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We investigate in the context of the scattering equations, how one-loop linear propagator integrands in
gauge theories can be linked to integrands with quadratic propagators using a double forward limit. We
illustrate our procedure through examples and demonstrate how the different parts of the derived quadratic
integrand are consistent with cut-integrands derived from four-dimensional generalized unitarity. We also
comment on applications and discuss possible further generalizations.
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I. INTRODUCTION

The search for computational techniques for scattering
amplitudes in quantum field theory is an area under
constant development. In the remarkable series of papers
by Cachazo, He and Yuan (CHY) [1-3] it was shown that
one can obtain tree-level S-matrix amplitudes in arbitrary
dimension for a broad variety of theories, in the context of
the so-called scattering equations:

S44
S, = Y_—0), e {l,2,...,n}. (1.1
(;zi—z, ) et ()

Here s;; = (k; + k j)z are the usual Mandelstam invariants,
defined from the external momenta k; and kj, and the
variables z; and z; are auxiliary coordinates. The scattering
equations exhibit PSL(2,C) invariance, and thus only a
subset of them are independent. Amplitudes are given by a
contour integral enclosing the solutions to the scattering
equations,

A, = / dyn T (3), (12)
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where ZCHY(z) is the integrand and we employ the
integration measure, du,,,

— HZ:] dZa
~ VoI(PSL(2.C))

du, (zi = Zj)l%znj - Zk;(zk —-z;) ‘
b#i.jk Db
(1.3)

Given the tree-level scattering equation formalism, it is
natural to speculate about possible loop-level applications.
A breakthrough was provided when Geyer, Mason,
Monteiro, and Tourkine [4] provided an explicit formalism
in the context of ambitwistor string theory [5,6]. This was
followed by work on one-loop scalar ¢* theories [7] (see
also Ref. [8]) extending the tree-level scattering equation
integration rules [9] to loop level. The main idea behind the
scattering equation extensions at the one-loop level is the
observation that the forward limit of loop amplitudes can be
addressed by adding to tree-level scattering processes two
additional off-shell loop momenta which are equal and
opposite. A two-loop version of this formalism was
developed in Refs. [10,11]. A feature of the scattering
equation formalism is that propagators are obtained linearly
instead of quadratically. Quadratic propagators can be
decomposed in terms of linear propagators through partial
fraction decompositions [4,7,12-14], but it is usually
extremely complicated to rewrite linear propagator inte-
grands in terms of quadratic ones through a simple
procedure since it involves reassembling terms of partial
fractions and shifts of momenta, as well as including terms
that vanish under integration. Although linear decomposi-
tions of loop amplitudes can be utilized directly using the

Published by the American Physical Society
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Q-cut technology pioneered in Ref. [13], there can still
be advantages associated with rewriting loop amplitude
integrands, phrased in terms of linear propagators, as
quadratic ones, to enjoy the computational technology
developed over decades. A method for extending the
ambitwistor string in D = 4 at tree level to one-loop that
give rise to integrands with quadratic propagators for
supersymmetric theories was first proposed by Farrow
and Lipstein in Ref. [15]. Alternatively, scalar quadratic
propagator integrands at loop level from linear propagator
integrands can also be obtained using results of
Refs. [16,17]. Here a double forward limit is employed
with four extra loop legs instead of the usual two. When the
two extra on-shell loop momenta are combined into two
off-shell loop momenta, we gain a direct path to traditional
quadratic integrands. In order to pioneer such a formalism
for gauge theory integrands, we will draw on inspiration
from Ref. [17], as well as the technology recently devel-
oped in Refs. [12,18-23].

As a reference for the integrands we generate from the
procedure, we will refer to a D =4 — 2¢ integral basis
decomposition of one-loop amplitudes, discussed e.g., in
[24-27]. Here amplitudes are decomposed into linear

combinations of n-gon integrals [ Sf) with quadratic propa-
gators integrated over D = 4 — 2¢ dimensions and multi-

plied with coefficients Cﬁ,”,

AO =371 + 3Py + 3 ey
i J k

-+ rational term. (1.4)

The gauge-invariant integral coefficients C,(ll) can be
deduced from integrand reduction or four-dimensional
unitarity, and we refer to,

AV =519 + 571 + 3 e (1)
i k

J

as the four-dimensional cut-constructible part of the ampli-
tude. The main focus of this paper will be the construction
of a quadratic propagator integrand from which the four-
dimensional cut-constructible part of the amplitude can be

inferred, starting from a linear propagator integrand.
The paper is organized as follows. In Sec. II we outline
how to obtain the representations for gauge theory
|

integrands with linear propagators from the scattering
equations. In Sec. IIl we demonstrate how to use the
results from Sec. II to derive loop integrands with quadratic
propagators and to validate the construction using four-
dimensional unitarity. Section VII contains our conclusions
and discussions. There are three appendices.

II. YANG-MILLS GAUGE THEORY LINEAR
PROPAGATOR ONE-LOOP AMPLITUDES
FROM SCATTERING EQUATIONS

Yang-Mills gauge theory tree amplitudes are computed
in the scattering equation formalism from integrands of the
type

TV(a(1),a(2). ....a(n)) = PTa(1), a(2). ...,a(n)] x ¥,
(2.1)

where
(2.2)
and Pf [(‘P)Zﬁj] denotes the Pfaffian of the matrix
A —CT
Y =
C B

with rows and columns corresponding to legs k; and k;
reduced and

2¢;°k;

{2k,-~kj 2ere; o for i # j,
Ajj=q 7 By=q7Y C;= ek, -
0 0 —gm fori=j.

(2.3)

Here ¢; denotes polarizations and we employ the short-
hand notation Zjj=2Zi—Z%j as well as kalaz---a/,E
ko, +koy + 0+ kap. Given the ordering of the legs
{a(1),a(2),...,a(n)} = a(1,2,...,n) = a, we define the
Parke-Taylor factor

1

PTla,] =

To use the scattering equation formalism to derive one-loop
integrands in Yang-Mills theory, we will exploit knowledge
about loop integrands in scalar ¢ theories in the forward

(Za(1) = Za2)) (Za(2) = Za(3)) "~ (Zatn=1) = Za(n)) (Za(n) = Za(1))

(2.4)

I

limit. In Ref. [7] it was shown how one-loop amplitudes
with a, external legs could be derived from Parke-Taylor
integrands such as

045023-2
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2
+ —
(chdicPT[f Ly ]) , (2.5)
where £T = —¢~ = ¢ and where the sum is over cyclic
permutations of «,. To extend this construction to Yang-
Mills theory it is natural to use the following integrand

7 (ZPT [ a,. ¢ )

cyclic

x(%;m(m);i;:]). (2.6)

Here W, , is a 2(n +2) x 2(n + 2) matrix with entries
defined similarly to Eq. (2.3), supplemented with two
additional opposite and equivalent off-shell loop leg rows
and columns, Z* and #~. In the formula D denotes the
dimension of the space-time and the sum in r runs over the
physical polarization degrees of freedom of the off-shell
legs. We have checked correspondence of the above
integrand with the recent results of [12,22] and worked
out several examples (up to four points) that demonstrate by
direct computation that the application of the integration
rules for scalar ¢* theories combined with the results of
[18] allows identification of Yang-Mills one-loop ampli-
tude results in the forward limit. A convenient way to

expand a given integrand Z,(ll)(an) in one-loop pure Yang-
Mills theory is to exploit KLT orthogonality Refs. [28] and
to decompose the Pfaffian contribution in terms of products
of Parke-Taylor factors and numerator coefficients that
satisfy color-kinematics identities on the support of (n + 2)
scattering equations Ref. [3] (see also Refs. [23,29,30]),

(_1)n+2 D=2

Pf[(an+2)?t§:] =

> nlpw O)PTET p,. 7).

v T Lo r=1 PrES,

(2.7)

In the expression, we sum over permutations of p, and
define

>}

-2
n(p €)=Y nltt,p,. 7],

1

(2.8)

r

corresponding to the half-ladder tree diagram shown in
Fig. 1.

In the sum over polarizations, it is useful to introduce
two reference vectors 7 and g satisfying ¢> = ¢” - g = 0,
n-¢=n-k;=n-¢ =0andn*> = £>. From the complete-
ness relation it then follows that n[¢", p,, £7] is invariant
under shifts, £ — £ + n and that we can define

>}

_2 >
% q,+7%,q
E/’;( ) _g/w £ > £

=A,, £=10+n,
] Z-q !

r

(2.9)

p(n)

FIG. 1. Half-ladder tree diagram associated with the one-loop
color-kinematic numerator, n[¢*, p,,£”| for off-shell momenta
¢ and £-.

which allows the formulation of the compact rules
A, =D -2, ALVEWY =V - W, forany V, W e {k; ¢}
(2.10)

An integrand at one-loop for pure Yang-Mills theory with
linear propagators that utilizes color-kinematic identities is
thus

1
=% ZPT[K*, a,, 7]
cyclic
X Y n(py; €)PTE p,. 7],

pnesn

Y (ay)
(2.11)

It is important to note that color-kinematic numerators
[also known as Bern-Carrasco-Johansson (BCJ) (for a
review see Ref. [31]) numerators], do not have a unique
representation (see for instance Ref. [32-34]). We will in
this presentation employ the numerator representation
of Ref. [34].

III. QUADRATIC PROPAGATORS

Armed with the machinery for integrands with linear
propagators, we now develop a formalism for computing
one-loop Yang-Mills integrands with traditional quadratic
propagators. Since we work at the one-loop level it suffices
to consider planar contributions. The basic idea is to con-
sider a double forward limit of four massless on-shell
gluons instead of the single forward limit we discussed so
far. In the double forward limit we use £ = ¢ + ¢, and
£? =0 with #? # 0. Based on the above ideas and the
linear propagator construction, we now propose the follow-
ing integrand for Yang-Mills amplitudes in the double
forward limit

Tor(@,) = PTV[a,] Y N(p,it1.63)
PrESy
X PT[£F. 5 pu. 5. C5), (3.1)
PT W, = Y PT£5. 7. . €747
cyclic

_ PTG 4.

! ,ﬁ 3 ZPTf a,. 7], (3.2)
1> cyclic

D-2 D-2

N(pn;flvf2>5 n[f;r’f;’pn’fg’fl_]. (33)

‘
S
Il
=
)
Il
=

045023-3
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p(1) p(2)

FIG. 2. Half-ladder tree diagram associated with the one-loop
color-kinematic numerator: n[¢7, £5, p,, £7.¢5] for on-shell £},
£7, ¢4 and £5.

The sum in r; and r, run over the polarization degrees of
freedom and n[¢},¢5, p,, &5, €7, is the color-kinematic
numerator corresponding to the propagator structure of the
tree diagram in Fig. 2. We must in the double forward-limit
at one-loop level specify additional rules for the sum over
polarizations. They are as follows

D=2
ZEZ’@")T =Al,. ie{1,2}, (3.4)
ri=1
thus the double-forward limit is derived from
(A1) = (AN, (A7) =D -2, (3.5)
(A7), VW = (A)a(A)), VFWY =V - W,
( l);wfitvy = V ° f]%
(AN, L5865 = (A)5(A0), L5V = 0
(Al)z(Az)wﬂ;f? = 0, for any V,
We{kie} and i+ (3.6)

We now make the surprising observation that nontrivial
algebraic connections exist between linear and quadratic
numerators (although we do not have formal proof of this
relation we have preformed extensive algebraic checks, up
ton=235.)

2

N(pn;fl’l/ﬁZ) =5

5 (D-4)f(¢.7).

n(pa ) + (3.7)
Here 7/ =/, —¢,, and where f(£,7) is a nontrivial
function. For instance, let us consider the simplest example,
two particles, here we obtain,

2

4
N(1,2;f1,l/p2) :7n(1,2,f)+

(D=4)fa(¢.2), (3.8)

where (the numerator, N(2,1;7,,¢,),
relabeling, 1 < 2.)

is obtained by

n(1.2;¢) =2(D =2)[2(e; - €)(e2 - €) — (1 - €2)(ky - €)].

(3.9)

f12(€.2) = (er- &)k - €) = (ky - O)]%. (3.10)
If we are only interested in the parts of the integrand that
can be derived from four-dimensional unitarity we do not
have to consider the contribution f(#,7) and the linear
and quadratic numerators become proportional. We thus
arrive at the following simple prescription for the four-
dimensional cut-constructible part of the Yang-Mills one-
loop integrand

1031 / 42 [ i),

Tiet. 6. 5.5
79)(a) = 5 x Privfa,) T Co
o) =7 PTIAS. 75)
X Y n(p OPTES pun 5], (3.11)
PnESy

The identification: £ = —¢; and ¢] + £ = ¢, is provided
by Jd@=[dP(¢F + 60 + 05— dPE5aPx
(¢35 +¢5)dPe78P)(¢f + ¢7) and [ dpg,.4) integrate the
(n + 4) scattering equations

2k, -5 2k, €7 " 2k, -k
Sa= { e ’}+ 2 =0,
; Zaff Zafi‘ ; Zab
b#a
a=1,...,n,
S, :2f?-ff+2fli-f{+2f?-fg+ 1 2/?1@,:0
: Let7 ety Zese; p= b
SKZi:2f§t-f§+2f§t-ﬁr+2f§-f{+ & 2f§t-kb:0.
2eteF 2etet S =1 b
(3.12)

To avoid any possible singular solutions of the scattering
equations, we carry out the identification, #;” = —£; and
¢1 + ¢35 = ¢, afterintegration over the scattering equations.

IV. CONNECTION TO FOUR-DIMENSIONAL
UNITARITY CUT

To check the validity of the above quadratic Yang-
Mills integrand we will now verify that it has to correct
four-dimensional unitarity factorization into products of

¢ +kq* K2

FIG. 3. Double cut =0 and

(f+kl +k2)2 :O

discontinuities:

045023-4
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tree-level amplitudes when loop-propagators go on-shell.
Without loss of generality, let us consider the double-cut
(see e.g., Ref. [26]) with branch-cut discontinuities at £> =
0 and (£ + k; + k,)?> = 0 as illustrated in Fig. 3. Inspired

by Ref. [35]

Eon _ $ox
Tt T e = T T

we employ the coordinates Lt =
and integrate over the & =
part of the measure dy,,4) in Eq. (3.11). In the integration

we sum over the residues corresponding to (£} - ¢5) — 0
and (¢ -¢5) = 0 for 7 — 0. The result is

1 2 (_1)n+2
ﬁZ/dez)<ZPTV+,%,5_]>—
r=1

cyclic Lt TR
.
X PE(W, )7 7], (4.1)
|
) ( ket k2 E s ) L
i !
i T2
1 ) i n 1 D
We arrive at

where [ dp(n12) denotes the residual integration over
the scattering equations. Now employing the technology
of Refs. [2,36,37] we directly demonstrate that the inte-
grand (3.11) indeed yields the expected expression for the
four-dimensional discontinuities of the one-loop amplitude.
First, we note that by the integration, the result (4.1) is a
cyclic sum of on-shell Yang-Mills tree amplitudes. The cut
integral transforms as [ d*25(£%)5((¢ + ki + k»)?) —
[d@*25(2*)5((Z — k, — k,)?) under the coordinate trans-
formation £ — # — k; — k,. We now have identify the
factorization channels corresponding to, (£ + k; + k;)? =
20 ki + 51, and (€ —k; —ky)? = =26 -k, + 51, in
(4.1), as illustrated below,

3 2

_|_

C-ky-ky

> [EUGAESGTLILE TR aE S
2= LJr O+ + k)

N ?{ AO (3, o, —(f =k — k) )AO (€ = ky — ky)*, 1,2, =¢7)
r fz(f— ky — kz)z ’

(4.2)

where I' and I are the contours circling the residues at, 7> = 0 and (£ + k; + k,)?> = 0 or (£ — k; — k,)? = 0 respectively.
Finally by the shift of integration Z = # — k; — ks, in the second integral, we land on the expected result

rs=1

which validates our integrand construction (3.11).

V. CUT-CONSTRUCTIBLE QUADRATIC
PROPAGATOR INTEGRAND FOR YANG-MILLS
AMPLITUDES FROM DOUBLE FORWARD LIMIT

In this section, we compute the four-point integrand
using the proposal in (3.11). As an explicit verification, we
demonstrate exact agreement with the results previous
obtained by Bern et al. in [38]. We start with

ZZ: % AO (£ 1,2, —(€ + ki + ko)A (€ + ky + ky)*, 3, ....n, —£")
T 2+ ky + ky)? ’

(4.3)

19(1,2,3,4) :/dgz/dﬂ(4+4)zgj(1,2,3,4), (5.1)

and after performing the integration, we immediately obtain
the result

10(1,2.3.4) = (I, + I, + I + 1)), (5.2)

where the 1,4, I3, I, and [, are given by the expressions

045023-5



JOHANNES AGERSKOV et al. PHYS. REV. D 102, 045023 (2020)

1n(1234: 2)
fa= C;hcfz(f*'k V(E + kip)* (€ + kipz)*
L [ ([1,2]34: 2) n(4[1,23; ) n(34[1,2]; ¢) }
= 2f2 S [(C4 k) (€ +kis)* (€4 k) (€ + kan)? (€4 k3)* (€ + ksa)?]

cyclic
L[ n([1,2][3,4];¢) +,”([3»4H172];f)+”([273][4,1];& +n([4,1][2,3];f)}
207 512534 (€ + kin)?  s1053u(€ + kaa)* 523541 (€ + k3)? 523541 (€ 4 kay)?)
1 1 {n(1[2, [3,4]];f)+n([2, [3,4]]1;7) n(l[[2,3],4};5)+n([[2,3],4]1;f)]' (5.3)

L=—% —
VU202 Sy | sl +Ky)? 534(€ + kaza)? s23(¢ + ky)? $23(€ + kaza)?

cyclic

12:

We sum over cyclic permutations of the external legs {1, 2, 3,4}, and we have introduced the usual notation for the color-
kinematic numerators

n([1,2]34;¢) = n(1234;¢) — n(2134; ¢).
n([1,2][3.4]:¢) = n(1234; ) — n(2134;£) + n(2143;¢) — n(1243;¢),
n(1][2.3].4]:¢) = n(1234; ) — n(1324; ) + n(1432;¢) — n(1423;¢),
n([[2.3].4]1:¢) = n(2341; ) — n(3241;¢) + n(4321;¢) — n(4231;¢). (5.4)

To simplify the above expressions, we collect all equivalent diagrams by shifting the loop momenta. Thus, we arrive at the
following one-loop integrands
4= ;
P+ k)P (€ + k) (€ + kin)?

B N;([1,2]34;¢)
L= %51252(5+k12)2(f+k123)2’
= Na([1L.2][3.4):2) | No([2.3][4.1]:¢)
? $12834 8% (€ + kip)?* 52354187 (€ 4 ko3 )?
f S MR BALE) | MR350 ] 55

52345342 (€ + k1)? 523450382 (€ + Ky )?

cyclic

where

N4 (1234;6) = = [n(1234;€) + n(2341; € + k) + n(3412: € + kyp) + n(4123; € + ky3)].

N3([1.2134:¢) = = [n([1,2]34; €) + n(34[1, 2] € + kyp) + n(4[1,2]3; € + kyp3)),
No([1,2][3,41:¢) = 5 [n([1.2][3,4]: ) + n([3,4][1, 2; £ + k1),

Ni(1[2,3.4]];2) = 2,3, 4] ) + n([2, [3. 4|1 € + ki),

—~
—_—

N = N = NN = N =
S

N (1]]2,3],4]:¢) [n(1[[2,3],4];¢) + n([[2,3],4]1; ¢ + ky)]. (5.6)

045023-6
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1 Z1 2
2
4 ls 3

FIG. 4. Quadruple cut given by the conditions,
I/ﬂz = (f])z = (fz)z = (?xﬂ';)z =0. We deﬁne, fl = I/ﬂ+k1,f2 =
f+k12 and f_g Ef—k4

We note that the leg-bubbles will vanish under integration
using dimensional regularization. Clearly, N,(1234;7) —
N,4(2134;¢) # N5([1,2]34;¢), hence this is not a color-
kinematic numerator representation. Nevertheless, this new
representation has the advantage that all numerators are
written in terms of one linear master numerator which is
simple to perform computations on. The four-point master
numerator is provided in the appendix. Generalizations to
higher multiplicities are expected but will not be pursued
here. Since the cut-constructible part of the integrand is
decomposable in a basis of box-, triangle-, and bubble type
integrands, similar to the four-point case, we expect a priori
the double forward limit for higher multiplicities to share
certain generic features. The numerator relation Eq. (3.7)
has been checked analytically till five points.

VI. QUADRUPLE AND TRIPLE CUT
CONSISTENCY OF THE RESULTS

To check further the procedure and the consistency of the
derived quadratic propagator integrand (5.5), we will now
consider the two types of generalized cuts illustrated in
Fig. 4, 5 (in Appendix A, we give more details on the
computations). The only nonvanishing helicity configura-
tions in four dimensions are of the MHV-type, namely
(——=-++) and (—+ —+). For the helicity configuration
(17,27,3%,4") we immediately identify the two quadruple
cut contributions

(2) —
=27 347 =

=d iS12S14A<0)(1_,2_,3+,4+).

(6.1)

In this case, there is no triple cut contribution.

Now, we consider next the helicity configuration
(17,2%,37,4") where we again verify the quadruple cut
solutions

FIG. 5. Triple cut given by, £ = (£,)> = (¢3)> = 0, where,
szf‘Fk]z and 53 Ebﬂ—k4

d\V, o = is1251,A0 (17,2437, 47),
d<12*).2+,3:4+ = i8512514 (%)A(O)(l_a 2%,37,47).
(6.2)
We solve the triple cut condition
= —-ky)?=(£+k +k)*=0, (6.3)

in the spinor helicity framework and identify the triangle
contribution (see Fig. 5). which is given by the expression

(12)(23)(14) (34) — 2(13)2(24)?
(24)* '

C{17’2+},37’4+ = —2i512
(6.4)

All our results are in perfect agreement with the cut-
constructible part of the integrand computed by using the
one-loop numerator found by Bern et al. in Ref. [38] using
the above box and triangle coefficients.

An interesting point is the following. For the ([12]34)
triangle, we find

N5([1,2]34;¢)
(6 = ky)* (€ + ky + kp)?s1y”

(6.5)

with N5([1,2]34;¢) defined in (5.6). From this it appears
that we naively have a different number of box and triangle
contributions and one could have expected a relative factor
between box and triangle terms, since the triangle numer-
ators are summed from three terms, whereas the box
numerators are summed from four terms. However this
is too simple, and to understand why, we have to consider
the following feature of the obtained quadratic integrands.
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If we decompose quadratic box type integrands into linear box type integrands we have

2

1

+ cyclic .

2

Meaning that the quadratic propagator box splits into the linear propagator box plus a contribution to the
linear propagator triangle. By considering the difference between a quadratic box type integrand and a linear box type
integrand we can qualify this statement. Considering the integrands for the case illustrated above one ends up with

something proportional to

(?/ﬂ(k1+k2)+klk2)+fk4

1 1

Pkt k-t k)t k) P22l P2k + k) + K k)

Of the two terms in (6.6), one is homogenous in ¢ and it,
therefore, vanishes under integration (employing dimen-
sional regularization) and but the other one will end up
contributing as a triangle contribution in the integrand. This
is validated by the triple cut. Quadratic propagator ex-
pressions for integrands from double forward limits and
certain issues with such constructions have recently been
the focus of Ref. [39]. We would like to note, that for the
four-point D =4 cut-integrand and the numerators, we
consider here, the difference between the double and single
forward limit boxes, is exactly a triangle as validated by the
cuts and thus avoid any potential issues. Generalizations to

integrands, where f(#,7) no longer can be neglected, has
not been pursued in this paper.

VII. CONCLUSION AND DISCUSSION

We have proposed a novel scattering equation con-
struction, that we used to deduce the cut-constructible
integrand part of one-loop Yang-Mills theories. The
integrand we describe has quadratic propagators in the
loop-momentum similar to a usual Feynman expansion
due to the application of the double forward limit. To
check our construction, we have verified the consistency
of our integrand with four-dimensional unitarity. An
interesting generalization of our formalism could be to
investigate if it is also possible to capture the rational
terms in Eq. (1.4) alike treatments found in e.g.,
Refs. [40,41]. It is possible to consider applications of
our construction for integrands in the pure spinor
formalism, see Ref. [42] and well as for integrands from
ambitwistor strings, see e.g., Refs. [22,32,43]. Another
application could be for supersymmetric theories, where

(6.6)

|

the cut-constructible integrand is sufficient to generate
full amplitudes [26]. An interesting idea is to extend the
formalism considered here, to gravity amplitudes with
massive sources, for instance, in the context of Ref. [44].
Results for gravity loop amplitudes are increasingly
becoming valuable input, for research in general rela-
tivity, and in such applications, only the cut-constructible
parts of integrands are needed for the extraction of
classical physics, see for instance Ref. [45]. We leave
these ideas as potential directions for future research.
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APPENDIX A: BOX AND TRIANGLE
COEFFICIENTS

In this appendix, we will provide some additional details
on the box and triangle cut computations. We obtained the
coefficient of the box integral by evaluating the quadruple
cut by at the solutions of the equations
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C=C+h)=(+k+k)=(-k)=0 (Al

as shown in Fig. 4. We have two cut solutions for the loop
momentum. The helicity selection rules give us

) < |1) < [£7), €' o |4 [£3], and |£3) o< [3) o< [£3),
2] 1] [£3], [£%) <|4) < [£5), and [£3] o< [3] o |£3],

where the superscript denotes a particular solution to the
cut and we have defined 7, =7+ k; and 73 =€ — ky.
From this we find the two solutions

e —%um

)2 = %wu

, and

’

(A2)

and we can then evaluate our result on the box cut. For the
triangle coefficient we focus on the nonvanishing helicity
configuration ({17,2%},37,4") (all other configurations
can be related to this case by relabeling.) We consider now
the triple cut solution

2=tk +hk)=0-k)?=0. (A3

such as it is illustrated in Fig. 5.

The triple cut has a leftover integration in four-dimensional
unitarity, thus we parametrize the remaining integration by a
parameter ¢. Because the triple cut has a quadratic constraint,
there will be two solutions. We find

1£3) < [3).1£3] o [4]. and  |£3) o [4). 3] < 3] (A4)

where again the superscript denotes the particular solution to
the cut. If we solve it up to the parameter ¢ we can write

|£3) =113).1£3] = 4], and |£3) = |4).|£3] = 1[3].

(A5)

The rest of the loop-momentum spinors are then determined
by momentum conservation. This solution exactly matches
that of [46]. Computing the triangle coefficient, both the box-
terms and triangle-terms in the amplitude will contribute. The
contribution will be of the form

N .
(240) |
2k1 4 S12

Evaluating these contributions on the cut, and extracting the
residue at infinity we obtain the triangle coefficient

(12)(23)(14)(34) — 2(13)2(24)>
(24)* '

C{17’2+},37’4+ = —2i512
(A7)

We have checked numerically that we have an exact match
with the result of [38,47].

APPENDIX B: FOUR-POINT MASTER
NUMERATOR, n(1234;7)

To compute the color-kinematic numerators using the
algorithm of Ref. [34], it is necessary to choose a reference
ordering. We specify the reference ordering, RO, in the
following way by, n(p,|RO;#) and N(p,|RO;?,,?¢,).
Symmetric combinations are

"02i0) = 375 3 tnlplR0:2)
+ (=1)"n(p,RO:; =£)}. (B1)
Nwi 1.2 = 3o S AN ROS 1 £2)
") ROES,
+ (=1)"N(p,[RO; =¢1. —£3) }, (B2)
where p, = p(n,n—1,...,1) is the reverse of p, which

appears in order to include the symmetry, £ — —¢. The
numerator 7(1234;¢) is computed in the symmetric
combination.
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l’l(1234,lxﬂ) = |:<2€1 *€4€) - €3 — €1 €3€6) c €4 — 3€1 *€r€3 €4)<k1 . k2)2
1

+ {Z(—Skl f+8k1 'k4+5k4’f)€1 * €4€p - €3 + |:2€1 ’64(62'k1 +€2"‘k4)

D 1
+ (5 —5>€1 . Lﬂez '€4:|€3 . lx&-f— (—261 * €469 f—g((D— 14)61 . l,ﬂ—|—6€1 . k3)€2 '6'4)63 . kl

1
+€2 ’64((](] 'k3 +k3 . Z)G] T €3 —261 . k4€3 . f—i-g((D— 14)61 . f+6€] . k4)€3 k4>
1

~gler £(=3(D = 10)e; - £~ (D~ 14) (e - ki = 262 - ky)

+6(e1 - kaer - ky + €1 - ky(er - ki +2e3 - ky))les - €4
1
+ 6 [—(61 . €3)(3(D — 2)62 - + 2(D - 2)62 . kl — (D - 14)62 . k4)
— (6(D — 6)61 - 2€1 . k4 + D(2€1 . k3 + € - k4))€2 c €3 + 2€1 . 62[3(D - 6)6'3 -l

+ (D —8)(e3 - ki —2e3 - ky)lles - € + (61 e3(2(e2- €+ ex-ky) + € ky)
1
_E(D+ 10)61 'Lﬂ€2'€3 —261 '€2(€3'Lﬂ+€3 'kl — €3 'k4)>€4'k1
1
+ <€1 * €3€) k4—§(D—2)€1 ‘Lﬂez + €3 +2€1 * €7€3 ’k4>€4 ‘k3}k] ’k2

(D —2)((e) - €462 - €3+ €1 - €363 - €4) (ky - €)* + (kg - €)% - €265 - €4)

r—|ng

2
+ < f—3(—(kl-If)—|-2k1-k2—|-3k1-k3—|—k3-f)€1-k3>€2-€3
+<2 D 2)61 (€2'f+€2'k1)—4(€1 'k3+€1 ‘k4)€2'k1)€3'bﬂ
+(=2€1 ks(er kg —2ey- &) =2(€y - ky —2e; - £)(e2 - k1 + €3 ky))es - Ky
+ [k

k4€1 * € + (—Z(D —4)61 . f—f— 261 . k3 +4€1 . k4)€2 . k1
+e1-C(dey ky —2(D = 2)ey - £)]es 'k4} €0+ k- k3{—<k1 Dey €46y - €3

+k4'f€l‘6462'63—](3‘{61‘€3€2'€4+(2€1‘C4€2'f—2€1‘f€2‘€4)€3'k4

+(_(kl k2+2k| 'k4)€l ‘€2—2€1 'k4€2’l/ﬂ+2€1 ‘f€2'k4)€3'€4

1
—5[861'€3€2'f+4€1'€3€2'k1—8€1 'f€2'€3 +4€1 'k4€2'€3—D€1'€2€3'f
+2€] ‘€2€3'l/ﬂ+D€1 ‘€2€3‘k4—6€] '€2€3‘k4]€4'bﬂ}+[((k] 'f+k4'f)€] ‘k4

+2(ky - kaey ks + k3 - Cey - ky))er - €3+ (26 - ky(262 - €+ €5 - ki)
+ 2(—261 . Lﬂ-f—(:‘l . k3 +€1 . k4)€2 . k4)€3 . f-f— (Zkl . k3€1 €y — 2(61 . k3 + 2(:'1 . k4)€2 . f

1
=2, - £y ki — € ky))es - kaleg - ky + [5("1'1—/‘4'5)61'15352'53

—2((k1 ‘k4€] 'k3 +k] 'k2€l ‘k4)€2‘€3 +€] 'k4€2‘k]€3 f)
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+ (26] 'k4€2 -f—2€] ‘f€2'k4)€3 'kl +k] 'k3€| ‘6263 ’k4

2
+e€ 'f<—§k3'f€2‘€3—462'k4€3'f+2(2€2'f+€2‘k1)€3'k4>]€4'k3

+2—14k1 {12(k3 - €+ ky- )€y - €46y - €3 —24(ky - k3 + ky - ky)e; - €36 - €4

—4(D —=2)(3€; - €467 - € —3€; - Cer-€4+2(€1 - €460 -k + €1 - kzer - €4+ €1 - kyer-€4))e3 -
+4((D—2)€; - €467 - € —6€1 - €4(€r -k + €1 ky) + (D —2)e; - ey - €4 + 66y - kzer - €4)€3 - ky
+2(6(D—2)¢; - €46y - € +3€;-€4((D—6)er - ky —der - ky) —4(D —2)e; - Cey - €4
+3(D=2)(e1 ks + €1 - ky)er - €4)ez kg +2(D —2)(4e; - kzey - £+ ey - C(ey ki + €5+ ky)
—3(ky - ke -+ €1 kzer kg tey-kaler -k +er-ka)))es ey

+ 3k - ko(—10€; - €365 - €4 + 22€] - €263 - €4 + D€ - €465 - €3 + €1 - €365 - €4 — 3€1 - €263 - €4))
+4(—=(D—2)e; - 3(3€5 - €+ 2¢5 - ki) — [-3(D —2)e; - € —4ey - ky

+2D(e; - k3 + € -ky)les - €3+ (D =2)ey - €r(—6€3 - € +2€3 - ki +Tez - ky))ey - €

+2[2¢; - €3((D =2)ey - €+ 66, - ky) +2(D = 2)ey - ey - €3

— (D —=2)e; - €2(3€3 - ky —4e3 - O)eq - ky +2[—(e1 - €3)(2(D = 2)ey - ¢

+3(D—=2)ey - ky — 125 - ky) — (—4(D —2)e; - £ — 6¢€y - kg +3D(€y - ks + €1 - ky))ey - €3
+e-6(2(D—2)e3-€+3(D—2)ez- ki —24€;5 - ky)ley - ks}

+ ki ckg(—=(ky-O)ey - €46y - €3 —2ks - Ce1 - €46 - €3 — ky - €1 - €465 - €3

_kl 'k2€1 *€3€) - €4 + [—3](1 . k2€1 * € +2€1 . k3€2 'f—2€1 . k4€2 'kl —261 . k3€2 'k4

—261'k4€2'k4+2€1'lxﬂ(ez'kl+€2'k4)]€3'€4+€3'lxﬂ|:—4€1‘€4€2'l€—2€1‘€4€2'k1
1
—261'k3€2‘€4—2(€1'k4—2€1‘f)€2‘€4+§(D—2)€1 '€2€4'f:|
+€3'k4<4€1'€4€2'lxﬂ+2€1'€4€2'k1+2€1 'k3€2‘€4+2(€1‘k4—2€1‘f)€2‘€4
1
—§D€1'€2€4'£) +(—2€1 '€3€2'f—2€1‘€3€2'k1+2€1‘f€2'€3—2€1'k4€2'€3

1
+2€1 '626'3 'Zxﬂ+2€1 '626'3 'kl +€1 ‘626'3 'k4)€4 . k3) +ﬁk4 Zxﬂ{—48k1 'k3€1 ‘€3€2 c €4
+4(D—2)(3€1 * €469 'f+3€1 * €4€) 'kl +€1 * €46 'k4+6€1 'lxﬂ€2 '€4+€1 'k3€2 c €y

1
+2€1 'k4€2'€4>€3'f+24<€1 '€4(€2'k1 +€2‘k4)+8(D—2)€1 'f€2'€4

+ 2¢; - ke - €4> €3k —2[4(D=2)e; - €465 - €+ 3¢ - €,((D —6)ey - ky —der - ky)
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+8(D—2)e;-Cer-e4+3(D=2)(e1-ks+e-ky)ey-€4)es-ky

+ [3(D —2)(3ky - ks + ki - ky)ey e —4(D —2)(€y - ks — €1 - ky)es - €
+4(D=2)e;-£(3ey - €+ 665 - ki +desy - ky) + 6€; - ky((D—6)ey - ki + (D —2)e, - ky)
+3€; - k3(2(D = 2)ey - ky — 8y - ky)]e3 - €4 — 3ky - ka[—2€1 - €365 - €4 + 8€y - €263 - €4

+ D(Gl * €4€) - €3 + €1 €36 - €4 — 461 *€7€3 - 64)] + 6k3 . f[—2€1 * €3€) " €4

+2€1 - €263 €4+ D(€) - €465 - €3 + €] - €365 - €4 — €] - €263 - €4)] — 6ky - £[D(€; - €46, - €3

+ €1 €36 €4+ €1 €263 €4) —2(€1 - €365 €4 + €1 - €263 - €4)] + 12(De; - Ce; - €3
+ (D =2)e; - €x(e3 - ky—€3-7))es - € +2(D —2)[2¢; - Loy - €3

+e1-6,(3e3 - ky —dey - O)eg - ky +2[(D —2)e; - €3(4ey - €+ 3€, - ky)

+ (8(D—=2)¢; - € —6€, - ky+3D(e; -k + € -ky))er-€3—€1-6(4(D =2)e3 - ¢

‘|‘ 3(D - 2)63 . kl + 1263 . k4)]€4 . k’;} +

k3 f{—6k4 . fel * €4€p - €3

+ 26 - €4(6(ky - kyey - €3+ €y - kses ki) + (D —2)e; - £(3e3 - € + €3 - ki —2e3 - ky))
+2[6<2k1 ‘k2€1 '€2+€1 ‘k3€2 'kl +€1 ‘k4€2 kl) - (D—2)€1 '2/0(36'2 'f+€2 'kl

- 262 . k4)]€3 c €4 — 3k1 . f[—2€1 * €36 " €4 + 2€1 *€x€3 * €4 + D((:'l * €4€) - €3

€1 €36 €4 — €1 - €263 €4)] +2[(D —2)e; - €336y £+ 265 - k) — €3 ky)
+ (6(D —2)6'1 A 261 . k4 +D(2€1 . k3 +€1 . k4>)€2 €3 — (D - 2)61 . 62(363 . f
+ 2€3 . kl — €3 k4)}€4 . f—f— 2<(D - 2)61 . f€2 c€3 — 661 * €36 - k4)€4 . kl

+4(D€| . f€2 + €3 —3(61 + €3€) - k4 +€1 + €7€3 - k4))€4 . k3}:|

APPENDIX C: COMMENTS ON
GENERALIZATIONS FOR HIGHER
LOOP AMPLITUDES

The one-loop double forward-limit was originally
obtained by considering two-loop amplitudes in the ambit-
wistor string theory. Considering correlation functions
over a genus two Riemann surface, one may localize on
the boundary of the moduli space by applying the global
residue theorem. Mathematically, we are thus considering
the hyperelliptic curve

Y =(z-a)(z-a)(z=4)(z=4)(z-4), (Cl)
where a; # a, are two fixed branch points and (1;, 4, 43)
parametrize the moduli space, and we focus at the degen-
eration points, 1; = a; and 4, = a, pinching the A-cycles.
It should be noted that many of the other singularities
cancel out after computing the CHY integrals. The two
global holomorphic forms on this curve,

dz zdz

Qle:_’ dezz—’ (C2)
y y

(B3)

are in correspondence with the loop momenta, and turn
into [16]

{@ @} (61+ — 01-)do
y'y (6 —0o1+)(c—01-)

(62 — 0y-)do )}’

(6 =065+ )(0 — 0s-

’

= {a)},da =
—a,

=41
A=

w>do =

where ¢ is the holomorphic coordinate on the Riemann
sphere. The four new marked points, (6+,61-, 65+, 065-),
have as momentum vectors, (£1,—¢,,¢,,—¢>), in the
double forward limit. Therefore, the only building blocks

TABLE I. Integrand building blocks.

YA IR
q 0y, (05, — @7, w; (05, — @)
q; w5, (05, — @y,) w5, (w5, — @7,
q; 0g,0;, 05,0

i i

045023-12



ONE-LOOP YANG-MILLS INTEGRANDS FROM SCATTERING ...

PHYS. REV. D 102, 045023 (2020)

to construct well-defined integrands are given by the set of

variables
1
1 2
) a)(;l- ) w(fi )
01' - Uj

(C3)

f d,un ZCHY

and using a particular combination of these we can generate
integrands that are quadratic in loop momentum. In [16], a
detailed analysis about this subject can be found, and it is
seen that,

1

ZCHY — IL(a)l) X IR((A)2>

Following the same line of thought, we can generalize
to two-loops, and similar ideas can be performed beyond
two-loops. We consider in the two-loop case a hyperelliptic
curve, y? = f(z), of degree 10, which describe Riemann
surfaces of genus g =4 (it is well known that not every
Riemann surface of genus g =4 can be written as a

|

’

{dz zdz 7%dz z3dz}
y' 'y oy Ty

Pinching
A-cycles

Thus the amplitude is localized on a Riemann sphere with
eight new extra punctures, (6y+,01-,...,04+,04). The
momenta associated to these marked points are in the
forward limit, i.e., (£),=¢,,....¢4,—,), respectively.
The results obtained in [16] suggests that CHY integrands

O+ 02+ + k) O+t kg + -+ k)

|

hyperelliptic curve [48], however, this is not a problem
if we localize on the boundary of the moduli space). On this
curve, there are four global holomorphic forms that are
related to the four loop momenta. Using the global residue
theorem, the A-cycles are pinched, and the holomorphic
forms turn into,

(64 — 0, )do

= {a)gda =

)}9 a:1,2,3,4.

(6 — 04 )(0— 04

with combinations of the products of {q},q?,q}}, given in
Table I, are able to reproduce quadratic propagators in
terms of the momenta, L, = ¢, + ¢, and L, = 5 + 4,
both in the planar and nonplanar sectors. We leave
following up on these ideas to future work.
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