one side of the base platform so that the mechanism minimally occupies the surgeon’s workspace. Then, the rotational and

translational motions of the end-effector are synthesized by simplifying the spatial architecture of the parallel manipulator

to three intersecting planes. After the kinematic analysis is performed, some structural parameters are optimized by us-

ing condition number to get optimal transmission characteristics for pitch and yaw motions. Then, slider-crank mechanism

design is performed for the middle leg. The dimensional optimization is done using the transmission angle of the mecha-

nism for the desired workspace. The optimized dimensions for the middle leg are also used for the dimensions in side-legs.

After the dimensional design is completed, a Matlab simulation is carried out to verify the direct and inverse kinematics

formulations. Finally, a CAD model and the manufactured prototype of the designed RCM mechanism are presented. 

Most of the parallel-type RCM MIS mechanisms in the literature have axisymmetric designs where the legs are dis-

tributed radially symmetric about the end-effector axis. When compared to those mechanisms, the manipulator in this

study shows that an asymmetrical design is also possible for parallel-type RCM mechanisms. This asymmetrical design can

be beneficial in specific MIS cases where the manipulator is merely assistive whereas the surgeon performs the surgery

manually. For a transnasal MIS case, it is shown that the manipulator occupies only one-quarter of the area above the pa-

tient’s head. Moreover, compared to other parallel mechanisms, the kinematic analysis and design of the manipulator are

much simpler such that they can be performed in Microsoft Excel with no need for other complex computational software

products and the simple kinematics also helps to develop a simple control algorithm. 
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