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ABSTRACT 

 

Experiments show that the ultimate compressive strength of stainless steel is much higher 

than its tensile strength. The full-range two-stage constitutive model for stainless steels 

assumes that stainless steels follow the same stress–strain behavior in compression and 

tension, which may underestimate the compressive strength of stainless steel tubes. This paper 

presents a fiber element model incorporating the recently developed full-range three-stage 

stress–strain relationships based on experimentally observed behavior for stainless steels for 

the nonlinear analysis of circular concrete-filled stainless steel tubular (CFSST) short columns 

under axial compression. The fiber element model accounts for the concrete confinement 

effects provided by the stainless steel tube. Comparisons of computer solutions with 

experimental results published in the literature are made to examine the accuracy of the fiber 

element model and material constitutive models for stainless steels. Parametric studies are 

conducted to study the effects of various parameters on the behavior of circular CFSST short 

columns. A design model based on Liang and Fragomeni’s design formula is proposed for 
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circular CFSST short columns and validated against results obtained by experiments, fiber 

element analyses, ACI-318 codes and Eurocode 4. The fiber element model incorporating the 

three-stage stress–strain relationships for stainless steels is shown to simulate well the axial 

load–strain behavior of circular CFSST short columns. The proposed design model gives 

good predictions of the experimental and numerical ultimate axial loads of CFSST columns. It 

appears that ACI-318 codes and Eurocode 4 significantly underestimate the ultimate axial 

strengths of CFSST short columns.  

 

Keywords: Concrete-filled steel tubes; Fiber element analysis; Stainless steel; Strength 

 

1. Introduction 

 

The material constitutive models used in the nonlinear inelastic analysis of circular concrete-

filled stainless steel tubular (CFSST) short columns could have a crucial influence on the 

accuracy of the predicted behavior. The two-stage stress–strain model for stainless steels 

proposed by Rasmussen [1] assumes that the stainless steel follows the same stress–strain 

curve in tension and compression. This model developed from tension coupon tests may 

underestimate the ultimate axial strengths of CFSST columns. The three-stage constitutive 

model for stainless steels proposed by Quach et al. [2] accounts for different behavior of 

stainless steels in compression and in tension based on experimental observations. The three-

stage material model is believed to be a more accurate formulation than the two-stage one. 

The inversion of the three-stage stress–strain relationships for stainless steels given by 

Abdella et al. [3] expresses the stress as a function of strain. This gives a convenient 

implementation of the material laws in numerical models. The three-stage stress–strain model 
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for stainless steels has not yet been incorporated in numerical techniques for the nonlinear 

analysis of CFSST columns.  

 

Experimental studies on the behavior of axially loaded circular concrete-filled steel tubular 

(CFST) short columns have extensively been conducted by researchers [4-7]. However, 

research studies on circular CFSST short columns under axial loading have been relatively 

limited. Young and Ellobody [8] conducted tests on the axial strengths of cold-formed high 

strength square and rectangular CFSST short columns. Their results indicated that the 

implementation of the material properties of stainless steel obtained from tension coupon tests 

underestimated the ultimate axial strengths of CFSST columns under axial compression. This 

is because the strain hardening of stainless steels in compression is much higher than that of 

stainless steels in tension. Tests on circular CFSST short columns under axial compression 

were carried out by Lam and Gardner [9]. They investigated the effects of the tube thickness, 

concrete compressive strength and proof stress on the behavior of CFSST columns under 

axial loading. Design formulas based on the Continuous Strength Method were proposed for 

determining the ultimate axial strengths of CFSST short columns. Uy et al. [10] tested circular 

CFSST columns under axial compression. Both square and circular column sections were 

tested to study the effects of the tube shape, diameter-to-thickness ratio and concrete 

compressive strength on the behavior of CFSST columns. They compared various design 

codes for circular CFSST columns. They reported that existing design codes for composite 

columns provide conservative predictions of the ultimate strengths of CFSST columns.  

 

Numerical models have been developed to study the behavior of circular CFST short columns 

under axial loading [11-18]. However, there have been relatively limited numerical studies on 

the behavior of axially loaded circular CFSST short columns. Nonlinear analysis methods for 
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composite columns and structures have been reviewed by Ellobody [19]. Ellobody and Young 

[20] utilized the finite element analysis program ABAQUS to study the behavior of axially 

loaded rectangular CFSST short columns. They incorporated the measured tensile material 

properties in the finite element model and assumed the same material properties of stainless 

steel in compression. Nonlinear finite element analyses of square CFSST short columns using 

ABAQUS have been undertaken by Tao et al. [21]. The two-stage stress–strain model for 

stainless steels proposed by Rasmussen [1] was employed in their study. The true stress–strain 

curves were used in the finite element model. Recently, Hassanein et al. [22] employed the 

finite element program ABAQUS to study the inelastic behavior of axially loaded circular 

lean duplex CFSST short columns. The finite element results were verified against test results 

presented by Uy et al. [10].  

 

In this paper, the inversion of the three-stage stress–strain relationships for stainless steels [2, 

3] is incorporated in the fiber element model for simulating the nonlinear inelastic behavior of 

CFSST short columns under axial compression. The fiber element model accounts for the 

effects of concrete confinement and high strength concrete. The fiber element analyses are 

performed to examine the accuracy of different constitutive models for stainless steels. The 

effects of diameter-to-thickness ratio, concrete compressive strength and stainless steel proof 

stress on the behavior of circular CFSST short columns are investigated. A design model 

based on Liang and Fragomeni’s formula [16] is proposed for the design of circular CFSST 

columns and compared with test results and design codes.  

 

2.  Nonlinear analysis  

 

2.1. Assumptions 
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The nonlinear analysis of CFSST columns under axial compression is based on the fiber 

element method. The following assumptions are made in the fiber element formulation: 

 

 The bond between the stainless steel tube and the concrete core is perfect.  

 The passive confinement provided by the stainless steel tube increases the 

compressive strength and ductility of the concrete core. 

 The stress and strain of fibers are uniformly distributed on the cross-section.  

 Strain hardening of stainless steels in compression is considered. 

 Failure occurs when the concrete fiber strain reaches the maximum axial strain.  

 Local buckling of the stainless steel tube is not considered. 

 The effects of concrete creep and shrinkage are not considered.  

 

2.2. The fiber element method 

 

The fiber element method is an accurate numerical technique for determining the cross-

section behavior of steel-concrete composite columns [14, 15, 23-25]. In the fiber element 

method, a circular CFSST column cross-section is discretized into fine fiber elements as 

depicted in Fig. 1. Each fiber element represents a fiber of material running longitudinally 

along the column and can be assigned either stainless steel or concrete material properties. 

The fiber stresses are calculated from fiber strains using the material uniaxial stress-strain 

relationships. Although the discretization of a CFSST column under axial compression is not 

required, it is a prerequisite for the nonlinear analysis of CFSST short columns under 

eccentric loading or CFSST slender columns [26, 27]. The present study is part of a research 

program on the nonlinear analysis of CFSST slender columns so that the composite section is 
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discretized using the fiber element method. However, the size of fiber elements does not 

affect the ultimate axial strength and behavior of CFSST short columns.   

 

2.3. Material model for stainless steels 

 

The inversion of the full-range three-stage stress–strain relationships for stainless steels 

presented by Abdella et al. [3] is based on the equations proposed by Quach et al. [2], which 

is implemented in the present fiber element model. The three-stage stress–strain curve for 

stainless steels in compression is shown in Fig. 2. In the first stage  2.00   s  of the 

stress–strain curve, the stress is expressed by 
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where s  is the stress in a steel fiber, s is the strain in the steel fiber, 0E  is the Young’s 

modulus of stainless steel, 2.0 is the strain at 2.0  and 2.0  is the 0.2% proof stress. The strain 

2.0  is calculated by the equation given by Ramberg and Osgood [28] as: 
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In Eq. (1), the positive constants 1C , 2C , 3C  and 4C  are given by 
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where 2.0E  is the tangent modulus of the stress–strain curve at the 0.2% proof stress, n  is the 

nonlinearity index and e  is the non-dimensional proof stress given as: 
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In the second stage  0.22.0   s , the stress is expressed by the equation presented by 

Abdella et al. [3]: 
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where 0.1  is the strain at 0.1  and 0.1  is the 1.0% proof stress. 

 

The 1.0% proof stress under compression can be calculated by the following equation given 

by Quach et al. [2]: 
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The strain 0.1  is calculated by [2]:  
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In Eq. (13), 5C , 6C , 7C  and 8C  are the positive constants,  
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In Eq. (17), 0.2  is the strain at 0.2  and 0.2  is the 2.0% proof stress. In Eq. (20), 2n  is given 

by Quach et al. [2] as 
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The 2.0% proof stress can be calculated by the following equation given by Quach et al. [2]:  
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The strain 0.2 is expressed by the following equation given by Quach et al. [2]:  
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In the third stage  sus  0.2 , the stress is expressed as a function of strain as [3]: 
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where su  is the ultimate strain and su  is the ultimate stress.  

 

The ultimate strain and stress are proposed by Quach et al. [2] as follows: 
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where ut and ut  are the ultimate tensile strength and ultimate tensile strain respectively and 

are given by 
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2.4. Material model for confined concrete 

 

The confinement provided by the steel tube on the concrete core in circular concrete-filled 

stainless steel or steel tubular columns is passive. The concrete expansion causes the 

elongation of the steel tube that induces compressive confining stresses on the concrete core. 

The confining pressure increases with increasing the axial strain. Madas and Elnashai [29] 
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proposed a passive confinement model for confined concrete in which the concrete 

confinement varies with the axial strain. They reported that the confinement model given by 

Mander et al. [30] overestimates the confining pressures on the concrete. Liang and 

Fragomeni [16] proposed a confining pressure model for concrete in circular CFST columns. 

The general stress–strain curve for confined concrete in circular CFST columns suggested by 

Liang and Fragomeni [16] is shown in Fig. 3.  

 

The concrete stress from O to A on the stress–strain curve is calculated based on the equations 

given by Mander et al. [30] as 
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in which c  denotes the compressive concrete stress, '
ccf  is the effective compressive 

strength of confined concrete, '
cf  is the compressive strength of concrete cylinder, c  is the 

compressive concrete strain, '
cc  is the strain at '

ccf , cE is the Young’s modulus of concrete 

given by ACI 318-11 [31], and c  is the strength reduction factor proposed by Liang [14] to 

account for the column section size effect, expressed by 

 

 0.185.085.1 135.0  
ccc D                                                                                   (39) 
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where cD  is the diameter of the concrete core. The equation proposed by Mander et al. [30] 

for determining the compressive strength of confined concrete was modified by Liang and 

Fragomeni [16] using the strength reduction factor c  as follows:  

 

rpcccc fkff 1
''                                                                                                                       (40) 

 










'2
'' 1

cc

rp
ccc f

f
k


                                                                                                               (41) 

 

where rpf  is the lateral confining pressure on the concrete and 1k  and 2k  are taken as 4.1 and 

20.5 respectively. The strain '
c  is the strain at '

cf  of the unconfined concrete, given by 
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Based on the work of Hu et al. [12] and Tang et al. [32], Liang and Fragomeni [16] proposed 

an accurate confining pressure model for normal and high strength concrete in circular CFST 

columns, which is adopted in the present numerical model as follows: 
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in which D  is the outer diameter and t  is the thickness of the steel tube and ev and sv  are 

Poisson’s ratio of the steel tube with and without concrete infill, respectively. Tang et al. [32] 

suggested that Poisson’s ratio sv  is taken as 0.5 at the maximum strength point and ev  is 

given by  
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It is noted that the confining pressure model proposed by Liang and Fragomeni [16] can be 

used for concrete confined by high strength steel tubes with significant strain hardening and 

has been verified by experimental results [15, 27]. In addition, it has been used to simulate the 

behavior of confined concrete in circular CFSST columns with acceptable accuracy [22]. 

 

The parts AB and BC of the stress–strain curve shown in Fig. 3 can be described by  
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where cu  is taken as 0.02 as suggested by Liang and Fragomeni [16] based on the 

experimental results, and c  is a factor accounting for the confinement effect by the stainless 

steel tube on the post-peak strength and ductility of the confined concrete, which is given by 

Hu et al. [12] as 
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2.5. Analysis procedure 

 

In the nonlinear analysis, the axial load-strain curve for a CFSST short column is determined 

by gradually increasing the axial strain and computing the corresponding axial force )(P , 

which is calculated as the stress resultant in the composite cross-section. When the axial load 

drops below a specified percentage of the maximum axial load )( maxP such as max5.0 P or when 

the axial strain in concrete exceeds the specified ultimate strain cu , the iterative analysis 

process can be stopped as discussed by Liang [14, 33]. The ultimate axial strength of a 

CFSST short column under axial compression is taken as the maximum axial load from its 

complete axial load-strain curve [33]. 

 

The analysis procedure for determining the axial load-strain curve for a CFSST short column 

under axial compression is given as follows [33]: 

 

1. Input dada. 

2. Discretize the column cross-section into fiber elements. 

3. Initialize fiber axial strains   . 

4. Calculate fiber stresses using the material uniaxial stress-strain relationships. 

5. Compute the axial force P as the stress resultant in the cross-section. 

6. Increase the fiber axial strain by   . 

7. Repeat Steps 4 to 6 until max5.0 PP  or cu  . 
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The axial force acting on the composite section is determined as the stress resultant, which is 

expressed by 

 

 
 


ns

i

nc

j
jcjcisis AAP

1 1
,,,,                                                                                                      (48) 

 

where P  is the axial load, is,  is the longitudinal stress at the centroid of steel fiber i , isA ,  is 

the area of steel fiber i , jc,  is the longitudinal stress at the centroid of concrete fiber j , jcA ,  

is the area of concrete fiber j , ns  is the total number of steel fiber elements and nc  is the 

total number of concrete fiber elements.  

 

3. Validation of the fiber element model 

 

3.1. Ultimate axial strengths  

 

The ultimate axial strengths of circular CFSST short columns predicted by the fiber element 

model are compared with experimental results presented by Lam and Gardner [9] and Uy et 

al. [10]. Geometry and material properties of specimens are given in Table 1. The predicted 

and experimental ultimate axial strengths of circular CFSST columns under axial compression 

are also given in Table 1, where exp.uP  is the experimental ultimate axial load and fibuP .  is 

denoted as the ultimate axial load predicted by the fiber element model at the measured 

maximum axial strain  max . It can be seen from Table 1 that the fiber element model 

generally gives good predictions of the ultimate axial strengths of circular CFSST short 

columns. The mean ultimate axial strength computed by the fiber element model is 97% of 

the experimental value. The standard deviation of exp.. ufibu PP  is 0.08 while its coefficient of 
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variation is 0.09. The discrepancy between the predicted and experimental results is attributed 

to the uncertainty of the actual concrete compressive strength because the average concrete 

compressive strength was used in the fiber element analysis. It is noted that specimens shown 

in Table 1 include normal strength stainless steel tubes filled with normal strength concrete 

and normal strength stainless steel tubes filled with high strength concrete. Therefore, the 

proposed fiber element model can be used for the design and analysis of axially loaded 

CFSST columns made of normal and high strength concrete. 

 

3.2. Axial load–strain curves 

 

Fig. 4 shows the predicted and experimental axial load–strain curves for Specimen CHS 114 

× 6-C30 tested by Lam and Gardner [9]. It appears that the fiber element model generally 

predicts well the experimental axial load–strain curve for the specimen. The predicted initial 

axial stiffness of the column is slightly higher than the experimental one. This is likely due to 

the uncertainty of the actual concrete stiffness and strength as the average concrete 

compressive strength was used in the fiber element analysis. However, it can be seen from 

Fig. 4 that the fiber element model accurately predicts the strain-hardening behavior of the 

specimen. The results obtained for Specimen CHS 114 × 6-C60 tested by Lam and Gardner 

[9] are presented in Fig. 5. The figure shows that the fiber element results are in good 

agreement with experimentally observed behavior. The initial axial stiffness of the column is 

well predicted, but the experimental axial load–strain curve differs from the computational 

one at the axial load higher than 1100 kN.  

 

The predicted axial load–strain curve for Specimen C30-50×1.2A is compared with 

experimental one provided by Uy et al. [10] in Fig. 6. It can be observed that the fiber element 
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model closely predicts the initial axial stiffness of the specimen before attaining a loading 

level about 80 kN. After this loading, the axial stiffness of the specimen obtained from tests 

slightly differs from fiber element predictions. This is likely attributed to the uncertainty of 

the concrete stiffness and strength. Further comparison of axial load–strain curves for 

Specimen C20-100×1.6B tested by Uy et al. [10] is shown in Fig. 7. The figure demonstrates 

that these two curves are almost identical up to the loading level of about 350 kN. After that 

the experimental curve departs from computational one. The discrepancy is most likely due to 

the uncertainty of the actual concrete compressive strength and stiffness as the average 

concrete compressive strength was used in the analysis. The comparative studies demonstrate 

that the fiber element model yields good predictions of the behavior of circular CFSST short 

columns under axial compression.  

 

4. Parametric study 

 

The fiber element model developed was employed to investigate the effects of the diameter-

to-thickness ratio, concrete compressive strength and stainless steel proof stress on the 

behavior of circular CFSST short columns under axial loading. Uy et al. [10] reported that 

CFSST short columns undergone large plastic deformations with significant strain hardening. 

The tests of CFSST short columns were stopped before failure occurred owing to the large 

plastic deformation. Tests indicated that CFSST short columns exhibited very good ductility 

and the axial strain of CFSST short columns under axial compression could be up to 0.2. 

Therefore, the ultimate axial strain )( cu was taken as 0.2 in the following parametric study. 

For stress-strain curves without descending part, the ultimate axial strengths of CFSST short 

columns were taken as the axial load corresponding to the ultimate axial strain of 0.2. The 

Young’s modulus of stainless steel was 200 GPa.  
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4.1. Evaluation of material constitutive models for stainless steels 

 

The accuracy of full-range two-stage stress–strain curves proposed by Rasmussen [1] and 

three-stage stress–strain relationship presented by Abdella et al. [3] have been investigated 

using the present fiber element analysis program developed. Table 2 shows a comparison of 

the ultimate axial strengths of CFSST columns determined using these two material models 

for stainless steels. The material properties of these specimens can be found in Table 1. It can 

be seen from Table 2 that the two-stage stress–strain relationships proposed by Rasmussen [1] 

generally underestimate the ultimate axial strengths of circular CFSST columns. The mean 

ultimate axial strength computed by the fiber element model with two-stage curves is 81% of 

the experimental value. The standard deviation of exp.1. ufibu PP  is 0.08 while its coefficient of 

variation is 0.10. The mean ultimate axial strength predicted using Abdella et al. [3] model is 

97% of the experimental value. The standard deviation of exp.. ufibu PP  is 0.08 and its 

coefficient of variation is 0.09. The evaluation demonstrates that the three-stage stress–strain 

relationships given by Abdella et al. [3] provide reliable results for circular CFSST columns 

under axial compression.  

 

The accuracy of the constitutive models for stainless steels can be assessed by comparisons of 

predicted axial load–strain curves using the two-stage and three-stage stress–strain 

relationships. Fig. 8 presented a comparison of the axial load–strain curves computed by 

Rasmussen constitutive model [1] and Abdella et al. material model [3]. Close agreement 

between these two material models is achieved up to the proof stress of the stainless steel. 

However, there are significant differences between the axial load–strain curves obtained from 

both material models for the stress higher than the proof stress. 
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4.2. Effects of tD  ratio 

 

The tD  ratio is one of the important variables affecting the behavior of circular CFSST short 

columns under axial compression. This is due to both the confinement effects and steel area 

varies with the tD  ratio. Column C7 given in Table 3 was analysed to examine the effects of 

tD  ratios. The typical tD  ratios of 32, 42 and 64 were considered by changing the thickness 

of the stainless steel tube while maintaining the same cross-section size.  

 

Fig. 9 depicts the axial load–strain curves for circular CFSST columns with various tD  

ratios. It appears that the ultimate axial load of circular CFSST columns decreases with 

increasing the tD  ratio. When increasing the tD  ratio from 32 to 42 and 64, the ultimate 

axial strength of the short column decreases by 17% and 44%, respectively. In addition, the 

circular CFSST column exhibits strain hardening behavior when the tD  ratio is small. This 

is due to both the steel area and confinement effect increases with decreasing the tD  ratio. 

More importantly, the ductility of circular CFSST short columns increases with decreasing 

the tD  ratio. Similar conclusion was observed by Uy et al. [10] in their experimental 

research on circular CFSST short columns under axial loading. The ductility of a structural 

member or section is defined by Liang [14] as the ability to undergo large plastic deformation 

without significant strength degradation.  

 

4.3. Effects of concrete compressive strengths 

 

It is important to understand the effects of concrete compressive strengths on the stiffness and 

ductility of circular CFSST short columns under axial loading. Columns C13, C14 and C15 
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given in Table 3 were analysed again to investigate the effects of the concrete compressive 

strengths on the behavior of circular CFSST columns.  

 

Fig. 10 shows the axial load–strain curves for the circular CFSST columns filled with 

concrete of different compressive strengths. The ultimate axial strength and stiffness of 

circular CFSST columns are found to increase with increasing the concrete compressive 

strength. Increasing the concrete compressive strength from 70 MPa to 90 MPa and 110 MPa 

increases the ultimate axial strength by 10% and 20%, respectively. It can also be seen from 

Fig. 10 that increasing the concrete compressive strength results in a slight increase in the 

initial stiffness of the column. Despite of the use of high strength concrete, these circular 

CFSST short columns exhibit good ductility, which is the ability to undergo large plastic 

deformation without significant strength degradation.  

 

4.4. Effects of stainless steel strengths 

 

The numerical model developed was utilised to investigate the effects of the proof stress of 

stainless steel on the compressive behavior of circular CFSST columns. Column C36 given in 

Table 3 was analysed to examine the effects of proof stress on the behavior of CFSST 

columns. Austenitic and duplex stainless steel tubes with proof stresses of 240 MPa and 530 

MPa and non-linearity index of 7 and 5 were considered.  

 

The axial load–strain curves for the circular CFSST columns made of different strength 

stainless steel tubes are presented in Fig. 11. It can be observed from the figure that increasing 

the proof stress of the stainless steel noticeably increases the ultimate axial loads of circular 

CFSST columns. When increasing the proof stress of the stainless steel from 240 MPa to 530 
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MPa, the ultimate axial strength of the column increases by 31%. Computational results 

indicate that the proof stress of stainless steel does not have an effect on the initial axial 

stiffness of the columns. 

 

5. Design models 

 

5.1. ACI-318 codes  

 

The design equation given in ACI-318 [31] codes does not account for the concrete 

confinement effects on the ultimate axial strength of composite columns, which is expressed 

by 

 

ccsysACIu fAfAP 85.0.                                                                                                          (49) 

 

where cA  is the cross-sectional area of the concrete core, sA  is the cross-sectional area of 

steel tube, syf  is the steel yield strength which is taken as 0.2% proof stress for stainless 

steels. 

 

5.2. Eurocode 4 

 

The ultimate axial loads of circular CFSST columns were compared with the design strengths 

predicted by the Eurocode 4 [34]. The code takes into account the concrete confinement effect 

by the circular steel tube. The EC4 equation for ultimate axial strength of a CFST column is 

given as  
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where   0.12325.0  a , 0.1175.189.4
2
 c , in which   is the relative 

slenderness of a CFSST column, calculated as  

 

cr

Rkpl

N

N .                                                                                                                     (51) 

 

where RkplN .  is the cross-section plastic resistance of the CFSST column, given by  

 

'
2.0. ccsRkpl fAAN                                                                                                            (52) 

 

In Eq. (51), crN  is the Euler buckling load of the pin-ended CFSST column and expressed by  

 

 
2

2

L
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N eff

cr


                                                                                                                (53) 

 

where  effEI  is the effective flexural stiffness of a CFSST section, given as  

 

  ccmsseff IEIEEI 6.0                                                                                                   (54) 

 

In Eq. (53), L  is the effective length of the CFSST column. 

 

5.3. The proposed design model based on Liang and Fragomeni’s formula 
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The ultimate axial strength of a CFSST short column under axial compression is influenced 

by confinement of the concrete core. A design model for determining the ultimate axial 

strength of a CFSST short column with confinement effects was proposed by Liang and 

Fragomeni [16] as follows:  

 

  sscrpccdesignu AAffP 2.0
'

. 1.4                                                                                         (51) 

 

where c   is claculated using Eq. (39), rpf  is given by Eq. (43), and s  is the strength factor for the 

stainless steel tube, which is proposed as follows:  
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5.4. Comparisons of design models 

 

The fiber element model was utilized to analyze CFSST columns in order to develope a design 

model. The geometric and material propeties used in the nonlinear regression analysis are given in 

Table 3. It should be noted that columns are selected with a wide range of diameter-to-thickness 

ratio ranging from 20 to 100. The stainless steel tubes were filled with nornal and high strength 

concrete wth compressiove strengths ranging from 30 MPa to 110 MPa. The ultimate axial strengths 

of circular CFSST columns calculated using Eq. (51) are compared with numerical results in Table 

3, where designuP .  is the ultimate axial strength clacualed using Eq. (51). It can be seen from the table 

that the proposed design formula gives very good predictions of the ultimate axial strengths of 
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circular CFSST columns except for Columns C26, C41, C42, C46 and C51. The ultimate axial 

strengths obtained from the fiber element model for these columns are governed by the strain 

hardening of stainless steel. The mean utlimate axial strength predicted by Eq. (51) is 97% of the 

numerical value. The standard deviation of numudesignu PP ..  is 0.05 while its coefficient of variation is 

also 0.06. Therefore, it can be concluded that the proposed design formula can be used in the design 

of axially loaded circular CFSST columns made of nornal and high strength concrete and stainless 

steel tubes with tD  ratios ranging from 20 to 100.  

 

The ultimate axial strengths for axially loaded CFSST columns predicted by the proposed design 

model and design codes are compared with the experimental results in Table 4. It can be observed 

that the ultimate axial strengths calculated by the proposed design model agrees well with 

experimental results. However, existing design codes ACI-318 [31] and Eurocode 4 [34] give 

conservative predictions of the ultimate axial strengths of CFSST columns. The mean 

ultimate axial strength calculated using the proposed design model is 99% of the experimental 

value. The standard deviation of exp.. udesignu PP  is 0.11 while its coefficient of variation is 0.11. 

The mean ultimate axial strength predicted using ACI-318 codes is 54% of the experimental 

value. The standard deviation of exp.. uACIu PP  is 0.09 and its coefficient of variation is 0.17. 

The mean ultimate axial strength predicted using Eurocode 4 is 78% of the experimental 

value. The standard deviation of exp.4. uECu PP  is 0.11 and its coefficient of variation is 0.14.  

 

6. Conclusions 

 

A fiber element model incorporating the full-range three-stage stress–strain relationships for 

stainless steel has been presented in this paper for the nonlinear analysis of circular CFSST 

short columns under axial compression. The comparative studies performed show that the 
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three-stage material constitutive model for stainless steels gives more accurate predictions of 

the experimentally observed behavior of CFSST short columns than the two-stage material 

model. It is demonstrated that the developed fiber element model considering concrete 

confinement effects predicts well the load–strain behavior and ultimate axial strengths of 

CFSST short columns tested by independent researchers. The proposed design model for 

axially loaded CFSST short columns is verified by experimental and numerical results. It is 

found that the design method given in ACI-318 codes [31] is highly conservative for 

estimating the ultimate axial strengths of circular CFSST short columns because the codes do 

not account for the concrete confinement effects and significant strain hardening of stainless 

steels in compression. Eurocode 4 [34] considers the effects of concrete confinement in the 

calculation of the ultimate axial strength of circular concrete-filled steel columns. However, it 

still provides conservative design strengths since the significant strain hardening of stainless 

steel has not been taken into account in Eurocode 4. The confining pressure model proposed 

by Liang and Fragomeni [16] gives conservative predictions of the confinement in CFSST 

columns. Further research is needed to develop an accurate passive confinement model for 

concrete in circular CFSST columns to account for the effects of significant strain hardening 

of stainless steel tubes on the confinement. 
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Figures and tables  

Table 1 Ultimate axial loads of circular CFSST short columns. 

Specimens D (mm) 
 

t (mm)

 

D/t 
L (mm)

 2.0 (MPa) 0E (GPa) n  '
cf (MPa) max

 exp.uP (kN) fibuP . (kN) 
exp.

.

u

fibu

P

P Ref. 

CHS 104 × 2-C30 104 2 52 300 412 191.9 4.3 31 0.078 699 715.51 1.02 

[9]

CHS 104 × 2-C60 104 2 52 300 412 191.9 4.3 49 0.095 901 871.37 0.97 

CHS 104 × 2-C100 104 2 52 300 412 191.9 4.3 65 0.044 1133 903.18 0.80 

CHS 114 × 6-C30 114.3 6.02 19 300 266 183.6 8.4 31 0.110 1424 1452.75 1.02 

CHS 114 × 6-C60 114.3 6.02 19 300 266 183.6 8.4 49 0.163 1648 1859.24 1.13 

CHS 114 × 6-C100 114.3 6.02 19 300 266 183.6 8.4 65 0.021 1674 1369.65 0.82 

C20-50 × 1.2A 50.8 1.2 42 150 291 195 7 20 0.178 192 194.01 1.01 

[10]

C20-50 × 1.2B 50.8 1.2 42 150 291 195 7 20 0.149 164 179.47 1.09 

C30-50 × 1.2A 50.8 1.2 42 150 291 195 7 30 0.160 225 208.88 0.93 

C20-50 × 1.6A 50.8 1.6 32 150 298 195 7 20 0.139 203 218.64 1.08 

C20-50 × 1.6B 50.8 1.6 32 150 298 195 7 20 0.138 222 218.01 0.98 

C30-50 × 1.6A 50.8 1.6 32 150 298 195 7 30 0.177 260 268.85 1.03 

C30-50 × 1.6B 50.8 1.6 32 150 298 195 7 30 0.179 280 270.23 0.97 

C20-100× 1.6A 101.6 1.6 64 300 320 195 7 20 0.191 637 575.98 0.90 

C20-100× 1.6B 101.6 1.6 64 300 320 195 7 20 0.206 675 598.49 0.89 

C30-100× 1.6A 101.6 1.6 64 300 320 195 7 30 0.154 602 587.98 0.98 

C30-100× 1.6B 101.6 1.6 64 300 320 195 7 30 0.163 609 600.14 0.99 

Mean 0.97  

Standard deviation (SD) 0.08 

Coefficient of variation (COV) 0.09 
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Table 2 Comparison of ultimate axial strengths of circular CFSST short columns. 

Specimens exp.uP (kN) 

Rasmussen’s model Abdella et al. model 

1. fibuP (kN) 
exp.

1.

u

fibu

P

P
 fibuP . (kN)

 
exp.

.

u

fibu

P

P

 

CHS 104 × 2-C30 699 640.27 0.92 715.51 1.02 

CHS 104 × 2-C60 901 776.02 0.86 871.37 0.97 

CHS 104 × 2-C100 1133 864.15 0.76 903.18 0.80 

CHS 114 × 6-C30 1424 1282.65 0.90 1452.75 1.02 

CHS 114 × 6-C60 1648 1507.86 0.91 1859.24 1.13 

CHS 114 × 6-C100 1674 1376.66 0.82 1369.65 0.82 

C20-50 × 1.2A 192 148.21 0.77 194.01 1.01 

C20-50 × 1.2B 164 145.59 0.89 179.47 1.09 

C30-50 × 1.2A 225 170.72 0.76 208.88 0.93 

C20-50 × 1.6A 203 178.43 0.88 218.64 1.08 

C20-50 × 1.6B 222 178.43 0.80 218.01 0.98 

C30-50 × 1.6A 260 208.24 0.80 268.85 1.03 

C30-50 × 1.6B 280 208.49 0.74 270.23 0.97 

C20-100× 1.6A 637 431.97 0.68 575.98 0.90 

C20-100× 1.6B 675 433.48 0.64 598.49 0.89 

C30-100× 1.6A 602 486.94 0.81 587.98 0.98 

C30-100× 1.6B 609 489.45 0.80 600.14 0.99 

Mean 0.81  0.97 

Standard deviation (SD) 0.08  0.08 

Coefficient of variation (COV) 0.10  0.09 
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Table 3 Comparison of ultimate axial strengths of CFSST columns determined by numerical 
model and design model. 

 

Specimens 
D  

(mm) 

 

t  

(mm) 

 

D/t 
2.0

 

(MPa) 

n

'
cf

 

(MPa) 

numuP .  

(kN) 

designuP .
 

(kN) 
numu

designu

P

P

.

.  

C1 50 2.63 19 530 5 30 547 546 1.00 

C2 50 2.63 19 530 5 50 598 597 1.00 

C3 50 2.63 19 530 5 70 641 640 1.00 

C4 50 2.63 19 530 5 90 676 675 1.00 

C5 50 2.63 19 530 5 110 705 704 1.00 

C6 100 3.13 32 530 5 30 1473 1413 0.96 

C7 100 3.13 32 530 5 50 1672 1612 0.96 

C8 100 3.13 32 530 5 70 1852 1792 0.97 

C9 100 3.13 32 530 5 90 2014 1955 0.97 

C10 100 3.13 32 530 5 110 2158 2098 0.97 

C11 50 1.19 42 530 5 30 298 283 0.95 

C12 50 1.19 42 530 5 50 346 331 0.96 

C13 50 1.19 42 530 5 70 390 376 0.96 

C14 50 1.19 42 530 5 90 431 417 0.97 

C15 50 1.19 42 530 5 110 468 455 0.97 

C16 100 2.38 42 530 5 30 1194 1131 0.95 

C17 100 2.38 42 530 5 50 1384 1324 0.96 

C18 100 2.38 42 530 5 70 1561 1504 0.96 

C19 100 2.38 42 530 5 90 1724 1669 0.97 

C20 100 2.38 42 530 5 110 1872 1820 0.97 

C21 100 1.92 52 530 5 30 965 920 0.95 

C22 100 1.92 52 530 5 50 1098 1065 0.97 

C23 100 1.92 52 530 5 70 1230 1210 0.98 

C24 100 1.92 52 530 5 90 1363 1356 0.99 

C25 100 1.92 52 530 5 110 1496 1501 1.00 

C26 114 2.19 52 320 7 30 966 830 0.86 

C27 114 2.19 52 320 7 50 1136 1015 0.89 
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C28 114 2.19 52 320 7 70 1305 1200 0.92 

C29 114 2.19 52 320 7 90 1475 1385 0.94 

C30 114 2.19 52 320 7 110 1645 1570 0.95 

C31 114 1.78 64 320 7 30 819 729 0.89 

C32 114 1.78 64 320 7 50 977 917 0.94 

C33 114 1.78 64 320 7 70 1135 1104 0.97 

C34 114 1.78 64 320 7 90 1294 1292 1.00 

C35 114 1.78 64 320 7 110 1452 1480 1.02 

C36 114 1.78 64 530 5 30 1051 1022 0.97 

C37 114 1.78 64 530 5 50 1210 1210 1.00 

C38 114 1.78 64 530 5 70 1368 1398 1.02 

C39 114 1.78 64 530 5 90 1526 1586 1.04 

C40 114 1.78 64 530 5 110 1684 1774 1.05 

C41 114 1.43 80 320 7 30 685 537 0.78 

C42 114 1.43 80 320 7 50 829 727 0.88 

C43 114 1.43 80 320 7 70 974 917 0.94 

C44 114 1.43 80 320 7 90 1118 1107 0.99 

C45 114 1.43 80 320 7 110 1263 1297 1.03 

C46 114 1.27 90 320 7 30 620 509 0.82 

C47 114 1.27 90 320 7 50 757 700 0.92 

C48 114 1.27 90 320 7 70 894 891 1.00 

C49 114 1.27 90 320 7 90 1043 1082 1.04 

C50 114 1.27 90 320 7 110 1233 1273 1.03 

C51 114 1.14 100 320 7 30 567 485 0.86 

C52 114 1.14 100 320 7 50 697 677 0.97 

C53 114 1.14 100 320 7 70 835 869 1.04 

C54 114 1.14 100 320 7 90 1027 1061 1.03 

C55 114 1.14 100 320 7 110 1219 1253 1.02 

Mean 0.97 

Standard deviation (SD) 0.05 

Coefficient of variation (COV) 0.06 
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Table 4 Comparison of ultimate axial strengths of CFSST columns determined by 
experiment, design codes and design model. 

Specimens 
 

D/t 

exp.uP  

(kN) 

ACI code EC4 code Design model 

ACIuP .  

(kN) 
exp.

.

u

ACIu

P

P
 

4.ECuP  

(kN)
4.

exp.

ECu

u

P

P
 designuP .  

exp.

.

u

designu

P

P
 

CHS 104 × 2-C30 52 699 471 0.67 683 0.98 834 1.19 

CHS 104 × 2-C60 52 901 591 0.66 818 0.91 974 1.08 

CHS 104 × 2-C100 52 1133 698 0.62 939 0.83 1099 0.97 

CHS 114 × 6-C30 19 1424 761 0.53 1138 0.80 1632 1.02 

CHS 114 × 6-C60 19 1648 887 0.54 1279 0.78 1800 1.09 

CHS 114 × 6-C100 19 1674 998 0.60 1405 0.84 1898 1.13 

C20-50 × 1.2A 42 192 86 0.45 129 0.67 173 0.90 

C20-50 × 1.2B 42 164 86 0.52 129 0.78 173 1.06 

C30-50 × 1.2A 42 225 101 0.45 146 0.65 199 0.89 

C20-50 × 1.6A 32 203 104 0.51 158 0.78 220 1.08 

C20-50 × 1.6B 32 222 104 0.47 158 0.71 220 0.99 

C30-50 × 1.6A 32 260 119 0.46 175 0.67 247 0.95 

C30-50 × 1.6B 32 280 119 0.43 175 0.63 247 0.88 

C20-100 × 1.6A 64 637 290 0.46 426 0.67 532 0.84 

C20-100 × 1.6B 64 675 290 0.43 426 0.63 532 0.79 

C30-100 × 1.6A 64 602 355 0.59 499 0.83 608 1.01 

C30-100 × 1.6B 64 609 355 0.58 499 0.82 608 1.00 

Mean 0.54 

 

0.78 

 

0.99 

Standard deviation (SD) 0.09 0.11 0.11 

Coefficient of variation (COV) 0.17 0.14 0.11 
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Fig. 1.Fiber element discretization of circular CFSST section. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 2. Stress–strain curves for stainless steels in compression.  
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Fig. 3. Stress–strain curve for confined concrete in circular CFSST columns 
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Fig. 4. Comparison of predicted and experimental axial load–strain curves for Specimen CHS 
114 × 6-C30. 
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Fig. 5. Comparison of predicted and experimental axial load–strain curves for Specimen CHS 
114 × 6-C60. 
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Fig. 6. Comparison of predicted and experimental axial load–strain curves for Specimen C30-
50 × 1.2A. 
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Fig. 7. Comparison of predicted and experimental axial load–strain curves for Specimen C20-
100 × 1.6B. 
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Fig. 8. Comparisons of two-stage and three-stage constitutive model for Specimen C1. 
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Fig. 9. Effects of tD  ratio on the axial load–strain behaviour of circular CFSST columns. 
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Fig. 10. Effects of concrete compressive strengths on axial load–strain curves for circular 
CFSST columns. 
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Fig. 11. Effects of stainless steel strengths on axial load–strain curves for circular CFSST 
columns. 

 


