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ABSTRACT 21 

 22 

Sperm competition, an  evolutionary process in which the spermatozoa of two or 23 

more males compete for the fertilisation of the same ovum, gives rise to several 24 

morphological and physiological adaptations. Generally, high levels of sperm 25 

competition enhances sperm function. In contrast, advanced age is known to lead 26 

to reproductive senescence, including a general decline in sperm function. Sperm 27 

competition and advanced age may thus have opposing effects on sperm function. 28 

Here we tested the hypothesis that the increase in sperm function in species 29 

experiencing high levels of sperm competition will counteract the negative effects 30 

of advanced age. We measured a comprehensive set of reproductive traits in young 31 

and old males in three species of mice of the genus Mus, which differ greatly in 32 

their levels of sperm competition. Our prediction was that the expression of 33 

reproductive senescence will be highest in the species with low levels of sperm 34 

competition and lowest in the species with high levels of sperm competition. 35 

Surprisingly, we did not find a strong signal of reproductive senescence in any of 36 

the three Mus species. Overall, our results did not clearly support our hypothesis 37 

that high levels of sperm competition minimise the negative effects of aging in 38 

sperm function. However, the pattern observed for the percentage of 39 

morphologically normal spermatozoa offered some support to this hypothesis. 40 

 41 

Keywords: age and reproduction; ATP; reproductive senescence; rodents; sperm 42 

abnormalities; sperm competition; sperm function; sperm morphology 43 

 44 
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INTRODUCTION 46 

 47 

Sperm competition occurs when a female mates with two or more males and 48 

the spermatozoa of those males compete for the fertilisation of the female’s ova 49 

(Birkhead & Møller, 1998; Parker, 1970). Sperm competition is a widespread 50 

phenomenon and its occurrence leads to several evolutionary adaptations at the 51 

behavioural, morphological and physiological levels (Birkhead & Møller, 1998; 52 

delBarco-Trillo, Tourmente & Roldan, 2013). In many taxa, high levels of sperm 53 

competition are associated with an increase in the production (delBarco-Trillo et 54 

al., 2013), storage and allocation of spermatozoa (delBarco-Trillo, 2011; Parker & 55 

Pizzari, 2010), as well as with enhanced sperm function (Fitzpatrick et al., 2009; 56 

Gomendio et al., 2006; Gómez Montoto et al., 2011a; Kleven et al., 2009; Martín-57 

Coello et al., 2009). For example, high levels of sperm competition in rodents lead 58 

to a higher proportion of spermatozoa that are morphologically normal, motile, 59 

and capable of reaching and fertilising the ova (Gomendio et al., 2006; Gómez 60 

Montoto et al., 2011a), as well as to modifications in sperm dimensions (Gomendio 61 

& Roldan, 2008; Tourmente, Gomendio & Roldan, 2011) and sperm energy 62 

metabolism (Tourmente et al., 2013; Tourmente et al., 2015b) that may result in 63 

improvements in sperm motility. 64 

In contrast to the positive effect of sperm competition on sperm function, 65 

advanced age has been reported to lead to reproductive senescence (García-66 

Palomares et al., 2009a; García-Palomares et al., 2009b), particularly having a 67 

negative impact on sperm function (Pizzari et al., 2008). A decline in sperm 68 

function with age may be due to the accumulation of de novo mutations in the male 69 

germline that may occur during each cell division (Radwan, 2003), or to an 70 

increasingly impaired process of spermatogenesis with advancing age (Johnson & 71 

Gemmell, 2012; Pizzari et al., 2008). These processes may be driven or 72 

exacerbated by an accumulation of reactive oxygen species and an escalation of 73 

oxidative stress with age (Johnson & Gemmell, 2012; Weir & Robaire, 2006), or by 74 

reduced efficiency of DNA repair with advancing paternal age (Paul, Nagano & 75 

Robaire, 2011; Sloter et al., 2004). 76 

Indeed, across taxa there is strong evidence for a generalised decline in 77 

sperm function with age. Such decline may involve: a decline in the number of 78 
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germinal cells and Sertoli cells in the seminiferous tubules (Dakouane et al., 2005), 79 

a reduction in the number of sperm ejaculated (Sasson, Johnson & Brockmann, 80 

2012), an increase in sperm abnormalities (Syntin & Robaire, 2001), a decrease in 81 

sperm motility (Møller et al., 2009; Wolf et al., 2000), an increase in sperm DNA 82 

damage (Harris et al., 2011; Velando et al., 2011),  or decreased reproductive 83 

success (Dean et al., 2010).  84 

Although the positive effect of sperm competition on sperm function is 85 

restricted to species experiencing high levels of sperm competition, the negative 86 

impacts of advanced age on sperm function can be considered to be similar across 87 

phylogenetically related species. Consequently, we hypothesised that the 88 

generalised increase in sperm function in species with high levels of sperm 89 

competition will diminish the negative impacts of senescence only in such species. 90 

That is, in species with high levels of sperm competition, selective pressures on 91 

sperm competitiveness may be strong throughout a male’s reproductive life, and 92 

may reduce the incidence of sperm senescence. 93 

To test our hypothesis, we measured a comprehensive set of reproductive 94 

traits in young and old males in three species of mice of the genus Mus that differ in 95 

their levels of sperm competition based on relative testes size: M. musculus, M. 96 

spretus, and M. spicilegus (delBarco-Trillo et al., 2016). These reproductive traits 97 

included the number of spermatozoa in the caudae epididymides, sperm 98 

dimensions and morphology, the percentage of spermatozoa with morphological 99 

abnormalities, sperm motility and velocity, and ATP content in spermatozoa. A 100 

decrease in sperm function can include lower number of stored spermatozoa, 101 

shorter spermatozoa, a higher percentage of spermatozoa with morphological 102 

abnormalities, lower motility and velocity, and lower ATP content in spermatozoa. 103 

According to our hypothesis, we predicted that the decrease in sperm function in 104 

old males would be the highest in the species with low levels of sperm competition 105 

(M. musculus) and the lowest in the species with high levels of sperm competition 106 

(M. spicilegus).  107 

 108 

METHODS 109 

 110 

Animals 111 
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We used adult males of three species from the genus Mus that differ greatly in 112 

their levels of sperm competition: M. musculus, M. spretus, and M. spicilegus (n = 11 113 

per species). These three species have been characterized as a good model for 114 

studies on sperm competition in rodents, representing low, intermediate and high 115 

levels of sperm competition, respectively (Gomendio et al., 2006; Gómez Montoto 116 

et al., 2011a). We selected males of two age classes, hereafter referred as "young" 117 

and "old" for simplicity. Young males (n = 6 per species) were 4-6 months of age. 118 

At this age, mice are no longer juveniles but at the same time they are not old 119 

enough to be affected by reproductive senescence. Old males (n = 5 per species) 120 

were 24-28 months of age. Males were selected so that ages of young (155.11 ± 121 

37.31 days; mean ± SD) and old animals (769.93 ± 43.96 days) were similar across 122 

species. Old males in our study were older than males considered to be senescent 123 

in other studies in mice (Anjum et al., 2012; Biddle et al., 1997; Tognetti et al., 124 

2017). We were not able to measure all reproductive traits for all individuals. 125 

However, n ≥ 5 for any species and age class combination. 126 

Adult males were close descendants of animals acquired from the Institut 127 

des Sciences de l’Evolution, CNRS- Université Montpellier 2, France, belonging to 128 

the following wild-derived strains: M. musculus, strain MPB (from Bialowieza, 129 

Poland); M. spretus, strain SEB (from Barcelona, Spain), and M. spicilegus, strain 130 

ZRU (from Kalomoyevka, Ukraine). Crossings in our colony were arranged to 131 

minimise inbreeding. All males were maintained under standard conditions (14 h 132 

light–10 h darkness, 22–24°C, 55-60% relative humidity); with food (rodent chow, 133 

Harlan Laboratories; seeds and fresh apple) and water provided ad libitum. All 134 

males used in this study were housed individually for at least a month before 135 

sampling to eliminate the possibility that males had a different perceived risk of 136 

sperm competition. 137 

The research protocol was approved by the Ethics Committee of the Spanish 138 

Research Council (CSIC). All procedures were carried out following Spanish Animal 139 

Protection Regulation RD53/2013, which conforms to European Union Regulation 140 

2010/63. 141 

 142 

Morphological measurements 143 
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Males were sacrificed by cervical dislocation, weighed (in g) and measured 144 

(body length and tail length; in mm). To evaluate body condition we calculated a 145 

body mass index as weight (in g) / length squared (in mm2) (Labocha, Schutz & 146 

Hayes, 2014). Testes were removed and weighed (in g). Relative testes mass (RTS) 147 

has been shown to reflect sperm competition levels in rodents (Bryja et al., 2008; 148 

Firman & Simmons, 2008; Long & Montgomerie, 2006; Ramm, Parker & Stockley, 149 

2005; Soulsbury, 2010). RTS was calculated using Kenagy and Trombulak´s 150 

rodent-specific regression equation: RTS = testes mass / 0.031 × body mass0.77 151 

(Kenagy & Trombulak, 1986). 152 

Compared to young mice, old mice had higher body weights (2-way ANOVA: 153 

F1,27 = 23.04, p < 0.0001), longer bodies (F1,27 = 7.28, p = 0.012), and longer tails 154 

(F1,27 = 30.08, p < 0.0001). Body mass index (used as a measure of body condition) 155 

was also higher in old mice than in young mice (F1,27 = 8.83, p = 0.006). 156 

Relative testes size differed among the three species, following the predicted 157 

pattern with lowest values in M. musculus and highest in M. spicilegus (2-way 158 

ANOVA: F2,27 = 221.75, p < 0.0001; Table 1, Supporting Information). Relative 159 

testes size, however, did not differ between young and old males (F1,27 = 2.51, p = 160 

0.13). 161 

 162 

Sperm suspension preparation and sperm measurements 163 

Mature spermatozoa were collected from the caudae epididymides and vasa 164 

deferentia, by placing the tissue in a Petri dish containing Hepes-buffered modified 165 

Tyrode’s medium (mT-H; see Supporting Information for details) prewarmed to 166 

37°C, making several cuts and allowing spermatozoa to swim out for a period of 5 167 

min. After the 5-min swim-out incubation, the sperm suspension was transferred 168 

to a prewarmed eppendorf tube. Each sperm suspension was maintained at 37°C 169 

until processing. Some samples were assessed immediately (we will refer to this 170 

time as “0 h”). Sperm suspensions were also incubated for 3 h at 37°C in mT-H 171 

under air, after which samples were taken and some of the sperm parameters were 172 

assessed again (we will refer to this time as “3 h”). The duration of incubation (3 h) 173 

was selected based on maintenance of sperm motility in vitro in a subset of rodent 174 

species, including the three species here studied (Tourmente et al., 2015b). This 175 

period of incubation does not result in a complete sperm immobilization in the 176 
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species with low sperm survival. Moreover, because fertilisation takes place a few 177 

hours after copulation in muroid species for which data are available (Suarez et al., 178 

1990), our selected incubation time is within physiological time frames. 179 

We used a hemocytometer (modified Neubauer chamber) to estimate the 180 

total number of spermatozoa stored in the caudae epididymides. To measure 181 

sperm linear dimensions, 5 µl of the sperm suspension was smeared onto a slide, 182 

fixed with formaldehyde in a phosphate buffer, stained with Giemsa as previously 183 

described (Gómez Montoto et al., 2011a), and examined using bright field 184 

microscopy. All samples were evaluated and photographed at 1000× magnification 185 

for subsequent digitalization using an Eclipse E-600 microscope (Nikon, Tokyo, 186 

Japan) with Pan-Fluor optics and a DS5 camera (Nikon, Tokyo, Japan). 187 

Spermatozoa were photographed by using the software NIS-Elements v.3.0 (Nikon, 188 

Tokyo, Japan). For each individual, we measured 25 different spermatozoa. Linear 189 

dimensions were obtained by measuring captured sperm images using ImageJ 190 

software v.1.41 (National Institutes of Health, Bethesda, MD, USA) (Gómez 191 

Montoto et al., 2011b). Measurements included head length, head width, head area, 192 

total flagellum length, and total sperm length. Head length was measured as the 193 

linear distance between the most basal point and the most apical one of the sperm 194 

head. Head width was taken as a straight line between the dorsal and ventral 195 

regions in the wider region of the sperm head. Head area was measured 196 

considering the entire sperm head including the apical hook. 197 

To quantify differences in sperm head morphology we used a geometric 198 

morphometric approach described previously (Varea Sánchez, Bastir & Roldan, 199 

2013). See Supporting Information for details. 200 

To assess sperm abnormalities, we used sperm smears stained first with 201 

eosin-nigrosin and subsequently with Giemsa (Gómez Montoto et al., 2011a). 202 

Briefly, 5 µl sperm suspension and 10 µl eosin-nigrosin solution were mixed on a 203 

glass slide placed on a stage at 37°C and 30 s later the mix was smeared and 204 

allowed to air-dry. Smears were stained with Giemsa solution and mounted with 205 

DPX. Smears were examined at 1000x under bright field and 200 spermatozoa per 206 

male were examined to evaluate the percentage of morphologically normal 207 

spermatozoa (i.e. without abnormal head, midpiece or principal piece, and without 208 

a cytoplasmic droplet or coiled flagella). 209 
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The percentage of motile spermatozoa (MOT) was evaluated by examining 10 210 

µl of the sperm suspension that was placed between a pre-warmed slide and a 211 

coverslip at 100× magnification under phase contrast optics. We also estimated the 212 

percentage of spermatozoa exhibiting forward progression. To assess sperm 213 

swimming patterns, an aliquot of sperm suspension was diluted to approximately 214 

5 × 106 spermatozoa ml−1, placed in a pre-warmed microscopy chamber with a 215 

depth of 20 µm (Leja, Nieuw-Vennep, The Netherlands), and filmed at 40× using a 216 

phase contrast microscope connected to a digital video camera (Basler A312fc, 217 

Vision Technologies, Glen Burnie, MD). A minimum of 150 sperm trajectories were 218 

assessed per male using a computer-assisted sperm analyzer (CASA; Sperm Class 219 

Analyzer version 4.0, Microptic, Barcelona, Spain), and the following swimming 220 

parameters were estimated for each trajectory: curvilinear velocity (VCL, µm s−1), 221 

straight line velocity (VSL, µm s−1), average path velocity (VAP, µm s−1), wobble 222 

(WOB = VAP/VCL), linearity (LIN = VSL / VCL), straightness (STR = VSL / VAP), 223 

amplitude of lateral head displacement (ALH, µm), and beat-cross frequency (BCF, 224 

Hz). 225 

Sperm ATP content was measured using a luciferase-based ATP 226 

bioluminescence assay kit (HS II, Roche Applied Science) (Tourmente et al., 227 

2015a). See Supporting Information for details. 228 

 229 

Statistical analyses 230 

All statistical analyses were conducted using R version 3.1.0 (R Core Team, 231 

2014) unless otherwise specified. Normality was checked with the Shapiro-Wilk 232 

normality test. If normality was not met, we used logarithmic and arcsine 233 

transformations as required. Average values are reported as mean ± SD. 234 

Significance level (α) was set at 0.05 for all the tests. 235 

We used principal component analysis (PCA) to reduce potentially correlated 236 

variables and obtain measures of “overall sperm morphology”, “overall sperm 237 

velocity”, and “overall trajectory shape”. See Supporting Information for details. 238 

We implemented 2-way ANOVAs and 2-way ANCOVAs fitted using the 239 

function aov. The two factors were species (3 levels) and age (young and old). The 240 

covariate in the ANCOVAs was body mass. We also considered the interaction 241 

between species and age to determine if any significant difference between young 242 
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and old mice differed across species, and whether such species effect paralleled the 243 

different levels of sperm competition among those species.  244 

Geometric morphometrics statistical analyses were conducted with MorphoJ 245 

v1.06d (Klingenberg, 2011). Differences in sperm head shape between young and 246 

old individuals were quantified by examining the distance between the mean of 247 

both groups conducting a discriminant analysis (Timm, 2002). 248 

 249 

RESULTS 250 

The number of spermatozoa stored in the cauda epididymides differed 251 

between species, following the predicted pattern (2-way ANCOVA: F2,26 = 50.36, p 252 

< 0.0001; Table 1, Supporting Information), but there was no difference between 253 

young and old males (F1,26 = 0.4, p = 0.54). 254 

The overall sperm morphology differed between species (F2,24 = 168.42, p > 255 

0.0001), and between young and old males (F1,24 = 6.15, p = 0.02), but there was no 256 

significant interaction between species and age (F2,24 = 0.1, p = 0.91). The shape of 257 

the sperm head differed between species (discriminant analyses: p < 0.0001), but 258 

not between young and old mice (p = 0.2; Fig. 1). 259 

The percentage of normal spermatozoa differed between species (F2,27 = 7.44, 260 

p = 0.003); even though there was not an overall difference between young and old 261 

males (F1,27 = 0.99, p = 0.33), we found a statistically significant interaction 262 

between species and age (F2,27 = 4.07, p = 0.029). Subanalyses by species showed 263 

no differences between young and old mice in M. spicilegus and M. spretus (p > 264 

0.05) but a higher percentage of normal spermatozoa in young males than in old 265 

males in M. musculus (p = 0.008; Fig. 2), the species with the lowest level of sperm 266 

competition. 267 

There were differences in sperm motility across species (2-way ANCOVA: 268 

F2,26 = 36.47, p < 0.0001), this trait being higher in young males than in old males 269 

(F1,26 = 7.25, p = 0.01). However, all species were affected similarly by age 270 

(interaction: F2,26 = 0.1, p = 0.9). After 3 hours of incubation, significant differences 271 

among species remained in sperm motility (F2,26 = 25.05, p < 0.0001) but there 272 

were no longer differences between age classes (F1,26 = 0.41, p = 0.53). Sperm 273 

forward progression also differed between species, both at 0 h (F2,26 = 6.22, p = 274 

0.006) and after 3 hours of incubation (F2,26 = 17.71, p < 0.0001), and while it was 275 
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similar in young and old males at 0 h (F1,26 = 0.25, p = 0.62), after 3 hours of 276 

incubation it was higher in old males than in young males (F1,26 = 7.38, p = 0.01). 277 

Overall sperm velocity and overall trajectory shape differed between species 278 

(p < 0.0001 in both analyses) and ages (p < 0.01) but there was not a significant 279 

interaction between species and age (p > 0.05). 280 

There were significant differences between species in the amount of ATP per 281 

sperm cell, both at 0 h (F2,26 = 6.85, p = 0.004) and after 3 hours of incubation (F2,26 282 

= 9.59, p = 0.0008; Table 1, Supporting Information). However, there was not a 283 

significant difference in ATP concentration between young and old males, nor a 284 

significant interaction between species and age at either time (p > 0.05 for all 285 

analyses). 286 

 287 

DISCUSSION 288 

 289 

Overall, our results do not support the hypothesis that males in species with 290 

high levels of sperm competition suffer less reproductive senescence than in 291 

species with low levels of sperm competition. We found that many reproductive 292 

traits were unaffected by age, whereas others were either enhanced or lessened in 293 

old males compared to young males, but the level of sperm competition did not 294 

have an influence in most of these traits. Only the percentage of normal 295 

spermatozoa matched our prediction, with a decline in old males in M. musculus 296 

(i.e. the species with low levels of sperm competition) but not in the other two 297 

species, which experience higher levels of sperm competition (M. spretus and M. 298 

spicilegus). This result may be driven by an enhanced process of spermatogenesis 299 

in species with high levels of sperm competition, which would either directly or 300 

indirectly minimise the occurrence of sperm abnormalities in old males, but this is 301 

an area of research that requires further investigation. 302 

Even though we considered many reproductive traits that could be affected 303 

by senescence, there are many other traits that could be differently affected in 304 

young and old males of a species depending on the level of sperm competition 305 

normally experienced in that species. These traits include chromosomal 306 

abnormalities, DNA damage in spermatozoa, and any traits that regulate or 307 

determine the success of the capacitation and fertilisation processes (Gogol, 308 



 11 

Bochenek & Smorag, 2002; Momand, Xu & Walter, 2013). For example, in brown 309 

rats, the spermatozoa of old males are more susceptible to oxidative damage and 310 

DNA fragmentation (Zubkova, Wade & Robaire, 2005), as well as having a 311 

decreased antioxidant capacity and an increased production of reactive oxygen 312 

species (Weir & Robaire, 2006). It is important to notice that the genomic damage 313 

in spermatozoa driven by aging may be independent of sperm function. Despite a 314 

normal expression of sperm function in old males, any genomic damage in their 315 

spermatozoa will increase the risk of transmission of multiple genetic and 316 

chromosomal defects to offspring (Wyrobek et al., 2006). 317 

Surprisingly, we did not find a strong signal of reproductive senescence in 318 

the three species of mice that we studied. Reproductive senescence may thus not 319 

play an important role in the natural populations of the three Mus species under 320 

study. Indeed, given the high predation rates suffered by rodents, most males will 321 

normally die before the inception of any signs of senescence. Another study using 322 

wild-captured Mus musculus domesticus found that epididymal sperm counts 323 

declined with age, although only a range of relatively advanced ages (21-32 324 

months) were studied (Garratt et al., 2011). It must be noted that most of the 325 

available knowledge on reproductive senescence in rodents is based on laboratory 326 

strains (Katz-Jaffe et al., 2013; Lucio et al., 2013; Parkening, 1989). This may be a 327 

shortcoming, as in a benign captive environment the negative effects of aging can 328 

be minimized and thus differences between age classes might be obscured. 329 

Even though there are many studies describing the timing and incidence of 330 

reproductive senescence, there are also many studies in which reproductive 331 

condition remains unchanged or is even enhanced in old individuals (Gasparini et 332 

al., 2010; Johnson & Gemmell, 2012; Kanuga et al., 2011). It is still unclear why 333 

reproductive senescence is pronounced in some species but not in others. 334 

It is important to consider whether any differences between young and old 335 

males lead to a fertilising advantage for one age type or the other. For example, 336 

young male guppies produce faster-swimming spermatozoa compared to old 337 

males; however, young males do not have a fertilising advantage under sperm 338 

competition scenarios (Gasparini et al., 2010). It is equally possible that despite a 339 

lack of consistent differences in sperm function between young and old males, as 340 

we found in our three species of mice, undetected differences between their 341 
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spermatozoa could result in a lower reproductive potential in older individuals. 342 

We can thus conclude that even though our results did not support our hypothesis 343 

that high levels of sperm competition can minimise the impacts of senescence, 344 

more reproductive measurements, including sperm competition tests, and 345 

measurements of fertilising ability and offspring health, and possibly higher 346 

sample sizes than we used, are required to fully support or disprove our 347 

hypothesis. 348 

 349 
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FIGURE LEGENDS 543 
 544 
Figure 1. Sperm head shape in young and old males of three Mus species. Dots 545 
indicate the landmarks used for geometric morphometrics analyses. 546 
 547 
Figure 2. Percentage of morphologically normal spermatozoa in young and old 548 
males of three Mus species. For each boxplot, the bar within each box represents 549 
the sample median, each box represents 50% of the data around the median, and 550 
the two whiskers represent the 95% confidence interval. ** denotes p < 0.001; NS 551 
denotes p > 0.05. 552 
 553 


