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Abstract
Determining the exponent of matrix multiplication ω is one of the central open problems in algebraic
complexity theory. All approaches to design fast matrix multiplication algorithms follow the following
general pattern: We start with one “efficient” tensor T of fixed size and then we use a way to get a
large matrix multiplication out of a large tensor power of T . In the recent years, several so-called
barrier results have been established. A barrier result shows a lower bound on the best upper bound
for the exponent of matrix multiplication that can be obtained by a certain restriction starting with
a certain tensor.

We prove the following barrier over C: Starting with a tensor of minimal border rank satisfying
a certain genericity condition, except for the diagonal tensor, it is impossible to prove ω = 2 using
arbitrary restrictions. This is astonishing since the tensors of minimal border rank look like the most
natural candidates for designing fast matrix multiplication algorithms. We prove this by showing
that all of these tensors are irreversible, using a structural characterisation of these tensors. To
obtain our result, we relate irreversibility to asymptotic slice rank and instability of tensors and
prove that the instability of block tensors can often be decided by looking only on the sizes of
nonzero blocks.
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1 Introduction

Determining the exponent ω of matrix multiplication is one of the central open problems in
algebraic complexity theory. Since Strassen’s seminal paper [24], who showed that matrices
can be multiplied in time O(nlog2 7) = O(n2.81), more and more refined methods have been
proposed, see e.g. [5, 23, 25, 16, 17, 28, 19], yielding the currently best upper bound O(n2.373).
All of these approaches follow the following general pattern: We start with one “efficient”
tensor T of fixed size and then we use a way to get a large matrix multiplication out of a
large tensor power T⊗N of T . Efficient here means that T has small (border) rank and that
the structure of T is “close to a matrix multiplication”. Getting a large matrix multiplication
out of T⊗N means that we define an appropriate restriction. In Strassen’s algorithm, the
tensor T is simply the tensor 〈2, 2, 2〉 of 2 × 2-matrix multiplication. It becomes efficient,
since Strassen showed that its rank is 7 (opposed to the trivial upper bound of 8). Then
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17:2 Slice Rank of Block Tensors and Irreversibility of Structure Tensors of Algebras

Strassen observes that 〈2, 2, 2〉⊗N is a matrix multiplication of size 2N ×2N , so the restriction
is trivial. Coppersmith and Winograd [16] start with two tensors cwq and CWq, which are
now called the small and the big Coppersmith–Winograd tensors. These tensors depend
on a parameter q and have size q + 1 and q + 2, respectively. Their border ranks are both
q + 2. In particular, CWq is a tensor of minimal border rank, since for any concise tensor
of size s, s is a lower bound for the border rank. The tensors cwq and CWq have a block
structure and consist of three and six matrix multiplication tensors, respectively. To get a
matrix multiplication out of a high power of the Coppersmith–Winograd tensors, we first
degenerate a large diagonal out of the outer structure using the laser method and then apply
Schönhage’s asymptotic sum inequality [23]. The recent approaches [17, 28, 19] to fast matrix
multiplication all start with the big Coppersmith–Winograd tensor CWq, but find better
ways to to get a large matrix multiplication out of CW⊗Nq by analysing small powers of CWq.
For more details how to design fast matrix multiplication algorithms, we refer to [6].

1.1 Barrier results

As mentioned above, all previous approaches follow the following general pattern: They
start with a base tensor T . This tensor is raised to a high power T⊗N . Then a restriction
r is constructed such that r applied to T⊗N yields a large matrix multiplication, that is,
〈n, n, n〉 = r(T⊗N ). A barrier result shows a lower bound on the best upper bound that can
be obtained by a certain restriction starting with a certain tensor. In such results, typical
tensors that occur in actual upper bound constructions are considered as starting tensors.
The type of restrictions can be arbitrary restrictions or restrictions that come out of upper
bound constructions, for instance, restrictions that are constructed via the laser method.
There are three ingredients in a barrier result: the class of starting tensors, which we want to
be as large as possible, the type of restrictions, which we want to be as general as possible,
and the lower bound on ω, which we want to be as big as possible. Maximizing one of the
three parameters typically decreases the other two.

The work by Coppersmith and Winograd [15] can be viewed as the first barrier result:
They prove that it is impossible to prove ω = 2 by one application of Schönhage’s asymptotic
sum inequality to a sum of matrix multiplication tensors. Ambainis et al. [4] proved a barrier
result for the big Coppersmith–Winograd tensor and the laser method, the method used
by Coppersmith and Winograd to get their upper bound. The laser method applied to
the big Coppersmith–Winograd tensor cannot give ω = 2, and in fact not even ω ≤ 2.30.
Alman and Vassilevska Williams [2, 3] showed barrier results for more general restrictions,
namely so-called monomial restrictions, for a certain classes of tensors generalizing the big
Coppersmith–Winograd tensors. Blasiak et al. [8, 9] studied the group theoretic framework
by Umans and Cohn for fast matrix multiplication and showed that this approach cannot
prove ω = 2 using any fixed Abelian group and certain non-Abelian groups. Christandl,
Vrana, and Zuiddam [14] introduced a parameter called irreversibility. They proved that
with any starting tensor that is irreversible, one cannot prove ω = 2 using an arbitrary
restriction. Alman [1] proves a similar result formulated in terms of asymptotic slice rank of
tensors. In [14, 1], these barriers are applied to Coppersmith-Winograd tensors, generalized
Coppersmith-Winograd tensors (a class of tensors which have the same combinatorial structure
as Coppersmith-Winograd tensors), and truncated polynomial multiplication tensors.
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1.2 Our results

Previous barrier results use the notion of slice rank of tensors or related notions like subrank.
Another property of tensors was recently related to slice rank is their instability in terms
of geometric invariant theory (see [8, 12]). The first result we prove is a barrier result that
applies to the class of all unstable tensors over C. We prove that ω = 2 cannot be proven
using powers of unstable tensors of bounded dimension.

We also consider the class of structure tensors of non-semisimple algebras. These tensors
have a natural block structure. Using this block structure, we prove that these tensors are
unstable and give bounds on their asymptotic slice rank to get better barriers.

Particularly interesting are tensors of minimal border rank. These are concise tensors
t ∈ V1 ⊗ V2 ⊗ V3 with dimV1 = dimV2 = dimV3 = n which can be approximated by tensors
of rank n. A large subclass of these tensors – binding tensors (defined below) – can be
related to structure tensors of commutative algebras. Thus, the previous barrier applies
to them (except for diagonal tensors of rank n) and it is impossible to prove ω = 2 using
arbitrary restrictions from powers of one of these tensors. This is astonishing since the
tensors of minimal border rank look like the most natural candidates for designing fast matrix
multiplication algorithms, since the smaller the rank of the starting tensor, the smaller is the
possible bound on ω.

Our barriers hold true for a large class of tensors, much larger than in previous barrier
results. Furthermore, they are true for arbitrary restrictions. For example, Coppersmith-
Winograd tensors and truncated polynomial multiplication tensors belong to the smallest
class we consider – the binding tensors of minimal border rank. Of course, we have to pay a
price: the lower bounds on provable values of ω that we get are really small. Our results do
not mean that tensors of minimal border rank are useless for proving ω = 2, but that to do
this, we need to consider a sequence of tensors with increasing size.

Our proof uses the concept of irreversibility introduced by Christandl, Vrana, and Zuiddam
[14] and upper bounds on slice rank proved by Alman [1]. We prove that all binding tensors
of minimal border rank are irreversible, except for the diagonal tensors. It follows from [7],
that we can describe these tensors, which are defined by a complexity theoretical property,
in terms of their structure. Binding tensors of minimal border rank are equivalent to the
structure tensors of so-called smoothable algebras. Smoothable algebras are commutative,
therefore, the only semisimple smoothable algebras over C are Cn and are given by the
diagonal tensors 〈n〉. Thus it suffices to prove that structure tensors of algebras with nonzero
radical are irreversible.

2 Preliminaries

2.1 Notations

Binary logarithms are denoted by log, natural logarithms by ln. For a probability distribution
p on a finite set I its entropy is denoted byH(p) =

∑
i∈I −p(i) log p(i), and for two probability

distributions p, q their relative entropy is denoted by D(p‖q) =
∑
i∈I p(i) log p(i)

q(i) . For a
finite set S, the set of all probability distributions on S is denoted by P(S). The tensor
product FN1 ⊗ FN2 ⊗ FN3 is denoted by FN1×N2×N3 .

MFCS 2020
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2.2 Tensors and algebras
Let V1, V2, and V3 be finite dimensional vector spaces. Every tensor t ∈ V1 ⊗ V2 ⊗ V3 can be
presented as a sum of rank one tensors – tensors of the form v1 ⊗ v2 ⊗ v3 with vk ∈ Vk. The
rank R(t) of a tensor t is the minimum r such that t can be written as the sum of r rank one
tensors.

For a tensor t ∈ V1 ⊗ V2 ⊗ V3 and a linear form x ∈ V ∗1 , the contraction t · x is defined
as (v1 ⊗ v2 ⊗ v3) · x = x(v1)(v2 ⊗ v3) for rank one tensors and extended to arbitrary tensors
by linearity. Thus, a tensor t ∈ V1 ⊗ V2 ⊗ V3 defines a map V ∗1 → V2 ⊗ V3 sending x to t · x.
Two other maps V ∗2 → V1 ⊗ V3 and V ∗3 → V1 ⊗ V2 can be defined similarly. These maps are
called flattenings of the tensor t. A tensor is called concise if all its flattenings are injective.
Such tensor does not lie in any nontrivial subspace V ′1 ⊗ V ′2 ⊗ V ′3 with V ′k ⊂ Vk. We denote
the maximum of the three ranks of the flattenings by N(t). For a concise tensor, the ranks
of the flattenings are the dimensions of Vk, and N(t) = max{dimV1,dimV2,dimV3}.

A tensor t ∈ V1⊗V2⊗V3 is called 1V1-generic if dimV2 = dimV3 and there exists x ∈ V ∗1
such that the matrix t · x ∈ V2 ⊗ V3 has full rank. 1-genericity for the other indices is defined
analogously. We call a tensor binding if it is 1V1- and 1V2-generic.

The slice rank of a tensor is defined similarly to the rank. Here the basic building blocks
are tensors which have rank one flattenings, that is, tensors of the form s⊗v3 with s ∈ V1⊗V2
and v3 ∈ V3 and the two other symmetric forms. The slice rank SR(t) is now the minimum
number r such that t can be written as the sum of r such basic building blocks. Note that
the slice rank of a tensor in FN1×N2×N3 is at most min{N1, N2, N3}.

To design asymptotically fast matrix multiplication algorithms, it suffices to bound the
asymptotic rank R̃(t), which is defined by limn→∞R(t⊗n)1/n. The asymptotic slice rank
S̃R(t) is defined as limn→∞ SR(t⊗n)1/n. Unlike the limit in the definition of the asymptotic
rank, the existence of this limit is a nontrivial fact, proven for tensors over C by Christandl,
Vrana and Zuiddam [13].

Let t′ ∈ V ′1 ⊗ V ′2 ⊗ V ′3 for vector spaces V ′1 , V ′2 , and V ′3 . Let Ai : Vi → V ′i be linear
maps. The linear map A1 ⊗A2 ⊗A3 : V1 ⊗ V2 ⊗ V3 → V ′1 ⊗ V ′2 ⊗ V ′3 is defined on the rank
one elements by A1 ⊗ A2 ⊗ A3(v1 ⊗ v2 ⊗ v3) = A1(v1) ⊗ A2(v2) ⊗ A3(v3) and extends to
arbitrary tensors by linear continuation. We call t′ a restriction of t if there are linear maps
Ak : Vk → V ′k, k = 1, 2, 3 such that t′ = (A1 ⊗A2 ⊗A3)t. We write t′ ≤ t in this case. Two
tensors t and t′ are called equivalent if t′ ≤ t and t ≤ t′ A tensor t′ is a degeneration of t if t′
lies in the (Zariski) closure of the set of all restrictions of t. We write t′ E t in this case.

It is well known that R(t) ≤ r iff t ≤ 〈r〉. Here 〈r〉 denotes the diagonal tensor of size
r given by

∑r
i=1 ei ⊗ ei ⊗ ei. We define the subrank Q(t) to be the maximum r such that

〈r〉 ≤ t. The asymptotic subrank Q̃(t) is limn→∞Q(t⊗n)1/n. The border rank R(t) is defined
as the minimal r such that t E 〈r〉, that is, t can be approximated by tensors of rank r. A
tensor t is called a tensor of minimal border rank if R(t) = N(t).

The slice rank of the diagonal tensor 〈r〉 is r [26]. Given a slice rank decomposition of t,
we can write down a decomposition with the same number of summands for every tensor
t′ ≤ t by applying a restriction operator A1 ⊗A2 ⊗A3 to both sides. Thus SR is monotone
with respect to restriction of tensors. If q = Q(t) and r = R(t), then 〈q〉 ≤ t ≤ 〈r〉. Therefore,
Q(t) ≤ SR(t) ≤ R(t) and, consequently, Q̃(t) ≤ S̃R(t) ≤ R̃(t).

In this work, the term algebra always means a finite dimensional associative algebra with
unity 1 over some field k. If we speak of a basis of an algebra, we always mean a basis of the
underlying vector space. A left ideal I (and in the same way, a right ideal or twosided ideal)
is called nilpotent, if In = {0} for some positive integer n. For all finite dimensional algebras
A, the sum of all nilpotent left ideals of A is a nilpotent twosided ideal, which contains every
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nilpotent right ideal of A. This twosided ideal is called the radical of A. We call an algebra
A semisimple, if radA = {0}. The quotient algebra A/ radA is semisimple. An algebra A
is called simple, if there are no twosided ideals in A except for the zero ideal and A itself.
Wedderburn’s theorem states that every semisimple algebra A is isomorphic to a product of
simple algebras and every simple algebra is of the form Dn×n for some division algebra D
over k. If k is algebraically closed, then the only such division algebra is k itself. For more
background on associative algebras, the reader is referred to [18].

The multiplication map A×A→ A is bilinear map. With a bilinear map, we can associate
its structure tensor tA ∈ A∗ ⊗ A∗ ⊗ A in a canonical way – a rank one tensor f ⊗ g ⊗ w
corresponds to a bilinear map (x, y) 7→ f(x)g(y)w and a sum of rank one tensors corresponds
to a sum of these elementary maps. We define the rank R(A) of A as R(tA). The same is
done for the other measures above. If A = kn×n, then R(A) is simply the rank of the matrix
multiplication map.

Note that structure tensors of algebras are concise [25]. Indeed, injectivity of the first
flattening means that for each nonzero element x ∈ A its left multiplication operator
Lx : y 7→ xy is nonzero. This always holds (recall that we consider only unital algebras).
Injectivity of the second flattening is connected to right multiplication operators in the
same way. Injectivity of the third flattening is equivalent to surjectivity of the dual map
x⊗ y 7→ xy, which also holds for every algebra.

Smoothable algebras are a subset of commutative algebras defined in algebraic geometry
with relation to deformations of 0-dimensional schemes. In [7], these algebras are connected
to tensors of minimal border rank.

I Theorem 1 ([7, Cor. 3.6]). A binding tensor has minimal border rank if and only if it is
equivalent to the structure tensor of a smoothable algebra.

2.3 Instability and entanglement polytopes
The notion of instability comes from geometric invariant theory, where it can be defined
in high generality (the standard reference is [22]). We are interested only in the action of
the groups GL(V1)×GL(V2)×GL(V3) and SL(V1)× SL(V2)× SL(V3) on the tensor space
V1 ⊗ V2 ⊗ V3 over C, and will give definitions for this case.

I Definition 2. A tensor t ∈ V1⊗V2⊗V3 is called unstable if 0 is contained in the (Zariski)
closure of the SL(V1) × SL(V2) × SL(V3) orbit of t, and semistable otherwise. The set of
all unstable tensors in V1 ⊗ V2 ⊗ V3 is a Zariski closed cone. It is called the nullcone of the
action of SL(V1)× SL(V2)× SL(V3) on V1 ⊗ V2 ⊗ V3.

The Hilbert-Mumford criterion says that a tensor t is unstable if and only if there is
a 1-parameter subgroup g of SL(V1) × SL(V2) × SL(V3) (that is, a group homomorphism
g : C× → SL(V1)× SL(V2)× SL(V3)) such that limε→0 g(ε)t = 0. This criterion can be used
to give a more combinatorial definition of instability and relate it to slice rank, see [8] for
details.

I Theorem 3 ([12, Cor. 6.5]). A tensor t ∈ CN×N×N is unstable iff S̃R(t) < N .

We will also use some notions related to entanglement polytopes. These are special cases
of moment polytopes, the existence of which for actions of nonabelian groups was established
by Kirwan [20].

Entanglement polytope ∆(t) of a tensor t ∈ CN1×N2×N3 is a convex polytope in
RN1+N2+N3 that contains information about representation-theoretic and analytic prop-
erties of the orbit closure of this tensor. We refer to [27, 11] for precise definitions. We do

MFCS 2020
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not use entanglement polytopes directly, we only need their properties such as connection to
slice rank via quantum functionals from [13], the finiteness of the set of moment polytopes,
and bounds on the distance to entanglement polytopes from [11].

I Theorem 4 ([13]). For a tensor t ∈ CN1×N2×N3 , its asymptotic slice rank can be computed
from the entanglement polytope:

log S̃R(t) = min
θ∈P({1,2,3})

max
pk∈RNk

(p1,p2,p3)∈∆(t)

θ(1)H(p1) + θ(2)H(p2) + θ(3)H(p3).

I Theorem 5 ([10]). For each N1, N2, N3, the set of all entanglement polytopes of tensors
in CN1×N2×N3 is finite.

2.4 Irreversibility barrier

I Definition 6 ([14]). The irreversibility of a tensor t is defined as the ratio i(t) = log R̃(t)
log Q̃(t) .

A tensor t is called reversible if i(t) = 1 and irreversible otherwise.

I Theorem 7 ([14, Thm. 9]). Using arbitrary restrictions from powers of a tensor t, it is
impossible to prove an upper bound on ω better than 2i(t).

3 Block tensors

In this section, we will introduce some terminology for dealing with block tensors. Block
tensors (more specifically, block tensors with tight support) are important for our goals for
two reasons. First, this is the class of tensors for which the laser method works (see for
example [19, Thm. 4.1]). Second, structure tensors of algebras with radical have a natural
block structure, and for graded algebras, this block structure has a tight support. And most
tensors of minimal border rank are structure tensors of algebras.

I Definition 8. A block tensor is specified by the following data:
a triple of finite-dimensional vector spaces V1, V2, V3;
a triple of index sets I1, I2, I3;
a triple of direct sum decompositions

V1 =
⊕
i∈I1

V1,i, V2 =
⊕
i∈I2

V2,i, V3 =
⊕
i∈I3

V3,i;

a tensor t ∈ V1 ⊗ V2 ⊗ V3.

We will often say that t is a block tensor, assuming that all the other data are implicit or
given by context.

The decompositions of each Vk induce a decomposition of the tensor space

V1 ⊗ V2 ⊗ V3 =
⊕

(i1,i2,i3)∈I1×I2×I3

V1,i1 ⊗ V2,i2 ⊗ V3,i3 .

For a block tensor t, we denote by ti1i2i3 its projection onto V1,i1 ⊗ V2,i2 ⊗ V3,i3 .

I Definition 9. The support of a block tensor t is defined as

supp t = {(i1, i2, i3) ∈ I1 × I2 × I3 | ti1i2i3 6= 0}.
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I Definition 10. The block format of a block tensor is a triple (n1, n2, n3) of maps nk : Ik →
N defined as nk(i) = dimVk,i, k = 1, 2, 3. The relative block format is a triple (f1, f2, f3) of
probability distributions fk on Ik defined as fk(i) = nk(i)

Nk
where Nk = dimVk.

The following bound on the asymptotic subrank of block tensors was proven by Alman.

I Theorem 11 ([1, Thm. 18]). Let t be a block tensor with block format (n1, n2, n3). Then

S̃R(t) ≤ sup
p∈P(supp t)

min
k∈{1,2,3}

∏
i∈Ik

(
nk(i)
µk[p](i)

)µk[p](i)

where µk[p] denotes the marginal distribution of p on Ik.

We will need this statement in a slightly different form.

I Corollary 12. For every block tensor t ∈ CN1×N2×N3 with relative block format (f1, f2, f3)
the following bounds hold:

log S̃R(t) ≤ max
p∈P(supp t)

min
k∈{1,2,3}

(logNk −D(µk[p]‖fk))

and

log S̃R(t) ≤ max
p∈P(supp t)

3∑
k=1

θ(k) (logNk −D(µk[p]‖fk))

for every θ ∈ P({1, 2, 3}).

Proof. The first bound is Alman’s bound from the previous theorem after taking logarithms.
The supremum can be changed to maximum since we optimize a continuous function over
the set of probability distributions, which is compact. The second bound follows from the
fact that θ1m1 + θ2m2 + θ3m3 ≥ min{m1,m2,m3} for θ ∈ P({1, 2, 3}). J

The second bound of Corollary 12 can be seen as a generalization to block tensors
of Theorem 2.11 from [13], which relates asymptotic slice rank and Strassen’s support
functionals.

Of special interest are block tensors with tight and subtight supports, defined as follows.

I Definition 13. A subset S ⊂ I1 × I2 × I3 is called s-tight (or s-subtight) with numbering
given by three maps ak : Ik → Z if for each (i1, i2, i3) ∈ S we have a1(i1) +a2(i2) +a3(i3) = s

(or a1(i1) + a2(i2) + a3(i3) ≤ s, respectively).

I Example 14. Consider an algebra A. It is filtered by the powers of the radical: we have
A = (radA)0 ⊃ radA ⊃ (radA)2 ⊃ . . . . Let d be minimal such that (radA)d = {0} and
choose for each i < d a subspace Ri ⊂ (radA)i such that (radA)i = Ri ⊕ (radA)i+1. We
have A =

⊕d−1
i=0 Ri and (radA)j =

⊕d−1
i=j Ri. Consider the corresponding decomposition

A∗ =
⊕d−1

i=0 R
∗
i .

The structure tensor tA ∈ A∗ ⊗ A∗ ⊗ A is a block tensor with 0-subtight support with
respect to these decompositions and numbering given by a1(i) = a2(i) = i, a3(i) = −i. Indeed,
if x1 ∈ Ri1 ⊂ (radA)i1 and x2 ∈ Ri2 ⊂ (radA)i2 , then x1x2 ∈ (radA)i1+i2 =

⊕
i≥i1+i2 Ri,

which means that tA,i1i2i3 is zero if i1 + i2 > i3, that is, a1(i1) + a2(i2) + a3(i3) > 0.
Similarly, if an algebra is graded, that is, A =

⊕d−1
i=0 Ai such that AiAj ⊂ Ai+j , then its

structure tensor is a block tensor with tight support.

MFCS 2020
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4 Irreversibility and instability

In the definition of irreversibility (Definition 6) both the numerator and the denominator are
mysterious quantities: we do not know of any effective method to compute either of them for
general tensors.

There are no general lower bounds for the asymptotic rank except for the trivial lower
bound R̃(t) ≥ N(t), and upper bounds mostly come from ad hoc degenerations constructed
for specific tensors or simple tensor families. In some sense, understanding the asymptotic
rank is the main goal of the complexity theory of bilinear maps.

More is known about the asymptotic subrank. It can be computed explicitly for a large
class of tensors – the tight tensors. Lower bounds for Q̃ can be obtained for some structured
tensors, such as block tensors with tight support. We also have the upper bound Q̃(t) ≤ S̃R(t).
In fact, slice rank was first introduced by Tao [26] in order to bound the subrank. The
asymptotic slice rank S̃R(t) can in principle be computed (though not efficiently) for a given
tensor t over C by constructing the entanglement polytope and using Theorem 4.

Taken together, the bounds R̃(t) ≥ N(t) and Q̃(t) ≤ S̃R(t) prove the following Proposi-
tion.

I Proposition 15. For the irreversibility of a tensor t, the following bound holds:

i(t) ≥ logN(t)
log S̃R(t)

.

As a consequence, every unstable concise tensor is irreversible.

This means that powers of one unstable tensor cannot be used to prove ω = 2. In fact,
even if we allow a sequence of unstable tensors, we need their size to be unbounded, as the
following theorem shows.

I Theorem 16. Over C, it is impossible to prove ω = 2 from powers of unstable concise
tensors t with bounded N(t) using arbitrary restrictions.

Proof. From Theorem 5 and Theorem 4 it follows that the set of possible values of S̃R(t)
for tensors in Cn×n×n is finite. Therefore, the set of possible ratios logN(t)

log S̃R(t)
is also finite. If

we let

B(n) := min
{

logN(t)
log S̃R(t)

| t ∈ Cn×n×n, N(t) 6= S̃R(t)
}
,

then by Proposition 15 the irreversibility of any unstable concise tensor with N(t) ≤ n

is bounded from below by B(n), and by Theorem 7 the best bound on ω we can get is
2B(n) > 2. J

Using the results of Bürgisser et al. [11] for moment polytopes, we can give an explicit
bound on irreversibility.

I Theorem 17. The irreversibility of an unstable concise tensor in Cn×n×n is at least(
1− 3−3n

18n4 lnn

)−1

.
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Proof. Bürgisser et al. [11] introduced a quantity γ called the weight margin characterizing
a representation of a reductive algebraic group, and Theorems 6.4 and 6.8 from their paper
give a lower bound γ ≥

√
3−3n(3n)−1 on γ for the standard action of GLn ×GLn ×GLn on

Cn×n×n. Denote by u the vector ( 1
n , . . . ,

1
n ) ∈ Qn. By Theorem 3.30 from the same paper,

the distance from the point (u, u, u) to the entanglement polytope of a tensor t is at least γ
n ,

if the entanglement polytope does not contain this point, that is, t is unstable. Let (p1, p2, p3)
be the point of the entanglement polytope closest to (u, u, u).

The entropy function on the set of probability distributions is strongly concave with
parameter log e and the uniform distribution u has maximal entropy logn, so

1
3(H(p1) +H(p2) +H(p3)) ≤ logn− log e‖(p1, p2, p3)− (u, u, u)‖2

2 ≤ logn− log e γ
2

2n2 ,

and log S̃R(t), which is bounded by the maximum of 1
3 (H(p1) +H(p2) +H(p3)), is also at

most logn− log e γ
2

2n2 . For the irreversibility, we have a lower bound

logn
log S̃R(t)

= logn
logn− log e γ2

2n2

=
(

1− γ2

2n2 lnn

)−1

=
(

1− 3−3n

18n4 lnn

)−1

. J

This explicit barrier is minuscule and it is likely that it can be improved. Even for n = 2,
it gives a value less than 1 + 10−5, which is far from the actual irreversibility value of the
only nontrivial unstable 2× 2× 2 tensor W = e0⊗ e0⊗ e1 + e0⊗ e1⊗ e0 + e1⊗ e0⊗ e0, which
has R̃(W ) = 2 and Q̃(W ) = 3

22/3 . On the other hand, there is evidence that the difference
between minimal irreversibility and 1 is exponential: Bürgisser et al. [11] note that from
the results of Kravtsov in combinatorics [21], it follows that γ for the trilinear tensor action
decreases exponentially in n.

At a first glance, these results suggest that one should use semistable tensors to construct
algorithms for matrix multiplication. Nevertheless, we need to remember that our reasoning
is based on the approximation by Proposition 15, and to actually use a tensor we need to at
least bound its asymptotic rank. Known examples of semisimple tensors (except, of course,
the diagonal ones) seem to resist this as much as matrix multiplication tensors do. For
example, already Coppersmith and Winograd [15] note that it is possible to prove ω = 2 by
proving that the tensor cw2 (which is a semistable 3× 3× 3 tensor) has asymptotic rank 3.

5 Instability of block tensors

In this section we will prove a bound on the slice rank for block tensors which implies a
better barrier for block tensors with subtight support, including structure tensors of algebras
with radical. We do this by extending some of the techniques for dealing with slice rank
introduced in [8, 13] to block tensors.

On a qualitative level, we study the stability of block tensors with fixed support. It may
so happen that all such block tensors are unstable.

I Definition 18. A set S ⊂ I1 × I2 × I3 is an unstable support in block format (n1, n2, n3)
if all block tensors t ∈ V1 ⊗ V2 ⊗ V3 with index sets I1, I2, I3 having support S and block
format (n1, n2, n3) are unstable under the action of SL(V1)× SL(V2)× SL(V3).

Sometimes the instability of support can be certified by a 1-parameter subgroup in SL
which acts as scalar multiplication on each block V1,i1⊗V2,i2⊗V3,i3 . This can be alternatively
expressed in combinatorial terms as follows.
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I Definition 19. A set S ⊂ I1 × I2 × I3 is a combinatorially unstable support in block
format (n1, n2, n3) if there exist exponents uk : Ik → R such that

∑
i∈Ik

nk(i)uk(i) = 0 for
each k and u1(i1) + u2(i2) + u3(i3) > 0 for each (i1, i2, i3) ∈ S.

I Proposition 20. Every combinatorially unstable support is unstable.

Proof. Note that the notion of combinatorial instability does not change if we restrict the
exponents to be rationals or integers. If uk are integer exponents, consider the 1-parameter
subgroup (g1(ε), g2(ε), g3(ε)) where the operators gk(ε) on Vk are defined on the direct
summands Vk,i by gk(ε)v = εuk(i)v.

The condition
∑
i∈Ik

nk(i)uk(i) = 0 ensures that gk(ε) ∈ SL(Vk) for all ε 6= 0. For every
block tensors t with support S, we have

(g1(ε), g2(ε), g3(ε))t =
∑

(i1,i2,i3)∈S

εu1(i1)+u2(i2)+u3(i3)ti1i2i3 → 0 as ε→ 0,

so t is unstable. J

I Theorem 21. Suppose S ⊂ I1× I2× I3 is a s-subtight set with numbering (a1, a2, a3). Let
āk =

∑
i∈Ik

fk(i)ak(i). If ā1 + ā2 + ā3 > s, then S is combinatorially unstable for any block
format with relative block format (f1, f2, f3).

Proof. Combinatorial instability is certified by exponents uk(i) = āk − ak(i). Indeed,

∑
i∈Ik

nk(i)uk(i) = Nk
∑
i∈Ik

fk(i)uk(i) = Nk

(
(
∑
i∈Ik

fk(i))āk −
∑
i∈Ik

fk(i)ak(i)
)

= 0,

and for (i1, i2, i3) ∈ S

u1(i1) +u2(i2) +u3(i3) = ā1 + ā2 + ā3− (a1(i1) +a2(i2) +a3(i3)) ≥ ā1 + ā2 + ā3− s > 0.J

A quantitative measure of the instability of a support can be given by an uniform upper
bound on the slice rank of tensors with this support. Such bounds can be given using the
techniques of [8, 1].

I Theorem 22. Suppose S ⊂ I1 × I2 × I3 is a s-subtight set with numbering (a1, a2, a3). As
in Theorem 21, let āk =

∑
i∈Ik

fk(i)ak(i).
The following bounds on the asymptotic slice rank of every block tensor t ∈ CN×N×N

with support S and relative block format (f1, f2, f3) hold:

S̃R(t) ≤ N m−s/3

3
√∏3

k=1
∑
ik∈Ik

fk(ik)mak(ik)

where m is the solution of the equation

3∑
k=1

∑
ik∈Ik

fk(ik)mak(ik)ak(ik)∑
ik∈Ik

fk(ik)mak(ik) = s, (1)

and

S̃R(t) ≤ N exp
(
− (ā1 + ā2 + ā3 − s)2

6
∑3
k=1

∑
ik∈Ik

a2
k

)
.
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Proof. To bound the asymptotic slice rank, we use the second bound of Corollary 12 with
θ(1) = θ(2) = θ(3) = 1

3 . To obtain the bound, we need to solve the following optimization
problem:

logN − 1
3

3∑
k=1

(D(pk‖fk))→ max

where p1, p2, p3 are the marginals of p ∈ P(S).

This is a convex optimization problem, but the polytope of all marginals of probability
distributions on S is unwieldy. Instead we optimize with relaxed requirements on p1, p2, p3.
Note that for any p ∈ P(S) we have∑

i=(i1,i2,i3)∈S

p(i)(a1(i1) + a2(i2) + a3(i3)) ≤ s

On the other hand, if the marginals of p are p1, p2, p3, then this expression can be rewritten
as ∑

i1∈I1

p1(i1)a1(i1) +
∑
i2∈I2

p2(i2)a2(i2) +
∑
i3∈I3

p3(i3)a3(i3).

Consider the relaxed optimization problem

logN − 1
3

3∑
k=1

(D(pk‖fk))→ max

where
∑
ik∈Ik

pk(ik) = 1,

∑
i1∈I1

p1(i1)a1(i1) +
∑
i2∈I2

p2(i2)a2(i2) +
∑
i3∈I3

p3(i3)a3(i3) ≤ s.

This is still a convex optimization problem. If µ is the Lagrange multiplier for the inequality
restriction and λk are multipliers for the three equality restrictions, then the KKT conditions
for this problem are

1
3(− ln pk(ik) + ln fk(ik)− 1)− µak(ik)− λk = 0,

µ ≥ 0,∑
ik∈Ik

pk(ik) = 1,

∑
i1∈I1

p1(i1)a1(i1) +
∑
i2∈I2

p2(i2)a2(i2) +
∑
i3∈I3

p3(i3)a3(i3) ≤ s,

µ(
∑
i1∈I1

p1(i1)a1(i1) +
∑
i2∈I2

p2(i2)a2(i2) +
∑
i3∈I3

p3(i3)a3(i3)− s) = 0.

The solution is obtained on the boundary∑
i1∈I1

p1(i1)a1(i1) +
∑
i2∈I2

p2(i2)a2(i2) +
∑
i3∈I3

p3(i3)a3(i3) = s,

because if µ = 0, then the only probability distributions pk satisfying the stationary condition
are pk = fk, but this is incompatible with the inequality ā1 + ā2 + ā3 > s. Denoting
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lk = exp(−3λk − 1) and m = exp(−3µ), we have pk(ik) = fk(ik)lkmak(ik). From the
feasibility conditions we obtain lk = (

∑
ik∈Ik

fk(ik)mak(ik))−1 and the required restriction (1)
on m.

Multiplying each component of the stationary condition by its variable pk(ik) and summing
the obtained equalities we get

−1
3

3∑
k=1

D(pk‖fk) = 1
3

3∑
k=1

∑
ik∈Ik

(−pk(ik) log pk(ik) + pk(ik) log fk(ik))

= log e
(

1 + λ1 + λ2 + λ3 + µ

3∑
k=1

∑
ik∈Ik

pk(ik)ak(ik)
)

= log e(1 + λ1 + λ2 + λ3 + µs) = 1
3 log 1

l1l2l3ms
,

from which we get the required bound on S̃R(t).
The second bound follows from the estimate of the distance between triples of distributions

p = (p1, p2, p3) and f = (f1, f2, f3) in the Euclidean metric. Consider these triples and the
triple a = (a1, a2, a3) as vectors in the Euclidean space of dimension |I1|+ |I2|+ |I3|. We
have 〈p, a〉 = s and 〈f, a〉 = s+ z for z = ā1 + ā2 + ā3 − s. Therefore, ‖p− f‖ ≥ z

‖a‖ . Since
on the space of probability distributions the functions D(pk‖fk) are strongly convex with
parameter log e and minimum 0 attained at pk = fk, we have

1
3(D(p1‖f1) +D(p2‖f2) +D(p3‖f3)) ≥ log e z2

6‖a‖2 ,

which gives the required upper bound on the asymptotic slice rank. J

The first bound of Theorem 22 is better, but requires the solution of an algebraic equation
possibly of high degree. The second (coarser) bound is similar to the upper bound from [8]
in terms of instability.

I Corollary 23. Suppose A is a non-semisimple associative algebra. Then its structure tensor
is unstable and irreversible. Moreover, the irreversibility of the structure tensor is at least(

1−
(

(
∑d−1
i=0 iri)2

18N2 lnN
∑d−1
i=0 r

2
i

))−1

where N = dimA, d is minimal such that (radA)d = 0 and ri = dim(radA)i/(radA)i+1.

Proof. We apply the previous theorems to the block structure with subtight support explained
in Example 14. Since A is non-semisimple, it has a nontrivial radical (r1 > 0) and

ā1 + ā2 + ā3 − s =
∑d−1
i=0 iri
N

> 0,

so the structure tensor is unstable. We have S̃R(tA) ≤ N exp
(
−

(
∑d−1

i=0
iri)2

18N2
∑d−1

i=0
r2

i

)
.

Recall that the structure tensor of an algebra is always concise. Thus, from Proposition 15
it follows that it is irreversible and

i(tA) ≥ logN
log S̃R(A)

≥

(
1−

(
(
∑d−1
i=0 iri)2

18N2 lnN
∑d−1
i=0 r

2
i

))−1

. J
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I Corollary 24. It is impossible to prove ω = 2 using powers of structure tensors of non-
semisimple algebras with bounded dimension.

I Corollary 25. Denote by XN the set of all binding tensors t ∈ CN×N×N with R(t) = N

and R(t) > N . It is impossible to prove ω = 2 using powers of binding tensors from XN with
bounded N .

Proof. By Theorem 1 every tensor from XN is equivalent to a structure tensor of some
commutative algebra. The only semisimple commutative algebra of dimension N is CN .
It has rank N , so tensors equivalent to its structure tensor and equivalent tensors are not
contained in XN . Thus, the previous corollary applies. J

We conjecture that not only binding tensors, but all concise tensors of minimal border
rank (except tensors equivalent to 〈N〉) are unstable.

I Remark 26. The results of Section 4 use properties of entanglement polytopes, which
are defined only over C. But the results on block tensors and associative algebras are
combinatorial and hold over arbitrary field. The result on tensors of minimal border rank
applies over algebraically closed fields.
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