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We consider the expectation value of Wilson lines in two defect versions of N = 4 SYM, both with 
supersymmetry completely broken, where one is described in terms of an integrable boundary state, the 
other one not. For both cases, imposing a certain double scaling limit, we find agreement to two leading 
orders between the expectation values calculated from respectively the field theory- and the string theory 
side of the AdS/dCFT correspondence.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Understanding the interplay between supersymmetry and inte-
grability in the AdS/CFT correspondence might hold the key to un-
derstanding the deeper reason for the integrability of the systems 
involved. Motivated by such considerations we will be pursuing a 
line of investigation which involves breaking the supersymmetry of 
N = 4 SYM in a simple way by introducing a domain wall, a co-
dimension one defect, separating two regions of space-time with 
different vacuum expectation values (vevs) for the scalar fields. To 
be more precise, we will assign vevs in a particular way to either 
five or to all six of the scalar fields on one side of the defect while 
keeping the vevs zero on the other side. In the language of in-
tegrability the defect can be described as a matrix product state 
or a boundary state [1] and for one of the set-ups the bound-
ary state has been found to be integrable [2], for the other one 
not [3], where the notion of integrability of a matrix product state 
was introduced in [4]. The string theory duals of these defect 
CFTs are two D3-D7 probe brane systems, named I and II, with 
non-vanishing background gauge field flux and instanton number 
respectively, cf. Table 1.

Our aim will be to calculate a non-local observable, the expec-
tation value of a Wilson line, running parallel to the defect, both 
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from the gauge theory- and the string theory perspective. A double 
scaling limit, invented for a related supersymmetric D3-D5 probe 
brane set-up in [5] and generalized to the two relevant D3-D7 
probe brane set-ups in [6] will allow us to compare the results 
of the two calculations. We remark that the gauge theory calcula-
tions are rather involved due to the non-vanishing vevs which mix 
color as well as flavor components of the N = 4 SYM fields but the 
perturbative framework necessary for the calculations has been set 
up in [7] and [8].

Earlier studies of Wilson loops in domain wall versions of N =
4 SYM have been limited to the supersymmetric and integrable 
case of the D3-D5 probe brane system. For the D3-D5 case using 
the perturbative set-up developed in [9,10], agreement between 
gauge and string theory calculations in the double scaling limit 
was found for a single Wilson line in [11,12], a pair of Wilson 
lines in [13] and a circular Wilson loop in [14], see also [15].

With the present work we are able to address AdS/dCFT while 
eliminating both supersymmetry and (boundary) integrability. In-
terestingly, we find agreement between the gauge- and string the-
ory result to two leading orders in the double scaling parameter 
for both of the non-supersymmetric set-ups and in particular both 
for the integrable and the non-integrable case.

Our paper is organized in the following simple way. In sec-
tion 2 we compute the expectation value of the Wilson line for 
our two defect set-ups from the gauge theory perspective where-
after in section 3 we perform the computations from the string 
theory perspective. Finally, section 4 contains our conclusion and 
outlook.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
The probe brane configurations dual to the dCFT versions of N =
4 SYM theory considered in this paper and their corresponding 
double scaling (d.s.) parameters. The discussion of the integrability 
properties of the associated boundary states can be found in [2,3].

D3-D7 set-up I II

Supersymmetry None None

Brane geometry AdS4× S2 × S2 AdS4× S4

Flux/Instanton no. k1,k2
(n+1)(n+2)(n+3)

6

D.s. parameter λ

π2(k2
1+k2

2)

λ
π2n2

Boundary state Non-integrable Integrable

2. The gauge theory computation

2.1. The defect theories

The gauge theory duals of the two probe-brane setups of Ta-
ble 1 are obtained as defect versions of N = 4 SYM in which 
(some of) the scalar fields are assigned a non-vanishing vacuum 
expectation value for x3 > 0. The vevs are solutions to the classical 
equations of motion,

∇2φcl
i (x) =

[
φcl

j (x),
[
φcl

j (x),φcl
i (x)

]]
. (1)

For system I (cf. Table 1), the relevant solution to (1) with 
SO(3) × SO(3) symmetry is [6]

ϕcl
i (x) = − 1

x3

(
t(k1)

i ⊗ 1(k2) 0
0 0(N−k1k2)

)
, i = 1,2,3,

ϕcl
i (x) = − 1

x3

(
1(k1) ⊗ t(k2)

i−3 0
0 0(N−k1k2)

)
, i = 4,5,6.

(2)

Here the matrices t(k)
i constitute the k-dimensional irreducible rep-

resentation of the Lie algebra su(2) and we denote by 0(N−k1k2) the 
zero matrix of dimension (N − k1k2) × (N − k1k2). We will only 
need the explicit form of the diagonal matrix t(k)

3 ; its eigenvalues 
are

d j,k = 1

2
(k − 2 j + 1), j = 1, . . . ,k. (3)

For system II (cf. Table 1), the solution to (1) with SO(5) sym-
metry is given by [16,17]

φcl
i (x) = 1√

2x3

(
Gi6 0
0 0(N−dG )

)
, i = 1, . . . 5; φcl

6 (x) = 0. (4)

The matrices Gi6 together with Gij = −i 
[
Gi6, G j6

]
form the dG =

1
6 (n + 1)(n + 2)(n + 3) dimensional irreducible representation of 
the Lie algebra of SO(6). For the purpose of this paper, we only 
need an explicit representation of G56. This matrix can be taken to 
be diagonal [18]; its eigenvalues η j,n and the corresponding mul-
tiplicity μ j,n are

η j,n = −n

2
+ j − 1, μ j,n = j(n − j + 2), j = 1, . . . ,n + 1.

(5)

Note that for both systems, the classical solutions (2) and (4)
pertain to x3 > 0. The vevs for all other fields in N = 4 SYM are 
zero in this region. For x3 < 0, the vevs for all fields vanish.

We shall calculate the expectation value of the Wilson line per-
turbatively in λ at tree level and at one-loop, and in both cases 
consider only the leading order in respectively n and k1, k2 as 
n, k1, k2 → ∞. This is motivated by a string theory analysis [5,6], 
which introduced the following double scaling limits (d.s.l.)
Fig. 1. Diagrams at tree level and one-loop order. (Figure adapted from [12].)

I : λ → ∞, k1, k2 → ∞,
λ

π2
(
k2

1 + k2
2

) finite, (6)

II : λ → ∞, n → ∞,
λ

π2 n2
finite , (7)

where in case I also the ratio k2/k1 has to be taken finite. Impos-
ing the d.s.l. on the string theory side allows one to expand string 
theory observables, such the expectation value of the Wilson line, 
as a power series in the double scaling parameter and formally 
compare the result to a perturbative gauge theory computation.

2.2. Wilson line setup

As in [11,12], we consider a straight Wilson line parallel to the 
defect parametrized by γ (t) = (t, 0, 0, z), i.e. a straight line at a 
fixed distance z from the defect. For this case, the Wilson line is 
given by

tr U (α,β) = tr

⎡
⎣Pexp

β∫
α

dt A(t)

⎤
⎦ , (8)

with

A(I)(t) = i A0(t) − ϕ3(t) sin(χ) − ϕ6(t) cos(χ), (9)

A(II)(t) = i A0(t) − φ5(t) sin(χ) − φ6(t) cos(χ), (10)

for the two set-ups respectively. We will be interested in the gauge 
invariant infinite line given by

W = lim
T →∞ tr U

(
− T

2
,

T

2

)
, (11)

which is related to the physical particle-interface potential. In or-
der to compute the expectation value of the Wilson line, we ex-
pand the fields around the classical solution as

A(t) = Acl(t) + Ã(t). (12)

To one-loop order, the path-ordered exponential becomes

U (α,β) = U cl(α,β) +
β∫

α

dt U cl(α, t)Ã(t)U cl(t, β)

+
β∫

α

dt

β∫
t

dt′ U cl(α, t)Ã(t)U cl(t, t′)Ã(t′)U cl(t′, β) +O
(
Ã3
)

,

(13)

where U cl(α, β) is the path-ordered exponential for the classical 
solution. The corresponding diagrams are illustrated in Fig. 1 and 
the following subsections will be devoted to dealing with each of 
the terms.
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2.3. Tree-level

The tree level contribution is given by the first term of (13) and 
is now evaluated in the large T limit,

〈W 〉tree = lim
T →∞ tr Pexp

T /2∫
−T /2

dt Acl(t) (14)

= lim
T →∞

[
exp

(
TAcl

)]
i,i

, (15)

since the classical solutions are time-independent. In the large T
limit, only the largest eigenvalue of Acl contributes, which gives

〈W 〉tree = μexp
(

T
η

z

)
, (16)

where η/z is the largest eigenvalue of Acl and μ its multiplicity. 
For the first setup, we have 2η(I) = (k1 −1) sin(χ) + (k2 −1) cos(χ)

and μ(I) = 1. For the second setup, we have η(II) = n√
8

sin(χ) and 
μ(II) = (n + 1). We may thus write the tree level results as

〈W 〉(I)
tree = μ(I) exp

(
T

(k1 − 1) sin(χ) + (k2 − 1) cos(χ)

2z

)
, (17)

〈W 〉(II)
tree = μ(II) exp

(
T

n sin(χ)√
8z

)
. (18)

They lead to the following particle-interface potentials

V (I)
tree = − lim

T →∞
1

T
log 〈W 〉(I)

tree = −k1 sin(χ) + k2 cos(χ)

2z
, (19)

V (II)
tree = − lim

T →∞
1

T
log 〈W 〉(II)

tree = −n sin(χ)√
8z

, (20)

having taken the limit k1, k2 → ∞ in (19) as implied by the double 
scaling limit.

2.4. Lollipop

The focus of this subsection is the second term of (13), which 
involves the one-loop expectation value of Ã and which we call 
the lollipop contribution.

〈W 〉lol = lim
T →∞

〈
tr

T /2∫
−T /2

dt U cl (− T
2 , t

)
Ã(t)U cl (t, T

2

)〉
(21)

= lim
T →∞ T

[
eTAcl

]
i j

〈[
Ã
]

ji

〉
1−loop

, (22)

where we have used the fact that the expectation values are time 
independent. The one-loop corrections to the vevs for the two 
set-ups are given in [7,8]. Notice that as opposed to what was 
the case for the supersymmetric D3-D5 probe brane set-up [9,10], 
these corrections are non-vanishing. In the large T limit, only the 
components multiplying the fastest growing exponential will con-
tribute, which in both conventions is also the first component

〈W 〉lol = TμeTη/x3
〈[
Ã
]

11

〉
1−loop

. (23)

Given the one-loop correction to the vevs, we find

〈W 〉(I)
lol = −μ(I) λT eTη(I)/z

4π2z
(
k2

1 + k2
2

)3

(
k1k4

2 sin(χ) + k2k4
1 cos(χ)

)
,

(24)

〈W 〉(II)
lol = −μ(II) λT eTη(II)/z

4
√

8π2zn
sin(χ), (25)
having again taken the double scaling limit in (24).

2.5. Tadpole

As in [12], the third term of (13) is the least straight forward 
term to compute. However, the same techniques can be employed 
with just minor complications. The tadpole term is

U tad(α,β) =
β∫

α

dt

β∫
t

dt′U cl(α, t)Ã(t)U cl(t, t′)Ã(t′)U cl(t′, β).

(26)

The fields are all N × N matrices; decomposing them into the block 
structure given by the classical solutions (2) and (4) and writing 
out the matrix indices explicitly, we find

〈tr U tad(α,β)〉 =
β∫

α

dt

β∫
t

dt′〈[Ã(t)]μρ [Ã(t′)]ρμ〉 (27)

+
β∫

α

dt

β∫
t

dt′ [e(t′−t)Acl
]

cd
〈[Ã(t′)]dμ[Ã(t)]μc〉

+
β∫

α

dt

β∫
t

dt′ [e(β−α+t−t′)Acl
]

eb
〈[Ã(t)]bρ [Ã(t′)]ρe〉

+
β∫

α

dt

β∫
t

dt′ [e(β−α+t−t′)Acl
]

eb

[
e(t′−t)Acl

]
cd

〈[Ã(t)]bc[Ã(t′)]de〉.

For the first setup the latin indices run from 1 to k1k2 and the 
greek indices run from k1k2 + 1 to N , while for the second setup 
the latin indices run from 1 to dG and the greek indices run from 
dG + 1 to N . In the large N limit only the second and third term 
contribute, given the propagators found in [7,8]. We thus have

〈W 〉tad = lim
T →∞

T /2∫
−T /2

dα

T /2∫
α

dβ

[
e−(α−β)Acl + e(α−β+T )Acl

]
cd

〈[Ã]dμ(α)[Ã]μc(β)〉.
(28)

For both setups the propagator has the form

〈[Ã]dμ(α)[Ã]μc(β)〉 =
∑

n

Dn
dc

∑
i

λi,n K m2
i,n (α,β), (29)

where D is a diagonal prefactor and K m2
i,n is the spacetime part of 

the propagator given in (31) below. This means we have to perform 
integrals of the form

〈W 〉tad = lim
T →∞

T /2∫
−T /2

dα

T /2∫
α

dβ

[
e−(α−β)Acl + e(α−β+T )Acl

]
cd

∑
n

Dn
dc

∑
i

λi,n K m2
i,n (α,β). (30)

Following [12], we proceed by using the following representation 
of the propagator



4 S. Bonansea et al. / Physics Letters B 806 (2020) 135520
K m2
i (α,β) = g2

Y M z

4π2

∞∫
0

dr r
sin(δr)

δ
Iνi (rz)Kνi (rz), (31)

νi =
√

m2
i + 1

4
, (32)

having defined δ = β − α. We may now plug this back into (30), 
change variables α = δ − T /2, rescale r → r/z and do the β inte-
gration,

〈W 〉tad = g2
Y M

4π2z
lim

T →∞

T∫
0

dδ (T − δ)

∞∫
0

dr r
sin(δr/z)

δ

[
eδAcl + e(T −δ)Acl

]
cd

∑
n

Dn
dc

∑
i

λi,n Iνi,n (r)Kνi,n (r).

(33)

Integration by parts is performed on the r integration in order to 
cancel the 1

δ
such that the integration over δ can be carried out,

〈W 〉tad = g2
Y M

4π2z2
lim

T →∞

T∫
0

dδ (T − δ)

[
eδAcl + e(T −δ)Acl

]
cd

(34)

∑
n

Dn
dc

∞∫
0

dr cos(δr/z)

∞∫
r

dr′r′∑
i

λi,n Iνi,n (r
′)Kνi,n (r

′).

Using this antiderivative makes the boundary term vanish at infin-
ity, whilst the sin(δr/z) part makes the boundary term vanish at 
r = 0. We can now perform the δ integration. In the large T limit 
we have

T∫
0

dδ (T − δ)

[
eδAcl + e(T −δ)Acl

]
cd

∑
n

Dn
dc cos(δr/z)

= μeηT /z T z
η

η2 + r2

∑
n

Dn
1,1, (35)

since for our two setups the largest eigenvalue of D coincides with 
the largest eigenvalue of Acl . We use this result in (34),

〈W 〉tad = μ
g2

Y M T eηT /z

4π2z

∞∫
0

dr
η

η2 + r2

∑
n

Dn
1,1

∞∫
r

dr′ r′∑
i

λi,n Iνi,n(r
′)Kνi,n (r

′). (36)

It is here and in the following implicit that T is large. We will 
now perform the r′ integration in the double scaling limit and for 
convenience we define the functions A and F

A(r) =
∞∫

r

dr′ r′∑
i

λi,n Iνi,n (r
′)Kνi,n (r

′) (37)

= −
∑

i

λi,n Fνi,n(r) + lim
r′→∞

∑
i

λi,n Fνi,n (r
′), (38)

Fνi,n (r) =
r∫

0

dr′ r′ Iνi,n(r
′)Kνi,n (r

′). (39)

By doing the integral from (39), we find Fνi,n (r) to be
Fνi,n (r) = − νi,n

2
+ 1

2

(
r2 + ν2

i,n

)
Iνi,n (r)Kνi,n (r)

− 1

2
r2 I ′νi,n

(r)K ′
νi,n

(r). (40)

In the double scaling limit, we can use the behavior of the Bessel 
functions at large order and finite argument [19] and find

Fνi,n (r) = −νi,n

2
+ 1

2

(
ν2

i,n + r2
)1/2 +O

(
ν−1

i,n

)
. (41)

We note that A(r) is divergent unless 
∑

i λi,n = 0, but by properly 
bunching our terms we can show that this condition is satisfied. 
Then, we find

A(r) = −1

2

∑
i

λi,n

(
ν2

i,n + r2
)1/2 +O

(
ν−1

i,n

)
. (42)

This result is now plugged into (36) and the final integral is per-
formed

〈W 〉tad = −μ
g2

Y M T eηT /z

8π2z

∑
n

Dn
1,1 (43)

∞∫
0

dr
η

η2 + r2

∑
i

λi,n

(
ν2

i,n + r2
)1/2

= −μ
g2

Y M T eηT /z

16π2z

∑
n

Dn
1,1 (44)

∑
i

λi,n

[
2
√

ν2
i,n − η2 arccot

(
η√

ν2
i,n−η2

)
− η log

(
ν2

i,n

)]
,

where we again used 
∑

i λi,n = 0 in the second line. We finally 
plug in the coefficients for the first setup, let k2 = k1 tan(ψ0) and 
take the large k1 limit

〈W 〉(I)
tad = −μ(I) λT eTη(I)/z cos(ψ0)

4π2z k1

sin2(ψ0 + χ)

4 cos3(ψ0 + χ)

(2ψ0 + 2χ − π + sin(2ψ0 + 2χ)) , (45)

notice that cos(ψ0)/k1 = (
k2

1 + k2
2

)−1/2
gives the combination ap-

pearing in the double scaling parameter. For the second setup in 
the large n limit we find

〈W 〉(II)
tad = −μ(II) λT eTη(II)/z

4
√

8π2zn

sin2(χ)

cos3(χ)
(2χ − π + sin(2χ)) . (46)

2.6. Full one-loop result

The full one-loop result is now obtained by adding the lollipop 
and the tadpole contribution

〈W 〉(I)
1−loop

= −μ(I) λT eTη(I)/z cos(ψ0)

4π2zk1

[
cos(χ) sin(ψ0) cos4(ψ0)

+ sin(χ) cos(ψ0) sin4(ψ0)

+ sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(2ψ0 + 2χ − π + sin(2ψ0 + 2χ))

]
,

(47)

having also expressed the lollipop contribution in terms of ψ0 =
arctan(k2/k1). For the second setup we have



S. Bonansea et al. / Physics Letters B 806 (2020) 135520 5
〈W 〉(II)
1−loop = −μ(II) λT

4π2n

eTη(II)/z

√
8z[

sin(χ) − sin2(χ)

cos3(χ)
(π − 2χ − sin(2χ))

]
. (48)

The corresponding correction to the particle-interface potential is 
given by

V 1−loop = − lim
T →∞

1

T

〈W 〉1−loop

〈W 〉tree
, (49)

which concludes the gauge theory computation with the following 
results:

V (I)
1−loop = V (I)

tree

(
λ

π2
(
k2

1 + k2
2

)
)

1

2 sin(ψ0 + χ)
(50)

[
sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(π − 2ψ0 − 2χ − sin(2ψ0 + 2χ))

− cos(χ) sin(ψ0) cos4(ψ0) − sin(χ) cos(ψ0) sin4(ψ0)

]
,

V (II)
1−loop = V (II)

tree

(
λ

π2n2

) [
sin(χ)

4 cos3(χ)
(π − 2χ − sin(2χ)) − 1

4

]
.

(51)

3. The string theory computation

As summarized in Table 1, we will be considering two different 
D3-D7 probe brane systems. In the set-up I, the probe D7-brane 
has geometry AdS4 × S2 × S2, and a background gauge field has k1
and k2 units of magnetic flux through the two S2 spheres, respec-
tively. In the second configuration, II, the D3-branes are intersected 
by a (small) number of D7-branes with AdS4 × S4 geometry and a 
background gauge field supports a non-vanishing instanton num-
ber on S4. In both cases, the system is stabilized for sufficiently 
large values of the flux or instanton number.1

It is convenient to write the AdS5 × S5 metric in two different 
ways, depending on the D7 geometry that we are considering

ds2
I = 1

y2

(
dy2 + dxμdxνη

μν
)

+ dψ2 + cos2 ψ d�2
S2

+ sin2 ψ d�̃2
S2 , (52)

ds2
II = 1

y2

(
dy2 + dxμdxνη

μν
)

+ dψ2 + cos2 ψ d�2
S4 , (53)

where d�2
S2 and d�̃2

S2 are the metrics of the two S2 spheres 
and d�2

S4 denotes the metric of the S4 inside the S5. In both 
cases xμ = (x0, x1, x2, x3) and the boundary of AdS5 is located at 
y = 0. In the set-up I, the D7-brane has world volume coordinates 
(x0, x1, x2, y, �S2 , �̃S2 ), while in the configuration II the D7-branes 
wrap the four-sphere and extend in the (x0, x1, x2, y) directions. 
The embedding of the D7 in the target space is given by [16,20,6]

I: y = x3

�I
, �I = f1 f2√

( f 2
1 + 4 cos4 ψ)( f 2

2 + 4 sin4 ψ) − f 2
1 f 2

2

,

(54)

where f1,2 = 2πk1,2√
λ

and the angle ψ has to satisfy

1 We notice that the perturbative regime for the double scaling parameter, con-
sidered in the gauge theory computations, lies within the region of stability of the 
probe brane systems [7,8].
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geometry looks similar whereas in the spherical part it is somewhat different, 
qns. (52), (53). (Figure adapted from [12].)

+ 4 cos4 ψ) tan2 ψ = ( f 2
2 + 4 sin4 ψ) , (55)

y = x3

�II
, ψ = 0, (56)

when n → ∞ : �II ∼ πn√
2
√

λ
−

√
λ

4
√

2πn
+O

(
λ3/2

π3n3

)
.

both cases, the D7-brane intersects AdS5 along an AdS4 hyper-
ne, tilted with respect to the boundary y = 0 at an angle that 
ends on �I or �II . In the supergravity limit λ → ∞, following 
 idea of [21–23], the Wilson line expectation value is described 
the area of a minimal surface stretching from the boundary of 
S5 to the D7-brane in the interior. Notice that the minimal sur-
e attaches to the D7-brane along a straight line in its AdS part 
well as along an arc in its spherical part, cf. Fig. 2.
We parametrize the worldsheet using coordinates (τ , σ) with 
[− T

2 , T
2 ] and σ ∈ [0, σ̃ ]. For the straight Wilson line (parallel 

the defect) we make the following ansatz for the embedding of 
 string [11,13]

τ , y = y(σ ), x3 = x3(σ ) and ψ = ψ(σ ). (57)

ew feature in the defect set-up is that the extremal surface has 
satisfy two different sets of boundary conditions. At the bound-
 of AdS5, which is approached when σ → 0, the usual Dirichlet 
ndary conditions must be imposed

) = 0, x3(0) = z and ψ(0) = π

2
− χ . (58)

 second set of boundary conditions ensures that the extremal 
face intersects the boundary brane at σ̃ orthogonally

y(σ̃ ) = x3(σ̃ )

�I
, y′(σ̃ ) + �Ix

′
3(σ̃ ) = 0, ψ(σ̃ ) = ψ1, (59)

y(σ̃ ) = x3(σ̃ )

�II
, y′(σ̃ ) + �IIx

′
3(σ̃ ) = 0, ψ(σ̃ ) = 0 , (60)

ere σ̃ is the maximum value of the worldsheet coordinate σ
 ψ1 has to satisfy eq. (55) and ψ1 ∈ [0, π/2]. The construction 

the solution follows the idea of [11]. The Euclidean Polyakov 
ion in conformal gauge reduces to

1

4πα′

∫
dτdσ

1

y2

(
1 + y′2 + x′2

3 + y2ψ ′2) . (61)

 Euler-Lagrange equations of motion for the action (61) must 
combined with the Virasoro constraint

+ x′2 + y2ψ ′2 = 1. (62)
3
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Since the coordinates x3 and ψ are cyclic variables, cf. (61), their 
equations of motion immediately translate into two conservation 
laws

x′
3(σ ) = −cy2(σ ) and ψ ′(σ ) = j, (63)

where j and c are two integration constants to be determined. The 
equation of motion for y(σ ) is given by

yy′′ − y′2 + 1 + c2 y4 = 0 . (64)

Using the Virasoro constraint we get the following first order dif-
ferential equation for y′(σ )

y′ =
√

1 − j2 y2 − c2 y4 . (65)

The solutions to eqs. (63) and (65) are2

y(σ ) =
√

m + 1

j2
sn

⎛
⎝
√

j2

m + 1
σ

∣∣∣∣∣∣m

⎞
⎠ , (66)

x3(σ ) = z −
√

−m + 1

m j2

[
E

(
am

(√
j2

m + 1
σ ,m

)
,m

)

−
√

j2

m + 1
σ

]
, (67)

ψ(σ ) = jσ + π

2
− χ , (68)

where to determine the form of the solutions we have used the 
boundary conditions at σ = 0. The parameter m is the elliptic 
modulus and it ranges from 0 to −1. The boundary conditions on 
σ̃ fix the remaining parameters (σ̃ , j, m) in terms of the geomet-
rical data (z, �I or �II, χ)

I : σ̃ = 1

j

(
ψ1 + χ − π

2

)
, 0 ≤ ψ1 + χ ≤ π

2
, (69)

II : σ̃ = 1

j

(
χ − π

2

)
, 0 ≤ χ ≤ π

2
, (70)

j2 =
⎛
⎝�

z

√
m + 1 sn

⎛
⎝
√

j2

m + 1
σ̃

∣∣∣∣∣∣m

⎞
⎠+

+
√

m + 1

z
√−m

[
E

(
am

(√
j2

m + 1
σ̃ ,m

)
,m

)

−
√

j2

m + 1
σ̃

])2

, (71)

�I, (II) =
cn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
dn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
√−m sn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)2
. (72)

Choosing the convention in which σ̃ is positive, for the value of 
the angles considered in (69) and (70), j has to be negative.
The area of the minimal surface is obtained by evaluating the 
Polyakov action on the classical solution. As usual, one has to in-
troduce a cut-off ε in the y coordinate such that the regularized 
area is given by an integral in the region y ≥ ε and then remove 

2 Our notation for elliptic functions and integrals follows that of the Wolfram 
Language of Mathematica.
the divergent piece before comparing to the field-theory computa-
tion. The expression for the regularized action is

SI, (II) =
√

λT

2π

√
j2

m + 1

⎡
⎣
√

j2

m + 1
σ̃I, (II)−

− E

⎛
⎝am

⎛
⎝
√

j2

m + 1
σ̃I, (II)

∣∣∣∣∣∣m

⎞
⎠
∣∣∣∣∣∣m

⎞
⎠−

−
cn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
dn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)

sn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
⎤
⎥⎥⎦ . (73)

We can rewrite SI, (II) in a more compact form using eq. (71) to 
replace the incomplete elliptic integral of the second kind and 
noticing that

y′(σ̃ ) = cn

⎛
⎝
√

j2

m + 1
σ̃I, (II)

∣∣∣∣∣∣m

⎞
⎠dn

⎛
⎝
√

j2

m + 1
σ̃I, (II)

∣∣∣∣∣∣m

⎞
⎠ , (74)

we get

SI, (II) = −
√

λT

2π
z c , (75)

where c = j2 √−m
m+1 . To compare the supergravity and the gauge the-

ory results, we have to expand our results in the double scaling 
parameter given in eqns. (6) and (7). One can get the expansion 
for �I in powers of λ

π2(k2
1+k2

2)
looking at its definition in eq. (54). 

Notice that eq. (55) is satisfied in the large flux limit if

ψ1 = ψ0 + cosψ0(sinψ0 − sin 3ψ0)

4π2

λ

k2
1 + k2

2

+O
(

λ2

π4
(
k2

1 + k2
2

)2

)
, (76)

where tan ψ0 = k2
k1

. Thus, the expansion for �I is

�I =
√

k2
1 + k2

2

λ
π − sin2 2ψ0

8π

√
λ

k2
1 + k2

2

+O
(

λ

π2(k2
1 + k2

2)

)
.

(77)

The double-scaling expansion for �II can be read off from eq. (56). 
Notice that in this limit also �I,II have to be large. Namely, we re-
quire that the denominator in eq. (72) vanishes. This occurs when 
m goes to zero. Moreover, we can assume the following expansion 
for m

m =
∞∑

l=1

a2l

�2l
I,II

, (78)

in such a way that eq. (72) is satisfied. The coefficient in the above 
expansion can be determined by solving iteratively equation (72). 
In the end, we get the following expansions for the particle-defect 
potential in the two different cases I and II

V (I) = −k1 sin(χ) + k2 cos(χ)

2z

{
1 + λ

π2
(
k2

1 + k2
2

) 1

2 sin(ψ0 + χ)[
sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(π − 2ψ0 − 2χ − sin(2ψ0 + 2χ))
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− cos(χ) sin(ψ0) cos4(ψ0) − sin(χ) cos(ψ0) sin4(ψ0)

]

+O
(

λ2

π4(k2
1 + k2

2)
2

)}
, (79)

V (II) = −n sin(χ)

2
√

2z

{
1 + λ

π2n2

[
sin(χ)

4 cos3(χ)
(π − 2χ − sin(2χ))

− 1

4

]
+O

(
λ2

π4n4

)}
. (80)

We thus find perfect agreement with the field theory results to 
two leading orders in the double scaling limit. Notice also that 
when ψ0 → 0 (namely k2/k1 → 0), the expansion for the action 
in (79) reduces to the result for the Wilson line in the D3-D5 
case [11,12]. For the set-up II the correction to the potential looks 
similar to the one of the D3-D5 brane case up to a replacement 
of n by 

√
2k. This is a peculiarity of the one-loop approximation 

where only the first term in the expansion in eqn. (56) contributes, 
and it will not remain true at higher loop orders. Finally, we men-
tion that for the set-up I there is no particular point of symmetry 
where the potential vanishes. This is due to the fact that for set-
up I all scalar fields get vevs, and it is not possible to choose a 
direction on the sphere which is unaffected by these.

4. Conclusion and outlook

Our investigation of Wilson lines provides an example that the 
AdS/dCFT dictionary for non-local observables remains valid upon 
breaking of both supersymmetry and (boundary) integrability. In 
addition, it serves as an important consistency check of the pertur-
bative framework that was set up in references [7,8] for the dCFTs 
involved. We stress that having a perturbative framework for these 
defect CFTs is indispensable as these theories, due to the lack of 
supersymmetry, are not amenable to methods such as localization. 
For other defect versions of N = 4 SYM, conserving part of the 
supersymmetries, such as the D3-D5 probe brane model, impor-
tant progress on the use of localization has recently been made in 
[26].

With the perturbative framework and the AdS/dCFT dictionary 
in place, possibilities for further scrutiny of the present defect CFTs 
open up. F.inst. one can scan the parameter spaces of the mod-
els for the presence of Gross-Ooguri like phase transitions [24]
as it was done for the supersymmetric D3-D5 probe brane set-
up in [15,14,25]. It would likewise be interesting to study the 
transport properties of the various defect CFTs, supersymmetric or 
not, by calculating correlation functions of the stress energy tensor 
across the defect or other related quantities.
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