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ARTICLE

Entanglement of propagating optical modes via
a mechanical interface
Junxin Chen1,2,4, Massimiliano Rossi 1,2,4, David Mason1,2,3,4 & Albert Schliesser1,2✉

Many applications of quantum information processing (QIP) require distribution of quantum

states in networks, both within and between distant nodes. Optical quantum states are

uniquely suited for this purpose, as they propagate with ultralow attenuation and are resilient

to ubiquitous thermal noise. Mechanical systems are then envisioned as versatile interfaces

between photons and a variety of solid-state QIP platforms. Here, we demonstrate a key step

towards this vision, and generate entanglement between two propagating optical modes, by

coupling them to the same, cryogenic mechanical system. The entanglement persists at room

temperature, where we verify the inseparability of the bipartite state and fully characterize its

logarithmic negativity by homodyne tomography. We detect, without any corrections, cor-

relations corresponding to a logarithmic negativity of EN = 0.35. Combined with quantum

interfaces between mechanical systems and solid-state qubit processors, this paves the way

for mechanical systems enabling long-distance quantum information networking over optical

fiber networks.
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Entanglement is a crucial resource for quantum information
processing (QIP)1. As such, the ability to entangle fields of
arbitrary wavelength will be important for linking nodes in

heterogeneous QIP networks2. Mechanical oscillators are
uniquely poised in their ability to create such links, thanks to the
frequency-independence of the radiation pressure interaction3,4

and their ability to couple to various solid-state qubits5–10. The
ability to entangle two radiation fields via a common mechanical
interaction was outlined 20 years ago11–13, and the intervening
decades have seen the development of optomechanical devices14

which are robustly quantum mechanical and routinely integrated
into hybrid systems.

Recently, mechanically mediated entanglement has been
reported between propagating microwave fields15 as well as two
superconducting qubits16. In both cases, the entanglement
remained confined to the dilution refrigerator in which it was
created. Here, we create mechanically entangled optical fields for
the first time, spanning up to 100 nm in wavelength, by utilizing
an extremely coherent mechanical platform (Fig. 1). Moreoever,
while the entangling mechanical interface resides at cryogenic
temperatures, it is compatible with highly efficient light extraction
and collection, such that we can directly measure the entangle-
ment at room temperature, without noise subtraction or other
indirect inference. This in turn means that the entangled optical
fields could easily be distributed for QIP applications.

Results
Theoretical model. We consider two propagating optical fields
(labeled by j= A, B), from which one can identify a pair of
temporal modes with quadratures X̂j; Ŷ j. We take the variance of
these modes to be 1/2 in their ground state. From these modes,
one can construct joint Einstein–Podolsky–Rosen (EPR)-type
variables X̂± ¼ X̂A ± X̂B and Ŷ± ¼ ŶA ± ŶB, which form the basis
for various entanglement criteria17,18. We adopt the common
Duan–Giedke–Cirac–Zoller (DGCZ) criterion17 for the insepar-
ability I , which states that the two modes are inseparable if their
variances (V) satisfy

I � VðX̂þÞ þ VðŶ�Þ
2

< 1: ð1Þ

To further quantify this entanglement, one can utilize the
system’s covariance matrix, σ, which fully characterizes the
correlations between various quadratures. From this matrix, it is
straightforward to calculate the symplectic eigenvalues of its
partial transpose, ~ν ±

19. These eigenvalues offer a condition for
separability (2~ν� ≥ 1), as well as a tool to calculate a common
measure of entanglement, the logarithmic negativity
EN ¼ max 0;�log 2 2~ν�

� �
. We note that 2~ν� also corresponds

to the minimum value of I possible when optimizing over local
operations on either subsystem (e.g., squeezing and rotation)20.
Thus, 2~ν� serves as a lower bound for any DGCZ measurement.

In an optomechanical setting, in which a mechanical resonator
(unitless position q̂, momentum p̂) is linearly coupled to two
independent, resonantly driven cavity modes (amplitude X̂

cav
j ,

phase Ŷ
cav
j , j=A, B), the interaction Hamiltonian can be written

as: Ĥint ¼ �P
j2_gjX̂

cav
j q̂, where ℏ is the reduced Planck

constant, and gj are the field-enhanced optomechanical coupling
rates. We consider an unresolved-sideband system, in which the
cavity decay rates, κj are much faster than the mechanical
frequency Ωm and mechanical energy dissipation rate Γm. We also
assume that the two cavity modes are driven symmetrically by
coherent states, such that their induced quantum backaction
rates, Γqbaj ¼ 4g2j =κj are equal: ΓqbaA ¼ ΓqbaB � Γqba. The quadratic

interaction preserves the Gaussianity of the state. The following
equations of motion link the input and output optical fields

X̂
out
j ðtÞ ¼ �X̂

in
j ðtÞ; ð2aÞ

Ŷ
out
j ðtÞ ¼ � Ŷ

in
j ðtÞ � 2

ffiffiffiffiffiffiffiffi
Γqba

q
χmðtÞ � ½

ffiffiffiffiffiffiffiffi
2Γm

p
P̂inðtÞ

þ
X
i¼A;B

2
ffiffiffiffiffiffiffiffi
Γqba

q
X̂
in
i ðtÞ�;

ð2bÞ

where X̂
in
j and Ŷ

in
j are input vacuum noise quadratures, χm is the

mechanical susceptibility, Γm is the mechanical energy dissipation
rate, * indicates convolution, and P̂in is the mechanical thermal
noise operator.

In Eq. (2), we see that the quantum amplitude fluctuations of
each laser drive the mechanical system, whose motion is then
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Fig. 1 Experimental setup. Two lasers (red and blue) simultaneously drive
an optomechanical cavity, kept in a helium flow cryostat. The inset shows
the structure of the soft-clamped mechanical resonator (Si3N4 in white,
holes in black). Exiting the cavity, the optical fields possess nonlocal
correlations, illustrated by the squeezed phase space ellipses. After the
cavity, the two lasers are physically separated and detected simultaneously
by balanced homodyne detectors, with local oscillators locked at phases
θA, θB. The top of the figure shows a frequency diagram of the relevant
optical modes. The two cavity drives are shown in black, with scattered
mechanical sidebands of laser A and B shown in blue and red, respectively.
The sideband quadrature modes considered in the paper correspond to
combinations of both scattered sidebands, as indicated by the blue and red
shaded areas.
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imprinted on the optical phase. This is the same mechanism that
drives ponderomotive squeezing of a single laser21, but in this
case there are also cross-correlations between the lasers. More
insight can be had by moving to the joint mode basis (see
Supplementary Note 2), where one finds that the system
decouples into a sum mode undergoing ponderomotive squeez-
ing, and a difference mode which remains dark to all mechanical
dynamics. It is this squeezing of a joint (nonlocal) mode which
results in the “ponderomotive entanglement” we study here. We
note that Eq. (2) also closely mirror those describing four-mode
squeezing based on the Kerr nonlinearity in glass22, in which the
response function χm is effectively instantaneous. Both
approaches are members of a broader class of settings that
enable, in principle, quantum-non-demolition measurements of
light23,24.

Homodyne detection allows measurement of optical quad-
ratures in a rotated basis defined by the local oscillator phase, θj.
Filtering the homodyne signal at frequency Ω with a mode
function h(t) yields the sideband quadratures of a particular
temporal mode at time t:

X̂
θj
j ðtÞ ¼

Z t

�1
ds cosðΩsÞhðt � sÞ X̂

out
j ðsÞ cosðθjÞ þ Ŷ

out
j ðsÞ sinðθjÞ

� �
;

ð3aÞ

Ŷ
θj
j ðtÞ ¼ X̂

θjþπ=2
j ðtÞ; ð3bÞ

where θj is the homodyne angle. Note that the quadratures X̂
θj
j

available in a homodyne detector contain a pair of sidebands,
symmetric to the carrier, as illustrated at the top of Fig. 1. As
there are in total four optical modes involved, correlations
between such modes are sometimes called four-mode-squeezing
(see Supplementary Note 3), in contrast to the entangled
microwave modes recently analyzed in a heterodyne scheme15.
In the following model, we consider the limit of long filter times,
in which h effectively selects a single Fourier component20.
Furthermore, since the system is stationary, we drop the time
argument t and focus on the ensemble statistics of these modes.

Within this model, one can obtain a simple expression for the
DGCZ inseparability criterion (see Supplementary Note 1 for
detail)

I ideal
Θ;Ω ¼ 1þ 8ΓqbajχmðΩÞj2Γdec 1þ cosð2ΘÞð Þ

� 4ΓqbaRe χmðΩÞ� �
sinð2ΘÞ; ð4Þ

where Θ≡ (θA+ θB)/2. The first term is the contribution from
shot noise at the detectors. The second term is the contribution
from mechanical motion, where the total decoherence rate Γdec ¼
2Γqba þ Γmð�nth þ 1=2Þ includes both quantum backaction sources
and thermal motion. The third term corresponds to correlation
between two beams, again in close analogy to ponderomotive
squeezing21. In practice, there is always optical loss, which admits
vacuum noise that degrades the detected correlations. This is
described by a collection efficiency ηA= ηB≡ η < 1, with which
the inseparability of the detected optical states becomes
IΘ;Ω ¼ ηI ideal

Θ;Ω þ ð1� ηÞ. By defining a combined measurement
efficiency ηmeas= 2ηΓqba/Γdec, one can show (see Supplementary
Note 1) that the minimum of IΘ;Ω is given by 1− ηmeas/2. By
further calculating the full covariance matrix for this toy model
(see Supplementary Note 1), one can show that
minf2~ν�g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ηmeas

p
, that is, the system can generate

arbitrarily strong entanglement as ηmeas → 1.

Experimental setup. In practice, the optical fields become
entangled via their shared interaction with a 3.6 mm × 3.6 mm ×

20 nm soft-clamped Si3N4 membrane25. The vibrational mode of
central defect has a frequency of Ωm= 2π × 1.139MHz, and a
quality factor Q= 1.04 × 109 at a temperature of 10 K, which
corresponds to a mechanical linewidth of Γm= 2π × 1.10 mHz.

As illustrated in Fig. 1, the membrane is inserted in the middle
of an optical cavity26,27, addressed by two lasers with wavelength
~796 nm. These lasers are orthogonally polarized and populate
the cavity in two different longitudinal modes separated by ~0.3
THz, with linewidths of κA= 2π × 13.3 MHz and κB= 2π × 12.6
MHz. With this setup, we achieve ΓqbaA � 2π ´ 1:35 kHz and

ΓqbaB � 2π ´ 0:89 kHz, which easily exceed the thermal decoher-
ence rate Γm�nth � 2π ´ 0:20 kHz. We measure the optical
quadratures of the cavity output fields using two separate
balanced homodyne detectors, achieving overall collection
efficiencies of ηA= 60% and ηB= 77%. This gives a combined
measurement efficiency of ηmeas= 58% (see Supplementary
Note 5).

By combining slope and dither lock techniques we are able to
arbitrarily stabilize the phase of the local oscillators in the
range [0, 2π). The photocurrent of each balanced homodyne
detector is digitized with a 15MSa/s analog-to-digital converter.
We numerically demodulate the photocurrents at frequency Ω/
(2π)= 1.1416MHz, and low-pass filter the result with bandwidth
200 Hz. (This bandwidth is narrow compared to the mechanical
feature of interest, allowing us to apply the infinitely long-filter
limit of the model).

Inseparability. We now proceed to characterize the variance of
EPR-type variables, as introduced above, to compare with the
DGCZ criterion. We choose a common basis θA ≈ θB ≈Θ ≈ 0 and

measure, in sequence, the combinations fX̂Θ
A ; X̂

Θ
B g, fŶ

Θ
A ; Ŷ

Θ
B g,

and vacuum noise (by blocking the cavity output). Figure 2a, b
shows histograms of the measured quadrature data for the X
and Y quadratures, along with reference lines for vacuum
noise variance in black. Recalling the joint quadrature definitions,
we note that the DGCZ criterion involves the diagonal and anti-
diagonal variances of the X and Y histograms, respectively. In
the figure, we clearly see squeezing in the former, and near-
vacuum variance in the latter—thus already indicating
violation of the DGCZ criterion. Quantitatively, we find
I ¼ 0:83 ± 2%ðstat:Þ± 0:3%ðsyst:Þ. The statistical error comes
from the number of samples used to estimate the EPR variances
and the vacuum noise. The systematic error arises from the
estimations of the vacuum noise variance, due to residual classical
amplitude noise and mismatch in the photodiode responsivities,
at the balanced homodyne detectors (see Supplementary Note 6).
We also notice that the variances in the orthogonal directions are
at the vacuum level. This does not violate the Heisenberg
uncertainty relation, since the pairs of quadratures {X̂A; X̂B} and
{ŶA; ŶB} commute with each other and are not canonically
conjugate observables. We repeat such measurement for different
homodyne angles (Θ ∈ [−π/2, π/2]) as shown in Fig. 2c. The
solid lines are theoretical predictions based on a full model of
optomechanical dynamics (taking, in particular, dynamical
backaction14 into account, see Supplementary Note 1), using
system parameters extracted from fits (see Supplementary
Note 5). We find good agreement over all phases, firmly estab-
lishing that the two optical modes satisfy the DGCZ inseparability
criterion. From Fig. 2c, we also notice that the best two-mode
squeezing we achieve is, for the quadrature X̂þ, 1.8 dB below the
vacuum noise limit.

Covariance matrix tomography. Having established entangle-
ment, we now quantify it by reconstructing the covariance matrix
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by Gaussian homodyne tomography. By measuring five different
pairs of angles {θA, θB}= {0, 0}, {π/2, π/2}, {0, π/2}, {π/2, 0}, {π/
4, π/4}, we obtain all necessary intrasystem and intersystem
correlations. The reconstructed covariance matrix and theoretical
prediction are shown in Fig. 3. From this experimental data, we
find a minimum symplectic eigenvalue 2~ν� ¼ 0:79, correspond-
ing to EN= 0.35.

Frequency-dependent entanglement. The previous results refer
to a sideband quadrature mode at a particular frequency, Ω. We
now examine how this entanglement varies as we sweep Ω near
the mechanical resonance, Ωm.

(Note that for computational convenience, we do this by
calculating noise spectral densities via the Fast Fourier Transform
of the raw photocurrents, which corresponds to a mode function
hðtÞ ¼ θðtÞθðT � tÞ= ffiffiffiffi

T
p

, where θ(t) is the Heaviside function
and T ≈ 9 ms is the acquisition time). Figure 4 shows such a
frequency-dependent inseparability, as well as its dependence on
the homodyne measurement basis, Θ.

We see that the entanglement criteria can be met for
frequencies above and below mechanical resonance, in a manner
consistent with the dispersive third term in Eq. (4). The solid lines
in Fig. 4a, b are theoretical predictions from the full model, based
on a single set of system parameters, obtained from independent
measurements or fits to account for drifts (see Supplementary

Note 5). Moreover, similar to the measurement in Fig. 3, we can
reconstruct the covariance matrix (and corresponding ~ν�) for
each frequency bin, as shown in Fig. 4b. We see that, as expected,
2~ν� serves as a lower bound for the inseparability I . Since this
bipartite Gaussian state is approximately symmetric, from 2~ν� we
can calculate the entanglement of formation, which is accepted as
a proper measure of quantum correlations as a resource15,28,29.
Integrating this quantity over a 30 kHz bandwidth yields an
entanglement distribution rate of 753 ebits/s.

We emphasize that the optomechanical interaction which
generated the entanglement presented above is fundamentally
wavelength independent. To illustrate this, we move laser A to
~912 nm, and repeat the measurements of Fig. 4. As shown in
Fig. 5, we observe a DGCZ variance below unity and a minimum
symplectic eigenvalue 2~ν� ¼ 0:92 for a mode centered at Ω=
2π × 1.142MHz with bandwidth 915 Hz. The performance is
degraded compared to the previous results, due to less efficient
light collection at ~912 nm. Nevertheless, these results establish
entanglement of two lasers separated by more than 100 nm in
wavelength.

Discussion
In conclusion, we have demonstrated quadrature entanglement
of two nondegenerate optical beams via their common
radiation–pressure interaction with a mechanical resonator.
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While applications in optical or microwave quantum commu-
nication are conceivable (as realized with entangled light
sources based on more traditional optical or microwave para-
metric oscillators28,30–33), mechanical platforms offer unique
possibilities. In particular, the combination of mechanically
mediated microwave15 and optical (this work) entanglement
could enable microwave-optical entanglement, based on
membrane electro-opto-mechanical systems34,35. This would
constitute a much-needed resource for networks of quantum
computers based on superconducting qubits. In this context, it
is noteworthy that the mechanical interface can in principle
also store quantum information. Indeed, for the device

presented here, the memory time is ca. 1 ms even for 10 K
operation27, easily exceeding storage time in optical fibers.

In our work, entanglement is preserved from the cryogenic
mechanical mediator all the way to the laser beams analyzed in
room-temperature homodyne detectors. This enhances the pro-
spects of a general class of hybrid quantum systems3,4 based on
mechanical interfaces, which could harness entanglement
between solid-state (e.g., spin or charge based) quantum systems,
typically operating at low temperatures, and itinerant optical
fields.

From a more fundamental perspective, it would be interesting
to explore concepts at the interface of quantum measurement and
entanglement. For instance, the optomechanical interaction in this
work can also be interpreted as a strong quantum measurement of
the mechanics. This system should be well-suited for studying the
usually hard-to-access system-meter entanglement36–38.

Data availability
Source and raw data for Figs. 2–5 are available in the UCPH ERDA repository. The
remaining data are available from the corresponding author upon request. The
responsitory https://doi.org/10.17894/ucph.3e60afa5-6377-4488-ab27-850f1e7e8615.

Code availability
The code used in the analysis of the data is available from the corresponding author upon
reasonable request.
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