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Abstract 
 

Environmental conditions vary spatially and temporally, providing organisms with 

both challenges and opportunities. Animals have evolved a spectacular variety of 

migratory behaviours to take advantage of environmental variation, encompassing 

movements that are conducted in anticipation of predictable variation as well as 

movements undertaken in reaction to more stochastic variation. The spatiotemporal 

pattern of migratory movements displayed by a population or species can be thought 

of as the evolutionary outcome of trade-offs amongst life history traits. As such, the 

study of animal movement in relation to environmental heterogeneity can yield 

valuable insights into the proximate and ultimate drivers of migratory behaviours as 

well as the behavioural mechanisms underpinning genetic structure. Against this 

background, the overarching aim of this thesis is to investigate the role of 

environmental heterogeneity in shaping locally-adapted migratory behaviours, fine-

scale genetic structure and physiological performance in populations of wild brown 

trout (Salmo trutta) and Atlantic salmon (Salmo salar). 

Using telemetry data from passive integrated transponder (PIT) tags, I investigated 

the fine scale spatiotemporal patterns of spawning-related movements of brown trout 

between a feeding lake and two spawning streams (one inflowing, one outflowing, 

separated by < 100 m) over two spawning seasons. The timing of seasonal, daily and 

diel movements was strongly associated with variation in photoperiod, stream height 

and moon phase. Movement activity was highest at night, and particularly on nights 

with minimal lunar illumination and high water levels, suggesting that trout 

synchronise their spawning movements with environmental conditions that minimise 

their visibility to predators. Males began their movements between the lake and 
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streams significantly earlier in the spawning season than females (protandry) and 

were generally more active. 

A substantial proportion of trout entered both spawning streams during the spawning 

periods, providing potential sources of gene flow between the two streams. However, 

Bayesian analyses revealed the existence of subtle genetic differentiation between 

juvenile trout sampled in the two streams and indicated that gene flow was strongly 

asymmetrical in a predominantly downstream (i.e. inflow to outflow) direction. 

Thus, natal dispersal between the two streams appears to be more common amongst 

trout that hatch in the inflow than the outflow. These findings have important 

implications for genetic diversity and local adaptation of fish stocks in fluvial and 

lacustrine environments.  

The collection of PIT-derived data in fluvial habitats is often hindered by the 

fragility of PIT antennae when exposed to high flows and flotsam. In Chapter 3 I 

present a novel PIT antenna design I developed for use in flood-prone spatey rivers. 

This design allows flotsam to pass without causing significant damage to antennae 

and was crucial for collecting the data used in Chapters 4 and 5 and in Appendix A.  

The performance of migratory populations can be strongly influenced by factors that 

affect the physiology or survival of migrants in any encountered habitat. I therefore 

investigated whether the acanthocephalan endoparasite Pomphorhynchus laevis 

causes a habitat-specific (i.e. freshwater or saltwater) pathology in Atlantic salmon 

smolts. Peculiarly for the species, the Irish strain of P. laevis uses salmonids, instead 

of cyprinids, as its preferred definitive hosts. Despite observing high prevalence of 

the parasite amongst wild smolts and high infection intensities in some individuals, I 

found no evidence of a pathological effect of infection in fresh or salt water. 
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However, I did demonstrate that this freshwater parasite can survive in smolts in 

salinities similar to those found in coastal waters for at least 72 hours. Thus, the 

coastal roaming behaviour of Irish sea trout may have facilitated the colonisation of 

Irish river systems, resulting in the exceptionally widespread distribution of the 

parasite in Ireland. 

Collectively, these results contribute to our knowledge of how environmental 

heterogeneity influences the movement, performance, distribution and genetic 

structure of organisms in aquatic environments. As modern environmental changes 

occur at an unprecedented pace, such knowledge may provide us with the ability to 

anticipate, and perhaps even ameliorate, the impacts that anthropogenic activities 

have on migratory species. 
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Chapter 1 

General introduction 
 

Movement, in one form or another, is a ubiquitous and defining feature of animal 

life. As such, movement ecology and, in particular, the study of animal migration, 5 

encompasses an incredible variety of behaviours conducted over a vast range of 

spatial and temporal scales. From the Adélie penguin (Pygoscelis adeliae) that 

annually crosses thousands of kilometres of open ocean between feeding grounds 

and nursery habitats, to zooplankton that descend tens of meters through the water 

column as the first light of each day illuminates the surface and exposes them to 10 

predators, migratory behaviour amongst animal taxa is driven by a diverse range of 

proximate and ultimate causes (Davis, Boersma and Court, 1996; Lampart, 1989; 

Lack, 1968). What constitutes animal migration is a matter of some debate, with 

numerous definitions in the literature (Hansson and Åkesson, 2014). For the 

purposes of this thesis I have used the following definition: The movement of 15 

animals between two distinct habitats on a reasonably predictable temporal basis.  

 

Fundamentally, migration allows individuals to increase their fitness by exploiting 

spatiotemporal variation in resources, environmental conditions and mortality risks 

(Chapman et al., 2014; Lucas et al., 2001; Abrahms et al., 2019). Although animal 20 

movement can be directly motivated by deteriorating conditions in the origin habitat 

(Lack, 1968), the evolved migratory behaviours of many species may be thought of 

as anticipatory in the sense that migrants move between habitats at a time when the 

long-term average conditions in the destination habitat have been favourable for a 

particular activity and the risks associated with movement between habitats have 25 
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generally been tolerable (Shaw, 2016; Forrest and Miller-Rushing, 2010). Migratory 

species use an assortment of environmental variables such as photoperiod, 

temperature, ocean currents, and Earth’s magnetic field as signals in order to decide 

when and where to migrate, and how to accomplish the journey (Cochran, Mouritsen 

and Wikelski, 2004; Cresci et al., 2019; Dittman and Quinn, 1996; Gwinner, 1989; 30 

Haraldstad et al., 2016). However, reliance on multiple habitats with predictable 

temporal heterogeneity in conditions or resources has made migratory species 

particularly vulnerable to the ill-effects of anthropogenic activities (Wilcove, 2008; 

Seebacher and Post, 2015). Habitat fragmentation and the creation of physical 

barriers can directly prevent movement between habitats while increased migrant 35 

mortality (through the overexploitation of migrants or altered dynamics between 

migrants, prey, predators and parasites) can alter the historical balance between the 

fitness benefits and costs of migration itself and threaten population persistence 

amongst obligate migrants (Shaw, 2016). Furthermore, as habitats become degraded 

and climate change causes seasonal environmental conditions to decouple from long-40 

term seasonal patterns, evolved responses to environmental cues may deliver 

migrants to sub-optimal locations at sub-optimal times (Cushing, 1990). Thus, 

migrants are increasingly likely to encounter unfavourable conditions in destination 

habitats or during their migratory movements (Lennox et al., 2016; Abrahms et al., 

2019; Scranton and Amarasekare, 2017). Indeed, many of the world’s most 45 

spectacular migrations have already disappeared as a result of human activities 

(Wilcove and Wikelski, 2008), while modern declines in populations of European-

breeding long-distance migratory birds have been more sustained and more severe 

than in their non-migratory counterparts (Sanderson et al., 2006).  
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Against this background, identification of the proximate and ultimate drivers of 50 

movement behaviour will play a crucial role in allowing us to predict the impacts of 

climate change and human activities on the performance and phenology of migratory 

populations. In addition, spatial patterns of dispersal and gene flow, in conjunction 

with the grain of environmental variation, influence spatial patterns of local 

adaptation (Kawecki and Ebert, 2004; Kawecki and Holt, 2002; Fedorka et al., 55 

2012). Patterns of local adaptation, in turn, can influence spatial patterns of neutral 

genetic differentiation among populations (population structure) via isolation-by-

adaptation processes (Quinn, Unwin and Kinnison, 2000; Nosil, Egan and Funk, 

2008; Orsini et al., 2013). Genetic and phenotypic differentiation among 

populations, in turn, provides demographic stability at the stock or meta-population 60 

level via portfolio effects (Schindler, Armstrong and Reed, 2015). As such, an 

understanding of the geographic scales at which migratory populations are structured 

(including associated gene flow patterns), as well as the behavioural basis of such 

genetic structure, should underpin management strategies and, in particular, the 

designation of management units (Carlsson et al., 1999). Furthermore, because the 65 

maintenance of genetic diversity is a key factor in determining the ability of species 

to adapt to and withstand environmental changes (Schindler, 2019; Reed et al., 

2011), an appreciation of the evolutionary and ecological (including behavioural) 

processes underpinning the maintenance of diversity within and among populations 

is critical to wildlife management and conservation. Finally, if we are to develop 70 

informed and effective strategies for the conservation of migratory species we must 

identify causes of migrant mortality at each phase of the migrant’s journey. This 

thesis contributes to these areas of knowledge using two species that display a range 
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of different migratory strategies, the Atlantic salmon (Salmo salar L.) and the brown 

trout (S. trutta L.), as case study animals.  75 

 

Overview of life history patterns in Atlantic salmon and brown trout 

Whether we are ecologists or anglers, geneticists or conservationists, teachers or 

children, it is hard not to be inspired by the iconic image of a leaping Atlantic 

salmon and the knowledge that the animal we observe has journeyed through 80 

thousands of kilometres of open ocean before returning to breed in the very stream it 

is likely to have originated from. While brown trout are often dismissed as a less 

charismatic cousin of the salmon, their remarkable phenotypic variability and 

diversity of enigmatic behaviours make them a constant source of curiosity for those 

more intimately acquainted with the species (Ferguson et al., 2019; Kent, 1990; 85 

Plunket-Greene, 1924; Sawyer, 1970). Both salmonids, along with their more distant 

relatives the Pacific salmonids, feature in folklore and literature throughout their 

native ranges and provide sustenance to millions of humans annually (Muhlfeld et 

al., 2019). In addition to their significant cultural, recreational, nutritional and 

economic value, these species play important roles in ecosystem functioning and as 90 

indicators of ecosystem vitality (Haak and Williams, 2013). While both Atlantic 

salmon and brown trout exhibit broad and divergent varieties of life history 

strategies, their shared ability to migrate between, and adapt to, differing habitats has 

been instrumental in their long-term successes (Ferguson et al., 2019; McGinnity et 

al., 2009; Nevoux et al., 2019; Jonsson and Jonsson, 2006).  95 

The life-cycle of Atlantic salmon and brown trout begins and culminates in 

freshwater gravel beds where the movement of cool, well-oxygenated water provides 
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the necessary conditions for embryo development (Buffington, Montgomery, & 

Greenberg, 2004; Gauthey et al., 2015; Jonsson and Jonsson, 2011). These spawning 

areas are usually restricted to streams and rivers although salmonids will sometimes 100 

spawn in lakes if hydrological conditions and substrate composition are suitable 

(Penlington, 1983; Arostegui and Quinn, 2019). However, the availability of food 

and territory in fluvial habitats is typically restricted, thereby imposing density-

dependent and density-independent constraints on individual growth and, ultimately, 

population size (De Eyto et al., 2016; Jonsson et al., 1998). Thus, feeding migrations 105 

represent a common life-history pathway for both species, allowing individuals to 

move from their natal streams and rivers to more productive and less confined 

habitats, where growth can be maintained and competition for territory is less severe 

(Marco-Rius et al., 2013).  

Atlantic salmon and brown trout display a continuum of migratory strategies, 110 

ranging from downstream-upstream movements within a single river (fluvial–

adfluvial potamodromy), to movements between a river and a lake (lacustrine–

adfluvial potamodromy), to movements between a river system and the sea 

(anadromy) (Ferguson, Reed and Prodöhl, 2017; Nevoux et al., 2019). Although 

some non-anadromous populations exist (Hutchings et al., 2019; Berg, 1985), long-115 

distance anadromous migration is a defining feature of most Atlantic salmon 

populations, facilitating rapid marine growth while the constant absence of one or 

more cohort from a river system provides a safeguard against extirpation in the case 

of sudden catastrophic events in the freshwater environment (Birnie-Gauvin, 

Thorstad and Aarestrup, 2019; Klemetsen et al., 2003; Jonsson and Jonsson, 2011). 120 

In contrast, brown trout are regarded as facultative, as opposed to obligate, migrants, 
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with many populations comprised of a mixture of individuals that display resident, 

potamodromous or anadromous life history strategies (Nevoux et al., 2019).  

Sensitive olfactory organs allow salmonids to recognise extremely diffuse chemical 

signals in aquatic environments and thereby return to areas that they ‘imprinted’ on 125 

as juveniles when they are ready to reproduce (Dittman and Quinn, 1996; Doving, 

Westerberg, & Johnsen, 1985; Quinn, 1990; Tierney et al., 2008). Such reproductive 

homing to natal rivers regularly exceeds 95% amongst anadromous salmonids, yet 

‘straying’ (i.e. natal dispersal) between river systems or between areas within river 

systems does occur (Keefer et al., 2014; Lucas et al., 2001). Straying, whether an 130 

alternative life history strategy or a product of inaccurate homing, may offer 

significant fitness benefits to individuals, particularly in situations where the quality 

or accessibility of spawning habitat in the natal river varies temporally. Straying also 

allows salmonids to colonise new regions or recolonise areas after extirpations 

(Ferguson, 2004) and provides a source of gene flow between geographically 135 

separated populations. Thus, the frequency and direction of natal dispersal between 

areas has numerous biological implications.  

 

Contemporary threats to migratory salmonids 

Although migratory behaviour has allowed salmonids to colonise wide geographic 140 

ranges, recolonise areas after extirpations, and take advantage of differing 

opportunities found in different habitats, it also exposes fish to the accumulated 

threats and challenges associated with each encountered habitat. As contemporary 

environmental changes occur at an unprecedented rate, Atlantic salmon and brown 

trout in many regions face uncertain futures (Jonsson and Jonsson, 2009; Kovach et 145 
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al., 2019). Indeed, Atlantic salmon are already extirpated from most river systems 

throughout the southern part of their historical range with a general pattern of 

declining populations throughout intermediate latitudes and comparatively stable 

populations in the far north where human population density is at its lowest (Chaput, 

2012; Parrish et al., 1998). Similarly, despite their IUCN ‘Least Concern’ status, 150 

brown trout have disappeared from many rivers and lakes, particularly in the south of 

their native range, while anadromous individuals from various populations in more 

northerly latitudes have suffered extremely high migrant mortality in recent years 

(Muhlfeld et al., 2019; Poole et al., 2007; Thorstad and Finstad, 2018; Gargan, Poole 

and Forde, 2006).  155 

In many cases, anthropogenic activities have been identified as the key factors 

contributing to the decline of Atlantic salmon and brown trout populations. 

Alterations to freshwater ecosystems including acidification and pollution, flow 

regulation, the construction of dams, fresh water extraction, arterial drainage and 

alien species introductions have all contributed to localised reductions in freshwater 160 

survival (Muhlfeld et al., 2019; Forseth et al., 2017). Indeed, as a result of such 

direct anthropogenic influences, general biodiversity in freshwater environments is 

now considered to be significantly more imperilled than in terrestrial or marine 

habitats (Strayer and Dudgeon, 2010). However, anthropogenic factors have also had 

severe negative influences on the marine survival rates of Atlantic salmon and brown 165 

trout in recent decades. Commercial marine fisheries have significantly increased 

marine mortality, whether Atlantic salmon and anadromous brown trout are 

specifically targeted or whether they are the unintended bycatch of other fisheries 

(Crozier and Kennedy, 1994; Dempson et al., 2001; Degerman, Leonardsson and 

Lundqvist, 2012). In addition, climate change, rising ocean temperatures and 170 
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associated changes in ocean currents are expected to alter migratory phenologies 

while potentially increasing mismatches between optimal migratory conditions 

(including prey availability) and those encountered by salmonid migrants (Edwards 

and Richardson, 2004; Kovach et al., 2019; Otero et al., 2014). Such mismatches 

have the capacity to compromise salmonid populations by reducing osmoregulatory 175 

and antipredator performance, marine growth, and, ultimately, survival.  

On a more regional scale, the salmon aquaculture industry has been identified as a 

leading factor in the decline of numerous wild Atlantic salmon and anadromous 

brown trout populations (Bjorn et al., 2001; Shephard et al., 2016; Shephard and 

Gargan, 2017; Thorstad et al., 2015; Thorstad and Finstad, 2018). Since the 180 

establishment of modern Atlantic salmon aquaculture in the late 1960s (Knapp, 

Roheim and Anderson, 2007), the proliferation of salmon farms has been so 

extensive that, presently, ~ 98% of the total biomass of Atlantic salmon is a product 

of the aquaculture industry (Parrish et al., 1998). Open-cage salmon farming 

negatively impacts wild salmonid populations in two key ways. Firstly, through 185 

transmission of parasite or disease-induced pathological effects to wild migrants and, 

secondly, through the dilution or erosion of locally-adapted genetic traits in wild 

populations as a result of interbreeding between wild and escaped farmed salmon 

(Forseth et al., 2017).  

A variety of bacterial and viral diseases, some of which are novel, negatively affect 190 

the marine phase of Atlantic salmon aquaculture. These include amoebic gill disease, 

pancreas disease, furunculosis, Mycobacterium chelonae, Piscirickettsia salmonis, 

ulcerative dermal necrosis and HSMI (Bakke and Harris, 1998; Adams and Nowak, 

2004; Bruno et al., 1998; Kongtorp, Taksdal and Lyngøy, 2004; Murphy et al., 1992; 

Olsen et al., 1997). As high density salmon farms provide ideal conditions for the 195 
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proliferation of disease and are commonly located close to the migratory routes of 

anadromous salmonids, infections can pass from farmed salmon to wild migrants 

(Forseth et al., 2017; Bakke and Harris, 1998). In a similar manner, salmon farms act 

as a key source of parasitic infection for many wild anadromous salmonid 

populations. The most notable of these parasites is the salmon louse (Lepeophtheirus 200 

salmonis), an ectoparasitic copepod that naturally infects wild Atlantic salmon and 

brown trout in the marine environment.  

 

Migratory performance and variation in life history strategies 

As with infectious diseases, high density salmon farms provide optimal conditions 205 

for sea lice to multiply, and sea lice-induced pathologies (whether resulting in 

reduced growth or death of the host fish) combined with control measures are 

estimated to cost the aquaculture industry in excess of €300,000,000 annually 

(Abolofia, Wilen and Asche, 2017; Costello, 2009). Historically, salmon lice on wild 

salmonids were observed in moderate numbers, but the proliferation of open net 210 

salmon farming has significantly increased lice production in aquaculture areas and 

salmon lice epizootics have been reported in Ireland, Scotland, Norway and Canada 

since the 1980s (Thorstad et al., 2015; Forseth et al., 2017). Studies in these 

countries have shown that salmon lice from aquaculture have increased marine 

mortality of some Atlantic salmon populations by up to 40% in recent decades, 215 

although there is wide variation between years and locations (Gargan et al., 2012; 

Gargan, Tully and Poole, 2003; Forseth et al., 2017; Thorstad and Finstad, 2018).  

In contrast to salmon smolts which migrate rapidly through coastal areas toward 

open-ocean feeding grounds (e.g. Moore et al., 2008), the coastal roaming patterns of 
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anadromous brown trout (colloquially known as sea trout) can place them in 220 

proximity to areas of intensive aquaculture for extended periods, prolonging their 

exposure to lice originating in salmon farms and increasing lice-induced mortality 

rates (Thorstad et al., 2015; Thorstad and Finstad, 2018). For example, production of 

farmed salmon along the west coast of Ireland increased by roughly 400 % between 

1986 and 1989 (Anon., 1984) and the first salmon farms were installed in Clew Bay 225 

in 1986 (Coughlan et al., 2006). Heavy infestations of juvenile (nauplius) L. 

salmonis on anadromous brown trout were first observed along the west coast of 

Ireland in 1989, the year in which the marine survival of juvenile brown trout in the 

region (as recorded at the tidal limit fish traps of the Burrishoole catchment, Clew 

Bay), which had previously ranged between 8.5% and 32.4% (mean = 21%), fell to 230 

just 1.5% (Poole et al., 1996; Whelan, 2010; Gargan et al., 2003). Tully and Whelan 

(1993) estimated that, by this period, ~ 95% of L. salmonis in the region originated 

in local salmon farms, and marine survival of local brown trout has remained low 

(mean = 6.8%) in subsequent years  (Poole et al., 2007). The spawning escapement 

collapse of anadromous brown trout from the Burrishoole catchment was followed 235 

by a severe decline in trout smolt output from the catchment in the ensuing years 

(Fig. 1) despite an apparent abundance of non-anadromous trout in the catchment 

(Poole et al., 2007).  
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 240 

Figure 1. Annual number of young sea trout (finnock) returning to the Burrishoole 

catchment (grey bars) and trout smolts migrating from the Burrishoole catchment to 

the sea (blue bars) between 1971 and 2019, as recorded at the Salmon Leap and Mill 

Race traps. 

 245 

These patterns provide a rare insight into the factors controlling intraspecific 

phenotypic diversity and suggest that, in this particular population, the propensity to 

go to sea is under strong genetic control and that the reduction in anadromous 

spawners has caused a significant evolutionary change by reducing the genetic 

propensity for marine migration in the population. Similarly, Sandlund and Jonsson 250 

(2016) found that potamodromous migration in a Norwegian population of brown 
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trout ceased within a few decades of habitat alterations that reduced the growth 

benefits of migrating from their natal tributary to the main stem of the river. 

However, recent research indicates that migratory decisions in brown trout are 

governed by a more complex interplay between intrinsic and extrinsic factors in the 255 

sense that environmental conditions and physiology (i.e. nutritional status) may 

interact with locally adapted, genetically determined thresholds to shape life history 

strategies and migratory phenologies (Archer et al., 2019, 2020; Ferguson et al., 

2019; Nevoux et al., 2019). As intraspecific variation and associated evolutionary 

potential provides resilience to environmental change (Schindler, 2019; Reed et al., 260 

2011), understanding and preserving the sources of such variation within and among 

populations is a key conservation concern. 

Active migration, whether conducted in terrestrial, aerial or aquatic environments, 

carries energetic costs and mortality risks. The ultimate drivers of resident or 

migratory life histories may be thought of as the evolutionary products of fitness 265 

trade-offs between such costs and the benefits of moving between habitats (Chapman 

et al., 2014). In comparison with potamodromy, anadromous migration carries the 

additional and significant physiological burden of maintaining osmotic homeostasis 

(internal osmolality and electrolyte balance) in hyperosmotic (saltwater), as well as 

hypoosmotic (freshwater), environments (Dawson et al., 1999). The ability of 270 

salmonids to hypo-osmoregulate (i.e. osmoregulate in salt water) effectively is 

critical to their survival in marine environments and can be disrupted by various 

factors. Crucially, the physiological condition of smolts when leaving fresh water 

plays a central role in determining osmoregulatory performance at sea (McCormick 

et al., 2009; Zydlewski, Zydlewski and Danner, 2010). Factors such as exposure to 275 

episodic acidification, industrial contaminants or pesticides in natal rivers have been 
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shown to reduce hypo-osmoregulatory ability and increase mortality of smolts when 

transferred to seawater (Finstad et al., 2007; Moore et al., 2003, 2008).  

In Norway, the introduced freshwater ectoparasite Gyrodactylus salaris has had a 

devastating impact on infested Atlantic salmon populations, leading to more 280 

extirpations in that country than any other factor (Forseth et al., 2017; Johnsen and 

Jensen, 1986, 1991). Although G. salaris cannot survive in salt water, the damage 

that this parasite causes to salmon parr in fresh water can lead to osmoregulatory 

failure and mortality in the marine environment (Pettersen et al., 2013). The 

mechanism by which G. salaris causes osmoregulatory failure in smolts is 285 

functionally analogous to that of sea lice: by causing mechanical damage to the 

epidermis of the host, a critical organ in teleost osmoregulation (i.e. as an osmotic 

barrier), control of osmotic water loss is reduced and osmotic homeostasis cannot be 

maintained (Grimnes and Jakobsen, 1996; Pettersen et al., 2013). In addition to G. 

salaris, Atlantic salmon and brown trout act as hosts to a wide variety of freshwater 290 

ecto- and endo-parasites (Kennedy, 1974; Fitzgerald and Mulcahy, 1983). Although 

some of these parasites can cause significant damage to the organs involved in 

teleost osmoregulation (Dezfuli et al., 2002b; a, 2008; Wanstall, Robotham and 

Thomas, 1986; Wanstall, Thomas and Robotham, 1988), research on their potential 

pathological effects on salmonids in salt water is generally lacking. In Chapter 2 I 295 

have therefore investigated whether the Irish strain of the acanthocephalan 

endoparasite Pomphorhynchus laevis, which, peculiarly for this species, uses 

salmonids as its preferred definitive host, affects the osmoregulatory performance or 

stress levels of Atlantic salmon smolts in either fresh or salt water environments. As 

with G. salaris and L. salmonis, P. laevis causes damage to a key organ in teleost 300 

hypo-osmoregulation, the intestine.  
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Proximate and ultimate drivers of spatiotemporal movements  

Contemporary climate change is having differing impacts on the temperature 

regimes of freshwater and marine environments due, in part, to differences in 305 

thermal mass (O’ Reilly et al., 2015; Scanes, Scanes and Ross, 2020; Hobday and 

Lough, 2011; Jones, 2010). As such, freshwater cues may become increasingly 

unreliable predictors of marine temperatures, which, in turn, play a central role in 

determining prey availability for salmon at sea with important implications for 

marine growth and survival rates (Hvidsten et al., 2009; Kennedy and Crozier, 2010; 310 

Marschall et al., 2011; Russell et al., 2012; Thorstad et al., 2012; Zydlewski et al., 

2014; Todd et al., 2011; Carr-Harris et al., 2018). Salmonid hypo-osmoregulatory 

efficiency is also strongly influenced by the temperature of salt water (Oppedal et al., 

1999; Handeland et al., 2014, 1998), and the impact of rising marine temperatures on 

osmoregulatory performance is predicted to cause the loss of salmonid anadromy 315 

from southern regions (Nevoux et al., 2019; McCormick, Shrimpton and Zydlewski, 

1996). Additionally, Staurnes et al. (2001) found that hypo-osmoregulatory function 

in Atlantic salmon smolts is significantly reduced when a temperature difference of 

> 4 - 6 °C exists between natal freshwater and marine environments at the time of 

sea entry. Furthermore, hypo-osmoregulatory efficiency and saltwater tolerance in 320 

salmonids are temporally variable, rising to a state of peak preparedness for sea entry 

during a period known as the physiological smolt window and then declining if fish 

remain in fresh water (McCormick, 2012). Thus, disruptions to the migratory 

phenology of smolts or the decoupling of freshwater migratory cues from marine 

conditions may cause a phenotype-environment mismatch and result in reduced 325 

marine performance (Barlaup et al., 2018).  
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In additional to broader (i.e. seasonal) phenological patterns, the fine-scale timing of 

migratory movements can play a key role in determining the conditions encountered 

during migration and in destination habitats (Schindler, 2019; Keefer et al., 2018). 

Several studies have shown that salmonid survival during migration can vary 330 

substantially depending on when movements through particular habitats are 

commenced (Jonsson, Jonsson and Jonsson, 2017; Furey et al., 2016; McLennan et 

al., 2018; Schwinn et al., 2017). For example, Flávio et al (2019) found that smolts 

moving from the River Bush in Northern Ireland into the sea during the day suffered 

immediate mortality rates of nearly 30 %, probably due to predation, while their 335 

nocturnally-moving counterparts suffered mortality rates of only 5 %. Such temporal 

variation in migratory mortality rates abounds in nature, and many species limit their 

movements through or between habitats to times when their exposure to threats is 

reduced or safe passage is facilitated (Lank et al., 2003; Lampart, 1989; Morrison, 

1978; Lockard and Owings, 1974; Pechmann and Semlitsch, 1986; Bentley et al., 340 

2014; Kotler, Brown and Hasson, 1991). To achieve this, animals use a diverse range 

of environmental cues to guide their movements so as to minimise mortality and 

optimise their migration timing (L. G. Crozier et al., 2008; Haraldstad et al., 2016; 

Thomas P. Quinn & Adams, 1996; Reed et al., 2006; Odd Terje Sandlund et al., 

2017; Sutherland & Predavec, 1999; Williams, Barnes, & Buck, 2014, Tom P. 345 

Quinn, 2018). Whether a species uses cues associated with photoperiod, temperature, 

tidal movements, barometric pressure, rainfall, moon phase or any other 

environmental variables, many populations appear to exhibit distinct, locally-adapted 

responses that have historically increased fitness in their population-specific context 

(Mobley et al., 2019; O’Toole et al., 2015; Kawecki and Ebert, 2004). However, as 350 

modern environmental changes occur and progress, the relationship between such 
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cues and optimal behavioural responses are likely to be altered, leading to potential 

fitness loss for populations that fail to adapt rapidly (Winkler et al., 2014; 

McNamara et al., 2011; Reed et al., 2011). 

While the environmental drivers of the migratory phenology of juvenile salmonids 355 

(i.e. smolts) have been the focus of numerous studies (see Aldvén, Degerman, et al., 

2015; Aldvén, Hedger, et al., 2015; Antonsson et al., 2010; Barlaup et al., 2018; 

Byrne et al., 2003, 2004; Carr-Harris et al., 2018; Fraser et al., 1995; Furey et al., 

2016; Haraldstad et al., 2016; Harvey et al., 2020; Honkanen et al., 2018; Hvidsten et 

al., 1995; Jensen et al., 2012; Jonsson and Ruud-Hansen, 1985; McCormick et al., 360 

2002; Mclennan et al., 2018; Moore et al., 1998; Otero et al., 2014; Schwinn et al., 

2019; Scheuerell et al., 2009; Winter et al., 2016), our understanding of the 

relationships amongst environmental factors and the fine-scale spatiotemporal 

movements of mature salmonids during the spawning period remains somewhat less 

complete. Spawning-related movements in salmonids encompass a wide variety of 365 

behaviours with diverse phenologies, directionalities, ranges, durations and 

associated risks (Finstad et al., 2005; Bentley et al., 2014; Quinn, McGinnity and 

Reed, 2016; Quinn, Unwin and Kinnison, 2000). Contrasting findings from available 

studies on individual populations suggest that the environmental factors used as 

movement cues by mature brown trout, as well as the precise behavioural responses 370 

to variation in these factors, vary significantly amongst populations (Ovidio et al., 

2002; Hellawell, Leatham and Williams, 1974; Burrell et al., 2000; Bunnell and 

Isely, 1998; Dahl et al., 2004; Diana, Hudson and Clark, 2004; Moore et al., 2012; 

Slavík et al., 2012; Jonsson, 1991; Rustadbakken et al., 2004), suggesting that 

localised environmental conditions have driven the evolution of differing locally 375 

adapted behaviours. Thus, the identification of relationships between environmental 
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cues and locally adapted behavioural responses in environments that remain 

relatively pristine may yield valuable insights into the ultimate drivers of 

contemporary behaviours. Such insights may allow us to predict how specific 

environmental changes will affect behaviour, phenology and population performance 380 

over various time scales. Against this background, Chapter 4 describes an 

investigation into the associations between environmental factors and the timing of 

spawning-related movements of brown trout while providing conjecture on the 

evolutionary pressures underlying these associations. 

 385 

Natal philopatry, genetic structure and local adaptation 

Atlantic salmon and brown trout exhibit extensive genetic diversity amongst their 

populations at a wide range of spatial scales, and this genetic diversity (which 

encompasses locally adapted traits) is regarded as profoundly important for 

population persistence and productivity (Robertsen et al., 2014; Ferguson, 2003; 390 

Manhard, Joyce and Gharrett, 2017). Common garden experiments have revealed 

that closely neighbouring populations of Atlantic salmon can possess markedly 

different genetically-determined development schedules, migratory phenologies, 

dispersal patterns and pathogenic resistances that significantly reduce the lifetime 

fitness of individuals in non-native habitats relative to that of local individuals and 395 

vice versa (McGinnity et al., 2007; O’Toole et al., 2015; de Eyto et al., 2011). 

Indeed, by eroding locally adapted traits, interbreeding between farm escapes and 

native salmon leads to reduced recruitment and is regarded as a substantial threat to 

the persistence of wild populations (McGinnity et al., 2009; Coughlan et al., 2006; 

Jonsson, Jonsson and Hansen, 1991; Forseth et al., 2017). As an example of such 400 

local adaptation, the incidence of spring salmon (i.e. mature salmon that return to 
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natal rivers in the spring prior to the winter in which they spawn) is highest in river 

systems that contain safe holding habitat (Reed et al., 2017). This pattern suggests 

that populations have evolved to adopt this strategy most commonly in locations 

where low rates of freshwater adult mortality allow spring salmon to minimise 405 

cumulative (i.e. freshwater and marine) mortality risks which are traded-off against 

the growth benefits of additional marine feeding.  

However, such examples of local adaptation in Atlantic salmon are somewhat 

eclipsed by the variety of genetically-based phenotypic diversity found amongst 

brown trout populations. Striking variation in the appearance, ecology and behaviour 410 

of brown trout led naturalists of the 19th century to describe 57 distinct species, 

including roughly 20 in Ireland and Britain (Ferguson, 2003). While debate 

continues as to whether brown trout should be regarded as a single species or a 

complex of species, genetic structure amongst populations is undeniably extensive 

and five major evolutionary groups have been described (McKeown et al., 2010; 415 

Bernatchez, 2001). For example, three genetically, morphologically and 

behaviourally distinct populations of brown trout from at least two genetic lineages 

are found in Lough Melvin, Ireland (Cawdery and Ferguson, 1988). Although no 

physical barriers prevent these sympatric populations from interbreeding, they have 

maintained their temporally stable genetic heterogeneity through differing 420 

reproductive behaviours and, in particular, by migrating to different areas for 

spawning (i.e. natal philopatry) (McKeown et al., 2010; Ferguson, 1989).  

Such behaviourally-based reproductive isolation and genetic differentiation appears 

to be particularly common amongst potamodromous brown trout populations that 

migrate between separate natal spawning streams and shared feeding lakes (Duguid, 425 

Ferguson and Prodöhl, 2006; Swatdipong et al., 2010; Linløkken, Johansen and 
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Wilson, 2014; Massa-Gallucci et al., 2010; Palmé, Laikre and Ryman, 2013). 

However, the minimum spatial scales at which natal philopatry operates amongst 

spawning streams that flow into or out of lakes, and the associated patterns of gene 

flow and genetic structure that occur amongst such adjacent streams, remains 430 

unknown. Investigation of these behavioural and genetic patterns at a 

microgeographic scale (sensu Richardson et al., 2014) is likely to provide valuable 

insights into the appropriate spatial scales for salmonid management and shed further 

light on the threats that introgression of non-local alleles from farm escapes and 

stocking measures are likely to have on the fitness of locally adapted native 435 

populations. Chapter 5 represents such an investigation. 

 

Methods for tracking the spatial behaviour of fish in freshwater 

environments 

Rudimentary life history information such as migratory routes, movement timings or 440 

the locations of reproductive and foraging areas is essential to our understanding of 

animals in relation to their environment and can facilitate investigation into many of 

the ecological and evolutionary processes discussed thus far. Research on the 

movement patterns of migratory fishes has historically been hindered by the inherent 

difficulties involved in the observation and tracking of mobile organisms in aquatic 445 

environments. Fish trapping, in conjunction with the use of external identification 

tags or marks, has been used to monitor the freshwater movements of salmonids in 

various countries since the middle of the twentieth century (Allen, 1940; Poole et al. 

1996; Byrne et al., 2003, 2004; Gard and Bottorff, 2014; Youngson et al., 1983), yet 

these methods generally require significant investments in infrastructure and labour, 450 
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fail to record the precise timing of movements, and can negatively affect populations 

by causing damage or stress to individuals or by impeding migratory movements 

(Beere, 1993; Music, Hawkes and Cooperman, 2010; Hansen, 1988). More recently, 

new technologies have been developed that allow fish to be tracked without causing 

impediment to their movements. However, each of these technologies carries distinct 455 

advantages and limitations. Infrared, sonar, DIDSON and resistance-based fish 

counters allow the passage of untagged fish to be recorded at a particular fluvial 

location, producing accurate detection times and an estimate of fish sizes but no way 

of identifying individual fish (Baumgartner et al., 2010). Coded wire microtags 

allow small fish to be tagged with minimal stress and financial cost, yet subsequent 460 

identification requires the recapture and sacrifice of tagged fish. Acoustic tags, radio 

tags and satellite tags provide the ability to track the movements of fish over large 

distances but their physical sizes preclude their use in small fish, their battery lives 

are limited and their price can be prohibitive (Cooke et al., 2013).  

Miniature passive integrated transponder (PIT) tags were developed in the mid-465 

1980s (Skalski, Smith, Iwamoto, Williams, & Hoffmann, 1998; Prentice, Flagg, & 

McCutcheon, 1990), and have since proven to be invaluable tools for studying fish 

movement in fluvial environments (Dodd, Cowx and Bolland, 2018, 2017; Barlaup 

et al., 2018; Letcher et al., 2018; Zydlewski et al., 2001, 2006; Lucas et al., 2000). 

Miniature (i.e. 12 mm x 2 mm, 0.1g) PIT tags are small enough to be implanted in 470 

salmonid parr of > 60 mm fork length (Zydlewski et al., 2006), cheap enough to be 

used in modestly funded studies (i.e. ~ €1.50 per tag), have no batteries (and 

therefore no battery life limitation), provide individual-level identification and can 

be detected passively by fixed stations (i.e. PIT antennae) without any need to 

impede fish passage. However, PIT tags have limited read ranges (usually < 1 m), 475 



                                                                                                         Chapter 1 | General Introduction
  

21 
 

meaning that PIT antennae often need to be installed in a vertical ‘pass through’ 

orientation across rivers in order to detect tags throughout the water column 

(Zydlewski et al., 2006). This orientation makes traditional PIT antennae vulnerable 

to catastrophic damage from debris in flood-prone rivers and has thereby limited 

their usefulness in such systems. Thus, there is currently an evident need for PIT 480 

antenna designs that can withstand the passage of fluvial debris without suffering 

substantial damage (Cooke et al., 2013). In Chapter 3 I outline a novel PIT antenna 

design that fulfils these requirements.  

 

The Burrishoole catchment 485 

Habitats that remain relatively unaltered by modern anthropogenic activities present 

valuable opportunities to study the ultimate and proximate causes of animal 

behaviour as well as the interplay between behaviour, landscape features and gene 

flow that collectively determine spatial patterns of genetic structure and adaptation. 

Such ecosystems can also allow us to identify sources or regions of migratory 490 

mortality and provide crucial baselines against which to compare modern 

demographic patterns, yet these unspoiled areas are becoming increasingly rare 

(Tilman et al., 2001; Northcote, 1992; Liermann et al., 2012; Magurran, 2009). The 

Burrishoole catchment in north west Mayo, Ireland, is a prime example of a 

freshwater ecosystem that, despite experiencing moderate anthropogenic impacts (de 495 

Eyto et al., 2016), has escaped many of the severe alterations and degradations that 

have afflicted other Irish river systems over the last century (Riley et al., 2018; 

Heaney et al., 2001). In addition, Burrishoole possesses extensive infrastructure for 

monitoring fish movements and long time series data on salmonid behaviour and 

demographics. As such, the Burrishoole catchment provides an ideal setting in which 500 
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to investigate many of the ecological patterns and processes discussed previously 

and, for this reason, Burrishoole was chosen as the study site for all research 

presented in the following chapters.  

Situated in a south-west facing valley within the Nephin Beg mountain range and 

draining into the North-east Atlantic, Burrishoole has a temperate, oceanic climate 505 

with relatively cool summers and mild winters. Mean annual rainfall in the 

catchment has exceeded 1600 mm in recent years (Doyle et al., 2019) and there 

appears to have been a trend towards higher winter temperatures over recent decades 

(Woolway et al., 2019). Soils throughout the catchment are composed of poorly 

drained gleys, peaty podsols, and blanket peats (Gardiner and Ryan, 1969), while the 510 

underlying geology is primarily comprised of quartzite and schist that, in the eastern 

side of the catchment, are interspersed with veins of volcanic rock, dolomite, and 

wacke (Whittow, 1974). As a result of these geological patterns, the western side of 

the catchment is strongly affected by acid runoff while the eastern side is 

comparatively well buffered and exhibits greater aquatic production. The river 515 

system is comprised of over 45 km of small rivers and streams that link two main 

freshwater lakes, Bunaveela Lough (46 ha) and Lough Feeagh (410 ha), and 

ultimately flow into Lough Furnace (141 ha), a brackish, partially tidal lake opening 

into Clew Bay (Whelan et al., 1998; Matthews et al., 1997).  

Human population density in the surrounding area has been consistently low and the 520 

majority of land is currently used for low intensity sheep grazing interposed with 

some areas of coniferous forestry. Commercial afforestation in the catchment first 

commenced in the 1950s and a period of intensive sheep overgrazing in the late 

1980s and 1990s, associated with European Union headage payments (Bonn et al., 

2009), caused erosion within the catchment to increase and led to elevated levels of 525 
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nutrients (mainly phosphate), sediment and organic matter in the river system 

(Dalton et al., 2014). However, despite this increase in sedimentation, de Eyto et al 

(2016) found that these changes in land use throughout the catchment have had no 

significant impact on the freshwater survival of Atlantic salmon or brown trout. 

While the geology, soil types, climate and physical complexity of the Burrishoole 530 

catchment make it comparable to numerous coastal humic river systems in the west 

of Ireland, it has the distinction of being one of only 13 international index sites 

collecting long-term data on diadromous salmonids and the European eel (Anguilla 

anguilla L.) in the North-east Atlantic region (Prévost et al., 2003). Full daily 

trapping of fish moving upstream or downstream has been conducted at the tidal 535 

limit of the catchment since 1970, providing one of the longest and most 

comprehensive such data sets in existence (Poole, Reynolds and Moriarty, 1990; 

Poole et al., 1996; Gargan, Poole and Forde, 2006; Byrne et al., 2004, 2003b; 

Sandlund et al., 2017). Extensive complementary research into local hydrology, 

carbon cycling, parasite communities, zooplankton and macroinvertebrate abundance 540 

patterns, climate variation and lake-bed geochemistry (Andersen et al., 2020; Byrne, 

Holland, et al., 2003; Dalton et al., 2018; Doyle et al., 2019; de Eyto et al., 2019; 

Kelly et al., 2018; Molloy et al., 1993; Woolway et al., 2019) make the Burrishoole 

catchment one of the most intensively studied freshwater ecosystems in Europe. Due 

to the attributes described here, the Burrishoole catchment provides unparalleled 545 

opportunities for conducting novel salmonid research.  
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Objectives and overview of thesis 

The overarching objective of this thesis was to investigate the interplay between 550 

environmental heterogeneity in its broadest sense (i.e. including spatial and temporal 

variation of biotic and abiotic factors) and locally-adapted migratory behaviours, 

dispersal patterns, genetic structure and physiological performance using wild 

Atlantic salmon and brown trout as case study animals.  

In Chapter 2 I sought to determine whether the Irish freshwater strain of the 555 

acanthocephalan ectoparasite Pomphorhynchus laevis affected osmoregulatory 

performance or stress levels in infected Atlantic salmon smolts in fresh or salt water 

environments. A habitat-specific pathology could influence migratory performance 

and thereby constitute a selective pressure for a particular life history strategy. I 

characterised infection prevalence and intensity patterns amongst wild Atlantic 560 

salmon smolts captured from the Burrishoole catchment over a three-year period and 

investigated whether infection was associated with variation in osmoregulatory 

performance (as measured by plasma chloride) or stress (as measured by blood 

glucose and plasma cortisol) in fresh or salt water. Additionally, I investigated 

whether the local strain of P. laevis could survive in salmonid hosts in a salt water 565 

environment for periods of 24 to 72 hours. 

Chapter 3 takes the form of a technical description focused on the design and 

implementation of a novel double-breakaway pass-through PIT antenna system I 

developed for use in flood-prone rivers. The aim of this chapter was to provide a 

flexible design framework for fluvial telemetry research that would increase data 570 

continuity while decreasing long-term maintenance requirements.  
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In Chapter 4 I explored associations between environmental variables and the 

seasonal, daily and diel movement patterns of mature brown trout between a feeding 

lake and two spawning streams (one inflow and one outflow) with the aim of 

identifying the proximate drivers of temporal spawning movements through 575 

transitional areas between habitats. I discuss observed behavioural patterns in the 

context of their potential ultimate causes.  

In Chapter 5 I aimed to investigate whether microgeographic genetic structure (sensu 

Richardson et al., 2014) may arise and persist amongst potamodromous brown trout 

that feed in a shared lake, and to identify the interactions between behaviour and 580 

landscape that underlie such structure. To this end, I used a combination of PIT-

derived data and genetic analyses to investigate the interplay between gene flow, 

genetic differentiation and the spawning movements of mature brown trout between 

a feeding lake and two spawning streams. Findings are discussed in terms of their 

implications for the spatial scale of local adaptation and management units.  585 

Each of these chapters (2-5) contains a specific introduction, review of the relevant 

literature, methodology, results and discussion. Chapter 6 provides a synthesis of the 

overall findings and discusses avenues for prospective research.  

I have included four Appendices which contain additional research I have been 

involved in during my studies and that is of relevance to the overall research 590 

objectives of the project. Appendix A presents a number of findings from a 

complementary branch of investigation on Atlantic salmon smolts that I pursued 

during my studies and that I am preparing for publication in the near future. These 

findings are briefly discussed in Chapter 6 and are used to illustrate the universality 

or specificity of results described the preceding chapters. Appendix B takes the form 595 
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of an executive summary of the WGTRUTTA Draft Final Report (2020). 

WGTRUTTA is an ICES working group established in 2017 with the aim of 

developing assessment models and establishing biological reference points for 

anadromous brown trout populations. I have been a participating member of the 

group since its establishment. Appendix C constitutes a published review of existing 600 

literature on the influence of environmental heterogeneity on life history strategies in 

brown trout with a particular focus on the factors associated with anadromous and 

freshwater resident life histories. Appendix D provides a published characterisation 

of the diet of juvenile brown trout and Atlantic salmon in the Burrishoole catchment 

as revealed by stomach content analyses and stable isotope analyses.  605 
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Abstract 

The shift from freshwater to marine environments that defines anadromous fishes 

requires complex changes in many organs involved in osmoregulation, including the 

intestines. Consequently, any reduction in intestinal function might compromise 1435 

adaptation to marine waters. The Irish freshwater strain of the acanthocephalan 

parasite Pomphorhynchus laevis uses salmonids rather than cyprinids as preferred 

definitive hosts, perforating the intestines, destroying mucosa and inducing 

inflammation. We investigated whether infection intensities of P. laevis in wild 

Atlantic salmon (Salmo salar L.) smolts were associated with reduced 1440 

osmoregulatory performance, as measured by plasma chloride concentrations, or 

elevated stress, as measured by blood glucose and plasma cortisol, in freshwater or 

saltwater environments. Three groups (n = 66 smolts per group) were captured at sea 

entry and held for either 24 h in fresh water, 24 h in salt water or 72 h in salt water, 

after which blood was sampled and individual infection intensity of P. laevis was 1445 

recorded. Although infection prevalence was high amongst experimental samples, no 

associations were found within or across treatment groups between individual 

infection intensity and the physiological parameters. We found no vacant intestinal 

perforations that would indicate P. laevis had recently vacated the intestines of 

smolts sampled in either of the saltwater groups. Exploratory sampling in the two 1450 

years preceding the experiment indicated that infection prevalence and intensity in 

this Atlantic salmon population are consistently high and comparable to the 

experimental samples. Collectively, these results indicate that naturally-occurring 

infection intensities of P. laevis in Irish salmon do not cause stress or reduced 

osmoregulatory function in fresh water or immediately after entering salt water. 1455 

However, delayed pathologies affecting marine survival may occur, particularly if 
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intestinal perforations vacated by P. laevis allow ingress of liquids into the 

peritoneum. 

 

Introduction 1460 

The life histories of anadromous species such as Atlantic salmon (Salmo salar L.) or 

Pacific salmonids (Onchorynchus spp.) necessitate the regulation of internal osmotic 

balance in hypoosmotic (freshwater) and hyperosmotic (saltwater) environments. In 

fresh water, osmoregulation requires excess water, which is passively absorbed 

through osmosis across the gills and skin, to be excreted as dilute urine (Genz, 1465 

Esbaugh and Grosell, 2011). In contrast, osmoregulation in a marine environment 

requires salmon to continuously drink salt water and actively uptake H20 through the 

intestinal epithelium into the body while limiting intestinal absorption of ions in 

order to mitigate diffusive water losses through the gills and skin (Grosell, 2007; 

Whittamore, 2012). The initial period of acclimation to the marine environment 1470 

therefore necessitates significant changes to the internal physiology of salmon smolts 

(Stefansson et al., 2012) and provides an acute physiological challenge (Handeland 

et al., 2014). Plasma cortisol levels rise during the parr-smolt transformation, and 

this natural stress response is thought to benefit smolts by mobilizing energy 

reserves and increasing saltwater tolerance (Bisbal and Specker, 1991; Strand and 1475 

Finstad, 2007). However, further sources of acute or chronic stress can greatly 

impair osmoregulatory ability in salmonid smolts (Redding and Schreck, 1983; 

Iversen, Finstad and Nilssen, 1998) as observed with infestations of ectoparasitic sea 

lice (Lepeophtheirus salmonis) (Poole, Nolan and Tully, 2000) or Gyrodactylus 

salaris (Bakke and Harris, 1998). Parasite-induced damage to organs involved in 1480 

osmoregulation such as the skin, gills or intestines can also directly impact the 
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ability of salmonids to maintain osmotic homeostasis in salt water, leading to 

disruption of physiological processes, elevated stress, and ultimately mortality 

(Wells et al., 2006; Finstad et al., 2012; Dawson et al., 1998; Hvas et al., 2017). 

Through these pathological effects, increased sea lice infestations associated with 1485 

fish farming are regarded as a significant factor contributing to declines in the 

marine survival of many Atlantic salmon and sea trout (anadromous Salmo trutta L.) 

stocks in recent decades (Poole et al., 2007; Shephard and Gargan, 2017; Thorstad et 

al., 2015; Krkošek et al., 2013). 

Pomphorhynchus laevis is an acanthocephalan endoparasite of various freshwater 1490 

and brackish fishes with a complex (heteroxenous) life cycle that requires infection 

of both intermediate and definitive host species. Gammarid species are used as 

intermediate hosts and trophic transmission to a definitive host requires the 

consumption of an infected gammarid by a suitable fish species (Perrot-Minnot, 

Bollache and Lagrue, 2020). Upon consumption by a salmonid, P. laevis use their 1495 

hooked proboscis to pierce all layers of the intestinal wall and anchor themselves in 

place. This process creates a perforation leading from the interior to the exterior of 

the intestinal wall, destroying intestinal mucosa, causing a localised inflammatory 

response and potentially altering the physiological performance of the intestine in 

controlling transepithelial ion transport (Wanstall, Thomas and Robotham, 1988; 1500 

Dezfuli et al., 2008; Wanstall, Robotham and Thomas, 1986; Dezfuli et al., 2002b). 

Previous studies have concluded that, despite causing such intestinal damage, 

infection with P. laevis does not significantly reduce growth rates in salmonids and 

does not directly cause mortality of the host (Wanstall, 1984; Wanstall, Robotham 

and Thomas, 1986; Hine and Kennedy, 1974). However, these studies have focused 1505 

on the impact of P. laevis infection on salmonids in fresh water where 
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osmoregulation does not require equivalent control of transepithelial ion transport or 

active H20 uptake through the intestinal wall as is necessary in saltwater 

environments.  

P. laevis has a discontinuous geographical distribution, stretching from the Baltic sea 1510 

to north western coastlines of Europe, with isolated records from outside this range 

(Hohenadler et al., 2018; Roohi, Pazooki and Sattari, 2015; Kennedy, Bates and 

Brown, 1989). Its distribution in Britain is comparatively restricted while it is 

widespread in Ireland (Hine and Kennedy, 1974). Irish and English freshwater 

strains have been identified, as well as a marine strain that is found in coastal British 1515 

waters, all of which appear to have diverged relatively recently (Kennedy, Bates and 

Brown, 1989; Munro, Reid and Whitfield, 1990; O’Mahony et al., 2004; O’Mahony, 

Kennedy and Holland, 2004). Furthermore, each strain exhibits differing 

morphological characteristics and is associated with different preferred intermediate 

and definitive hosts (O’Mahony, Kennedy and Holland, 2004; Munro, Whitfield and 1520 

Diffley, 1989; Guillen-Hernandez and Whitfield, 2001). Cyprinids and flounder 

(Platichthys flesus) tend to be the preferred definitive hosts of the English freshwater 

and marine strains respectively, while salmonids and are regarded as the preferred 

hosts of the Irish freshwater strain (Molloy, Holland and O’Regan, 1995; 

Ziolkowska et al., 2000; O’Mahony et al., 2004). Indeed, Pippy (1969a) found that 1525 

the incidence of P. laevis in Atlantic salmon smolts in Ireland was 25 times higher 

than in Scotland, England and Wales. Previous Irish studies found that P. laevis 

infection rates of brown trout peaked in spring, coinciding with the annual smolt run 

(Molloy, Holland and O’Regan, 1995), and that smolt-aged salmon (i.e. 2+) tend to 

carry the highest infection intensities (Fitzgerald and Mulcahy, 1983). Thus, 1530 
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anadromous salmonids in Ireland have a particularly high chance of entering salt 

water while infected by P. laevis. 

Exposure to sub-optimal conditions or stressors in fresh water has been shown to 

reduce osmoregulatory performance and increase the susceptibility of salmonids to 

parasitic infection and associated mortality in the marine environment (Finstad et al., 1535 

2012, 2007). In the present study, we sought to investigate whether the natural 

freshwater infection intensities of P. laevis found in wild Irish Atlantic salmon 

smolts affected osmoregulatory performance or stress in saltwater or freshwater 

environments. We hypothesised that perforations made by P. laevis in the intestinal 

wall would allow uncontrolled ingress of water into the peritoneum while parasite-1540 

induced damage to mucosa, and the associated inflammatory response, would further 

reduce the ability of salmonids to control ion uptake or water absorption through the 

intestines. Through these processes, P. laevis infection was predicted to compromise 

the osmoregulatory performance of Atlantic salmon in salt water, leading to elevated 

stress and increased ion concentrations in the blood. We characterised infection 1545 

prevalence and intensities of wild smolts captured from the Burrishoole catchment, 

Co. Mayo, over a three-year period and investigated whether infection patterns were 

associated with variation in fish size, sex or condition. Smolts captured on the third 

year were held in fresh (n = 66) or salt (n= 132) water prior to sampling and blood 

samples were extracted shortly after euthanasia. We then used measurements of 1550 

plasma cortisol concentrations and blood glucose levels as reliable indicators of 

physiological stress (Martinez-Porchas, Martinez-Cordova and Ramos-Enriquez, 

2009) and plasma chloride concentrations as a direct measure of internal osmotic 

balance (McCormick, 2012) and, therefore, osmoregulatory performance. Using 

these data, we investigated whether P. laevis number was associated with variation 1555 
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in stress levels or osmoregulatory performance of smolts in fresh or salt water 

environments.  

 

Methods 
 1560 

Exploratory sampling 

Wild Atlantic salmon smolts that had been captured for stock assessment purposes at 

the tidal limit of the Burrishoole river system (NW Ireland) in May 2016 (n = 136) 

and May 2017 (n = 39) were dissected and their digestive tracts were inspected for 

the presence of acanthocephalan parasites. Attached and unattached 1565 

acanthocephalans were recorded and identified to species level by inspection of the 

praesoma under a microscope (morphological characteristics described by 

O’Mahony et al., (2004)). Smolt weight (to 0.1g) and fork length (to 1 mm) were 

recorded before dissection and sex was determined by inspection of gonads during 

removal of the digestive tract. Chi-square and Mann-Whitney U tests were used to 1570 

investigate whether there was a significant relationship between infection prevalence 

or infection intensity, respectively, and sex amongst the smolts sampled in 2016, 

2017 or amongst the experimental 2018 samples.  

 

Experimental setup 1575 

On two occasions during 2018, emigrating wild smolts (mean fork length = 138.9 

mm, SD = 9.5 mm, range = 121 – 168 mm) were captured at the Salmon Leap fish 

trap located at the confluence between the Burrishoole river system and the saline 

environment of Lough Furnace and Clew Bay. On each occasion, captured smolts 

were transported < 100 m to an indoor Marine Institute research facility where they 1580 
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were transferred in an ad hoc fashion to evenly populate four 500 L aerated 

experimental tanks. On the first capture occasion (02 May), 66 smolts were 

distributed evenly amongst four tanks that had each been filled with 300 L of fresh 

water (i.e. 16 – 17 smolts per tank). After 24 hours all 66 smolts were terminally 

sampled (see next section), at which point the experiment finished for this freshwater 1585 

treatment group (24FW) and the four tanks were emptied of water. On the second 

capture occasion (05 May), 132 smolts were distributed evenly amongst the same 

four tanks, each now pre-filled again with 50 L of fresh water (i.e. 33 smolts per 

tank). During the two hours after the 132 smolts were transferred, 300 L of locally-

sourced sea water were gradually added to each tank, raising the salinity in each tank 1590 

to 26.1-26.3 PPT at a rate that reflects the natural salinity increase experienced by 

wild smolts moving from the Burrishoole system to coastal waters. Twenty-four h 

after the salinity had reached this peak, 66 smolts (16 – 17 smolts per tank) were 

terminally sampled and this group then comprised the 24 h in saltwater (24SW) 

treatment group. The remaining 66 smolts were then terminally sampled 48 h later, 1595 

i.e. after a total of 72 h in saltwater (72SW). Water temperatures ranged between 8.4 

and 13.9 °C and dissolved oxygen was maintained at > 8.5 mg/L during all phases of 

the experiment. The tanks were covered throughout the experiment in order to 

reduce exposure to potential external sources of stress. 

 1600 

Experimental sampling procedure 

At each sampling time (i.e. 24FW, 24SW and 72SW), dip nets were used to transfer 

16 – 17 smolts from each of the four tanks into a pH buffered solution of tricaine 

methane-sulfonate (450mg L-1) while minimising disturbance to the remaining fish. 

Smolts were monitored until opercular movement ceased and death was confirmed 1605 
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by severing the spinal cord with a scalpel (completing the killing of the animal in 

accordance with Annex IV of EU Directive 2010/63/EU and SI 5432 of 2012). 

Blood samples were extracted from the caudal vein (along midline just posterior of 

the anal fin) with 1 ml 21G lithium-heparinised syringes (containing ~ 6 USP units 

of lithium-heparin and providing ~ 15 USP units per ml of blood) immediately after 1610 

cervical dislocation and transferred to 1 ml Eppendorf © tubes which were stored on 

ice. Mean duration between dip netting and blood sampling was nine minutes and 

twenty-four seconds (SD = 261 seconds).  

 

Sample processing 1615 

A commercially available meter (FreeStyle Lite: Abbott) was used to measure the 

blood glucose level (mmol/L) of each fish within one minute of sacrifice. This meter 

has been shown to accurately measure glucose levels in teleosts (Eames et al., 2010). 

Each fish was then weighed (to 0.1 g), measured (fork length ‘FL’ to 1 mm), and a ~ 

2 mm 2 clip of caudal tissue was stored in ethanol for genetic sex determination. The 1620 

condition factor (Fulton’s K) for each fish was then calculated by the following 

formula (Ricker, 1975): 

𝐾 =
𝑊

𝐹𝐿3  × 100, 

where K is condition factor, W is fish weight (g) and FL is fork length (cm). 

Carcasses were placed in individual sealable plastic bags and stored on ice until 1625 

dissection. All fish were dissected within eight hours of mortality. An incision was 

made along the midventral line and the alimentary tract was removed after severing 

its junctures with the anus and the oesophagus. The phenotypic sex of each fish was 
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determined by visual inspection of the gonads and in any case where the designation 

was uncertain genetic methods were used to verify sex (as per Finlay et al., (2020)).  1630 

Once removed from the body, the alimentary tract of each fish was temporarily filled 

with water and pinched at each end to create water tight seals.  The oesophageal end 

was then compressed to pressurise the internal water and the external wall was 

closely inspected for ‘pinprick’ leaks that would indicate the presence of unplugged 

perforations left by previously attached P. laevis. The alimentary tract was then 1635 

opened by mesial incision with a fine-point scissors and divided into four sections; 1: 

stomach (oesophagus to pyloric caecae), 2: anterior intestine (33% of intestinal 

length from post-pyloric caecae to rectum); 3: intermediate intestine (middle 33% of 

intestine), and 4: posterior intestine (last 33% of intestine ending at anus). Each 

section was examined for the presence of P. laevis and the number of attached and 1640 

unattached P. laevis in each section was recorded. On each sampling date, 30 P. 

laevis were examined under a microscope within 15 minutes of opening the digestive 

tract and their status as ‘alive’ or ‘dead’ was determined based on the presence or 

absence of observable movement in response to physical stimulus. A subset of P. 

laevis (n = 264) were also weighed in groups of 2-32 individuals (each group 1645 

collected from a single fish) and mean individual P. laevis weight per group and in 

total were calculated. We calculated the prevalence of infection as the percentage of 

smolts containing P. laevis and the mean intensity of infection as the mean number 

of P. laevis in infected individuals. 

Plasma was separated from all blood samples within four hours of extraction by 1650 

spinning in a centrifuge (ALC PK 421) at 3000 rpm for ten minutes. Roughly 0.07 

ml of plasma was extracted from each sample with an adjustable micropipette 

(Nichipet Ex) and stored in a 0.5 ml tube at – 20 °C for chloride analysis. The 
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remaining plasma was added to 1 ml tubes containing ~ 0.1 mg of a D4 isotopically 

labelled cortisol internal standard (ISTD) solution, weighed, and stored at - 20 °C for 1655 

cortisol analysis. Plasma cortisol concentrations were measured with a gas 

chromatography-mass spectrometer (GC-MS) after first using the relationship 

between response ratio of cortisol/D4 cortisol and the concentration ratio of 

cortisol/D4 in eight stock solutions to generate a calibration curve. Results were 

corrected for variation in the ratio of plasma weight to ISTD weight of each sample. 1660 

Plasma chloride was measured by coulometric titration using a Jenway PCLM3 

chloride meter. Where plasma quantities were sufficient, chloride samples were 

tested in duplicate, and triplicates were run for samples showing a difference greater 

than three units between the first two replicates. All blood assays were conducted 

within three weeks of freezing plasma.  1665 

 

Ethical note 

We adhered to the ASAB/ABS Guidelines for the Use of Animals in Research 

throughout this project. All actions relating to the capture and sampling of smolts as 

well as the manipulation of environmental salinity were carried out in accordance 1670 

with S.I. No.123/2014 Animal Health and Welfare (operations and procedures) 

Regulations 2014 and with approval of the Marine Institute animal welfare 

committee (MI Establishment Authorisation No: AE19121) and the Health 

Professionals Regulatory Authority (HPRA Classification Request Number: 066). 

Procedures for euthanasia were appropriate for salmonids (Popovic et al., 2012). 1675 

Sampling was carried out by personnel with appropriate training and Individual 

Authorisations under Scientific Animal Protection Legislation (HPRA). 
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Statistical analyses 

We conducted all analyses using the statistical computing software R v3.6.1 (R Core 

Team, 2018). We specified separate generalised least squares models (GLS) using 1680 

the gls function in the nlme package (J et al., 2019) to investigate the extent to which 

variation in blood parameters (blood glucose, plasma chloride and plasma cortisol) 

was associated with variation in two continuous (P. laevis count and fish condition 

factor measured as Fulton’s K) and four categorical (treatment group, sex, operator 

and tank) explanatory variables. Treatment group had three levels (24FW, 24SW and 1685 

72SW) corresponding with the three sampling dates. Operator, with two levels 

designating the two operators who performed the blood sampling, was included to 

control for potential variation in response variables resulting from differences in 

sampling technique among personnel. Tank had four levels reflecting the four 

experimental water tanks and sex had two levels, male and female. GLS models 1690 

were used in order to account for differences in the variance of each of the three 

response variables observed amongst the three treatment groups, i.e. to control for 

heteroscedasticity. For the cortisol model, the response variable was natural 

logarithm transformed in order to normalise the residuals as there was right skew to 

the raw values. Initial models included an interaction between PL and treatment 1695 

group in order to test whether any effect of P. laevis infection on blood glucose, 

chloride or cortisol depended on treatment group. Models excluding this interaction 

were then run in order to test whether P. laevis infection was associated with 

variation in these blood parameters independently of treatment group. AIC values 

were used to compare models including and excluding the interaction between P. 1700 

laevis and treatment group.  
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We used the glmmTMB function (Brooks et al., 2017) to specify generalised linear 

models (GLMs) to explore the degree to which the variation in infection prevalence 

and individual infection intensity was associated with variation in the condition 

factor (Fulton’s K), length, weight and sex of smolts sampled in 2016, 2017 and 1705 

2018 (n = 312, the subset for which sex and size were both recorded). The individual 

infection intensity model included only smolts that were infected. We used negative 

binomial models with log link functions to investigate individual infection intensity, 

in order to account for residual overdispersion in the data, and binomial models with 

logit link functions to investigate infection prevalence. Due to high collinearity 1710 

between fork length and weight (R2 = 0.91), two models were specified for each 

response variable (i.e. infection prevalence and intensity), each including either fork 

length or weight, and AIC values were used to compare both models. As both the 

infection prevalence and infection intensity models containing fork length yielded 

marginally lower AIC values than the models containing weight (-0.4 and -0.6 1715 

respectively), only results from the models with fork-length are presented. 

Prior to model fitting, collinearity between all continuous explanatory variables in 

each model was explored by Pearson’s R with the cor.test function in the stats 

package and associations between continuous and categorical explanatory variables 

were examined visually. Variance inflation factors (VIFs) were calculated for all 1720 

fixed effects in each GLM with the check_collinearity function in the performance 

package in R (Lüdecke et al., 2019). We tested for heteroscedasticity and violations 

of linearity amongst residuals from the GLMs by plotting fitted values against 

simulated (scaled) residuals with the DHARMa package (Hartig, 2019). We tested 

for temporal autocorrelation with the acf function in the stats package. The qqnorm 1725 

and plot functions were used to investigate residual distributions from GLS models. 
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Chi-square tests were used to investigate whether there were significant differences 

in infection intensity or prevalence amongst experimental treatment groups or 

amongst tanks within each treatment group. 

  1730 
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Results 

 

Parasite prevalence, infection intensity and locations within the alimentary tract 

P. laevis infection prevalences amongst smolts sampled in 2016, 2017 and 2018 (2018 

samples corresponding with the 198 smolts used in the experiment) were 74.2 %, 65.1 1735 

%, and 66.2%, respectively. Mean infection intensities amongst the 2016, 2017 and 

2018 samples respectively were 9.23, 7.28 and 6.9 acanthocephalans per infected fish. 

Infection prevalence amongst males and females respectively was 76% and 75% in 

2016 (Χ2 = 0.77, p= 0.68), 93% and 41% in 2017 (Χ2 = 11.82, p= 0.003) and 71% and 

63% in 2018 (Chi-square: x2 = 0.84, p= 0.358). Mean infection intensity per infected 1740 

fish amongst males and females respectively was 12.8 and 4.9 in 2016 (Mann-Whitney 

U test: W  = 1171, p = 0.044), 7.9 and 7.0 in 2017 (Mann-Whitney U test: W  = 53.5, 

p = 0.416) and 6.0 and 7.6 in 2018 (Mann-Whitney U test: W = 2063, p = 0.942). Ten 

of the 198 smolts sampled in 2018 contained unattached P. laevis with nine of these 

smolts also containing attached P. laevis. A total of 899 attached and 15 unattached P. 1745 

laevis were recorded amongst the 2018 experimental samples and the number of 

attached worms per fish ranged from 1 to 42 (Fig. 1). 

Almost all (93.64 %) attached P. laevis were in the intermediate (central 33%) section 

of the intestine while 3.11 % and 3.25 % were located in the anterior and posterior 

sections respectively. No attached or unattached P. laevis were found in the 1750 

oesophagus, stomach or pyloric caecae. A few (n = 7) P. laevis were attached to the 

muscle along the inside wall of the peritoneal cavity, having presumably passed 

completely through the wall of the digestive tract (Fig. 2 A). The mean weight of 

individual attached worms was 3.1 mg (SD of mean individual weight per smolt = 

0.0015 mg). All worms from all treatment groups that were observed under a 1755 
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microscope directly after removal from the intestines were found to be alive. Infection 

prevalence in the 24FW, 24SW and 72SW treatment groups were 63 %, 60 % and 77 

% respectively (Chi-square: x2= 6.7, p = 0.036). Mean P. laevis counts per fish in the 

24FW, 24SW and 72SW treatment groups were 4.29, 3.48 and 5.88 respectively (Chi-

square: x2= 40.5, p= 0.769). P. laevis prevalence did not differ significantly amongst 1760 

the four tanks in the 24FW (Chi-square: x2 = 4.8, p = 0.183), 24SW (Chi-square: x2 = 

6.7, p = 0.084) or 72SW (Chi-square: x2 = 0.8, p = 0.841) treatment groups. P. laevis 

count did not differ significantly amongst the four tanks in the 24FW (Chi-square: x2 

= 53.1, p = 0.507), 24SW (Chi-square: x2 = 43.9, p = 0.390) or 72SW (Chi-square: x2 

= 49.3, p = 0.657) treatment groups. 1765 

No evidence of damage to intestine walls (i.e. pinprick leaks or visible perforations) 

from recently expelled P. laevis was observed in sampled smolts. Additionally, no 

leakage was observed through intestinal perforations that were plugged by the 

probosces of P. laevis. No mortality of smolts occurred in any treatment group prior 

to sampling. The binomial model revealed a significant positive association between 1770 

infection prevalence and Fulton’s K (p = 0.012) (Fig. 3 A) but no evidence of 

significant associations with sex or fork length (Table 1). The negative binomial model 

revealed a significant association between infection intensity and sex, with males 

having higher intensities than females (p = 0.043). This model also revealed a non-

significant positive association between Fulton’s K and infection intensity (p = 0.09) 1775 

(Fig. 3B).  
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Figure 1. Histogram of P. laevis abundance for all smolts used in experiment (n = 

198). 1780 

 

Figure 2. (A) Photograph of P. laevis outside the alimentary tract of salmon smolt and 

attached to the peritoneum and muscle wall. (B) Salmon smolt intestine, heavily 

infected by P. laevis.  
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 1785 

 

Table 1. Parameter estimates for the binomial prevalence GLM 

where individual infection status (i.e. infected or uninfected) is the 

binary response variable. The intercept corresponds to the estimates 

(on the logit scale) for females. 

 Estimate Std. Error z value p value 

(Intercept) -3.212 2.793 -1.150 0.250 

Fultons’ K 5.339 2.113 2.527 0.012 

Fork Length -0.054 0.126 -0.426 0.670 

Sex: Male 0.252 0.255 0.990 0.322 

 

 

 

Table 2. Parameter estimates for the negative binomial GLM where 

individual infection intensity (i.e. the number of P. laevis per fish) is the 

response variable. The intercept corresponds to the estimates (on the log 

scale) for females. 

 Estimate Std. Error z value p value 

(Intercept) -1.338 1.497 -0.893 0.372 

Fultons’ K 2.030 1.201 1.690 0.091 

Fork Length 0.104 0.063 1.640 0.101 

Sex: Male 0.276 0.137 2.023 0.043 

 1790 
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 1795 

Figure 3. (A) Boxplot of infection status (i.e. whether individual smolts contain P. 

laevis or not) vs Fulton’s K (condition factor) (n = 312) and (B) scatterplot of 

individual infection intensity (i.e. the number of P. laevis per infected smolt) vs 

Fulton’s K (n = 218). Data include smolts sampled in 2016, 2017 and 2018. 

 1800 

Blood parameters 

The mean blood parameters in each treatment group fell within reported ranges for 

Atlantic salmon (Table 3) (Kolarevic et al., 2014; Finstad et al., 2012; Bowers et al., 

2000). Our initial chloride model revealed no significant interaction between P. laevis 

count and treatment group (p = 0.447). When this interaction was excluded, the model 1805 

AIC value decreased by ~ 7 and the main effect of P. laevis count was non-significant 

(p = 0.26) (Fig.4). The model without an interaction revealed significantly higher 

plasma chloride concentrations in the 24SW and 72SW treatment groups relative to 

the 24FW group (Table 3 and Table 4). This model also revealed a significant negative 
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relationship between Fulton’s K and plasma chloride (Table 4). However, P. laevis 1810 

count was not associated with variation in plasma chloride.  

Our initial glucose model revealed no significant interaction between P. laevis count 

and treatment group (p = 0.391). Removal of the P. laevis count by treatment group 

interaction term lowered the model AIC value by ~ 12.1. No significant association 

was found between blood glucose and P. laevis count in this model (Table 5; Fig. 4). 1815 

Glucose levels in the 24SW and 72SW groups were significantly lower than in the 

24FW group (Table 3; Table 5). This model also revealed that blood glucose was 

significantly negatively related to Fulton’s K (Table 5). 

Our initial cortisol model revealed no significant interaction between P. laevis count 

and treatment group (p = 0.571). Removal of the P. laevis count by treatment group 1820 

interaction terms lowered the model AIC value by ~ 16.1. The main effect of P. laevis 

count was not significant in the model without this interaction (Table 6; Fig. 4). This 

model revealed a significant increase in plasma cortisol in the 24SW treatment group 

relative to the 24FW treatment group and a non-significant increase in cortisol in the 

72SW relative to 24FW group (Table 3; Table 6).  1825 
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Figure 4. Plasma chloride concentration (mmo/l) vs P. laevis count, blood glucose 

concentration (mmol/l) vs P. laevis count and plasma cortisol concentration (mmol/l) 

vs P. laevis count for all smolts used in the experiment (n = 198). 1830 
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Table 3. Mean and standard deviations for each blood parameter and physical 

measurements for each treatment group 

Treatment Group 24FW 24SW 72SW 

Chloride 103.9 ± 10.1 117.7 ± 3.9 119.3 ± 4.8 

Cortisol 96.9 ± 58.6 151.0 ± 110.7 133.9 ± 107.7 

Glucose 6.6 ± 2.6 4.0 ± 0.9 3.3 ± 0.7 

Fork length (mm) 139.9 ± 9.1 138.1 ± 7.9 138.7 ± 8.5 

Weight (g) 24.5 ± 5.1 22.8 ± 4.1 23.1 ± 4.7 

Condition factor (K) 0.884 ± 0.063 0.858 ± 0.054 0.855 ± 0.058 

 1835 

 

 

Table 4. Parameter estimates from the linear model where chloride was the 

response variable. Intercept corresponds to females in treatment group 24FW in 

Tank 1 sampled by Operator A. 

 Value Std. Error t-value p-value 

(Intercept) 116.899 6.076 19.241 <0.001 

P. laevis -0.060 0.053 -1.123 0.263 

Treatment Group: 24SW 13.363 1.384 9.655 <0.001 

Treatment Group: 72SW 14.998 1.389 10.796 <0.001 

Fulton’s K -13.864 6.704 -2.068 0.040 

Tank 2 -0.238 1.038 -0.229 0.819 

Tank 3 -0.195 1.054 -0.185 0.854 

Tank 4 -0.218 1.055 -0.207 0.836 

Sex: Male -0.198 0.773 -0.256 0.798 

Operator: B -0.354 0.730 -0.485 0.628 

 

 

 1840 
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Table 5. Parameter estimates from the linear model where glucose was the response 

variable. Intercept corresponds to females in treatment group 24FW in Tank 1 

sampled by Operator A. 

 Value Std. Error t-value p-value 

(Intercept) 10.152 1.131 8.978 <0.001 

P. laevis 0.013 0.009 1.422 0.157 

Treatment Group: 24SW -2.686 0.313 -8.575 <0.001 

Treatment Group: 72SW -3.481 0.316 -11.028 <0.001 

Fulton’s K -3.743 1.224 -3.059 0.003 

Tank 2 -0.193 0.183 -1.052 0.294 

Tank 3 -0.134 0.186 -0.718 0.474 

Tank 4 -0.167 0.193 -0.865 0.388 

Sex: Male -0.199 0.138 -1.439 0.152 

Operator: B -0.196 0.130 -1.509 0.133 

 

 

Table 6. Parameter estimates from the linear model where (the natural logarithm of) 

cortisol was the response variable. Intercept corresponds to females in treatment group 

24FW in Tank 1 sampled by operator A. 

 Value Std. Error t-value p-value 

(Intercept) 4.871 0.673 7.237 <0.001 

P. laevis -0.003 0.006 -0.551 0.583 

Treatment Group: 24SW 0.353 0.110 3.197 0.002 

Treatment Group: 72SW 0.165 0.111 1.484 0.140 

Fulton’s K -0.264 0.729 -0.363 0.717 

Tank: 2 -0.186 0.149 -1.251 0.213 

Tank: 3 -0.175 0.132 -1.322 0.188 

Tank: 4 -0.250 0.145 -1.723 0.087 

Sex: Male -0.017 0.086 -0.201 0.841 

Operator: B 0.074 0.083 0.889 0.375 
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Discussion 1845 

 

We found little evidence that natural infection by Pomphorhynchus laevis affected 

the osmoregulatory performance or stress levels of Atlantic salmon smolts 

immediately prior to, or within the first 72 h of, entry into salt water. Infection 

prevalence amongst experimental fish was 66.2% and the distribution of infection 1850 

intensities exhibited greater-than-Poisson variance (raw variance 10.3 times greater 

than raw mean), with few individuals having very high intensities and many 

individuals having zero parasites: a common finding in parasitology in general 

(Poulin, 2007). P. laevis consistently survived the first 72 h that smolts spent in salt 

water. However, although salinity in the saltwater tanks (~ 26 PPT) was 1855 

representative of local coastal waters, it was lower than in the open ocean habitat of 

the North Atlantic (~35 PPT). This lower salinity may have made the environment in 

the saltwater tanks more tolerable for P. laevis than open ocean environments but 

was reflective of conditions experienced by these smolts in the wild. 

The widespread distribution of P. laevis in Ireland, combined with the preference of 1860 

the Irish strain for salmonid definitive hosts (Hine and Kennedy, 1974; Munro, Reid 

and Whitfield, 1990; Byrne et al., 2003; Molloy, Holland and Poole, 1993), implies 

that anadromous Irish salmonids often enter the marine environment while infected 

with these acanthocephalan parasites. Indeed, we found that infection prevalence 

amongst salmon smolts that were captured at the tidal limit of the Burrishoole 1865 

catchment during the 2016, 2017 and 2018 smolt runs exceeded 65% in all years, 

with mean infection intensities of 9.2, 7.3 and 6.9 respectively. These infection rates 

are in line with those reported from other Irish catchments where Salmo salar and P. 

laevis coexist (Pippy, 1969a), and previous studies of this species have also found 



                                                                                                             Chapter 2 | P. laevis Pathology 

86 
 

strong overdispersion in parasite abundance per fish (Brown, 1989; Kennedy, 1974, 1870 

1996). Some authors have suggested that post-cyclic transmission (i.e. transmission 

occurring when a definitive host eats another definitive host) causes such 

acanthocephalan overdispersion patterns in definitive host species (Valtonen and 

Crompton, 1990; Lassiere and Crompton, 1988; Kennedy, 1999). However, the 

small body size and therefore presumably pre-piscivorous diet of the sampled smolts 1875 

(no fish parts were observed in the stomach contents of the 175 smolts dissected at 

time of capture in 2016 and 2017) makes post-cyclic transmission from other host 

fish unlikely in this case. Given the extensive habitat heterogeneity within the 

Burrishoole catchment (ranging from fast-flowing streams to deep lakes) (Whelan et 

al., 1998), it is perhaps more likely that differing feeding behaviour in areas with 1880 

differing densities of the intermediate host Gammarus duebeni resulted in 

contrasting infection opportunities amongst these fish. 

Infection intensity amongst infected smolts was not associated with significant 

variation in any measure of fish size (fork length, weight or Fulton’s K). Infected 

males sampled in 2016 contained significantly more parasites per individual than 1885 

infected females from the same year (12.8 vs 4.9) although no sex bias in infection 

intensity was evident in 2017 or 2018. While no significant associations were found 

between infection prevalence and absolute measures of fish size (i.e. fork length and 

weight), infected fish were actually in better condition (at least as expressed by 

Fulton’s K) than uninfected fish. At first glance this is surprising, given that smolt 1890 

condition might be expected to be negatively impacted by parasitic infection. 

However, salmon are known to undergo a rapid increase in length during 

smoltification that is not matched by an equivalent increase in weight, leading to a 

reduction in condition factor (Wedemeyer, Saunders and Clarke, 1980). Thus, if 
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infection by P. laevis caused a reduction in growth (i.e. length gain) during the parr-1895 

smolt transformation period, it could account for the comparatively high condition 

factor observed amongst infected individuals relative to uninfected individuals. 

Alternatively, though, this finding could simply reflect the fact that pre-smolts that 

feed more actively in the weeks or months preceding their marine migration may 

attain increased condition relative to less active feeders but also have higher chances 1900 

of consuming intermediate hosts (i.e. Gammarus duebeni) infected with P. laevis, 

given that new infections of salmonids in Irish waters tend to peak in spring (Molloy, 

Holland and O’Regan, 1995; Fitzgerald and Mulcahy, 1983). Such seasonal patterns 

of parasite infections in salmonids are often associated with temporal changes in diet 

(Prati and Henriksen, 2020). Previous research has shown that many species of 1905 

acanthocephalan parasites cause substantial damage to their hosts’ intestines (Kim et 

al., 2011), reducing growth rates when infection intensities are high and leading to 

mortality in extreme cases (Mayer, Dailey and Miller, 2003; Latham and Poulin, 

2002). However, if many of the P. laevis found in the sampled smolts were relatively 

recent infections, there may have been insufficient time for their presence to cause a 1910 

discernible effect on growth. As marine survival can be strongly associated with 

smolt size (Jonsson, Jonsson and Jonsson, 2017; Gregory, Armstrong and Britton, 

2018), any parasite-induced impact on  growth or condition factor is likely to have 

fitness consequences.  

As has been reported previously (Dezfuli et al., 2002a), we found that P. laevis 1915 

deeply penetrated all layers of their host’s intestinal wall with their praesoma 

(hooked proboscis), and in some cases even penetrated the peritoneum and adjacent 

muscle wall, passing completely out of the intestines in the process (Fig. 2A). The 

anchoring method used by P. laevis has been shown to destroy intestinal mucosa 
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(Wanstall, Thomas and Robotham, 1988), eliciting a localized inflammatory 1920 

response (Wanstall, Robotham and Thomas, 1986; Dezfuli et al., 2008, 2011) and 

copious mucus secretion (Dezfuli et al., 2016; Harris, 1972). Although there is only 

limited evidence indicating that salmonids infected with P. laevis suffer reduced 

growth (Wanstall, 1984), it appears that these infections may cause modifications to 

the physiological functioning of their host’s alimentary tract, potentially reducing 1925 

control of transepithelial ion transport (Dezfuli et al., 2002a). Thus, we expected that 

negative impacts from P. laevis infection might only manifest when the host entered 

salt water, where effective osmoregulation requires efficient control of transepithelial 

ion transport by the intestine (Whittamore, 2012).  

As anticipated (i.e. Bowers et al., 2000b; Stewart et al., 2016; Urke et al., 2014), 1930 

plasma chloride concentrations were significantly higher in smolts sampled after 24 

and 72 hours in salt water than in smolts sampled after 24 hours in fresh water. 

However, P. laevis count was not associated with variation in chloride levels in any 

treatment group, indicating that any intestinal damage caused by P. laevis was 

insufficient to cause osmoregulatory failure. The range of plasma chloride 1935 

concentrations in the freshwater and saltwater treatment groups were similar to those 

reported from other studies of Atlantic salmon in freshwater and saltwater 

environments (Oppedal et al., 1999; Wells et al., 2006; Kolarevic et al., 2014). 

However, no sampled fish displayed highly elevated chloride levels in line with 

levels that have been recorded in salmon smolts infected with high numbers of 1940 

salmon lice (Lepeophtheirus salmonis), which indicate compromised hypo-

osmoregulatory function (Wagner et al., 2003; Grimnes and Jakobsen, 1996). 
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As with chloride, plasma cortisol was significantly higher in the 24SW than in the 

24FW treatment group although there was a less pronounced increase in the 72SW 1945 

group relative to the 24FW group. Cortisol is considered a pluripotent hormone that 

can be beneficial at moderately elevated levels but harmful when highly elevated 

(Nolan, Reilly and Bonga, 1999). Moderate elevation of cortisol in salmonids 

stimulates chloride cell division which facilitates increased fluid uptake from the 

posterior intestine and thereby improves hypo-osmotic regulatory capacity (Cornell 1950 

et al., 1994). Thus, the observed increase in cortisol at 24 h in salt water (relative to 

the freshwater group) may serve to boost osmoregulatory capacity upon initial entry 

into a saline environment. The drop in cortisol between the 24 and 72 h saltwater 

sampling periods indicates that this stress response declined as blood chloride levels 

stabilised. P. laevis count was not associated with significant variation in plasma 1955 

cortisol in the freshwater or saltwater treatment groups, indicating that the intestinal 

damage caused by the P. laevis infection intensities observed in this study was 

insufficient to cause a discernible stress response in smolts in hypoosmotic or 

hyperosmotic environments.  

Hyperglycemia (elevated blood glucose) is a secondary stress response in fish that 1960 

has been widely used as an indicator of parasite-induced stress in smolts (Finstad et 

al., 2007; Long, Garver and Jones, 2019; Wagner et al., 2003).  No association 

between glucose and P. laevis count was detected in any of the treatment groups, 

supporting our conclusion that, at these infection intensities, P. laevis does not 

appear to significantly affect stress levels in migratory smolts before or immediately 1965 

after entry into salt water. Glucose levels were lowest in the group sampled after 72-

hours in salt water, however, plasma glucose is also affected by the feeding history 

and metabolic status of the fish (Wells et al., 2006). Given the extended period of 
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fasting that this group experienced prior to sampling (72 h vs 24 h in the other 

treatment groups), it is possible that the comparatively low glucose levels found in 1970 

the 72SW treatment group resulted from increased caloric deficit.  

The results of this study are based on the use of four replicate tanks for each 

treatment group. However, despite having 66 fish in each treatment group (i.e. 

moderate to large sample sizes), only a small number of fish had high infection 

intensities (Fig. 1), and this may have reduced our ability to detect subtle parasite-1975 

induced changes in the blood parameters that we investigated. Also, all P. laevis 

found in each treatment group were alive and the vast majority were securely 

anchored to the intestinal wall by their praesomae, with no sign that others had 

recently detached (i.e. no vacant perforations in the intestinal wall). When P. laevis 

are anchored to the intestinal wall, their praesoma and inflated proboscis bulb appear 1980 

to form an effective plug, preventing movement of liquid through the surrounding 

intestinal perforation. The freshwater strain of P. laevis that parasitizes juvenile 

salmon in the Burrishoole catchment is generally absent from adult salmon when 

they return to the river system for spawning (Deirdre Cotter, pers. obs.). 

Additionally, Molloy et al. (1993) found that sea trout returning to the catchment had 1985 

lower infection prevalence and intensity than were found in emigrating trout smolts, 

indicating that P. laevis are lost at sea. Presumably, after some period in the marine 

environment many of these acanthocephalans detach from their hosts’ intestines, 

leaving intestinal perforations unplugged and thereby potentially facilitating ingress 

of salt water into the peritoneal cavity. However, as P. laevis in the sampled smolts 1990 

remained alive and attached after 72 h in salt water we were unable to investigate 

this possible delayed pathology. As suggested by Pippy (1969), it would be useful 

for future studies to establish the life span of P. laevis in Atlantic salmon at sea. 
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Given that infection of Atlantic salmon by P. laevis is generally restricted to Ireland 

and, to a much lesser extent, England, Scotland and Wales (Pippy, 1969a), and 1995 

because the Irish and English strains of P. laevis are morphologically and genetically 

distinct from each other (O’Mahony et al., 2004; O’Mahony, Kennedy and Holland, 

2004), there may be scope to use these parasites as biological tags to indicate the 

geographic origin of salmon caught at sea. However, Pippy (1969b) suggested that 

the scarcity of P. laevis in adult Atlantic salmon caught around Greenland precludes 2000 

its use in differentiating stocks caught in that area.  

The shift from freshwater to marine environments that defines anadromous fishes is 

inherently stressful, demanding complex physiological responses from migrants that 

are simultaneously exposed to unfamiliar predators, parasites and pathogens. 

Mortality rates during this transitional period can be particularly high, and any pre-2005 

existing factor that increases stress or interferes with physiological processes such as 

osmoregulation may compromise long-term survival at sea (Hostetter et al., 2012, 

2011; Finstad et al., 2012, 2007). While the contribution of non-lethal stressors to 

delayed marine mortality is often difficult to detect, particularly in cases where 

multiple stressors have a cumulative effect, their impacts are likely to play an 2010 

important role in determining the performance of anadromous populations. We have 

shown that a high proportion of wild Atlantic salmon smolts entering the marine 

environment from the Burrishoole catchment in recent years are infected with P. 

laevis and, based on the literature, it appears likely that similar infection rates of 

smolts are common in Ireland but not elsewhere. However, we found no evidence to 2015 

indicate that the infection intensities observed amongst the sampled smolts were 

associated with altered osmoregulatory performance or stress levels in freshwater or 

saltwater environments. Despite this, it is possible that infection by P. laevis causes 
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pathologies that we did not test for or that occur later in the marine environment. 

Given the high prevalence of P. laevis infection amongst anadromous salmonid 2020 

populations in Ireland, it would be valuable to investigate whether such delayed 

parasite-induced pathologies occur at sea.  
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Abstract 

Pass-through passive integrated transponder (PIT) antennae are often used in river 2310 

and stream habitats to monitor the movement of aquatic species. Where these 

habitats are prone to high flows containing suspended debris, traditional pass-

through antenna designs are particularly vulnerable to damage which can be time 

consuming and expensive to repair and lead to extended gaps in data collection. We 

designed and tested a novel pass-through half duplex (HDX) antenna system that 2315 

allows the antenna loop to (1) break away from one river bank under predetermined 

strain and (2) split into two separate cables, thereby shedding entangled debris that 

could otherwise damage or dislodge the antenna system. After break away events, 

our system can be rapidly reconnected and redeployed without the need for 

personnel to enter the water, reducing maintenance time and costs while minimizing 2320 

gaps in data. In locations where pass-through antennae are prone to flood damage, 

this system offers distinct advantages over traditional designs. 

 

Introduction 

Due to their small size, low cost and lack of internal batteries, PIT tags have proven 2325 

to be a valuable tool for studying freshwater fish at various stages of their life 

histories (Haraldstad et al., 2016; Furey et al., 2016; Winter et al., 2016; Conallin et 

al., 2012; Bond et al., 2007; Castro-Santos, Haro and Walk, 1996; Dodd, Cowx and 

Bolland, 2018). Stationary in-stream antennae are commonly used to monitor the 

movement of PIT-tagged fish in dynamic fluvial environments where antennae are 2330 

prone to damage from high flows and debris (Cooke et al., 2013). A number of flat-

bed/pass-by antenna designs (i.e. where the antenna lies flat on the streambed) have 
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been developed that are relatively robust to damage from flotsam (Johnston, Berube 

and Bergeron, 2009; Nunnallee et al., 1998; Greenberg and Giller, 2000; Lucas et al., 

1999; Kazyak and Zydlewski, 2012; Armstrong, Braithwaite and Rycroft, 1996). 2335 

While flat-bed antennae are effective at detecting tags passing close to the 

streambed, their horizontal orientation limits their vertical read range. Pass-through 

antennae, by virtue of their vertical orientation, are able to detect tags that are 

significantly higher in the water column. Additionally, because PIT tags generally lie 

horizontally when implanted in fish, they are ideally oriented for detection by pass-2340 

through antennae. These attributes make pass-through antennae particularly well 

suited to sites with relatively deep water or to studies where the morphology of the 

target species necessitates the use of small (i.e. 12 mm) PIT tags that produce weak 

signals. However, the vertical orientation of pass-through antennae can expose them 

to greater stresses than flat-bed designs, particularly in cases where flotsam becomes 2345 

caught on the antenna loop.  

In order to investigate the migratory phenology and survival of Atlantic salmon 

Salmo salar L. and brown trout Salmo trutta L. smolts, we constructed and installed 

a series of five HDX PIT antennae (ranging in width from 2.5 m to 18 m) in the 

Burrishoole river system in the West of Ireland (Fig. 1). HDX systems were chosen 2350 

over FDX systems due to their ability to power wide, flexible antennae that are 

simple to construct and present a reduced profile in the water column. Due to water 

depth at our installation sites, the tendency of smolts to travel close to the water 

surface (Moore et al., 1998; Thorstad et al., 2012; Scruton et al., 2005) and our fish 

size-necessitated use of 12 mm tags, pass-through antennae were deemed preferable 2355 

to flat-beds. However, the Burrishoole river system is prone to frequent high flow 

events that often carry large debris from forestry located upstream (O’Toole et al., 
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2015 and Fig. 2). Initial installations for this project that were based on traditional 

pass-through designs proved susceptible to catastrophic damage during floods, 

particularly when large flotsam became entangled in the loop of the antenna cable. 2360 

Such occurrences necessitated the construction and installation of replacement 

antenna systems, leading to extended gaps in data collection and representing 

significant costs in materials and labour. In response, we designed a new pass-

through antenna system with the requirements that (a) high flow events or floating 

debris would not cause significant damage, and (b) any post-flood maintenance or 2365 

redeployment of the system should be simple, rapid and cheap. 

 

Figure 1. —Map of the Burrishoole catchment with antenna locations marked as red 

circles. Each of the two northerly locations represent antenna arrays comprised of 

two antennae.  2370 
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Figure 2. — Black river antenna location at normal river height (A) and during a 

flood (B). The top of the antenna is visible just above the water surface in image (A). 

 

Materials and methods 2375 

Here we describe an antenna system installed in March 2018 at our most challenging 

site (stream width and height 1800 cm and ~ 65 cm respectively under normal flow 

conditions). To span this section of river, we constructed a 1750 cm X 75 cm 

rectangular antenna from a single turn of 6 mm2 (~ 9 American wire gauge (AWG) 

equivalent) multi-strand PVC sheathed coper wire (Fig.3, part 1). Antenna 2380 

inductance, as measured with an Extrech Instruments LCR meter, was 41.3 μH. The 

antenna cable was passed through a 12 mm internal diameter braided PVC hose pipe 

(Fig. 3 and 4, part. 2) to provide protection from abrasion. A 20 cm section of hose 

located at the intended midpoint of the antenna loop was slit lengthways, cut 
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crosswise at each end, and removed (Fig. 3, 4 and 5, part 3). The antenna cable was 2385 

severed at the midpoint of the gap created and male and female pin components from 

a seven pin trailer board plug were soldered to the severed ends of the cable, 

allowing these ends to be reconnected (Fig. 5 a).  

Once connected, the plug assembly was sealed with electrical tape to provide 

waterproofing and a minor degree of tensile support. The previously removed section 2390 

of hose (part 3) was replaced in its original position and secured to the cut ends of 

the hose with cable ties and stoppers made from electrical tape (Fig. 4 and 5 b), 

allowing this section of hose and the cable within to separate or break away under 

relatively low strain. The sections of hose covering the two horizontal (top and 

bottom) sections of the antenna were cable-tied to two sections of 10 mm pre-2395 

stretched dyneema support ropes (Fig. 3 and 4, part 4) with a rated breaking strain of 

5000 kg. A MIN-E-MAX™ (DCD Design and Manufacturing Ltd., British 

Columbia) breakaway connector (Part No. 00530-010) loaded with a 600 lb (272 kg) 

breakaway pin (Part No. 00555-006) (Fig. 3 and 4, part 5) was attached to each 

support rope at the end nearest the plug assembly, allowing the rope to break away at 2400 

this location as strain on it approached 300 kg.  

Stainless steel carabiners (1500 kg breaking strain) were used to secure the 

breakaway connectors to two M10 eye bolts (Fig. 4, part 6) that were driven through 

pre-drilled holes located 7 cm and 82 cm from the bottom of a 10 cm wide, 200 cm 

long pressure treated round timber post (Fig. 3 and 4, part 7). Each eye bolt was 2405 

secured with washers and two lock nuts. A second 10 cm wide round timber post 

(Fig. 3 and 6, part 8) measuring 270 cm was furnished with eye bolts in the same 

manner as the first post and single (Fig 3 and 6, part 9) and double (Fig. 3 part 10) 

blocks (pulleys) with a 1500 kg rating were secured to the bottom and top eye bolt 
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respectively. The free end of the lower support rope was passed through the bottom 2410 

block before it and the upper rope were passed through the top block and secured to 

a hand winch (Fig. 3, part 11) mounted to the top of the support pole (part 8) with 

M10 bolts, lock nuts and a bracing plate. Two mounting tubes (Fig. 3 and 6, part 12) 

were constructed by cutting two 8 mm wide strips from opposite sides of two 180 cm 

long, 15 mm-walled HDPE pipes with 10.5 cm internal diameters, leaving 7 cm of 2415 

uncut material at one end (the bottom) of each tube.  

The antenna support poles were inserted into the mounting tubes (Fig. 6) until the 

protruding lower eye bolts reached the uncut end. Two 30 mm wide ratchet straps 

(Fig. 4 and 6, part 13) were used to connect three Duckbill Earth Anchors ® 

(MacLean Civil Products, South Carolina) (Fig. 3 and 6, part 14) to the rear uncut 2420 

bottom section of each tube. Two ratchet straps were also used to connect three 

Duckbill Earth Anchors to the rear of each tube just above the top eye bolt while 

pressure from these straps also clamped the tubes securely onto the support poles. 

Extended drive rods were used to secure the lower Duckbill anchors to the streambed 

at each bank before the upper anchors were secured horizontally into the bank itself. 2425 

The hand winch was then used to simultaneously tension the top and bottom support 

ropes after which the handle was removed to discourage tampering.  

Once the system was installed as described above, an ATC Auto Tuner (Oregon 

RFID, Oregon) (Fig. 3, part 15) was mounted to a vertical post located beside 

support pole (part 8), and connected to the free ends of the antenna cable in order to 2430 

adjust antenna capacitance. A Multi-Antenna HDX Reader (Oregon RFID, Oregon) 

was connected to the auto tuner by shielded Belden 9207 twinaxial cable which 

transmits power and data. Due to danger from flooding (Fig. 2), the reader was 

located in a sealed box on high ground 60 m from the antenna installation site and 
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the twinaxial cable was buried to ~ 10 cm. Power for the system was provided by a 2435 

bank of five 120 Ah AGM 12V batteries connected in parallel which were swapped 

out periodically. 

 

Figure 3. —Diagram of the double breakaway antenna system (not to scale). 

Numbered circles designate parts described in the Antenna Construction section. 2440 

 

 

Figure 4. —Diagram showing the lower breakaway connector assembly and the 

breakaway section of the antenna cable (not to scale). Numbered circles designate 

parts described in the Antenna Construction section. 2445 
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Figure 5. — Photograph of the breakaway plug assembly (A) separated and (B) 

assembled and ready for deployment. 

 

 2450 

Figure 6. —Diagram showing the lower (single) pulley assembly and the method of 

inserting the support poles into the mounting tubes (not to scale). Numbered circles 

designate parts described in the Antenna Construction section. 



                                                                                                            Chapter 3 | PIT Antenna Design 

114 
 

Results 

Tag detection 2455 

We tested the in-stream performance of our antenna with 12 mm 134.2 kHz HDX 

tags manufactured by Oregon RFID and Biomark Inc., Idaho. When orientated 

perpendicular to the antenna, both companies’ tags were detected at all points within 

the loop and up to 10 cm outside it, providing ~ 95 cm of vertical detection coverage 

and ~ 1770 cm of horizontal coverage. Tags were detected from roughly 20 cm 2460 

upstream to 20 cm downstream of the antenna, providing a ‘reading frame’ (sensu 

Bond et al., 2007) of about 40 cm.  

 

Breakaway operation and maintenance 

Between March 2018 and September 2019, regular high flow events occurred in the 2465 

Burrishoole catchment (Fig. 7). On seven of these occasions the strain on the antenna 

system exceeded the predetermined pin limit (272 kg), causing the MIN-E-MAX™ 

breakaway connectors to separate. On each occasion the trailer plug pin connection 

also separated, allowing flotsam to pass without becoming tangled in the antenna 

cable. Consequently, no significant damage to the antenna system occurred within 2470 

the operating period. After breakaway events, the loose ends of the antenna were laid 

on the western river bank (nearest the autotuner) and the trailer plug assembly was 

reconnected and sealed as described above. The upper ratchet straps were briefly 

removed from the mounting tube on the opposite bank, allowing the support pole 

(part 7) to be removed and brought to the western river bank where the upper and 2475 

lower MIN-E-MAX™ breakaways could be reconnected and loaded with new pins.  
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The winch was then used to slacken the support ropes, allowing the support pole 

(part 7) to be dragged across the river with a rope and reinstalled in its mounting tube 

as described above. In situations where the far bank can only be accessed by wading, 

it may necessary to carry the support pole across. Finally, the support ropes were re-2480 

tensioned with the winch, allowing the antenna to recommence operation. The 

complete post-breakaway reinstallation process can be accomplished by two 

operators in less than 45 minutes and, in cases where both banks are accessible 

without wading, does not require either operator to enter the river. Additionally, if 

required, the two support poles (part 7 and 8) can be removed from their mounting 2485 

tubes (part 12) in minutes, allowing the entire antenna to be removed from the 

installation site and easily reinstalled at a later date. In order to protect the mounting 

tubes in the interim it is recommended to insert a 10 cm wide round timber post into 

each (roughly equal in length to the tube) and tighten the upper ratchet straps (part. 

13).  2490 

 

Figure 7. —Number of PIT tag detections recorded on the Black River antenna and 

average daily discharge (L/sec) from the Black River, January 2019 to August 2019. 

Antenna breakaway events are indicated by dashed vertical lines. 
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Discussion 2495 

At its most basic, a PIT antenna is an unbroken loop of conductive cable. Pass-

through, as opposed to flat-bed, PIT antennae are often used in river and stream 

habitats to monitor the movement of aquatic species (Bond et al., 2007; Haraldstad et 

al., 2016; Winter et al., 2016; Zydlewski et al., 2001; Kazyak and Zydlewski, 2012). 

When installed in a river in pass-through orientation, PIT antennae can be exposed to 2500 

significant strain that increases dramatically as antenna size or water velocity 

increases or when debris become entangled in the cable loop. Against this 

background, our double-breakaway system exhibits a number of major advantages 

over traditional pass-through designs. Firstly, by breaking away from one bank and 

then opening the antenna loop, our system can withstand high flow events and the 2505 

passage of suspended debris without sustaining significant damage. Secondly, after 

breakaway events occur, the system can be rapidly redeployed by two operators. 

Furthermore, if both banks of the river or stream are accessible, redeployment can be 

carried out without the need for personnel to enter the river. Finally, the use of 

mounting tubes allows the entire antenna to be rapidly removed and reinstalled at a 2510 

later date, a beneficial feature for monitoring programmes focused on seasonal 

phenomena (i.e. salmonid smolt or spawning migrations). 

The system described here represents a design framework that can and should be 

modified to suit local conditions. Construction, assembly and installation of the 

system is relatively simple but does require rudimentary DIY experience as well as a 2515 

practical understanding of PIT technology. Due to our requirement for ~ 18 m 

(stream width) of horizontal PIT tag detection coverage at our installation site, a 

single loop antenna was found to outperform multi-loop designs. Where stream-

width is narrower (i.e. < 10 m), multi-loop antennae are often required to achieve 
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appropriate inductance (Miller, 2011; Arnaud et al., 2015; EE-Web, 2020; Steinke 2520 

and Anderson, 2011). These can be accommodated by the system described here 

with the minor modification that each additional turn of cable will require an 

additional plug assembly. We conservatively used 600 lbs (272 kg) breakaway pins 

in our system due to the soft river substrate (peat silt) and bank composition at our 

installation site which reduced the tensile grip of the Duckbill anchors. Where 2525 

anchors can be mounted more securely, stronger breakaway pins may reduce the 

frequency of breakaway events and increase continuity of data collection. However, 

it is crucial to ensure that all load-bearing components used in the antenna system are 

significantly stronger than the chosen breakaway pins.  

River substrate in some areas may prove to be unsuitable for securing Duckbill 2530 

anchors, particularly in locations where the riverbed is dominated by large rocks. 

Other mounting equipment may provide a solution in such cases although it may 

often be preferable to find an alternate location. Additionally, this system can be 

most easily and securely installed in locations where a river and its banks form a 

relatively square cross section. Both of these considerations should be taken into 2535 

account when assessing potential installation sites. As with any PIT antenna 

installation in fluvial habitats, it is also vital that antenna amperage is maintained 

within safe limits at all times. 

Although pass-through antennae are generally exposed to greater strain than similar-

sized flat-beds, their increased vertical read range and detection performance 2540 

represent distinct advantages as water depth increases. Our double-breakaway 

system can facilitate the long-term operation of pass-through antennae in locations 

where high flows and floating debris make traditional pass-through designs 

unfeasible.  
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Abstract 2655 

Animals often exhibit extensive flexibility in movement behaviours on a range of 

temporal and spatial scales in response to cues that predict fitness outcomes. The 

annual timing of movements between distinct habitats can be crucial, particularly in 

seasonal environments with narrow ecological windows of opportunity for feeding 

and breeding. Sexual selection may further shape sex-specific phenology and 2660 

movement behaviours. Here, we characterised seasonal, daily and diel movement 

patterns of male and female adult brown trout (Salmo trutta) between a lake where 

they feed and two streams (one inflow and one outflow) where they breed, using 

passive integrated transponder (PIT) telemetry. Antennae positioned at the inflow 

and outflow of the lake monitored movements between lake and stream habitats of 2665 

186 tagged fish. Across two years in both streams, movements were overwhelmingly 

nocturnal and exhibited distinct seasonality, with a peak in daily detections close to 

the winter solstice. In both streams, seasonal movement activity of males began and 

peaked before that of females. Daily detection probabilities for both sexes increased 

as the moon waned (decreasing lunar illumination) and as river depth increased, the 2670 

latter being associated with reduced water clarity. These findings are consistent with 

fish favouring movement between fluvial and lacustrine habitats when light (both 

solar and lunar) or hydrological conditions decrease their exposure to visually-

oriented predators. The early movement of males relative to females also suggests a 

role for intrasexual male competition, whereby earlier male arrival in breeding areas 2675 

could increase mating opportunities.  
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Introduction  

Many species exploit different habitats at various life stages (Werner and Gilliam, 

1984), and such ontogenetic niche shifts are particularly prevalent in size-structured 2680 

populations of insects and fish (Werner and Gilliam, 1984; Claessen and Dieckmann, 

2002). Different habitats can yield contrasting opportunities for growth, 

reproduction, and survival, which may vary with respect to season and the age, 

maturity or size of an animal. However, movement between habitats often incurs an 

increased risk of mortality (Lind and Cresswell, 2006) that may vary temporally as 2685 

environmental conditions change (Schwinn et al., 2017; Jonsson, Jonsson and 

Jonsson, 2017; Flávio et al., 2019). In areas with distinct seasonal variation, selection 

tends to promote movement from one habitat to another during an annual period 

when conditions in the destination habitat are generally favourable for a particular 

activity such as feeding or reproduction (Åkesson et al., 2017). At a finer temporal 2690 

scale, selection may promote movement at specific times within the broader 

migratory period when environmental conditions facilitate the safe passage of 

migrants or when conditions in the new environment are optimal (Hamilton and 

Kama, 2004; Hammerschlag et al., 2017). 

In areas with pronounced seasonality, species’ endogenous circannual rhythms are 2695 

typically ‘entrained’ by the cyclical signal of photoperiod, which in turn regulates 

their seasonal timing at a coarse scale (Åkesson et al., 2017; McCormick, 2012; 

McNamara et al., 2011). This allows the synchronisation of key life history events 

such as maturation, migration and reproduction with their long-term average 

optimum timing (Robart, McGuire and Watts, 2018; Foster, Ebling and Claypool, 2700 

1988; Gwinner, 1989; Walton, Weil and Nelson, 2011). Additionally, photoperiodic 

transitions between darkness and light provide daily signals for entraining circadian 
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rhythms (Metcalfe, Fraser and Burns, 1998; Hammerschlag et al., 2017). However, 

variation in other environmental factors such as temperature, tide or rainfall that 

reliably predict fitness outcomes can provide additional non-photoperiodic signals 2705 

that allow the timing of behaviours to be fine-tuned within a particular year, season 

or even day (McNamara et al., 2011; Visser and Both, 2005).  

Transitional areas between habitats often represent survival bottlenecks for 

migratory species, as migrants contend with novel abiotic or biotic challenges such 

as unfamiliar predators (Dieperink, Pedersen and Pedersen, 2001; Aldvén et al., 2710 

2015; Kennedy et al., 2018). For example, predation rates amongst marine turtle 

hatchlings may exceed 85% as they move the short distance from nesting beach to 

open water (Whelan and Wyneken, 2007). Many predatory species congregate in 

such transitional areas at specific times in order to intercept migrating individuals 

(Quinn and Buck, 2001; Carlson and Quinn, 2007; Bentley et al., 2014; Esbérard and 2715 

Vrcibradic, 2007). Although predation rates can be exceptionally high during these 

brief transitional periods, predator efficiency and associated predation rates are often 

strongly influenced by environmental conditions at the time of migrant passage 

(Clark & Furey, 2016; McLennan, Rush, Mckelvey, & Metcalfe, 2018; Carlson and 

Quinn, 2007; Quinn and Buck, 2001). Where predators rely on vision, ambient light 2720 

levels and environmental clarity will play synergistic roles in determining the 

distances from which prey are detectable. In response, many prey species limit 

certain behaviours to times when light levels are low. For example, many birds that 

are primarily diurnal limit their migratory movements to the hours between sunset 

and sunrise (Åkesson, Alerstam and Hedenström, 1996; Chernetsov, 2006; Zehnder 2725 

et al., 2001). Similarly, diel vertical migrations allow zooplankton to descend from 
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their nocturnal feeding areas near the surface to deeper refuge areas before daylight 

exposes them to visually-oriented predators (Lampart, 1989; Ohman, 1990).  

Light intensity at night, however, is variable and strongly influenced by the lunar 

cycle. Some species of nocturnal rodents have been found to reduce or cease their 2730 

foraging activity in exposed areas around full moon and increase such activity 

around the new moon, probably as a response to nocturnal avian predation (Kotler et 

al., 1991; Lockard and Owings, 1974; Morrison, 1978). Additionally, visibility in 

aquatic environments can vary significantly for a given input of lunar or solar light 

intensity. Such variation in visibility can be particularly pronounced in rivers, where 2735 

water clarity tends to be associated with variation in discharge because high levels of 

suspended sediment during high flows often increase turbidity (Doyle et al., 2019). 

This consequence of increased discharge on the likelihood of migrants being 

detected by predators is augmented by the increased river volume (and thus reduced 

density). 2740 

In salmonid fishes, migrations between natal streams and more productive feeding 

areas in lakes, other parts of the river system, or oceans facilitate continued growth 

and increased fecundity while reducing the influence of density dependent pressures 

on vital rates (Arostegui and Quinn, 2019; Ferguson et al., 2019; Jonsson and 

Jonsson, 2011; Nevoux et al., 2019). However, these migrations frequently incur 2745 

severe mortality costs, often driven by greatly elevated predation rates in transitional 

habitats such as estuaries (Dieperink, Pedersen and Pedersen, 2001; Aldvén et al., 

2015), lakes (Olsson, Greenberg and Eklöv, 2011; Schwinn et al., 2017), and river-

to-lake confluences (Kennedy et al., 2018; Carlson and Quinn, 2007; Quinn and 

Buck, 2001). Thus, there may be strong selection for mature lake-feeding salmonids 2750 

to limit their pre- and post-spawning movements between lake habitat and natal 
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streams to periods when environmental conditions reduce predation risk. Previous 

studies indicate that the behavioural responses of salmonids to temporal variation in 

environmental conditions can vary markedly amongst populations (Moore et al., 

2012; Ovidio, 1999; Ovidio et al., 1998; García-Vega, Sanz-Ronda and Fuentes-2755 

Pérez, 2017; Santos et al., 2002; Hellawell, Leatham and Williams, 1974; 

Rustadbakken et al., 2004; Jonsson, 1991; Jonsson and Jonsson, 2002), suggesting 

that local adaptations underpin these responses. As such, investigation into the 

proximate environmental drivers of native salmonid movements in relatively pristine 

habitats may provide broad insights into the ultimate causes of these behavioural 2760 

responses. 

Across many animal taxa, males and females display differing reproductive 

migratory phenologies (Tøttrup and Thorup, 2008; Remisiewicz and Wennerberg, 

2006). Early arrival at breeding areas relative to the opposite sex can confer 

contrasting benefits or costs on males and females. These can depend on factors such 2765 

as physiology (sexual dimorphism), mating system (i.e. monogamous, polyandrous, 

polygynous etc.), forms of intersexual selection and intrasexual competition, 

demographics, breeding habitat type and availability as well as any differential in 

mortality risk associated with habitat or sex (Morbey and Ydenberg, 2001). The 

early arrival of females relative to males, is generally limited to polyandrous species 2770 

in which females compete for breeding territory or mates (Rappole, 2013). The early 

arrival of males relative to females, is more common and is generally associated with 

polygynous species (Morbey and Ydenberg, 2001). Salmonids represent a 

particularly interesting group for investigating such sex-based differences in 

reproductive migratory phenology due to their restricted breeding season, 2775 

polygamous mating systems (including polygyny and polyandry), often high migrant 



                                                                                                        Chapter 4 | Movement Timing 

129 
 

and spawning mortality as well as the frequently limited availability of spawning 

habitat (Gauthey et al., 2015; Montgomery et al., 1999; Morbey, 2002; Nevoux et 

al., 2019; Quinn, 2018; Serbezov, Bernatchez, Olsen, & Vollestad, 2010; Tappel & 

Bjornn, 1983). 2780 

The aim of this study was to investigate associations between the timing of 

spawning-related movement of male and female brown trout (between a lake and 

two spawning streams) and environmental variables that were expected to influence 

the visibility of migrants to predators. We first investigated whether movement 

patterns displayed a distinct diel signal associated with periods of daylight or 2785 

darkness. Secondly, we investigated whether variation in river height and/or moon 

phase were associated with variation in daily movement patterns and whether these 

effects were additive or non-additive. Thirdly, we assessed whether males and 

females displayed differing migratory phenology patterns. 

 2790 

Methods 

Study area, fish sampling and behaviour monitoring 

 

Study area  

The Burrishoole catchment is a complex freshwater system in the north west of 2795 

Ireland that drains an area of ~ 83 km2. A series of streams and rivers link three main 

lakes, the most elevated and northerly of which is 46 ha Bunaveela Lough (54º 01’ 

18” N 9º 32’ 43” W; maximum depth: 23 m). The lake contains native populations of 

brown trout (Salmo trutta L.), Arctic char (Salvelinus alpinus L.), Atlantic salmon 

(Salmo salar L.) and European eel (Anguilla anguilla L.). The Fiddaunveela 2800 
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(hereafter ‘the inflow’) is the only stream flowing into the lake and the Goulaun 

(hereafter ‘the outflow’) is the outlet (Fig. 1). The inflow rises in the steep hills to the 

south east of Bunaveela Lough, flowing for approximately 2 km before joining the 

lake. The outflow meanders to the south west for approximately 10 km prior to 

joining the larger (410 ha) Lough Feeagh, increasing in width and depth as it gets 2805 

farther from Bunaveela. During low rainfall periods, most sections of the inflow 

become shallow and provide limited sheltering habitat for mature-sized (i.e. > 165 

mm) salmonids. The water level in the inflow rises and falls rapidly, often within 

hours of the commencement and cessation of rainfall, whereas the regulating 

influence of the lake moderates fluctuations in the height of the upper outflow. Both 2810 

streams are oligotrophic and poorly buffered (hydrological parameters shown 

Supporting Information Table S1), while small sandstone and limestone deposits 

help to buffer areas of Bunaveela Lough (Whelan et al., 1998). Long-term records 

(2005-2018) show that, outside of winter spawning months, < 1% of trout sampled in 

the inflow (N = 1136) or upper outflow (N = 877) had a fork length (FL) > 165 mm 2815 

(see Supporting Information Fig. S1), our conservative threshold for designating 

maturity status (details below). In contrast, more than a quarter of the trout sampled 

by small mesh beach seine in Bunaveela Lough between 1991 and 2018 (N = 3176) 

were > 165 mm, indicating that the lake provides a richer feeding habitat, possibly 

with less exposure to predators, where migrants from the streams can attain greater 2820 

size prior to spawning. 
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Figure 1. Map of the Burrishoole Catchment and Bunaveela Lough. PIT antennae 

locations are shown as red circles. Water level logger locations are shown as orange 

squares. Water temperature logger location is shown as a green square. 2825 

 

 

Sampling  

Between October 2016 and October 2018, seine netting (9 mm half mesh) was used 

on six dates to capture trout in littoral areas along the south eastern shore of 2830 

Bunaveela Lough (Supporting Information Table S2). Five hundred trout were 

captured and anaesthetised in pH-buffered tricaine methanesulphonate (80 mg l−1) 

before weights (to 0.1 g) and fork lengths (FL, to 1 mm) were measured. A tissue 

sample (approx. 2 mm2) was extracted from the tail of each fish and preserved in 

ethanol (95%) for genetic sex determination. Trout with a FL > 70 mm (N = 456) 2835 

were tagged with 12 mm passive integrated transponder (PIT) tags. A needle inserted 

to one side of the mid‐ventral line (slightly beyond the tips of the pleural ribs) and 
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just beyond the tip of the pectoral fin was used to implant tags into the peritoneal 

body cavity. After tagging, anaesthetised trout were transferred to oxygenated 

freshwater tanks and observed until they regained their equilibrium and began to 2840 

swim actively, whereupon they were released back into the lake.  

In addition, on three occasions between June and October 2017, we captured trout 

from eastern shore of Lough Feeagh in the lower section of the catchment (Fig. 1). A 

fish trap was operated continuously between December 2016 and March 2019 in the 

Rough River, a spawning river for trout that feed in Lough Feeagh. Trout caught in 2845 

Lough Feeagh or the Rough River were scanned with a hand held PIT reader, 

measured and visually inspected to determine their state of maturity. These data were 

used to inform and support the designation of spawning periods for Bunaveela-

caught fish (see below). As with individuals caught in Bunaveela, we PIT-tagged all 

trout with a FL > 70 mm (N = 1913). 2850 

 

Ethical note 

We adhered to the ASAB and ABS guidelines for the treatment of animals in 

behavioural research throughout this project. We conducted all aspects of sampling 

and tagging in accord with S.I. No.123/2014 Animal Health and Welfare (operations 2855 

and procedures) Regulations 2014 and with approval of the Marine Institute animal 

welfare committee (MI Establishment Authorisation No: AE19121) and the Health 

Professional Regulatory Authority (HPRA). Procedures for inducing anaesthesia 

were appropriate for salmonids (Popovic et al., 2012) and full recovery was ensured 

prior to release. Tagging was carried out by personnel with appropriate training and 2860 

Individual Authorisations under Scientific Animal Protection Legislation (HPRA). 
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Genetic sex determination assays 

Genomic DNA was extracted from caudal tissue of all tagged trout using the 

Promega Wizard® SV 96 Genomic DNA Purification System. As described in 

Finlay et al. (2020) and Keenan et al. (2013), a single sex marker and 18 2865 

microsatellite loci were amplified by multiplex PCR (two independent reactions). 

We determined the genetic sex of each sample depending on whether an amplified 

DNA fragment of 108 bp was present at the SalmoYF locus (sequence available in 

GeneBank (P. Prodöhl, unpublished)). This DNA fragment is absent from female 

brown trout and present in males. In cases where this fragment was absent and three 2870 

or more of the remaining 18 loci had failed to amplify, sex was designated as 

‘unconfirmed’. 

 

Monitoring behaviour: PIT telemetry 

Between August and September 2017 we constructed and installed and array of four 2875 

cross-channel, pass-through PIT antennae in the upper Burrishoole catchment (Fig 

1.). Such PIT antennae record the time and date that PIT-tagged animals pass 

antenna locations, allowing individual-based movement patterns to be investigated. 

We installed two antennae in the upper outflow, 15 m and 30 m downstream of 

Bunaveela Lough, and two antennae in the lower inflow, 75 m and 85 m upstream 2880 

from Bunaveela Lough (Fig.1). In order to guarantee that all antennae remained well 

beyond the edge of lacustrine habitat during the highest water levels, the upper 

outflow antennae were relocated to 40 m and 60 m downstream of the lake between 

the first and second spawning periods. In March 2018 we installed a single 

additional antenna in the lower outflow, 805 m upstream of Lough Feeagh and 9,540 2885 

m downstream from Bunaveela Lough (Fig. 1), allowing us to investigate whether 
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diel movement patterns recorded in the inflow and upper outflow were mirrored in 

the lower catchment. Each antenna spanned the full depth and width of the channel 

at its location except during very high flow events. We used a test tag to assess the 

performance of each antenna every 10 - 14 days and soon after all high flow events. 2890 

On four occasions during the two spawning periods antennae were found to be 

damaged by flotsam and were not capable of detecting tags. On each occasion we 

completed necessary antenna repairs within 48-h of damage occurring, ensuring that 

antennae functioned efficiently throughout most of the study period. Due to evidence 

that some tagged trout passed antennae without being detected, directionality of 2895 

movements (away from the lake or towards it) could not be confidently determined 

for the majority of PIT-tag detections. 

 

Environmental data 

Throughout the study period, a thermistor chain (HOBO Tidbit v2) recorded the 2900 

water temperature profile of Bunaveela Lough, while an OTT Orpheus Mini Water 

Level Logger recorded river height in the Altahoney, a tributary of the upper outflow 

(Fig. 1). In both cases, measurements were taken at 15 min. intervals. A second 

water level logger operated in the upper outflow (1120 m downstream of Bunaveela 

Lough) throughout the 2017-2018 spawning period, but was damaged by a flood in 2905 

February 2018. Concurrent data from the two water level loggers collected over 140 

days show that daily mean water heights in the upper outflow and the Altahoney are 

highly correlated (R2 = 0.81). Additionally, rainfall patterns in the inflow and 

Altahoney drainage areas, which are less than 2 km apart and occupy similar 

elevations, are very similar (B. Doyle pers. comm. and Fairman et al., 2017). Thus, 2910 

the Altahoney water height data were used as proxies for stream height in the inflow 
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and upper outflow in statistical analyses. The daily water level and water 

temperature data used in our analyses represent the maximum and mean values 

respectively that were recorded within a given 24-h period. By using mean daily 

water level values, discrepancies between the rate of water height fluctuations 2915 

amongst the three streams should be mitigated.  

Measured Altahoney water levels ranged from 0.36 m to 1.54 m (mean = 0.65 m) 

during the 2017-2018 spawning period and from 0.32 m to 1.50 m (mean = 0.61 m) 

during the 2018-2019 spawning period. Lake temperature at one meter below the 

surface ranged from 3.77 °C to 11.07 °C (mean = 6.75 °C) during the 2017-2018 2920 

spawning period and from 5.73 °C to 9.06 °C (mean = 7.39 °C) during the 2018-

2019 spawning period. Mean lake temperature in the ten days preceding the winter 

solstice was 5.32 °C in 2017 and 6.73 °C in 2018. The daily timing of sunrise and 

sunset for the Burrishoole catchment as well as moon phase data are based on data 

from the United States Naval Observatory (USNO) for 54 º 01’ 18” N 9 º 32’ 43” W. 2925 

Moon phase is treated as a continuous numerical variable between one (full moon) 

and zero (new moon). Photoperiod refers to the proportion of the 24-h day that falls 

between sunrise and sunset, and had a range of 0.307 to 0.373 in both spawning 

periods (mean = 0.331). Preliminary investigation of PIT-derived data indicated the 

vast majority of detections during the spawning period occurred at night. In order to 2930 

avoid splitting discrete nocturnal activity periods at midnight into two separate dates, 

detection data and environmental data used in our analyses were adjusted so that 

each 24-hour period began at 12:00 rather than at 24:00.  
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Defining spawning period, designating mature length threshold and estimating fish 2935 

length 

We used a combination of observational data on the maturity status of trout passing 

through the Rough River fish trap and PIT-derived data on the movement patterns of 

Bunaveela-tagged ‘mature-sized’ trout to designate a spawning migration period for 

Burrishoole trout, beginning on 1 November and ending on 31 January (see 2940 

Supporting Information Fig. S2 and results for details). To exclude potentially 

immature trout from our behavioural analyses, we chose 165 mm as a conservative 

minimum threshold FL for maturity, as this is roughly one standard deviation below 

the mean FL of visibly mature (i.e. ripe or spent) brown trout that we captured 

during the study period (N = 414, mean ± SD = 201.2 ± 36.5 mm). Most (87.6%) of 2945 

the trout from Bunaveela Lough that were tagged during the project were caught on 

only the original tagging date. Because trout that were detected on antennae during 

spawning periods had been tagged up to 811 days previously, the FL of tagged 

individuals in each spawning period was unknown. Individual growth rates in fish 

populations are strongly influenced by individual size and water temperature 2950 

(Neuheimer and Taggart, 2007; Handeland, Imsland and Stefansson, 2008; Boltaña 

et al., 2017). We therefore used a combination of lake temperature data and 

individual growth data from 87 individuals that were tagged and recaptured in lake 

habitat during the project (recapture dates were 15 – 505 days post-tagging) to 

calibrate a linear model in R v3.6.1 (R Core Team, 2019) to predict growth per 2955 

growing degree day (GDD) (Chezik, Lester and Venturelli, 2014) as a function of 

initial FL (full model details and performance indicators presented in Finlay et al. 

(2020)). We used this model in conjunction with lake temperature and tagging FL 

data to estimate post-tagging growth, and thus the current FL, for each Bunaveela-
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tagged trout in each spawning period. Our growth rate estimates indicate that 243 of 2960 

the trout we had previously tagged in Bunaveela Lough exceeded 165 mm in length 

(our designated threshold for maturity) by the 2017-2018 spawning season while 450 

of the lake-tagged trout were of mature size by the 2018-2019 spawning period. 

 

Investigating diel movement patterns 2965 

All behavioural analyses were conducted using R v3.6.1 and were restricted to the 

core spawning migration period. To investigate diel movement patterns, all detection 

timing data were converted to circular format and analyses were carried out with the 

‘circular’ package in R (Agostinelli and Lund, 2017). Kuiper’s one-sample test of 

uniformity on the circle was used to assess whether detection rates in each stream 2970 

and each spawning period varied throughout the 24-hour day. Diel detection patterns 

were also assessed for normality using a Watson's goodness of fit test for the von 

Mises distribution (a circular analogue to a Gaussian distribution). Additionally, the 

proportion of nocturnal (occurring after sunset and before sunrise) and diurnal 

(occurring after sunrise and before sunset) detections in each stream in each 2975 

spawning period were calculated using daily photoperiod data. 

 

Daily movement patterns of individuals in relation to sex and environmental 

variables 

We used a binomial generalized linear mixed model (GLMM), with a logit link 2980 

function, to explore the extent to which the daily probability of detecting mature-

sized lake-tagged trout at the inflow or outflow antennae was associated with four 

continuous (Day, Day2, MoonPhase and RiverHeight) and three categorical (Sex, 
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Stream and Year) explanatory variables, as well as two-way interactions chosen a 

priori on biological grounds (see below). Models were built with the glmmTMB 2985 

function in the glmmTMB R package (Brooks et al., 2017). 

Our response variable was Bernoulli distributed, whereby, for any given date, unique 

mature fish that were detected in the focal stream (either inflow or outflow) were 

designated ‘1’, while all mature fish that were not detected in that stream (but were 

detected in that stream on at least one other occasion during a spawning period) were 2990 

designated ‘0’. We included a RiverHeight*MoonPhase interaction because moon 

phase (lunar light level) and river height (turbidity) were predicted to play 

synergistic roles in determining the visibility of nocturnal migrants to predators. Due 

to differences in flow direction and availability of shelter habitat between the inflow 

and outflow, combined with evidence of weak genetic differentiation between the 2995 

groups of trout that spawn in them (Finlay et al., 2020), we predicted that 

behavioural responses to environmental cues in each stream might differ, and 

therefore we included two-way interactions between Stream (a two-level categorical 

variable corresponding with ‘inflow’ and ‘outflow’) and both MoonPhase and 

RiverHeight. We also included two-way interactions between Sex and MoonPhase, 3000 

Sex and RiverHeight and Sex and Day under the expectation that males and females 

might exhibit differing migratory phenologies (i.e. protandry or protogyny) or 

behavioural responses to stochastic environmental cues. TagNumber (the individual 

PIT tag ID of each fish) was included as a random effect (intercept) in our models to 

account for repeated measures of individual fish throughout the study period, while 3005 

Year was treated as a two-level fixed effect corresponding to the 2017-18 and 2018-

19 spawning periods.  
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Prior to model fitting, we used the scale function in R to mean-centre and scale all 

continuous main effects to standard deviation units and we quantified collinearity 

amongst all fixed effects by Pearson’s R using the cor.test function in R. 3010 

Additionally, the variance inflation factors (VIFs) of all fixed effects were calculated 

with the check_collinearity function in the performance R package (Lüdecke, 

Makowski and Waggoner, 2019). We used the ‘DHARMa’ package (Hartig, 2019) 

to plot fitted values vs simulated (scaled) residuals to test for heteroscedasticity and 

violations of  linearity assumptions, and we used the acf function in the stats R 3015 

package to identify residual temporal autocorrelation. The conditional and marginal 

R2 of the model were estimated using the r.squaredGLMM function in the MuMIn R 

package (Barton, 2019). Using our model, we employed the ggPredict function in 

the ggeffects R package (Lüdecke, 2018) to plot predicted relationships of interest.  

To further investigate sex-based variation in spawning phenology, the first, last and 3020 

median detection dates, as well as the total number of detection dates and the mean 

number of detections per detection date were calculated for each fish in each stream 

(and in both streams combined) in each spawning period. These data were used to 

summarise overall and sex-specific detection patterns in both streams for both 

spawning periods (Table 1). Mann-Whitney tests were used to test for sex-based 3025 

differences in the first detection date and the number of dates during which 

individual fish were detected in each stream in each spawning period. 
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Results 

 3030 

Tag detections 

More than 95 % of annual detections from mature-sized trout were recorded on our 

fluvial antennae and more than 95 % of visibly mature (‘ripe’) trout were caught in 

the Rough River traps within the designated spawning period (Supporting 

Information Fig. S2 and Table S3), indicating that movement between lakes and 3035 

rivers during this period is motivated principally by breeding rather than exploratory 

foraging. Over the two spawning periods, our fluvial antennae detected 197 trout that 

were designated as mature at the time of detection, producing in excess of 100 000 

detections. Of these fish, 106 were detected in the 2017-2018 spawning period (56 in 

the inflow, 86 in the outflow and 36 in both), 116 were detected during the 2018-3040 

2019 spawning period (51 in the inflow, 89 in the outflow and 24 in both), and 25 

were detected in both spawning periods. Sex was confidently determined for 441 of 

the 456 trout that were PIT tagged in Bunaveela Lough during the study period (190 

(43.1%) and 251 females (56.9%)). Over the two spawning periods, 80 mature 

females and 110 mature males were detected on our fluvial antennae, including 11 3045 

individuals of each sex that were detected in both spawning periods. Seven trout of 

unconfirmed sex were also detected (three in both spawning periods) but these 

individuals were excluded from the GLMM.  

 

Characterising seasonal movement patterns 3050 

Daily movement activity, expressed both as the number of mature-sized lake-tagged 

trout detected by fluvial antennae (Fig. 2) and as the total number of detections 



                                                                                                        Chapter 4 | Movement Timing 

141 
 

generated by such fish (Supporting Information Fig. S2), was low between February 

and October, rose rapidly in November and peaked around the winter solstice before 

declining rapidly in January. Activity levels in the inflow fluctuated considerably 3055 

from day to day, while changes in activity levels in the outflow were generally more 

gradual. Substantial increases in activity patterns appeared to often coincide with the 

new moon or with elevated river height (Fig. 2).  

 

  3060 

 

Figure 2. (A) Daily variation in photoperiod (i.e. proportion of the day between 

sunrise and sunset) (black) and lake temperature (red). (B) Daily variation in water 

height in the Altahoney stream (blue) and moon phase (yellow). Full moon = 1, new 

moon = 0. (C) Daily variation in the number of fish detected in the inflow (blue) and 3065 

outflow (red) streams in each spawning period as a proportion of the total number 

detected in each stream in the relevant spawning period. 
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Investigating diel movement patterns 

The distributions of diel detections were non-uniform (Kuiper’s test: all P < 0.01) 3070 

and non-von Mises distributed (Watson test: < value nearest to critical in all cases) in 

both streams and both spawning periods. During the 2017-2018 season, 95.6% and 

96.7% of detections from mature-sized trout in the inflow and the upper outflow 

respectively occurred after sunset and before sunrise (Fig. 3). Similarly, during the 

2018-2019 season, 88.6% and 92.7% of detections from mature-sized trout in the 3075 

inflow and the upper outflow respectively occurred after sunset and before sunrise. 

The antenna at the transition into Lough Feeagh recorded a comparable nocturnal 

bias (96.9%) during the 2018-2019 spawning season. 
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 3080 

 

Figure 3. Diel distribution of detections (hourly) from mature male and female trout 

recorded on the inflow and outflow antennae during the two spawning periods. Male 

and female bars sum to 100%. The dotted black lines represent sunrise (08:52) and 

sunset (16:15) on the median day of each spawning period.  3085 
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Daily movement patterns of individuals in relation to sex and environmental 

variables 

All correlations between fixed effect covariates in our movement probability model 

were well below R=0.7, and all model parameter VIFs were < 10. Model validation 

confirmed that the model complied with all underlying assumptions, including no 3090 

evidence of residual temporal autocorrelation.   

Detection probability increased as RiverHeight increased and as MoonPhase 

decreased (Table 2, Fig. 4). A significant two-way interaction effect was found 

between RiverHeight and MoonPhase (P < 0.001), whereby the negative effect of 

MoonPhase became less pronounced at higher RiverHeight values (Table 2), but this 3095 

interaction was relatively weak and less pronounced in the inflow river (Fig. 4). Fish 

detection probabilities were higher overall in the outflow river (Table 2, Fig. 4), but 

the positive effect of River Height and the negative effect of MoonPhase were both 

weaker in the outflow river (P < 0.001 for both Stream × RiverHeight and Stream × 

MoonPhase interactions; Table 2, Fig. 4).  3100 

There was a significant quadratic effect of Day, with an n-shaped curve (Fig. 5; 

Table 2). The main effect of Day was also significant, indicating that detections did 

not peak at Day zero, where zero corresponded to the median date (15th of 

December) within the spawning season as Day was mean centred. Detection 

probability was significantly higher for males than for females, and their detection 3105 

probabilities peaked significantly earlier (Sex × Day interaction, P < 0.001; Table 2, 

Fig. 5). However, detection probability for males was less strongly associated with 

water height than that of females (Sex × RiverHeight interaction, P = 0.044).  The 

Sex × MoonPhase interaction was not significant (P = 0.58). Detection probabilities 

were significantly higher in the first spawning period than the second (Table 2; Fig. 3110 
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5). Overall, 44% of the variation in detection probability was explained by a 

combination of the fixed and random effects (i.e. conditional R2) in our GLMM, 

while fixed effects alone (i.e. marginal R2) explained 31%. Thus, the random effect 

of TagNumber accounted for 13% of the overall variation.  

 3115 

 

Figure 4. Detection probability of mature trout in the inflow and outflow in relation 

to moon phase at low (orange), medium (blue) and high (black) river heights as 

predicted from the GLMM. Shaded areas represent 95% confidence intervals.  

 3120 
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Table 1. Summary of individually-based detection data split by sex, stream and spawning period. N is the 

number of fish per group. First Dtn., Last Dtn. and Median Dtn. are mean dates ± SD (in days) 

generated from the first, last and median dates on which each fish in each group was detected. # Days is 

the mean number of separate dates on which each fish in each group was detected. Dtns per Day is the 

mean number of detections generated by each fish in each group on each date that they were detected. 

Row names ending in ‘Earlier’ designate how much earlier, in days, the named group is compared to the 

opposite group. Rows marked with an asterisk use all detection data, regardless of stream. Group names 

containing ‘(All Fish)’ include males, females and individuals for which sex could not be confidently 

determined. Some individuals were detected in both streams during a single spawning period and some 

individuals received no sex designation (described in Results above), causing the number of fish in group 

totals to differ from the apparent sum of the fish in their constituent groups.  

 2017-2018 Spawning Period 2018-2019 Spawning Period 

Group N First 

Dtn. 

Last 

Dtn. 

Media

n Dtn. 

# Days Dtns 

per 

Day 

N First 

Dtn. 

Last 

Dtn. 

Media

n Dtn. 

# 

Days 

Dtns 

per 

Day 

Inflow (All 

Fish) 

56 04 Dec 
±15.8 

18 Dec 
±15.1 

11 Dec 
±13.8 

4.1 
±4.4  

3.1 
 

51 27 Nov 
±16.5 

08 Dec 
± 15.9 

03 Dec 
±14.9 

2.9 
±2.8 

3.1 

Outflow 

(All Fish) 

86 29 Nov 
±22.8 

25 Dec  
±25.6 

12 Dec 
±20.3 

12.6 
±14.1 

34.9 89 29 Nov 
±23.6 

18 Dec 
± 22.7 

08 Dec 
±2.4  

6.6 
±6.3 

7.9 

Outflow 

Earlier 

 4.0 -8.0 -2.0    -2.00 -10.0 -5.0   

             

Male (Both 

streams)* 

62 24 Nov 
±22.0 

26-Dec 
±25.9 

10 Dec 
±20.0 

15.3 
±15.2 

29.2 59 19 Nov 
±18.3 

08 Dec 
±20.1 

29 Nov 
±18.2  

8.0 
±7.5 

8.7 

Female 

(Both 

Streams)* 

40 05 Dec 

±21.3 

25 Dec 

±23.2 

15 Dec 

±19.9 

7.3 

±7.2 

11.3 51 06 Dec 

±21.6 

24 Dec 

±19.3 

15 Dec 

±18.2 

4.8 

±3.5 

3.2 

Male 

Earlier  

 12.2 -0.1 6.1    16.3 15.7 16.0   

Inflow 

Male 

37 01 Dec 

±14.4 

15 Dec 

±14.2 

08 Dec 

±12.5 

4.4 

±4.7 

3.3 24 21 Nov 

±13.9 

03 Dec 

± 15.1 

27 Dec 

±13.3 

3.8 

±2.8 

3.5 

Inflow 

Female 

17 11 Dec 

±16.9 

25 Dec 

±15.4 

18 Dec 

±14.6 

3.3 

±2.5 

2.7 23 05 Dec 

±16.4 

15 Dec 

± 14.6 

10 Dec 

±14.0 

2.5  

±1.6 

2.6 

Inflow 

Male 

Earlier 

 9.9 10.3 10.1    13.6 12.1 12.8   

             

Outflow 

Male 

47 25 Nov 

±23.2 

29 Dec 

±26.3 

12 Dec 

±20.2 

17.2 

±16.3 

49.5 47 22 Nov 

±20.3  

11 Dec 

±21.6 

01 Dec 

±19.7 

8.2 

±7.5 

11.3 

Outflow 

Female 

35 05 Dec 

±21.3 

23 Dec 

±23.6 

14 Dec 

±20.2 

6.9 

±7.4 

15.4 37 07 Dec 

±23.2 

26 Dec 

± 20.9 

16 Dec 

±19.6 

5.0 

±3.7 

3.5 

Outflow 

Male 

Earlier 

 10.8 -5.7 2.6    14.8 15.3 15.0   

Total (All 

Fish)* 

106 28 Nov 

±22.2 

25 Dec 

±24.5 

12 Dec 

±19.9 

12.1 

±13.1 

25.8 116 27 Nov 

±21.3 

16 Dec 

±21.8 

06 Dec 

±19.7 

6.5 

±6.2 

6.2 
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Table 2. Parameter estimates for the main effects and interaction effects from the binary GLMM, 

where daily binary detection probability of fish was the response variable. All estimates and their 

standard errors are on the logit scale and therefore correspond to log odds ratios. The odds ratio is also 

given (exponent of logit-scale parameter estimates), as well as the 5% and 95% confidence intervals 

around this. The intercept corresponds to mean values on the logit scale for females in the inflow river 

in the first spawning period (the reference levels for Sex and Stream and Year) when all continuous 

covariates are set to zero.  

Effect Estimates Std. 

Error 

z value Odds 

ratio 

5% 95% P 

value 

(Intercept) -3.863 0.137 -28.299 0.021 0.017 0.026 <0.001 

RiverHeight 0.629 0.053 11.815 1.875 1.718 2.047 <0.001 

MoonPhase -0.552 0.077 -7.211 0.576 0.508 0.653 <0.001 

Stream (Outflow) 1.249 0.086 14.583 3.486 3.028 4.013 <0.001 

Sex (Male) 0.424 0.149 2.841 1.528 1.196 1.954 0.005 

Year (Second) -0.688 0.053 -13.028 0.503 0.461 0.548 <0.001 

Day -0.28 0.062 -4.538 0.756 0.683 0.837 <0.001 

Day2 -0.737 0.037 -19.768 0.479 0.450 0.509 <0.001 

        

RiverHeight × MoonPhase 0.108 0.031 3.448 1.114 1.058 1.172 <0.001 

        

RiverHeight × Stream 

(Outflow)    

-0.357 0.049 -7.259 0.700 0.646 0.759 <0.001 

        

MoonPhase × Stream 

(Outflow) 

0.433 0.070 6.189 1.542 1.374 1.730 <0.001 

        

RiverHeight × Sex (Male)   -0.094 0.046 -2.016 0.911 0.844 0.983 0.044 

        

MoonPhase × Sex (Male)     0.032 0.058 0.558 1.033 0.940 1.135 0.577 

        

Sex (Male) × Day -0.619 0.075 -8.273 0.54 0.476 0.610 <0.001 

        

TagNumber  (Random Effect)    2.396 2.192 2.644  
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 3130 

Figure 5. Temporal variation in detection probability of males (blue) and females 

(orange) in both streams and both spawning periods as predicted from the GLMM. 

Shaded areas are 95% confidence intervals. Dark vertical line represents the winter 

solstice. 

 3135 

Across both streams, the mean first detection date amongst male migrants was 12 

and 16 d earlier than that of female migrants in the 2017-2018 and 2018-2019 

spawning periods respectively, while the mean last detection of males was 0.1 day 

later and 16 days earlier than that of females (Table 1). The difference between male 

and female first detection dates was significant in both streams in both study seasons 3140 

(Mann-Whitney tests: W = 429.5 – 1278, all P < 0.05). Individual males were 

detected in the outflow on significantly more dates than individual females in the 

first (Mann-Whitney test: W = 562.5, P = 0.014) but not second (Mann-Whitney test: 

W = 690.5, P = 0.106) spawning period, and corresponding sex differences were not 
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significant in the inflow in either spawning period (Mann-Whitney test: W = 243.5, 3145 

P = 0.66 and W = 145.5, P = 0.10). Furthermore, on each date during which they 

were detected in the outflow during the 2017-2018 and 2018-2019 spawning periods 

respectively, individual males produced 3.2 and 3.2 times as many separate 

detections as individual females produced (49.4 vs 15.4 and 11.3 vs 3.5). In the 

inflow, the average number of detections produced per male per ‘active’ date in 3150 

2017-2018 and 2018-2019 respectively was 1.2 and 1.3 times higher than that of 

females (3.3 vs 2.7 and 3.5 vs 2.6). 

 

Discussion 

This study provides evidence that the timing of spawning-related movements of 3155 

brown trout between lake habitat and spawning streams is strongly associated with 

environmental factors that are likely to influence their visibility to potential 

predators. In both streams and in both spawning periods, most (~89-97%) detections 

from mature-sized trout were recorded between sunset and sunrise, indicating a 

strong and consistent tendency to through transitional lake-to-river habitat at night 3160 

(Fig. 3). The antenna located close to the confluence with Lough Feeagh (Fig. 1) 

recorded a similar (96.9%) nocturnal bias, suggesting that nocturnal spawning 

movements through transitional habitat may be prevalent within the Burrishoole 

catchment. It is generally believed that nocturnally-biased migration in salmonids 

represents a strategy to minimise migrant visibility and exposure to diurnal predators 3165 

(Bradford and Higgins, 2001; Ovidio et al., 2002; Zavorka et al., 2016; Fraser et al., 

1995; Ibbotson et al., 2006; Thorstad et al., 2012). In support of this, Flavio et al. 

(2019) found that Atlantic salmon smolts conducting nocturnal movements between 

fluvial and marine habitats had significantly higher survival than those that moved 
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during the day. While nocturnal spawning migrations are found in some brown trout 3170 

populations (Ovidio, 1999; Ovidio et al., 1998; Piecuch et al., 2007; Moore et al., 

2012) they are not ubiquitous (García-Vega, Sanz-Ronda and Fuentes-Pérez, 2017; 

Santos et al., 2002), suggesting that the advantages conferred by this behaviour are 

context specific. Indeed, some populations appear to alternate between nocturnally 

and diurnally biased spawning migrations at low and high river heights respectively 3175 

(Rustadbakken et al., 2004; Hellawell, Leatham and Williams, 1974). For the trout 

that feed in Bunaveela, moving from a deep lake habitat to shallow stream habitat is 

likely to alter predation risk and, in particular, increase exposure to grey herons 

(Ardea cinerea) and Eurasian otters (Lutra lutra). Previous studies have recorded 

high predation rates of salmonids during spawning migrations by both otters and 3180 

herons (Carss, Kruuk and Conroy, 1990; Pépino, Rodríguez and Magnan, 2015) and, 

on numerous occasions during the two spawning periods, herons were observed at 

dusk hunting in the shallow riffles close to our PIT-antennae where the inflow and 

outflow connect to the lake (R. Finlay, pers. obs.). Future work could confirm or 

refute these conjectures with direct measures of predation risk and relate these to 3185 

direct measures of ambient light levels, which, for example, could be affected by 

cloud cover.  

Seasonal movements of mature trout in our study (PIT detections and Rough River 

trap captures) peaked close to the winter solstice in both years despite differing 

prevailing water temperatures (Fig. 2 and Supporting Information Fig. S2), 3190 

suggesting that photoperiod plays a dominant role in entraining local spawning 

phenologies. The unambiguous date signal provided by photoperiodic variation has 

previously been shown to drive the broad seasonal phasing of reproduction in 

salmonids, as well as physiological developments associated with sexual maturation 
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(Billard, Reinaud and Le Brenn, 1981; Bromage, Porter and Randall, 2001; 3195 

Pankhurst and King, 2010). Locally-adapted responses to photoperiodic variation 

allow populations to spawn at a time that, on average, maximises fitness (Foster, 

Ebling and Claypool, 1988; Gwinner, 1989; Quinn, Unwin and Kinnison, 2000; 

Robart, McGuire and Watts, 2018; Walton, Weil and Nelson, 2011). Selection for an 

optimal emergence date of offspring is likely to play a central role in determining the 3200 

optimal spawning time of the parents, in addition to direct selective pressures on the 

adults (Crozier et al., 2008). Synchrony with the winter solstice is probably 

coincidental in our case; that is, in this particular system, reproductive success may 

on average be highest for fish that undertake spawning movements in mid to late 

December.  3205 

The associations we document between daily movement probability and 

environmental variables (RiverHeight and MoonPhase) indicate that, in addition to 

photoperiodic responses, brown trout exhibit phenotypic plasticity in movement 

behaviours that may allow them to balance anticipated benefits of moving on a 

particular day against perceived mortality risk. Specifically, trout displayed a 3210 

significant reduction in the frequency of their movements through transitional habitat 

when stream height was low and when the moon was full (Fig. 4). These patterns 

were particularly pronounced in the inflow, the shallower of the two streams, which 

also provides less sheltering habitat than the outflow. While increases in stream 

height may facilitate the rapid passage of migrants through risky areas such as 3215 

shallow riffles (Carss, Kruuk and Conroy, 1990), they also provide a less confined 

habitat in which to avoid predation and tend to be associated with a reduction in 

migrant visibility through increased water colour (Doyle et al., 2019), depth, and 

turbidity. In keeping with our finding that stream height correlated more strongly 
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with movement in the inflow, previous research indicates that salmonids use 3220 

increased flow as a cue for upstream migration most frequently in small or shallow 

streams and rivers (Jonsson, 1991), while in large or deep rivers, increased flow may 

have a negligible (Hellawell, Leatham and Williams, 1974; Rustadbakken et al., 

2004), or even negative (Jonsson and Jonsson, 2002) effect on spawning-related 

migratory activity.  3225 

The apparent reluctance of the lake-tagged trout to move through transitional habitat 

around the full moon reflects Slavik et al.’s (2012, 2018) observation of trout 

moving smaller distances during the full than the new moon. Analogous patterns of 

reduced activity or presence within exposed habitats during the full moon have been 

recorded in terrestrial rodents (Kotler, Brown and Hasson, 1991; Lockard and 3230 

Owings, 1974; Daly et al., 1992), catadromous eels (Poole, Reynolds and Moriarty, 

1990; Sandlund et al., 2017), marine fishes (Hammerschlag et al., 2017), bats 

(Morrison, 1978), armadillos (Pratas-Santiago et al., 2017), ungulates (Palmer et al., 

2017) and zooplankton (Last et al., 2016). Such ‘lunar phobia’ is regarded as an 

evolved response that reduces exposure to visually-oriented predators. Nocturnal 3235 

activity patterns (Cozzi et al., 2012), detection range and hunting efficiency 

(Robinson and Tash, 1979; Fraser and Metcalfe, 1997; Metcalfe, Valdimarsson and 

Fraser, 1997) of visually-oriented predators tend to decline significantly as lunar 

illumination levels decrease. Although moving during the new moon is likely to 

reduce migrant visibility and predation rates, it is also possible that nocturnal 3240 

spawning during the new moon provides a fitness advantage by reducing egg 

predation by other fish (Šmejkal et al., 2018; Hammerschlag et al., 2017).  

We detected a significant interaction between RiverHeight and MoonPhase, whereby 

the reduction in movement probabilities at higher values of MoonPhase (fuller 
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moons) was more pronounced when water levels were lower. This interaction makes 3245 

sense in the context of fish avoiding moving when predation risk is highest, as it 

suggests that, as the full moon approaches, fish are even more reluctant to move 

when the water is low and clear with minimal turbidity. However, the effect size was 

small and was weaker in the inflow stream, so we are reluctant to attach much 

interpretive weight to this interaction other than to note that it is consistent with our 3250 

overall conjecture that spawning-related movement decisions may be adapted to 

reduce predation risk.  

Our statistical model and our individual-based summary data (Table 2 and Table 1) 

revealed significant sex-related differences in spawning phenology that were 

consistent with protandry (sensu Morbey, 2000; i.e. the early arrival of males). In 3255 

both streams and spawning periods, male detection probability peaked ~12-14 days 

before that of females (Fig. 5) and individual males tended first move between 10 

and 15 days before individual females (Table 1). Protandry has previously been 

recorded in both Pacific and Atlantic salmonid species (Esteve, 2005; Jonsson & 

Jonsson, 2011; Morbey, 2000; Quinn, 2018), although the requirement for 3260 

iteroparous species, such as brown trout, to preserve sufficient energy to survive 

spawning may place size-dependent constraints on the magnitude or degree of 

protandry (Morbey, 2002). Such a trade-off may help explain why Seamons et al. 

(2004) did not detect protandry in iterparous steelhead (Oncorhynchus mykiss), 

despite females mating almost exclusively with males that arrived at spawning areas 3265 

before them. 

The mate opportunity hypothesis, whereby earlier arrival of polygynous males at 

breeding areas increases their opportunity to mate with females, is a plausible 

explanation for protandry in salmonids, particularly in populations where males 
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reproduce for a longer period than females (Anderson et al., 2013; Fenkes et al., 3270 

2016; Aarestrup and Jepsen, 1998; Morbey, 2000). However, given that we found 

limited evidence for a longer reproductive period amongst males in the focal 

populations (Table 1), it is also possible that selection on females acts similarly, 

favouring relatively late arrival in order to ensure that males are present in sufficient 

numbers to promote intrasexual competition amongst males while increasing mate 3275 

choice and decreasing waiting costs for females (Morbey and Ydenberg, 2001). A 

third potential explanation is that early arriving males enjoy a rank advantage, 

establishing territorial dominance before the arrival of later males. However, male 

salmonids tend to roam extensively during spawning while females compete for 

prime spawning territory (Carss, Kruuk and Conroy, 1990; Nevoux et al., 2019), 3280 

suggesting that rank advantage mechanisms could also promote early arrival of 

females. 

Individual males were generally more active during the spawning period compared 

to females, particularly in the outflow stream, as evidenced by a higher mean number 

of detection days per male and more detections per day (Table 1). Male detection 3285 

span (i.e. the period between first and last detections) and frequency in the outflow 

were also substantially higher in the first than the second spawning period. The 

outflow antennae were positioned closer to the lake in the first period compared to 

the second, which may have resulted in increased detections of males conducting 

short-distance exploratory movements into the outflow in search of females. In 3290 

contrast with inflowing streams, olfactory cues (i.e. female pheromones) from 

outflows are unavailable to fish in lakes, requiring males to physically enter 

outflowing streams in order to confirm the presence of ripe females.  
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Salmonids can sometimes shed intraperitoneal PIT tags when spawning (Prentice, 

Flagg and McCutcheon, 1990; Bateman, Gresswell and Berger, 2009), and it has 3295 

been speculated that such shedding is more common in females. However, the 

similar span between first and last detection dates of individual males and females in 

three out of four stream-year combinations (Table 1), coupled with the identical 

number of males and females that were detected in both spawning seasons (11 of 

each sex), suggests that tag-shedding did not occur more frequently amongst 3300 

females.  

The male-biased detection frequency patterns found in this study are in keeping with 

Evan’s (1994) observation that male anadromous brown trout will leave and re-enter 

spawning rivers repeatedly within a spawning season while females generally return 

rapidly to the ocean after their eggs are laid. Such behavioural differences may 3305 

increase predation risk for males. Indeed, Carss et al. (1990) observed considerably 

higher predation by otters on male than female Atlantic salmon during the spawning 

period and speculated that this male-bias was largely due to the vulnerability of 

males as they move through shallow riffles during their extensive upstream and 

downstream excursions. The lack of evidence for differing responses to stream 3310 

height or moon phase by male and female trout in our current study was somewhat 

surprising, however. The overall lower activity of females compared with males, in 

conjunction with evidence of females responding more to variation in stream height 

(Table 2), is in keeping with Belding’s (1934) and Fleming’s (1996) assertion that 

during the spawning season, female salmonids tend to be more risk averse than 3315 

males. 
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Conclusions 

In this study we documented pronounced seasonality and sex-differences in 

spawning movement behaviours in brown trout that likely reflect inherited 3320 

phenology patterns that are cued, at a coarse scale, by photoperiod. At a finer scale, 

trout appear to move between lacustrine and stream habitats at times that minimise 

their exposure to visually-oriented predators, by moving at night and during darker 

lunar conditions and higher flows. These findings may be relevant from a 

conservation perspective, in that climate change or other anthropogenic factors such 3325 

as artificial light or flow regulation may interfere with the signals fish use to time 

key transitions between habitats, or lead to mismatches between cue and selective 

environment, with consequences for fitness.  
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Supporting information 

 3675 

Spawning-related movements in a salmonid appear timed to reduce 

exposure to visually-oriented predators 

 

 

 3680 

Figure S1. Size distribution (FL) of trout sampled from June to September in the 

upper outflow (N = 1,136) and the inflow (N = 877) between 2005 and 2017, and 

from Bunaveela Lough (N = 3,176) between 1991 and 2017. The red line at 165 mm 

represents the threshold length for maturity selected for this study (~mean – 1 SD).  
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 3685 

Figure S2. Mature-sized trout detected at the upper outflow antennae (July 2017 to 

June 2018) and trout identified as mature (either ripe or spent) in the Rough River 

fish trap (2016-2019). 
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Table S1: Hydrological properties of Bunaveela Lough, the upper outflow and the 

inflow streams. 

Site pH Conductivity  

µS cm-1 

Alkalinity (CaCO3 

equiv. mg/l) 

Nitrogen 

(mg/l) 

Phosphorous 

(μg/l) 

Bunaveela 7.2 86 33.0        0.657 17.66 

Inflow 7.23 116 30.87 0.274 15 

Upper 

Outflow 

7.05 96.65 10.14 0.238 7 

 

 

 

Table S2. Summary of trout that were caught, tagged or recaptured in Bunaveela 

Lough, Lough Feeagh and the Rough River traps during the project. 

Date Site 

# of 

Seine 

Net 

Hauls  

 

Trout 

Tagged 

FL>70

mm 

Trout 

FL<70

mm 

Trout Recaptured 

(previously 

tagged) 

11/10/2016 Bunaveela 5 44 0 0 

21/06/2017 Bunaveela 5 147 13 1 

23/06/2017 Feeagh 5 71 0 4 

16/08/2017 Bunaveela 6 102 16 14 

21/08/2017 Feeagh 6 52 0 17 

26/10/2017 Bunaveela 6 91 6 19 

27/10/2017 Feeagh 6 31 0 12 

24/10/2018 Bunaveela 4 41 6 10 

08/11/2018 Bunaveela 3 31 3 10 

Daily 

Rough 

River 

Traps NA 1759 165 287 

 Total NA 2369 209 374 
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Table S3. Proportion of mature-sized trout caught in the 

Rough River fish trap per month that were visually 

identified as ‘ripe’ (i.e. ready to breed), ‘not yet ripe’ (i.e. 

not displaying any physical characteristics indicative of 

sexual maturity) and ‘spent’ (i.e. have finished spawning). 

2017-2019. 

 N Not Yet Ripe Ripe Spent 

Oct 16 0.750 0.250 0.000 

Nov 66 0.182 0.621 0.197 

Dec 86 0.047 0.267 0.686 

Jan  67 0.075 0.050 0.875 

Feb 6 0.000 0.000 1.000 
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Abstract 

The degree of natal philopatry relative to natal dispersal in animal populations has 3725 

important demographic and genetic consequences and often varies substantially 

within species. In salmonid fishes, lakes have been shown to have a strong influence 

on dispersal and gene flow within catchments; for example, populations spawning in 

inflow streams are often reproductively isolated and genetically distinct from those 

spawning in relatively distant outflow streams. Less is known, however, regarding 3730 

the level of philopatry and genetic differentiation occurring at microgeographic 

scales, e.g. where inflow and outflow streams are separated by very small expanses 

of lake habitat. Here we investigated the interplay between genetic differentiation 

and fine-scale spawning movements of brown trout between their lake-feeding 

habitat and two spawning streams (one inflow, one outflow, separated by < 100 m of 3735 

lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the 

spawning period were recorded in just one of the two streams, consistent with natal 

fidelity, while the remainder were detected in both streams, creating an opportunity 

for these individuals to spawn in both natal and non-natal streams. The latter 

behaviour was supported by genetic sibship analysis, which revealed several half-3740 

sibling dyads containing one individual that was sampled as a fry in the outflow and 

another that was sampled as fry in the inflow. Genetic clustering analyses in 

conjunction with telemetry data suggested that asymmetrical dispersal patterns were 

occurring, with natal fidelity being more common amongst individuals originating 

from the outflow than the inflow stream. This was corroborated by Bayesian analysis 3745 

of gene flow, which indicated significantly higher rates of gene flow from the inflow 

into the outflow than vice versa. Collectively, these results reveal how a combination 

of telemetry and genetics can identify distinct reproductive behaviours and 
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associated asymmetries in natal dispersal that produce subtle, but nonetheless 

biologically relevant, population structuring at microgeographic scales.  3750 

 

Introduction  

Natal philopatry, whereby individuals return to their birth place for reproduction, 

limits gene flow between geographic areas and thereby increases neutral genotypic 

differentiation among populations via genetic drift. When ecological conditions vary 3755 

across space, natal philopatry can also facilitate the evolution of local adaptation 

(Kawecki and Ebert, 2004), which in turn influences the resilience of 

metapopulations and species in the face of environmental change (Hilborn et al., 

2003; Schindler, Armstrong and Reed, 2015). However, the geographic scales over 

which local adaptation operates within salmonid species remains poorly 3760 

characterised (Adkison, 1995; Fraser et al., 2011). In contrast to philopatry, natal 

dispersal promotes gene flow, increasing genetic diversity and thus reducing the 

likelihood of inbreeding within populations and homogenising genetic structure 

among populations, sometimes at the expense of local adaptation (Garant, Forde and 

Hendry, 2007). Rates of philopatry versus dispersal can vary within a single species 3765 

with respect to sex, age, life history or environmental factors (De Fraipont et al., 

2000; Förschler, del Val and Bairlein, 2010; Purdue, Smith and Patton, 2000; 

Winkler et al., 2006; Lesage et al., 2000). At the individual level, these behaviours 

are associated with a range of context-dependent fitness consequences, with many 

theories having been proposed for when selection should favour philopatry over 3770 

dispersal, or vice versa (see review by Hendry et al., 2004). 

 Dispersal is distinct from migration, in a behavioural sense, with the latter 

corresponding to spatially and temporally predictable movement of individuals 
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among breeding and foraging or refuge habitats (Dingle and Drake, 2007). However, 

dispersal and migration can be related. For example, resident passerine birds exhibit 3775 

higher rates of natal philopatry (i.e. reduced natal dispersal) relative to migratory 

passerine birds (Weatherhead and Forbes, 1994). Similarly, genetic differentiation 

appears to be greater among lake- and stream-resident populations of brown trout 

(Salmo trutta) compared to anadromous (sea-migrating) populations (Östergren and 

Nilsson, 2012), implying that ‘straying’ (i.e. natal dispersal) rates may be higher in 3780 

the latter, perhaps due to constraints on homing abilities.  

 Brown trout in general exhibit a broad range of migratory strategies and distances 

(Ferguson et al., 2019; Nevoux et al., 2019), making them a particularly interesting 

species for studying links between movement behaviour, dispersal versus philopatry, 

and the extent of demographic and genetic connectedness of populations. Natal 3785 

philopatry in salmonids involves a complex interaction between evolved genetic 

mechanisms and proximal responses to environmental and social cues (Dittman and 

Quinn, 1996). Together these mechanisms allow salmonids to ‘home’ back to their 

natal river and even the natal sites from which they originated, despite intervening 

movements or feeding migrations that can range in extent from tens of meters to 3790 

thousands of kilometres (Neville et al., 2006; Stewart, Quinn and Bentzen, 2003; 

Quinn, Stewart and Boatright, 2006). The geographic scale and consistency at which 

such homing behaviour operates remains uncertain, although individual Atlantic 

salmon have been recorded breeding in multiple redds separated by distances 

ranging from less than five meters up to more than five kilometres (Taggart et al., 3795 

2001). Juvenile salmonids imprint on (i.e. learn) the odours of their natal stream 

prior to, or during, out-migration from it (Dittman and Quinn, 1996; Keefer and 

Caudill, 2014). However, interrupted or imperfect imprinting during rearing or 
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juvenile migration can increase straying rates (Keefer and Caudill, 2014). There also 

appear to be genetically-based differences across populations in straying rates and 3800 

distances (King et al., 2016; Keefer and Caudill, 2014; Jonsson and Jonsson, 2014, 

2017), with selection thought to favour higher straying when habitat quality or 

quantity fluctuates unpredictably through time (Quinn and Tallman, 1987; Hendry et 

al., 2004). 

In addition to behavioural and life history characteristics, landscape or 3805 

seascape features also play a strong role in promoting or limiting dispersal and thus 

shaping patterns of intraspecific genetic diversity across space. For example, 

population structure in freshwater fishes tends to greatly exceed that found in marine 

fishes, perhaps due to the presence of more physical barriers to dispersal within and 

amongst freshwater systems (Tonteri et al., 2007; Ward, Woodwark and Skibinski, 3810 

1994). Waterfalls, culverts, dams and other landscape features can obstruct 

movement within river systems in both directions or in just one, with the latter 

situation providing a mechanism for asymmetric dispersal and gene flow (Prodőhl et 

al., 2019; Torterotot et al., 2014). Asymmetric dispersal, which also occurs in 

terrestrial habitats where it is often wind-driven (Sanmartı, Wanntorp and 3815 

Winkworth, 2007; Cook and Crisp, 2005), and in marine environments where it is 

often driven by ocean currents (Storch and Pringle, 2018; Pringle et al., 2011), can 

effectively generate a source-pseudosink population structure (sensu Watkinson and 

Sutherland, 1995) in which natural selection should be biased in favour of the source 

(‘upstream’) habitat (Kawecki and Holt, 2002). Additionally, river characteristics 3820 

can interact with homing and life-history differences to influence the genetic 

diversity and structure of salmonid populations (Vähä et al., 2007; Gomez-Uchida, 

Knight and Ruzzante, 2009; Ozerov et al., 2012; Bradbury et al., 2013; Mcphee et 
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al., 2014), as may the presence of lakes within watersheds (Dillane et al., 2008; 

Jacobs et al., 2018; Massa-Gallucci et al., 2010; McKeown et al., 2010; Palmé, 3825 

Laikre and Ryman, 2013). In addition to isolation by dispersal limitation, so-called 

‘isolation by adaptation’ processes may serve to increase genome-wide 

differentiation among populations, where natural selection plays an indirect role by 

reducing gene flow among ecologically divergent habitats, owing to reduced fitness 

of immigrants (Nosil, Egan and Funk, 2008; Orsini et al., 2013). With reduced gene 3830 

flow, populations are ‘free’ to diverge under the influence of random genetic drift. 

Isolation by adaptation has been invoked to explain spatial patterns of genetic 

diversity in salmonids linked with, for example, climate (Dionne et al., 2008; Olsen 

et al., 2011; Hand et al., 2016), geological substrate (Perrier et al., 2011), pathogens 

(de Eyto et al., 2011) and metal contamination (Paris, King and Stevens, 2015). 3835 

In this study, we use a combination of telemetry and genetics to investigate 

the interplay between putative homing/straying behaviours and genetic 

differentiation among spawning streams at a micro-geographic scale (sensu 

Richardson et al., 2014) in non-anadromous brown trout. The species typically 

exhibits hierarchical population genetic structure across a range of spatial scales 3840 

(Lobón‐Cerviá and Sanz, 2017), sometimes down to scales of < 1 km (Carlsson et 

al., 1999), implying either low straying rates at these micro-geographic scales, or 

fine-scale local adaptation that constrains gene flow if straying does occur. Brown 

trout often exploit lakes for growing and rearing, which can involve short- or long-

distance migrations between natal streams and lacustrine habitat. A particularly 3845 

interesting scenario arises where brown trout spawn in both inflowing and 

outflowing streams, but co-occur in a more productive lake habitat for much of their 

lives. Juveniles spawned in lake-outflows must conduct upstream feeding migrations 
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to reach lake habitat, actively swimming against the flow of the river. Such upstream 

feeding migrations would presumably be maladaptive in lake-inflow streams, as this 3850 

behaviour would move juveniles away from, rather than towards, the lake, where 

growth opportunities are higher. Thus, inflowing and outflowing streams may exert 

differing selective pressures by virtue of their flow direction, which in turn could 

promote genome-wide genetic divergence via the above mechanisms. Indeed, 

Jonsson et al. (1994) demonstrated that the offspring of inflow and outflow spawning 3855 

brown trout displayed different directional migratory responses to water current, a 

population-specific juvenile rheotactic response pattern that has been identified in 

various salmonid species (Kelso and Northcote, 1981; Bowler, 1975; Brannon, 1972; 

Kaya, 1991; Raleigh, 1967; Raleigh and Chapman, 1971; Raleigh, 1971). 

Additionally, brown trout populations that utilise common lake feeding habitat but 3860 

are genetically, behaviourally and morphologically distinct have been found to 

display reproductive isolation by homing back to separate inflow or outflow rivers 

for spawning (Ferguson and Taggart, 1991; Ferguson and Mason, 1981; Jacobs et 

al., 2018). Reproductive isolation appears to promote similar differentiation amongst 

sympatric lake-dwelling populations of rainbow smelt (Osmerus mordax) (Taylors 3865 

and Bentzent, 1993), Arctic charr (Salvelinus alpinus L.) (Jonsson and Jonsson, 

2001), Dolly Varden (Salvelinus malma) (Markevich, Esin and Anisimova, 2018), 

and sockeye salmon (Oncorhynchus Nerka) (Moreira and Taylor, 2015). It remains 

unknown, however, whether consistent, accurate homing behaviour and associated 

genetic divergence occurs between lake inflow and lake outflow streams at 3870 

microgeographic scales of less than 100 m.  

Here we investigated these issues in a small lake in the west of Ireland fed 

and drained respectively by a single inflowing and a single outflowing stream, 
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separated by less than a hundred meters of lake habitat. We hypothesised that a 

combination of pre- and post-zygotic isolating mechanisms should have produced 3875 

weak to moderate neutral genetic differentiation between brown trout originating in 

the inflow and outflow streams, and that gene flow patterns between these groups 

may not be symmetrical. As our first aim, we used PIT-tag telemetry to monitor 

lake-to-stream movements of spawning-sized fish to determine whether some fish 

exhibited behaviour consistent with philopatry (only detected in one of the streams) 3880 

while the behaviour of others was consistent with straying (detected in both streams). 

A fish detected during the spawning season in only one of the streams may, of 

course, have been born in the other and thus have been exhibiting straying 

behaviour. In the absence of more direct methods for detecting homing versus 

straying, genetic techniques can be used to assign fish sampled as adults in the lake 3885 

to population genetic clusters that may correspond to inflow versus outflow 

spawning streams if gene flow is restricted. Similarly, parental movements may be 

inferred indirectly using genetic sibship analysis: if fry sampled in both streams 

assign to the same half-sib group, for example, this suggests that one of their parents 

spawned in both streams. Our second aim was therefore to use a range of genetic 3890 

analyses, including clustering approaches, to identify any such half-sibships, test for 

fine-scale population structure, characterise patterns of gene flow between the 

streams (symmetric versus asymmetric) and interpret these patterns in light of the 

behavioural data and vice versa.  

  3895 
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Materials and methods 

 

Study area  

The Burrishoole catchment in the north west of Ireland is a complex freshwater 

system comprised of three main lakes linked by a network of rivers and streams that 3900 

drain an area of approximately 83 km2. Bunaveela Lough (54º 01’ 18” N 9º 32’ 43” 

W), the most northerly and the most elevated of the three lakes, has a surface area of 

46 ha, a maximum depth of 23 m, and supports populations of brown trout (Salmo 

trutta L.), Atlantic salmon (Salmo salar L.), Arctic char (Salvelinus alpinus L.) and 

European eel (Anguilla anguilla L.). Seine netting surveys indicate that trout are 3905 

relatively abundant in the lake, outnumbering salmon and char within the littoral 

zone by more than five to one. The lake is fed by a single inflowing stream, the 

Fiddaunveela, and drained by a single outflowing stream, the Goulaun. The straight-

line distance between the point at which the Fiddaunveela flows into the lake and the 

point at which the Goulaun flows out of the lake is 98 m. The inflow is a shallow and 3910 

flood-prone stream of approximately 2010 m in length, draining a steep valley to the 

south east of the lake. The outflow flows south west from Bunaveela Lough for 

10,345 m before entering Lough Feeagh (410 ha), increasing significantly in size as 

it approaches Feeagh. Due to the regulating effect of Bunaveela, the upper stretches 

of the outflow are less prone to rapid fluctuations in flow rates than the inflow. 3915 

Although pH during baseflow is circumneutral in the two streams, they are both 

small, poorly buffered and oligotrophic, and therefore offer limited feeding and 

growth opportunities to resident trout (hydrological conditions described in 

Supporting Information, Table S1). In contrast, much of Bunaveela Lough is 

comparatively well buffered and productive due to limestone and sandstone deposits 3920 
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(Whelan et al., 1998) and consequently the lake represents an alternative feeding 

habitat where growth may be less constrained (trout size distributions in streams and 

lake shown in Supporting Information, Fig. S1).  

 

 3925 

Figure 1. Map of the Burrishoole catchment, Co. Mayo, Ireland. Red circles are 

locations of PIT antennae. GG refers to geographic groups, i.e. sites where groups of 

fish were sampled. 

 

 3930 

Sampling  

Trout fry and parr were captured during the summers of 2017 and 2018 by 

electrofishing (electrofisher model: Hans Grassl IG600) in the upper and lower 

sections of the outflow (n = 181) and the upper, middle and lower sections of the 

inflow (n = 208) (Fig. 1). A total of 500 additional trout (fry, parr and adults) were 3935 

captured from the south eastern shore of Bunaveela Lough (henceforth ‘Bunaveela’) 
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by seine netting (9 mm mesh) across six dates between October 2016 and October 

2018 (details in Supporting Information, Table S2). All trout were anaesthetised in 

pH-buffered tricaine methane sulphonate (80 mg l−1), measured (fork length, FL, 

mm), weighed (to 0.1 g) and a small clip (approx. 2 mm2) was taken from the caudal 3940 

fin and stored in 95% ethanol for genetic analysis. Each trout of > 70 mm (n = 605) 

was implanted with a uniquely coded 12 mm half-duplex (HDX) passive integrated 

transponder (PIT) tag (Biomark 134.2 kHz ISO HDX). PIT tags were implanted into 

the peritoneal body cavity through a needle inserted just posterior to the tip of the 

pectoral fin and to one side of the mid‐ventral line at the tips of the pleural ribs. After 3945 

sampling, anaesthetised fish were moved to a tank of aerated fresh river or lake 

water and monitored until their equilibrium was fully regained and active swimming 

recommenced. Once recovered, all fish were released back into the site from which 

they were originally captured. PIT tagging and fin clipping were carried out in 

accordance with S.I. No.123/2014 Animal Health and Welfare (operations and 3950 

procedures) Regulations 2014 and with approval of the MI animal welfare 

committee. 

In order to characterise movement patterns at a broader catchment scale and thus 

contextualise any fine-scale genetic structure observed during subsequent analysis, a 

combination of electrofishing and seine netting was used to capture trout of a range 3955 

of sizes in Lough Feeagh and three of its tributaries (the Rough River, the Lodge 

River and the Glenamong River) (Fig. 1) over 32 dates between October 2016 and 

October 2018 (Supporting Information, Table S2). Additionally, between December 

2016 and March 2019 one fish trap was operated continuously in the Rough River 

(RR), a river that is utilised by lake feeding trout for spawning, and two other traps 3960 

were operated at tidal limit of the river system. Trout that had been actively captured 
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or trapped in either of the above cases were measured, visually assessed for maturity 

status, scanned for PIT tags, and all untagged individuals > 70 mm (n = 3617) were 

PIT tagged. A length distribution for trout confirmed as mature (i.e. displaying 

physical characteristics indicative of imminent or recent mating) was generated and 3965 

used to designate a minimum threshold ‘mature’ length (mean FL minus 1 SD of 

mature fish) for use in behavioural analyses. A conservative threshold of one 

standard deviation below the mean was used here in order to maximise the chances 

of only including true mature fish in the telemetry analyses (as we were interested in 

spawning movement behaviours specifically), i.e. to exclude larger immature fish 3970 

that may have been similar in size to relatively small mature fish.  

Most of the trout that were PIT-tagged in Bunaveela (87.6%) were only caught once 

(up to 811 days prior to the spawning period during which they were detected on an 

antenna), and therefore their actual size at spawning time was unknown. To estimate 

this, and thereby exclude any individuals that were below our threshold mature 3975 

length from subsequent analyses, we used FL data from 87 PIT tagged lake-feeding 

trout that were recaptured during the study period (from 15 to 505 days after tagging) 

to calibrate a linear model to describe growth per degree day in the statistical 

program R v3.5.2 (R_Core_Team, 2019). This then allowed us to infer the likely 

growth (from tagging to spawning period) of fish that were only measured at 3980 

tagging, giving an estimate of their FL during the spawning period. Previous studies 

have shown that individual growth rate within fish populations is largely a function 

of temperature and individual size (Neuheimer and Taggart, 2007; Handeland, 

Imsland and Stefansson, 2008; Boltaña et al., 2017). Throughout the study period, 

high frequency lake surface temperature data were recorded in Lough Feeagh (~7 km 3985 

SW of Bunaveela) (de Eyto et al., 2019) and, due to the physical similarities and 
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geographical proximity of the lakes, these temperatures were used as a proxy for 

Bunaveela surface water temperatures. By including a base temperature (T0), 

calculations were limited to temperatures relevant to growth, or ‘growing degree 

days’ (GDD) (Chezik, Lester and Venturelli, 2014). FL at tagging date and GDD 3990 

between tagging date and recapture date were treated as explanatory variables while 

growth over the same period was treated as the response variable in the model. The 

best value for T0, in statistical terms, was determined by maximising model R2 value 

from a range of base temperatures (0°C-12°C inclusive). The model containing the 

optimised T0 was then used to estimate individual growth since tagging (and thus 3995 

final FL) as a function of initial FL and intervening GDD. 

  

Monitoring behaviour –PIT telemetry 

In order to investigate the movement of lake-feeding trout during the spawning 

season, as well as the degree of movement between the upper and lower Burrishoole 4000 

catchment, a network of five swim-through, cross-channel HDX PIT antennae 

powered by Oregon RFID multiplexing readers was installed between August and 

September 2017 and maintained for the duration of the study period. HDX PIT 

antennae generate an electromagnetic field that wirelessly powers any nearby HDX 

PIT tag, causing the tag to transmit a unique 12-digit identification number that is 4005 

subsequently received and recorded by the antenna reader along with the date and 

time. The scan rates of all readers were set to ten transmit-receive cycles s−1. Two 

antennae were installed in the lower inflow, 75 m and 85 m upstream of Bunaveela, 

and two antennae were installed in the upper outflow, 40 m and 60 m downstream of 

the lake (Fig.1). A single antenna was installed in the lower outflow, 9,540 m 4010 

downstream from Bunaveela and 805 m upstream from Lough Feeagh (Fig.1). Each 
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antenna was designed to span the entire channel width and depth at its location 

during all but exceptionally high flow conditions. The performance of each antenna 

was checked with a test tag every 10 to 14 days and shortly after each flood event. 

When required, repairs were generally completed within 48 hours of antenna damage 4015 

in order to ensure that antennae remained operational throughout the vast majority 

study period.  

A combination of daily data on the maturity status of trout moving upstream and 

downstream through the RR fish traps and PIT-derived behavioural data for 

Bunaveela-tagged trout deemed mature was used to designate a spawning migration 4020 

period for Burrishoole trout, running from the 1st of November to the 28th of 

February. Annual movements of mature-sized lake-tagged trout past the fluvial 

antennae occurred almost exclusively during this period (see results and Supporting 

Information, Fig. S2), suggesting that movements recorded at this time of the year 

were primarily motivated by reproduction rather than exploratory foraging. For the 4025 

purpose of characterising discrete behavioural tactics, mature trout detected only on 

the inflow antennae were categorised simply as ‘inflow-only’ (IO) fish, and mature 

fish detected only on the upper outflow antennae as ‘outflow-only’ (OO) fish. Fish 

from each of these categories could be exhibiting homing behaviour to their natal 

streams, or straying behaviour if born in the other stream - the telemetry data alone 4030 

cannot distinguish these, but genetic inference may facilitate such distinctions (see 

below). Mature trout detected on antennas in both streams during the spawning 

window were categorised simply as B fish (standing for ‘both’), which could be 

exhibiting either homing or straying, or both; clearly they moved from the lake to 

both streams, but they may not have spawned in them. 4035 
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Genetics 

DNA extraction 

Genomic DNA was extracted from caudal tissue from 853 samples using the 

Promega Wizard® SV 96 Genomic DNA Purification System. DNA quality and 4040 

quantity was assessed on agarose gels by comparison with a Quick-Load® Purple 

100 bp DNA Ladder (New England Biolabs). Concentration of DNA for PCR was 

adjusted to 2-10ng/µl 

 

PCR 4045 

Multiplex PCR (two independent reactions) was used to amplify 18 microsatellite 

loci (1- Ssa197; 2- Ssa85; 3- SsaD71; 4- Ssa410UOS; 5- Ssa416; 6- CAO48828; 7- 

CAO53293; 8- CAO60177; 9- BG935488; 10- One102-a; 11- One102-b; 12-

One103; 13- One108; 14- ppStr3; 15- Cocl-lav-4; 16- SasaTAP2A; 17- MHC-I; 18- 

One9Asc) in addition to one sex marker, which was developed from the SalmoYF 4050 

sequence available in GeneBank (P. Prodöhl, unpublished).  These microsatellites, 

selected from a panel comprising 38 markers characterised and optimised by Keenan 

et al. (2013) for Salmo trutta genetic research, had been found to be very reliable, 

consistent and informative for population genetic structuring (Prodöhl et al. 2017).  

All PCRs were performed in 3.5µl volume, including 2-10ng of genomic DNA and 4055 

1.75µl Plain Combi PPP Master Mix (TopBio). Further primer details (e.g. original 

references, fluorescent label employed, concentrations) and PCR cycling parameters 

are given in Keenan et al. (2013). Amplified fragments were resolved on either a 24 

capillary ABI3500xL (University College Cork) or a 96 capillary ABI3730XL 

(Queens University Belfast) DNA analysers using POP-7™ polymer and 4060 

GeneScan™ 600 LIZ™ dye as size standard (ThermoFisher Scientific). Genotyping 
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(allele calling) was executed using GeneMarker (SoftGenetics). The genetic sex of 

each individual was determined based on the presence or absence of an amplified 

DNA fragment of 108 base pairs at the locus SalmoYF. This fragment is present in 

male brown trout but not in females. 4065 

 

Tests for genotyping errors 

All loci were tested for the presence of genotyping errors due to null alleles or large 

allele dropout using MICRO-CHECKER v2.2.3 (Van Oosterhout et al., 2004). Four 

loci, BG935488, Ssa85, CAO53293 and MHC-I showed evidence of high 4070 

frequencies (8-12%) of null alleles. Additionally, GENEPOP v4.2 (Rousset, 2008) 

was used to test each locus in each sampling group for Hardy-Weinberg equilibrium 

(HWE). FIS for these four loci was > 0.15 in at least six out of eleven sampling 

groups, indicating strong heterozygote deficiencies. No other locus exhibited 

evidence of strong or frequent heterozygote deficiency and, as a result, the four loci 4075 

identified by MICRO-CHECKER were excluded from all subsequent analyses. The 

revised 14 loci dataset was checked for unscored alleles and any individual with 

fewer than 10 scored loci was removed from downstream analyses (n = 9), leaving 

844 successfully genotyped samples.  

 4080 

Parentage and sibship analysis 

In order to control for the influence of full-sibling groups on genetic structure 

analyses and identify mixed-site half-sibling groups (i.e. half-sibs sampled in 

different places) that could be indicative of non-philopatric parental breeding 

behaviour, the maximum likelihood method implemented in COLONY v2.0.6.5 4085 
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(Jones and Wang, 2010) was used to infer parent-offspring relationships as well as 

half and full sibling groupings among all sampled individuals. COLONY input 

settings were: female and male polygamy with inbreeding; dioecious and diploid; 

medium length run; full likelihood method; updating of allele frequencies; sibship 

scaling; no sibship priors. Three replicate runs were conducted with differing seeds 4090 

and only assignments that were identified with > 90% probability in at least two runs 

were accepted. Salmonids are not known to display long term monogamous breeding 

behaviour over extended spatial scales (Taggart et al., 2001) and, thus, full siblings 

are likely to be the progeny of matings occurring at a single location. Consequently, 

full siblings should only become separated geographically through post-hatching 4095 

movement. Half-sibling families can come about in four ways: (1) a single female 

mates with two or more males in the same place; (2) a single male mates with two or 

more females in the same place; (3) a single male moves around and mates with two 

or more females in different places, and (4) a single female moves around and mates 

with two or more males in different places. Thus, if scenario (3) and (4) occur 4100 

regularly, the probability that half-siblings hatch in different places should be higher 

than that for full-siblings. The proportion of groups that contained both inflow and 

outflow sampled juvenile members was therefore compared between full and half 

siblings using the prop.test function in R (with ‘sites’ here corresponding to 

geographic groups, see below). Groups containing Bunaveela-sampled members 4105 

were excluded from this analysis because our sampling indicates the lake is primarily 

a feeding habitat for older trout that have already moved to the lake from their natal 

stream. The null hypothesis of equal proportions corresponds to a situation where 

there are no pre-hatching differences in spatial distribution of full- versus half-

sibling families, or initial differences do exist but are erased by extensive and 4110 
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random post-hatching movements. A significant difference in proportions (with 

inflow-outflow mixed site groups more common amongst half siblings) therefore 

provides indirect evidence for lack of fidelity to a single spawning stream by 

polygamous parents, coupled with limited movement of fry or parr between inflow 

and outflow sites.   4115 

In order to avoid bias in population structure analyses that can result from the 

presence of full sibling groups (Rodríguez-Ramilo and Wang, 2012; Rodríguez-

Ramilo et al., 2014; Anderson and Dunham, 2008), a single individual was selected 

from each full sibling group and retained while all other full siblings were excluded 

from subsequent analyses. PIT-tagged individuals that had been detected on 4120 

antennae were given preference for retention, followed by individuals with the 

highest number of scored loci, followed by individuals that had been assigned the 

highest sample identification number.  

 

Calculating population genetic summary statistics 4125 

Prior to conducting population structure analyses, temporally distinct samples were 

merged based on sampling site where genetic differentiation between sampling years 

was low. To test for temporal genetic structure within our sampled sites, we 

calculated within-site between-time pairwise linearised FST values (Reynolds, Weir 

and Cockerham, 1983; Slatkin, 1995) and their significance in Arlequin v3.5.2.2 4130 

(Excoffier and Lischer, 2010) using 10,000 dememorization steps and a Markov 

chain length of 100,000. Without any multiple test correction of p-values, no within-

site between-time comparisons were significant, and we thus merged samples across 

years for all sites, resulting in six geographically defined groups (GGs) (Fig. 1 and 
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Table 2). Each GG was tested for HWE and linkage disequilibrium (LD; a measure 4135 

of the independence of loci), using the exact G test in GENEPOP (parameters: 

10,000 dememorization steps, 100 batches and 1000 iterations per batch). Population 

summary statistics including observed (Ho) and expected (HE) heterozygosity, allelic 

richness (AR) and inbreeding coefficient (FIS) were calculated for all GGs using the 

diveRsity package v1.9.90 (Keenan, McGinnity, et al., 2013) in R (Table 2). Private 4140 

alleles confined to each GG were identified with the poppr package (Kamvar, 

Tabima and Grünwald, 2014; Kamvar, Brooks and Grünwald, 2015) in R. Effective 

population size (Ne) was estimated for each GG using the linkage disequilibrium 

method implemented in NeEstimator V2.1 (Do et al., 2014). This single-sample 

method has been shown to provide similar or higher precision in estimates of Ne than 4145 

other available methods when applied to highly polymorphic microsatellite data with 

limited temporal variation such as those used in this study (Waples and Do, 2010).  

 

Population structure and gene flow 

To test for population structure within and among GGs, we used STRUCTURE 4150 

v.2.3.4 (Pritchard, Stephens and Donnelly, 2000; Falush, Stephens and Pritchard, 

2003, 2007; Hubisz et al., 2009) which quantifies individual admixture and does not 

require the a priori grouping of individuals by population. STRUCTURE utilises a 

Bayesian clustering algorithm to identify the most likely number of distinct genetic 

clusters (K) within a dataset and determines an individual proportional membership 4155 

(Qi) for each sample to the inferred cluster(s) of origin so as to minimise departures 

from HWE within clusters. A hierarchical approach to STRUCTURE analysis was 

implemented, whereby major genetic groupings within the dataset were identified 

and separated from one another prior to investigating subtler genetic structure within 
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each of these groupings. Because Bunaveela appears to primarily represent a feeding 4160 

habitat while the inflow and outflow streams are nursery habitats (see results), a 

model that utilises sampling location as a prior for river samples but not for lake 

samples and allows for admixture was chosen as the most biologically appropriate 

for our data. A burn-in period of 100,000 and a Monte Carlo Markov Chain 

(MCMC) of 1,000,000 repetitions after burn-in was used for each run, and twenty 4165 

independent iterations with different seed values were conducted for each value of K 

between one and eight. Results from all iterations were analysed with STRUCTURE 

HARVESTER v0.6.94 (Earl and vonHoldt, 2012) which implements the Evanno 

method (Evanno, Regnaut and Goudet, 2005) to indicate the most likely value for K 

based on the rate of change in the log probability of data between successive values 4170 

of K. The ‘Greedy’ algorithm in CLUMPP v1.1.2 (Jakobsson and Rosenberg, 2007) 

was used to merge the results from each iteration into a combined output file that 

was used to calculate mean Qi values as well as to generate bar plots demonstrating 

individual membership to each STRUCTURE-defined cluster.  

In order to identify the likely natal stream (i.e. inflow or upper outflow) of mature 4175 

lake-feeding trout identified behaviourally as having moved into the inflow only 

(IO), the outflow only (OO) or both (B), the three behavioural classifications were 

treated as sampling populations in a STRUCTURE analysis that also included one 

group comprised of all juveniles sampled in the upper outflow site (GG2) and a 

second group comprised of all juveniles sampled in the inflow sampling sites (GG4, 4180 

GG5 and GG6). Location priors were applied to the stream-sampled groups but not 

to the IO, OO or B groups. This analysis was conducted after purely GG-based 

analyses had been used to investigate geographic patterns of genetic structure, 

allowing K to be fixed at an appropriate value. 
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Rates of recent immigration (a proxy for gene flow) between the inflow and the 4185 

outflow were estimated using BayesAss v3.0.4 (Wilson and Rannala, 2003). 

BayesAss implements a Bayesian inference framework to estimate the fraction of 

individuals in a sampled population that are migrants derived from a second (or 

multiple) sampled population(s) per generation. All samples from the three inflow 

GGs (GG4, GG5 and GG6) were pooled to form a single ‘inflow’ group (n = 146), 4190 

while the upper outflow samples (GG2) formed a second ‘upper outflow’ group (n = 

124). All samples used were from trout that were below the threshold maturity FL at 

time of sampling, with the majority being young-of-the-year. A burn-in period of 

500,000 was used followed by 5,000,000 MCMC iterations with a sampling interval 

of 1,000 steps. Adjustable acceptance rates fell within the optimal range of 20-60% 4195 

suggested by Wilson and Rannala without the need to alter mixing parameters. All 

analyses were conducted 10 times, each with different initial seed values, and the 

stationary distributions of the associated chains were compared in order to test for 

convergence between runs.  

Broad spatial patterns of genetic differentiation were assessed within the greater 4200 

Burrishoole catchment in order to test for evidence of isolation by distance (IBD) 

and explore broad patterns of gene flow between the upper and lower catchment. 

Pairwise linearized FST values (Reynolds, Weir and Cockerham, 1983; Slatkin, 1995) 

and associated p-values were calculated among all GGs in Arlequin and the 

measuring tool in QGIS (v3.8.0-Zanzibar) was used to measure the minimum 4205 

traversable waterway distance between all sampling sites. The resulting geographic 

and genetic distance matrices were assessed for evidence of IBD using a Mantel test 

(Mantel, 1967) of matrix correspondence as implemented in the ‘ape’ package v5.2 

(Paradis and Schliep, 2018) in R. 
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 4210 

Results  

 

Defining maturity status and spawning period 

The mean FL of trout that were visually identified as mature during the study period 

(i.e. ripe, gravid or spent) was 201.2 mm (SD = 36.5 mm, n = 322). We thus set 165 4215 

mm as the threshold for designating maturity status (~ mean - 1 SD). At the fish 

traps, 87.3% of visibly mature trout sampled were above this threshold size. A 

combination of historical data and recent sampling indicates that outside of the 

spawning period only 0.46% of trout sampled in the inflow and 0.18% of trout in the 

upper outflow exceed 165mm, while 26.1% of trout sampled in Bunaveela exceed 4220 

this length (Supporting Information, Fig. S1).   

Growth per GDD of recaptured lake-feeding trout was found to be influenced by 

both initial FL and T0. A base temperature of 5°C was selected as the optimum T0 as 

model R2 values peaked at this base temperature (R2 = 0.70). In order to determine 

individual maturity status, each tagged trout detected on our antennae during a 4225 

spawning migration period was thus assigned an estimated fork length for the 

relevant period using the equation  

FL2 = FL1 + (-0.0303 * ln(FL1) + 0.1701) * DD5    

where FL2 is fork length at median date of relevant spawning period, FL1 is fork 

length at date of initial tagging, and DD5 is the sum of growing degree days above a 4230 

T0 of 5°C between both dates. Because growth rate as a function of FL1 followed a 

von Bertalanffy curve, a logarithmic transformation was applied to FL1 (Hordyk et 

al., 2014). The equation above accurately predicts the FL of Bunaveela-resident trout 

that were recaptured more than once during the project and whose intervening 
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growth between recapture events had been excluded from the model calibration 4235 

process (n = 10, R2 = 0.91, p < 0.001, RSE = 6.674). 

The vast majority (99.0%) of visibly mature trout captured at the Rough River fish 

trap during the study period were caught between the dates we designated as the 

spawning period (1st Nov. to 28th Feb.). Similarly, 96.8% of all detections from 

mature-sized trout that had been tagged in Bunaveela were recorded on our fluvial 4240 

antennae between these dates (Supporting Information, Fig. S2). 

 

Behaviour 

A total of 456 trout > 70 mm were PIT tagged in Bunaveela during the study period 

and genetic sex could be confidently determined for 441 of these. Of these, 251 4245 

(56.9%) were identified as male and 190 (43.1%) were identified as female. Three 

hundred and eighty-four trout were tagged prior to the 2017-2018 spawning period 

and 243 of these were estimated to exceed the size threshold for maturity (165 mm) 

prior to or during that spawning period. The remaining 72 trout were tagged prior to 

the 2018-2019 spawning period, by which time 450 of the Bunaveela-tagged trout 4250 

were estimated to be of mature size. Two hundred and twenty-nine Bunaveela-

tagged trout were detected on either the inflow antennae, the outflow antennae, or 

both. Three of these fish were only detected outside of the designated spawning 

periods and were excluded from subsequent analyses. A further 18 individuals were 

classified as being below mature length (i.e. estimated FL2 < 165 mm) during the 4255 

spawning period in which they were detected and were also excluded from analyses, 

leaving 208 mature sized individuals that were detected during one or both spawning 

periods. Together, these fish produced 112,164 individual detections over the two 
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spawning periods, primarily during the hours of darkness. During the 2017-2018 

spawning period, 96.9% and 96.7% of mature trout detections in the inflow and the 4260 

upper outflow respectively were between sunset and sunrise. During the 2018-2019 

spawning period, 93.8% and 89.6% of detections in the inflow and the upper outflow 

respectively were between sunset and sunrise. One hundred and sixty-nine of the 208 

mature length trout that were detected during a spawning period were detected on the 

outflow antennae (of which 107 were detected exclusively by the upper outflow 4265 

antennae, i.e. OO fish), 101 were detected on the inflow antennae (39 exclusively on 

these antenna, i.e. IO fish), and 62 were detected on both inflow and outflow 

antennae (B fish) (Table 1). Fifty-seven and fifty-eight percent of detected OO and 

IO fish, respectively, were identified genetically as male, while 64% of B fish were 

identified as male. The proportion of males within the B group was not found to be 4270 

significantly different from the proportion of males within the total PIT-tagged group 

(57%), (Fischer’s exact test: p = 0.18). 

During the study period, three out of 3617 (< 0.1%) trout that were tagged in the 

lower Burrishoole catchment (i.e. downstream of the lower outflow sampling site) 

were subsequently detected moving past the upper outflow antennae into Bunaveela. 4275 

All three individuals had been captured and tagged as they moved downstream 

through the Rough River trap towards the confluence with the most southerly 

(downstream) section of the outflow (Fig. 1). None of these fish were detected by the 

inflow antennae. None of the 577 trout tagged in the inflow, upper outflow and 

Bunaveela (Supporting Information, Table S2) were detected moving downstream 4280 

past the lower outflow antenna into the lower catchment nor were any of these fish 

captured as smolts in the fish traps at the tidal limit. 
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Table 1. Counts of mature-length trout detected at the upper outflow antennae and the lower inflow antennae during the 

2017-18 and the 2018-19 spawning periods.  

Antennae Total Detected at this 

stream in both 

spawning 

periods 

Not detected in 

other stream in 

either spawning 

period 

Also detected at 

other stream 

either spawning 

period 

Detected at 

other stream in 

17-18 spawning 

period only 

Detected at 

other stream in 

18-19 spawning 

period only 

U_OUTFLOW 

2017-18 

87 17 46 41 32 5 

U_OUTFLOW 

2018-19 

99 17 69 30 6 22 

U_OUTFLOW 

Both Years 

169 17 107 62 34 24 

L_INFLOW  

2017-18 

55 5 17 38 30 2 

L_INFLOW  

2018-19 

51 5 23 28 4 19 

L_INFLOW  

Both Years 

101 5 39 62 32 21 

 

Genetics 4285 

Parentage and sibship 

COLONY identified 52 full-sibling groups with p ≥ 0.9 within the total successfully 

genotyped dataset (n = 844) in at least two out of three runs. Full-sibling groups 

ranged in size from two to 11 individuals. Eighteen groups contained only members 

sampled in a single stream (inflow or outflow), four groups were dyads containing 4290 

one inflow and one Bunaveela-sampled member, one group was a dyad containing 

one upper outflow and one Bunaveela-sampled member, and 29 groups were dyads 

containing two Bunaveela-sampled members. No full-sibling groups contained both 

inflow and outflow sampled members. More than 90% of Bunaveela-sampled dyad 

members were > 85 mm in length (mean FL = 144.3 mm), implying that these 4295 

Bunaveela-sampled fish were not young-of-the-year and had most likely moved from 

their natal stream to the lake, unless some lake-spawning had occurred (in contrast, 

mean FL in stream-sampled groups was 60.1 mm).  

Mixed-site groups were relatively frequent amongst half sibling groups compared 

with full-sibling groups, with 74 out of 163 half-sibling groups (45.4%) composed of 4300 
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two individuals sampled in separate locations (Table 3). While 61 of these mixed-

site half-sibling dyads contained one member sampled in Bunaveela, 11 dyads 

contained one member sampled in the inflow and a second member sampled in the 

outflow. In eight of these 11 dyads, both siblings were sampled as young-of-the-year 

(< 70 mm). When groups containing Bunaveela-sampled members were excluded 4305 

from analyses (leaving 44 half-sibling groups and 18 full-sibling groups), a 

significantly higher proportion of half-sibling groups (25%) contained both an 

inflow and an outflow sampled member compared to full-sibling groups (0%) (p = 

0.049).  

 Twenty-four individuals in the total dataset were assigned as parents of other 4310 

individuals within the dataset (Supporting Information, Table S3). All of these 

parents were captured within Bunaveela while 12 offspring were sampled in the lake, 

seven in inflow and five in the upper outflow. Based on the COLONY results, 82 

full-sibling samples, representing ~10% of genotyped individuals, were removed 

from the dataset prior to performing genetic structure analyses in order to prevent 4315 

full sibling groups from biasing population genetics analyses.  

 

 

 

 4320 
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Table 2. Sampling and genetic diversity details of geographic groups (GGs) in the Burrishoole catchment. 

N is the number of samples in each group, HE is expected heterozygosity, HO is observed heterozygosity, 

NA is the total number of alleles, AR is allelic richness, AP is number of private alleles (i.e. alleles found 

only in this sampling group), FIS is inbreeding coefficient, Ne is estimated effective population size based 

on the linkage disequilibrium method. 
Sampling 

Site 

GG 

Code 

Sampling 

Years 

N HE HO NA AR AP FIS Ne (95% CI) 

Lower 

Outflow 

GG1 2017 27 (27)* 0.72 0.7 120 7.2 21 0.0280  (-0.0587 - 

0.1111) 

288.90 (98.0-Infinite) 

Upper 

Outflow 

GG2 2018 124 (139)* 0.69 0.68 123 6.76 2 0.0141  (-0.0106 - 

0.0401) 

223.4 (206.8-408.9) 

Bunaveela 

Lough 

GG3 2016, 

2017, 2018 

465 (497)* 0.69 0.69 140 6.98 13 0.0047  (-0.0086 - 

0.0183) 

756.7 (591.1-1024.8) 

Lower 

Inflow 

GG4 2017, 2018 60 (60)* 0.68 0.68 113 6.57 1 0.0032   (-0.028 - 

0.0358) 

302.8 (159.7-1695.7) 

Middle 

Inflow 

GG5 2017, 2018 65 (81)* 0.7 0.72 118 6.74 0 -0.0284  (-0.0613 - 

0.0041) 

179.3 (120.7-324.5) 

Upper 

Inflow 

GG6 2017, 2018 21 (49)* 0.66 0.68 95 6.01 0 -0.0282  (-0.0908-

0.0271) 

62.6 (36.7-168.3) 

*Note: Numbers enclosed by brackets in the N column indicate the number of genotyped samples in each GG prior to removal of full siblings samples 

and samples with < 10 scored loci. 

 

 

Table 3. Number of between-site and within-site half sibling dyads based on Maximum Likelihood 

(ML) method in COLONY. Minimum probability required for inclusion of dyad: > 90%.  
 Lower Outflow Upper Outflow Bunaveela Lower Inflow Middle Inflow Upper Inflow 

Lower Outflow 2      

Upper Outflow 2 13     

Bunaveela 7 26 58    

Lower Inflow 0 4 7 0   

Middle Inflow 2 4 15 2 7  

Upper Inflow 0 1 6 1 2 5 

 4325 

Population genetic summary statistics 

After pooling temporal samples within sites, and after sequential Bonferroni 

correction, locus One-102-b showed a significant departure from HWE in the lower 

outflow group (GG1). No other locus departed significantly from HWE in any other 

GG, and no locus pairs showed significant LD in any GG. Genetic structure analyses 4330 

conducted both with and without the One-102-b locus were highly congruent, 

indicating that this single departure from HWE had no significant impact on 
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observed patterns of genetic structure between GGs. Consequently, results described 

hereafter refer to analyses utilising 14 loci, include locus One-102-b.  

 4335 

Figure 2.  STRUCTURE plot of (a) all 6 GGs (K = 2) (b) 5 upper catchment GGs 

(GG2-GG6) (K = 2) and (c) pooled inflow GGs (GG4, GG5 and GG6), upper 

outflow (GG2) and the three behaviourally-defined lake-sampled groups (B = 

Individuals detected moving into both the inflow and the outflow; IO = Individuals 

detected moving into the inflow only; OO = Individuals detected moving into the 4340 

outflow only) (K = 2).  

 

Population structure and gene flow 

Level one of hierarchical STRUCTURE analysis identified evidence of two genetic 

clusters (K = 2) (Supporting Information, Fig. S3 and S4). These two clusters could 4345 

be broadly described as ‘upper catchment’ and ‘lower outflow’. The upper catchment 

cluster was predominantly composed of individuals from the five uppermost 

sampling sites (GG2-GG6), and individuals from these GGs had a mean assignment 

score (Qi) to this cluster of 0.97 (SD = 0.06). The lower outflow cluster was 
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predominantly composed of individuals from the lower outflow (GG1), with lower 4350 

and more variable individual assignment scores (mean Qi to the lower catchment 

cluster was 0.65 ± 0.19) (Fig. 2 a). 

In order to investigate lower hierarchical levels of genetic structure within the upper 

catchment cluster, a STRUCTURE analysis was performed on the five GGs 

associated with the upper catchment cluster (GG2-GG6). Although the mean ln(K) 4355 

values for this analysis were marginally higher for K = 1 than K = 2, this difference 

was minor when compared with all other modelled values of K, suggesting that ln(K) 

plateaus at K = 2 (Supporting Information, Fig. S5). Furthermore, at K = 2, a large 

proportion of individuals had strong assignment to one cluster or the other, and with 

spatial non-homogeneity in the distribution of assignment scores (Fig. 2 b), a pattern 4360 

consistent with the presence of genuine population structure (Pritchard, Wen and 

Falush, 2007). At K = 2, most individuals in the three inflow groups (GG4, GG5 and 

GG6) assign strongly to a single ‘inflow’ cluster with low levels of admixture (mean 

Qi = 0.90, SD = 0.06). In contrast, the Bunaveela and upper outflow (GG3 and GG2) 

show evidence of significant admixture, with mean inflow cluster Qi values of 0.64 4365 

(SD = 0.16) and 0.45 (SD = 0.17) respectively. These assignment patterns were 

maintained throughout further STRUCTURE runs in which GG2 (upper outflow) 

was split into three groups of equal size to the three inflow GGs (Supporting 

Information, Fig. S7 (a)), but such patterns disappeared when individual samples 

from the inflow and upper outflow GGs were randomly assigned amongst four 4370 

predefined groups matched in size to the four donor GGs (Supporting Information, 

Fig. S7 (b)). These findings indicate that the patterns shown in Fig. 2 represent 

genuine geographically-based structure rather than artefacts from Bayesian priors. 
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No evidence of lower hierarchical levels of genetic sub-structuring was detected 

within the inflow or outflow GGs during subsequent analyses of these groups. 4375 

When the OO, IO and B groups of mature PIT-tagged lake-sampled fish were 

included in a STRUCTURE analysis (fixed at K = 2) that also included an upper 

outflow and a merged inflow group (with the latter two groups composed of fry and 

parr sampled in the streams), each of the three behaviourally-defined groups 

exhibited distinct assignment patterns that resemble the characteristic assignment 4380 

patterns of the inflow and upper outflow groups. In particular, the IO group, the B 

group and the merged inflow group were characterised by consistently high 

individual assignment to a single ‘inflow’ cluster (Fig. 2 c) with mean Qi values to 

this cluster of 0.97 (SD = 0.02), 0.90 (SD = 0.06) and 0.97 (SD = 0.02) respectively. 

In contrast, the OO group and the outflow-sampled juvenile group were both 4385 

characterised by higher and relatively variable assignment to a second cluster, 

indicative of greater admixture within these groups (mean Qi to the second cluster 

for these groups is 0.17 (SD = 0.11) and 0.33 (SD = 0.16) respectively). 

BayesAss results indicate that recent migration rates between the inflow and upper 

outflow streams have been strongly asymmetrical, and are characterised by a 4390 

predominantly downstream direction of migration from the inflow to the outflow. 

Less than 1% (0.95%) of the trout in the inflow are estimated to be migrants derived 

from the outflow group (per generation), while 32.02% of trout in the upper outflow 

are estimated to be migrants derived from the inflow group (per generation). The 

associated 95% credible intervals, a Bayesian analogue to confidence intervals, are 4395 

0% to 2.4% and 30% to 34.01% respectively. There was a high degree of 

convergence between multiple runs (Supporting Information, Table S4), indicating 

that that the asymmetric pattern detected by BayesAss reflects genuine differences in 
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migration rates between the inflow and outflow. Genetic diversity generally 

increased from upstream to downstream, with the minimum AR recorded in the 4400 

uppermost group (6.01 in the upper inflow, GG6), and the maximum AR recorded in 

the lowest group (7.02 in the lower outflow, GG1).  

 

Table 4. Pairwise genetic distances and geographic distances between all geographic groups 

(GGs).  Genetic distances [FST/(1 - FST)] are located in the bottom left diagonal. Geographic 

distances (m) are located in the top right diagonal. Genetic distances with significant associated p 

values (after applying as sequential Bonferroni correction) are indicated by bold text.  
 Lower Outflow Upper Outflow Bunaveela Lower Inflow Middle Inflow Upper Inflow 

Lower Outflow 0 4655 4747 4936 5556 5645 

Upper Outflow 0.02104 0 92 281 901 990 

Bunaveela 0.01484 0.00173 0 102 722 811 

Lower Inflow 0.0154 0.003 0.00042 0 620 709 

Middle Inflow 0.01656 0.00443 0.00179 -0.00166 0 89 

Upper Inflow 0.02835 0.01016 0.00918 0.00551 0.00404 0 

 

 4405 

Figure 3. Relationship between genetic distance [FST / (1 - FST)] and geographic 

distance (m) for all geographic group (GG) pairings. R2 = 0.83, p < 0.001. 
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Isolation by distance analyses revealed that genetic distance between GG pairs, 

expressed as Slatkin’s pairwise linearized FST [FST /(1- FST)], ranged from < 0.001 to 

0.028 while geographic distance between sampling sites ranged from 89 m to 5645 4410 

m (Table 4). Mantel test results indicate the occurrence of a positive correlation 

between genetic distance and geographic distance matrices (Z = 525.47, p = 0.013), a 

pattern of genetic structure consistent with isolation by distance (see Fig. 3). All of 

the highest pairwise FST values are associated with GG pairs that include the lower 

outflow group, GG1 (FST = 0.015 to 0.029), indicating that the trout sampled at this 4415 

site belong to the most genetically distinct GG. The lower outflow site is also the 

most geographically distant site from Bunaveela, located 4747m downstream from 

the lake. When GG1 was excluded from analysis, the Mantel test revealed evidence 

of significant IBD within the five upper catchment groups, GG2-GG6 (z-statistic = 

25.82, p = 0.033). The three inflow groups (GG4-GG6) share non-significant 4420 

pairwise FST values of < 0.006, indicating high rates of gene flow amongst all GGs 

within the inflowing stream. 

 

Discussion 

Previous studies of brown trout have shown that populations spawning in inflowing 4425 

versus outflowing streams of the same lake are often genetically and phenotypically 

differentiated, implying limited gene flow among them and potential local adaptation 

(Massa-Gallucci et al., 2010; Jonsson et al., 1994; Palmé, Laikre and Ryman, 2013; 

Ferguson and Taggart, 1991; Linløkken, Johansen and Wilson, 2014). In cases where 

no obvious physical barriers to dispersal exist, some combination of pre-zygotic 4430 

behavioural isolating mechanisms (that reduce the likelihood of inflow-origin fish 

straying into outflow streams and successfully mating there, or vice versa) and post-
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zygotic ecological barriers (reduced fitness of hybrid offspring) may constrain 

effective dispersal and thus gene flow. Here we explored these issues at a 

microgeographic scale, i.e. a fine spatial scale that is within the typical ‘dispersal 4435 

neighbourhood’ of the species (Richardson et al. 2014). Our telemetry results 

showed that the potential for dispersal between inflow and outflow streams is high in 

the Bunaveela system, given that ~ 30% of lake-tagged trout that were detected by 

our antennae were detected moving into both streams. Genetic sibship analysis 

indicated that some fry sampled in nursery habitat in the inflow stream had half-4440 

siblings present in the outflow stream (and vice versa), suggesting that one of their 

parents had reproduced successfully in both streams. This indirect evidence for gene 

flow was consistent with the rather weak genetic differentiation we documented 

between the streams. Importantly, however, the genetic data also revealed higher 

rates of recent migration from the inflow into the outflow than vice versa. Given the 4445 

short dispersal distances involved and the lack of any obvious physical barriers, our 

findings point collectively towards interesting asymmetries in pre- or post-zygotic 

isolating mechanisms, which we discuss further below.  

  

Interpreting the telemetry and population structure results in light of each other 4450 

A key goal of this study was to couple PIT-telemetry with microsatellite-based 

population genetic inference to obtain complementary insights into homing/straying 

behaviours and the implications for population structuring. A priori, we expected to 

find some genetic differentiation between the inflow and outflow streams, given that 

(i) brown trout can exhibit genetic structuring at fine spatial scales (Carlsson et al., 4455 

1999; Lobón‐Cerviá and Sanz, 2017), (ii) previous studies (see above) have found 

genetic differences between inflow and outflow streams and (iii) isolation by 
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adaptation mechanisms can be reasonably hypothesised (see below). We indeed 

documented subtle population structuring within the upper Burrishoole catchment, 

with two putative clusters that corresponded to some degree, but not perfectly, with 4460 

inflow versus outflow spawning streams. The weak nature of this structure precluded 

us from being able to pinpoint cases of ‘pure straying’ behaviour, which would 

require assigning lake-tagged individuals with high confidence to a given natal 

stream (inflow or outflow) and subsequently demonstrating with PIT-telemetry that 

they were only detected in the opposite stream during the spawning season. 4465 

However, the existence of ‘pure homing’ and mixed homing/straying tactics could be 

tentatively inferred. Lake-tagged fish detected during the spawning period in the 

inflow stream only (IO group) exhibited consistently high individual assignment 

(mean Qi = 0.97, SD = 0.02) to a single putative ‘inflow cluster’; thus the IO group, 

which comprised ~39% of all fish detected on the inflow antennas, likely represented 4470 

mostly ‘inflow-origin homers’.  

A second genetic cluster corresponded most closely with the upper outflow (GG2), 

as indicated by the fact that the mean cluster 2 Qi for this group was 0.55 (SD = 

0.17) in the STRUCTURE analysis that excluded the behavioural groups (Fig. 3 b). 

The lower and more variable assignment here compared to the very high and 4475 

consistent assignment of inflow groups (GG4-GG6) to the putative inflow cluster 

(cluster 1) likely reflects substantial net immigration from inflow to outflow; thus 

there is weak genetic differentiation between them and high levels of admixture in 

the outflow. Additional sampling further downstream in the outflow would perhaps 

have revealed increasing assignment to cluster 2, making the overall distinction with 4480 

respect to the inflow cluster clearer. When the behavioural groups were included in 

the analysis, OO fish importantly exhibited higher, although again more variable, 
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assignments to the putative outflow cluster (mean cluster 2 Qi = 0.17, SD = 0.11) 

compared to IO fish (mean cluster 2 Qi = 0.03, SD = 0.02) or B fish (mean cluster 2 

Qi = 0.10, SD = 0.06). This again indicates admixture in the OO group and suggests 4485 

that these fish were of mixed ancestry, consistent with gene flow from the inflow to 

the outflow. Thus OO fish may represent ‘outflow-origin homers’ (born in outflow, 

returned to outflow), ‘inflow-origin strayers’ (born in inflow, moved to outflow), or 

some mix of both. The genetic assignment patterns point more towards OO fish 

being predominantly outflow-origin homers, but we have less confidence in this 4490 

inference relative to our inference regarding the IO fish. Interestingly, the B group 

were characterised by individual assignment scores to the putative inflow cluster 

(mean Qi = 0.90, SD = 0.06) that were lower and more variable relative to IO fish 

assignments to the same cluster, but higher and less variable relative to OO fish. This 

suggests that many of the B group fish originated in the inflow stream – having a 4495 

genetic signature that was more ‘inflow in nature’ – but may have actually spawned 

in both streams, again consistent with net gene flow from inflow to outflow. Thus B 

fish may be both homers and strayers, although clearly the definition of these terms 

is contingent on the criteria one uses to define ‘distinct’ genetic populations, which 

may not map cleanly onto population units defined using demographic criteria 4500 

(Waples and Gaggiotti, 2006). 

The identification of juvenile half-sibling dyads (i.e. sharing a single parent) 

containing both inflow and outflow sampled fry indicates that some individuals 

indeed spawn in both streams. An alternative scenario whereby half-siblings were all 

born in the same stream, but some then moved as fry to the other stream seems 4505 

highly unlikely, as these fry were sampled early in life on the nursery grounds prior 

to when extensive dispersion is believed to occur. Additionally, the proportion of 
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dyads containing both inflow and outflow-sampled members relative to same site 

dyads was significantly higher amongst half-siblings than amongst full-siblings, 

indicating that juvenile movement between sites (which is likely to be equally 4510 

common within half and full sibling groups) does not account for the prevalence of 

these inflow-outflow half-sibling dyads.  

 

Asymmetric dispersal and the maintenance of genetic structure between inflow and 

outflow 4515 

Bayesian analyses indicated that contemporary migration rates between the two 

streams is strongly asymmetrical in a predominantly downstream direction, implying 

that inflow-to-outflow dispersal significantly exceeds outflow-to-inflow dispersal. 

The programme BayesAss estimated that in recent years, ~ 31% of trout in the upper 

outflow are migrants derived from the inflow (strayers), which accorded well with 4520 

our telemetry observation that ~ 37% of ostensible outflow spawners belonged to our 

B group, i.e. they were detected during the spawning period in both streams. These 

findings were also consistent with the Bayesian clustering (STRUCTURE) results, 

whereby juvenile trout sampled in the inflow were characterised by consistently high 

individual assignment to a single cluster, indicating that effective migrants into this 4525 

stream are relatively rare. In contrast, fry sampled in the outflow exhibited higher 

and more variable assignment to a second cluster, indicating that comparatively high 

rates of immigration result in greater admixture at this location. Taking all genetics 

and telemetry results together, it appears that trout originating in the inflow are more 

prone to between-stream dispersal than trout originating in the outflow.  4530 
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Flow direction effects may combine with behavioural and olfactory mechanisms to 

bias dispersal in favour of inflow-to-outflow. For example, inflow-born fry may be 

easily washed downstream into the lake before olfactory imprinting on inflow water, 

while outflow fry cannot be washed into the lake – they must actively swim against 

the flow to reach the lake. Additionally, as spawning time approaches, lake-dwelling 4535 

outflow-origin fish that approach the mouth of the inflow would receive odour cues 

that ‘smell wrong’, assuming they first imprinted on outflow water before moving to 

the lake. In contrast, lake-dwelling inflow-origin fish would presumably detect no 

odour cues from the outflow stream until they enter it, so such exploratory 

movements may be more common amongst inflow-origin trout. Moreover, for 4540 

spawning-age fish of either origin, moving from the lake into the outflow can be 

completely passive whereas moving into the inflow requires active locomotion. 

More generally, asymmetry in gene flow tends to be associated with systems driven 

by directional physical processes such as flowing water (Sundqvist et al., 2016), 

wind (Sanmartı, Wanntorp and Winkworth, 2007; Cook and Crisp, 2005), and 4545 

pelagic currents (Storch and Pringle, 2018; Pringle et al., 2011). In such scenarios, 

prevailing air or water currents tend to act as pre-zygotic mechanisms that promote 

dispersal from ‘upstream’ populations to ‘downstream’ populations while restricting 

dispersal in the opposite direction. This asymmetric dispersal coupled with 

differences in selective pressures (and possible variation in habitat quality) can lead 4550 

to interesting source-sink population dynamics with complex evolutionary outcomes 

(Kawecki and Holt, 2002). Additionally, net dispersal from upstream to downstream 

should lead to higher genetic diversity in downstream populations relative to 

upstream populations, all else being equal. Indeed, the most downstream group 

within our set of samples (lower outflow, GG1) exhibited the highest genetic 4555 
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diversity (Table 2) while the uppermost group (upper inflow, GG6) exhibited the 

lowest genetic diversity. This broad pattern of decreasing genetic diversity from 

downstream to upstream suggests that downstream-biased gene flow operates within 

the Burrishoole catchment at various scales. It is possible that two small waterfalls, 

the first located upstream of the lower outflow (GG1) and second located just 4560 

downstream of the upper inflow (GG6), serve to limit upstream gene flow despite 

being navigable by trout travelling in either direction. 

Given putative net gene flow from inflow to outflow, why does the upper outflow 

not become genetically indistinguishable from the inflow spawning stream? One 

possibility is that the upper outflow sections receive migrants from genetically 4565 

distinct subpopulations lower down in the Burrishoole system, but the inflow stream 

does not, contributing to the maintenance of genetic differences between them. 

Indeed, a small number of trout that were PIT-tagged in the lower catchment were 

subsequently detected in the upper outflow, but never in the inflow stream. The 

genetic contribution of such putative upstream strayers, in conjunction with that 4570 

provided by downstream strayers from the inflow, may thus account for the pattern 

of high admixture observed amongst trout sampled in the upper outflow, a pattern 

that is largely absent from the inflow samples.  

An alternative explanation for the maintenance of inflow-outflow genetic 

differentiation is that reduced fitness of hybrids resulting from matings between 4575 

inflow- and outflow-origin fish acts as a post-zygotic isolating barrier to effective 

dispersal. Inflow-born fry must move downstream to reach productive lake-rearing 

habitat, whereas outflow-born fry must move upstream to reach the lake. A genetic 

basis for fry movement direction has previously been shown in inflow versus 

outflow systems (Jonsson et al., 1994), and thus alleles for downstream fry 4580 
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movement may be selected against in outflow-born hybrids and vice versa in inflow-

born hybrids. F1 hybrids may therefore die at higher rates, or grow less well due to 

not reaching lake habitat, in each stream, effectively reducing rates of gene flow 

between the streams. Such isolation-by-adaptation processes can also contribute to 

genetic differentiation at neutral markers, for which divergence is promoted by 4585 

genetic drift and constrained by gene flow (Nosil, Egan and Funk, 2008; Orsini et 

al., 2013).  The low to moderate Ne values (Table 2) estimated for these populations 

imply that non-trivial genetic drift may indeed be in operation.  The existence of 

post-zygotic barriers could also foster the evolution of pre-zygotic isolating 

mechanisms, i.e. reinforcement, where, for example, inflow-origin fish ‘prefer’ to 4590 

mate with other inflow-origin fish and vice versa in order to avoid producing less-fit 

hybrids. It is also worth noting that while the isolation-by-distance pattern we 

document (Fig. 3) at a broader catchment scale is consistent with simple isolation-

by-dispersal-limitation and asymmetric gene flow, it could also be produced by 

isolation-by-adaptation process if ecological dissimilarity – and therefore the extent 4595 

of local adaptation – also increases with distance (Orsini et al., 2013).  

 

While our research strongly suggests that mature trout that move from Bunaveela to 

both the inflow and the outflow often breed successfully in both streams, the 

nocturnal nature of these activities prevented us from directly observing individuals 4600 

during spawning. Consequently, we cannot unequivocally confirm that the putative 

straying behaviour detected during this study resulted in effective dispersal. On the 

other hand, it is possible for female salmonids to shed PIT tags during spawning 

(Foldvik and Kvingedal, 2018; Bateman, Gresswell and Berger, 2009; Taylor et al., 

2011). Indeed, such tag loss by females may account for the male bias observed 4605 
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among putative strayers. If so, the actual proportion of strayers amongst the trout 

tagged during this study may exceed the proportion reported here. Finally, although 

brown trout primarily spawn in fluvial habitats, they are capable of successfully 

spawning in lakes if suitable hydrological conditions are present (Arostegui and 

Quinn, 2019). It is possible that some of the mature sized lake tagged trout that were 4610 

not detected in either the inflow or outflow were in fact lacustrine spawners. 

Predation by large brown trout, otters (Lutra lutra), eels, cormorants (Phalacrocorax 

carbo) and herons (Ardea cinerea) may also account for some of the discrepancy 

between the number of trout that we tagged and the number we subsequently 

detected. Due to the difficulty of operating efficient PIT antennae in lakes, and the 4615 

difficulty of distinguishing lake-feeding from lake-spawning related detections, it 

was not possible to assess the local prevalence of lake-spawning during this project, 

nor the influence of such behaviour on local population structure. 

 

Concluding remarks  4620 

The geographic scale at which natal philopatry and natal dispersal operate plays an 

important role in regulating gene flow and determining population structure within 

the landscape. Our research here indicates that a small expanse of intervening lake 

habitat can have a significant influence on rates of dispersal and philopatry amongst 

trout populations that spawn in inflowing and outflowing streams. Furthermore, it 4625 

appears that in such scenarios inflow-to-outflow dispersal may significantly exceed 

outflow-to-inflow dispersal. Analogous asymmetric dispersal patterns are found in 

various species, with important demographic (Storch and Pringle, 2018) and 

evolutionary (Kawecki and Holt, 2002) consequences. Isolation-by-adaptation type 

mechanisms may promote the maintenance of genetic differentiation at neutral, in 4630 
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addition to non-neutral, loci between inflow and outflow populations, whilst 

asymmetric dispersal will tend to increase genetic diversity of outflow populations. 

Through these processes, the presence of lake habitat between inflow and outflow 

streams, despite providing no physical barrier to movement or dispersal, may 

facilitate the evolution and persistence of local adaptations in salmonid populations 4635 

at finer geographic scales than has been traditionally suggested in the literature 

(Adkison, 1995; Fraser et al., 2011). Restocking programmes that fail to adequately 

consider the geographic scale of local adaptations or the implications of 

asymmetrical gene flow between captive and wild populations (Baskett and Waples, 

2012) may result in sub-optimal performance of stocked fish and potentially threaten 4640 

the long term performance of extant local populations by diluting locally adapted 

traits (Mobley et al., 2019; McGinnity et al., 2009, 2007).  
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Supporting information 

 5030 

Telemetry and genetics reveal asymmetric dispersal of lake-feeding 

salmonid between inflow and outflow spawning streams at a 

microgeographic scale 

 

Table S1. Hydrological properties of Bunaveela Lough, the upper 

outflow and the inflow streams. 

Site pH Conductivity  

µS cm-1 

Alkalinity 

(CaCO3 

equivalent 

mg/l) 

Nitrogen 

(mg/l) 

Phosphorous 

(μg/l) 

Bunaveela 7.2 86 33.0        0.657 17.66 

Inflow 7.23 116 30.87 0.274 15 

Upper Outflow 7.05 96.65 10.14 0.238 7 

 5035 

 

 

 

 

 5040 

 

 

 

 

 5045 

 

 

 

 

 5050 
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Table S2. Summary of trout, salmon and char that were caught, tagged or recaptured within the 

Burrishoole catchment during the duration of the project. 

Date Site 

Number of 

Seine Net 

Hauls or 
Electrofishi

ng Passes 

Trout 
Tagged 

FL 

>70mm 

Trout 
FL 

<70m

m 

Trout 
Recaptured 

(previously 

tagged) 

Salmon 
Tagged 

FL 

>70mm 

Salmon 

FL 
<70mm 

Salmon 
Recaptures 

(previously 

tagged) 

11/10/2016 Bunaveela 5 44 0 0 10 0 0 

12/10/2016 Lodge Stream 3 10 0 0 7 0 0 

21/06/2017 Bunaveela 5 147 13 1 29 5 0 

23/06/2017 Feeagh 5 71 0 4 80 1 4 

28/06/2017 
Glenamong 
River 3 17 0 0 112 0 0 

29/06/2017 
Lower 

Outflow 3 28 1 0 139 7 0 

16/08/2017 Bunaveela 6 102 16 14 20 2 1 

21/08/2017 Feeagh 6 52 0 17 28 3 21 

06/09/2017 Lower Inflow 3 20 3 0 8 0 0 

06/09/2017 Middle Inflow 3 16 8 0 12 1 0 

06/09/2017 Upper Inflow 3 13 10 0 10 6 0 

26/10/2017 Bunaveela 6 91 6 19 10 5 1 

27/10/2017 Feeagh 6 31 0 12 11 0 9 

15/08/2018 
Upper 

Outflow 3 23 129 0 0 0 0 

05/09/2018 Lower Inflow 3 28 24 0 0 0 0 

05/09/2018 Middle Inflow 3 6 53 0 14 0 0 

05/09/2018 Upper Inflow 3 15 12 0 0 0 0 

24/10/2018 Bunaveela 4 41 6 10 4 3 0 

08/11/2018 Bunaveela 3 31 3 10 2 0 0 

27 Dates Rough River 3 1227 326 315 1111 3539 270 

Daily RR Traps NA 1759 165 287 546 878 192 

Daily 
Tidal Limit 
Traps NA 450 NA 41 NA NA 357 

 Total NA 4223 774 730 2153 4450 855 

 

 5055 

 

 

Table S3. Parentage assignment for offspring from each GG. All parents assigned to offspring 

within the total dataset came from the Bunaveela GG, including parents of fry sampled in the 

inflow and outflow streams. 

Offspring Site Bunaveela 
Lower 

Inflow 

Middle 

Inflow 

Upper 

Inflow 

Lower 

Outflow 

Upper 

Outflow 
Total 

Number assigned to a 

Bunaveela-sampled 

parent 

12 4 3 0 0 5 24 
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 5060 

 

Table S4: BayesAss migration estimates between the Inflow and Upper Outflow. 10 runs 

conducted with different starting seeds in order to assess convergence between runs.  m[a][b] 

describes proportion of immigrants into population [a] derived from population [b] per 

generation. 

 

m[UpperOutflow] 

[Inflow] 

m[UpperOutflow] 

[UpperOutflow] 

m[Inflow]       

[Inflow] 

m[Inflow] 

[UpperOutflow] 

Run1 0.3196 0.6804 0.9907 0.0093 

Run2 0.3194 0.6806 0.9901 0.0099 

Run3 0.3198 0.6802 0.9902 0.0098 

Run4 0.3205 0.6795 0.9904 0.0096 

Run5 0.3197 0.6803 0.9907 0.0093 

Run6 0.3199 0.6801 0.9905 0.0095 

Run7 0.3203 0.6797 0.9909 0.0091 

Run8 0.3196 0.6804 0.9903 0.0097 

Run9 0.3197 0.6803 0.9905 0.0095 

Run10 0.32 0.68 0.9907 0.0093 

Mean 0.31985 0.68015 0.9905 0.0095 

StDev 0.000320156 0.000320156 0.000240832 0.000240832 

 

 

 

 5065 

 

 

 

 

 5070 
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Figure S1. Size distribution (FL) of trout sampled in the inflow (n = 877), the upper 

outflow (n = 1136) and Bunaveela Lough (n = 3176). The red line at 165 mm 5075 

represents the threshold length for maturity selected for this study (mean – 1 SD). 

Sampling period: June-September 1991-2017. 
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Figure S2. Temporal distribution of PIT detections from mature-sized Bunaveela-5080 

tagged trout moving past the upper outflow antennae (July 2017 to June 2018) and 

phenotypically mature trout (i.e. gravid or ripe) captured at the Rough River fish trap 

during the study period. 
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 5085 

Figure S3. Mean Ln Probability (STRUCTURE method) of K = 1-8. All 6 GGs.  

 

 

Figure S4. Delta K (Evanno method) of K = 2-7. All 6 GGs. 

 5090 
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Figure S5. Mean Ln Probability (STRUCTURE method) of K = 1-8.  GG2-GG6. 

 

 5095 

Figure S6. Delta K (Evanno method) of K = 2-7. GG2-GG6. 
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Figure S7. STRUCTURE plots of inflow (GG4-GG6) and upper outflow (GG2) 

geographic groups (K = 2), in which: 5100 

(a) GG2 was divided into three population groups (STR4, STR5 and STR6) 

equal in size to GG3, GG4 and GG5 prior to analysis. 

(b) All samples from the inflow and upper outflow groups (GG2, GG4, GG5 and 

GG6) were randomly assigned amongst four randomized groups (RGs) equal in size 

to GG2, GG4, GG5 and GG6 prior to analysis. 5105 
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General discussion 

Environmental heterogeneity is considered to be a primary factor governing the 

diversity and distribution of organisms globally (Snyder and Chesson, 2004; Palmer, 

2003; Stevens and Tello, 2011). Spatial environmental heterogeneity drives 

adaptation and, ultimately, speciation by providing differing niches, selective 5110 

pressures and opportunities for reproductive isolation (Stein, Gerstner and Kreft, 

2014). Environmental conditions also vary through time over periods ranging from 

minutes to millennia (Palmer and Poff, 1997). Temporal environmental variation 

provides distinct challenges to species as resources or tolerable conditions within an 

area may come and go. As a result, a negative relationship between species richness 5115 

and temporal heterogeneity is often assumed (Stein, Gerstner and Kreft, 2014).  

However, predictable temporal and spatial environmental variations can provide 

distinct opportunities for species that are capable of moving between habitats. As a 

result, migratory animals are some of the most successful and abundant organisms 

on the planet (Swadling, 2006; Wilcove, 2008). The timing, duration, range, 5120 

direction and frequency of migratory movements displayed by a species or 

population can be thought of as the evolutionary products of trade-offs amongst 

innumerable potential life-history strategies (Hansson and Åkesson, 2014). As such, 

these aspects of migration can yield valuable insights into the proximate and ultimate 

drivers of animal behaviour throughout our heterogeneous biosphere that provide us 5125 

with the ability to anticipate, and even ameliorate, the impacts that anthropogenic 

environmental changes have on migratory species. Against this background, the 

overarching aim of this thesis was to investigate the interplay between environmental 

heterogeneity in its broadest sense (i.e. spatial and temporal variation of biotic and 
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abiotic factors) and locally-adapted migratory behaviours and physiological 5130 

performance using wild Atlantic salmon and brown trout as case study animals. 

 

Overview of each chapter 

 

The main chapters in this thesis differ substantially from one another in terms of 5135 

their focus as well as the methodologies they employ. However, each is concerned 

with a distinct aspect of movement ecology that, together, provide broad insights 

into the environmental drivers of spatiotemporal variation in the migratory 

behaviours, migratory performances and genetic structuring found in salmonids.  

In Chapter 2 I investigated whether the naturally-occurring infection intensities of 5140 

the acanthocephalan endoparasite Pomphorhynchus laevis had detrimental effects on 

the physiology of wild Atlantic salmon smolts in either fresh or salt water. Despite 

causing extensive damage to the intestines of host fish (Wanstall, Thomas and 

Robotham, 1988; Dezfuli et al., 2008; Wanstall, Robotham and Thomas, 1986; 

Dezfuli et al., 2002), P. laevis had not been associated with mortality or reduced 5145 

growth in salmonids in previous studies (Wanstall, 1984; Wanstall, Robotham and 

Thomas, 1986; Hine and Kennedy, 1974). However, all previous studies on the 

pathological impacts of P. laevis infection have been limited to freshwater 

environments. As has been found with infestations of the freshwater ectoparasite 

Gyrodactylus salaris (Pettersen et al., 2013), I hypothesized that epithelial damage 5150 

from P. laevis infection would lead to reduced hypo-osmoregulatory performance of 

salmonids in salt water. If severe, such an environmentally-cued (i.e. saltwater 

specific) pathology could lead to mortality and threaten the persistence of 
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anadromous salmon populations while increasing selection for freshwater residency 

in trout. As the Irish strain of P. laevis is the only strain of this parasite known to 5155 

commonly use salmonids as its preferred definitive hosts (O’Mahony, Kennedy and 

Holland, 2004; Munro, Whitfield and Diffley, 1989; Guillen-Hernandez and 

Whitfield, 2001), such effects could influence demographic patterns of salmonids in 

Ireland. However, despite observing high infection intensities of P. laevis amongst 

some the experimental smolts, I found no evidence of an association between 5160 

infection intensity and mortality, permeability of the gut or variation in the blood 

parameters I used as indicators of osmoregulatory performance or stress. I did find, 

however, that the Irish freshwater strain of P. laevis can survive for at least 72-hours 

while their hosts are in salt water, providing a possible explanation for the unusually 

widespread distribution of the parasite in Ireland. It should be noted, though, that 5165 

although the salinity of the salt water used in our experimental tanks (~ 26 PPT) was 

representative of estuarine and coastal waters in Clew Bay, it was lower than in open 

ocean areas of the Atlantic (~ 35 PPT).  

Chapter 3 provides a technical description of a novel double-breakaway pass-through 

PIT antenna system I developed for use in flood-prone rivers. As described in 5170 

Chapter 1, PIT telemetry has various advantages over other technologies that are 

currently used to monitor fish in fluvial environments. However, traditional pass-

through PIT antennae are prone to significant and, often, irreparable damage if 

flotsam becomes entangled in the cables or support ropes. The design that I present 

in Chapter 3 can withstand high flows and the passage of flotsam without suffering 5175 

structural damage, saving equipment and labour while minimizing the loss of data. 

After reliance on traditional pass-through designs led to significant data loss in the 

early stages of my research, development and adoption of this double-breakaway 
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design facilitated the collection of data used in chapters 4 and 5 as well as Appendix 

A.   5180 

In Chapter 4 I investigated associations between environmental variables and the 

seasonal, daily and diel movement patterns of mature brown trout between a feeding 

lake and two spawning streams (one inflow and one outflow) with the aim of 

identifying the proximate drivers of temporal spawning movements through 

transitional areas between habitats. Over two spawning seasons, I used passive 5185 

integrated transponder (PIT) antennae situated close to the junctions between stream 

and lake habitat to monitor the movements of mature-sized trout that I had 

previously PIT tagged in the lake. Movements in both streams were predominantly 

(89 - 97 %) nocturnal and distinctly seasonal, with a peak in daily detections close to 

the winter solstice in both years. However, sex-based phenological differences were 5190 

evident, with male movement activity starting and peaking before that of females 

(protandry). The probability of detecting either sex increased as stream height rose 

and as the moon waned, conditions that should increase the ability of migrants to 

evade visually-oriented predators. These results demonstrate the likely role of 

temporal environmental heterogeneity in driving the timing of migratory movements 5195 

over a broad range of scales and provide insights into the evolutionary pressures 

behind these associations. 

The aim of Chapter 5 was to develop our understanding of the finest spatial scales at 

which genetic structure may arise amongst sympatric migratory salmonids, and to 

identify the interactions between behaviour and landscape that underlie such 5200 

structure. To this end, I used a combination of PIT-derived data and genetic analyses 

to investigate the interplay between gene flow, genetic differentiation and the 

spawning movements of mature brown trout between the lake and the two streams 
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mentioned above. As such, it provides insights into the broader implications of some 

of the findings from Chapter 4. Although nearly 30% of mature individuals entered 5205 

both streams (and therefore had the opportunity to spawn in both), Bayesian analyses 

identified the existence of subtle genetic structure amongst juveniles sampled in the 

two streams and indicated that gene flow was strongly asymmetrical in a 

predominantly downstream (i.e. inflow to outflow) direction. These findings reveal 

how, even in the absence of physical barriers to dispersal, spatial environmental 5210 

heterogeneity can influence migratory behaviour and gene flow patterns at 

microgeographic scales with potentially important implications for local adaptation 

and population fitness. 

In Appendix A I present some findings from a complementary branch of 

investigation into freshwater migrations of Atlantic salmon parr and smolts that I 5215 

pursued during my PhD and that I am preparing for publication in the near future. I 

describe a small number of these findings in the current discussion (referenced as 

(Finlay et al., MS in prep.)) in order to highlight the universality or specificity of 

results described in the preceding chapters. 

In Appendix C I present a review of existing literature on the influence of 5220 

environmental heterogeneity on life history strategies in brown trout with a particular 

focus on the factors associated with migratory and resident life histories. I was one 

of 11 authors from an ICES working group on sea trout (WGTRUTTA) involved in 

writing this paper (providing input to the design and concepts, contributing 15 - 20 

% of the text, and proof reading) which forms a relevant synthesis of many of the 5225 

concepts discussed in the preceding chapters.  
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The influence of biotic and abiotic components of environmental 

heterogeneity on life history strategies 

 5230 

Despite its oligotrophic status (de Eyto et al., 2016), the environmental heterogeneity 

found in the Burrishoole catchment provides its native salmonids with a variety of 

habitats that offer differing opportunities depending on life stage, season and 

climatic conditions. The salmon and trout populations that are the focus of Chapters 

2, 4 and 5 migrate over a range of temporal and spatial scales in order to take 5235 

advantage of such heterogeneity. As they grow, trout that hatched in the 

Fiddaunveela and upper Goulaun streams (Chapter 4 and 5) are likely to find that 

their access to sufficient food, territory or shelter within their natal habitats becomes 

increasingly limited. Such limitations account for the near-total absence of mature-

sized trout from these streams over nine years of summer electrofishing sampling, 5240 

while the constant presence of such fish in Bunaveela Lough seine-net surveys 

(Chapter 4, Fig. S1) indicates that feeding migrations to the lake are a crucial life 

history strategy for the local trout population(s).  

Seine-netting surveys (Chapter 5, Table S2) demonstrate that Bunaveela Lough and 

Lough Feeagh also provide important growth habitats for salmon parr, particularly 5245 

those in their second or third year of life. However, despite the evident superiority of 

Bunaveela Lough to the Fiddaunveela and upper Goulaun streams as a habitat for 

sustaining growth, records show that only a single trout of over 300 mm (a male of 

462 mm) has been captured there during 26 years of seine-net sampling. Thus, even 

in lacustrine habitats, growth opportunities for salmonids in the Burrishoole 5250 

catchment appear to be limited and anadromous migrations were once a common life 

history strategy for the native trout populations. However, severely reduced marine 
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survival of Burrishoole’s anadromous trout since 1989 has been followed by a 

drastic decline in the output of trout smolts from the catchment despite evidence that 

freshwater resident trout numbers remain high (Chapter 1, Fig. 1). The development 5255 

of Atlantic salmon aquaculture in the region in the late 1980s and an associated 

increase in infestations of Lepeophtheirus salmonis is regarded as the primary cause 

of this sudden reduction in marine survival (Gargan, Tully and Poole, 2003; Tully 

and Whelan, 1993; Poole et al., 1996, 2007; Whelan, 2010) and demonstrates how 

changes in the environment (whether biotic or abiotic in nature) may alter the fitness 5260 

trade-off balance amongst alternate life history strategies and lead to differing 

behavioural characteristics within and amongst populations.  

 

The freshwater strain of the endoparasite P. laevis has a limited and discontinuous 

distribution (Hohenadler et al., 2018; Roohi, Pazooki and Sattari, 2015; Kennedy, 5265 

Bates and Brown, 1989) and, furthermore, appears to only use salmonids as its 

preferred definitive hosts in Ireland (O’Mahony, Kennedy and Holland, 2004; 

Munro, Whitfield and Diffley, 1989; Guillen-Hernandez and Whitfield, 2001). 

Accordingly, any pathological effects caused by P. laevis to salmonids should 

primarily impact Irish populations, a pertinent concern given modern declines of 5270 

anadromous salmonids throughout Ireland (Whelan, 2010). Predominantly infecting 

non-anadromous fish species (e.g. cyprinids) outside of Ireland (Molloy, Holland 

and O’Regan, 1995; Ziolkowska et al., 2000; O’Mahony et al., 2004), opportunities 

for P. laevis to move between freshwater catchments are limited. It seems likely that 

this constraint on colonization routes has contributed to the discontinuous 5275 

distribution of the freshwater strain of this parasite through much of its range. In 

contrast, it is possible that the coastal roaming behaviour of Irish anadromous brown 
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trout amongst neighbouring catchments (Birnie-Gauvin, Thorstad and Aarestrup, 

2019) has facilitated the widespread colonization of Ireland by P. laevis. Indeed, I 

found that the P. laevis can remain alive in salmonid intestines in salt water 5280 

environments for at least 72 hours, providing ample time for anadromous trout to 

move between estuaries and introduce their parasitic passengers to new river 

systems.  

Although I found no evidence to indicate that P. laevis affects osmoregulatory 

performance or stress in Irish salmon smolts in fresh water or within 72 hours of 5285 

entry into salt water, it is possible that delayed pathologies may occur in salt water 

when the parasites detach from the intestines, leaving unplugged perforations in their 

vacated anchoring sites. Such a habitat-specific (i.e. salt water) pathology could 

negatively impact population performance of obligate anadromous salmonids (i.e. 

most Atlantic salmon populations) and increase selection for freshwater residency 5290 

amongst facultative anadromous salmonids such as brown trout. However, given that 

high infection intensities amongst sampled smolts were not associated with 

discernible pathologies in fresh or salt water, is also possible that Irish salmonid 

populations have evolved specific defences that mitigate pathological effects from P. 

laevis infection in both environments. Indeed, Atlantic salmon populations in 5295 

Sweden and the Baltic region are adapted to withstand high intensity infections of G. 

salaris without suffering significant pathological effects while, in Norway, where the 

parasite has been recently introduced, similar infection intensities rapidly lead to 

severe stress, osmoregulatory failure (in salt water) and death amongst native salmon 

(Johnsen and Jensen, 1991, 1986; Bakke and Harris, 1998).  5300 

If Irish salmonids have evolved specific adaptations to P. laevis that are absent from 

salmonid populations in other regions, it is possible that the Irish strain of P. laevis 
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could cause pathologies in foreign populations that were not detected in the Irish 

experimental smolts. The transportation of live non-native salmonids for the 

purposes of aquaculture or stocking has been responsible for the introduction of 5305 

novel diseases and parasites into numerous wild salmon populations, causing severe 

declines and localised extirpations (Forseth et al., 2017). Furthermore, where native 

populations are adapted to cope with the parasites or pathogens that are present in 

their local environment, introgressive hybridization between native salmon and farm 

escapees may result in reduced population fitness and performance via maladaptation 5310 

to the pathogenic environment (de Eyto et al., 2011). Such examples serve to 

highlight the need for grave caution in the regulation of aquaculture or stocking 

activities, even in cases where fish display no obvious pathologies. 

 

Environmental influences on movement timing, dispersal patterns 5315 

and genetic structure 

 

Patterns of migration and dispersal across heterogeneous landscapes play an 

important role in determining potential gene flow patterns and can provide valuable 

insights into the nature of spatial and temporal selective pressures (O’Toole et al., 5320 

2015; Quéméré et al., 2016; Ferguson and Taggart, 1991; Ferguson, 2003). In light 

of earlier studies that found limited gene flow amongst streams or rivers connected 

to a shared lake habitat (Massa-Gallucci et al., 2010; Jonsson et al., 1994; Palmé, 

Laikre and Ryman, 2013; Ferguson and Taggart, 1991; Linløkken, Johansen and 

Wilson, 2014), my discovery of subtle genetic structure between trout sampled in the 5325 

inflowing Fiddaunveela and the outflowing upper Goulaun may seem unsurprising. 

However, given that less than 100 m of lake separates the two streams, the 



                                                                                                             Chapter 6 | General Discussion
  

251 
 

mechanisms responsible for generating and maintaining genetic differentiation at 

such a microgeographic scale warrant careful consideration.  

 5330 

Despite evidence of downstream gene flow from the Fiddaunveela (inflow) to the 

Goulaun (outflow), none of the 584 trout that were tagged in Bunaveela, the 

Fiddaunveela or the upper Goulaun between 2016 and 2019 were subsequently 

detected in either the Black River or at the tidal limit fish traps. Three trout that had 

been tagged in the Rough River (~ 10 km downstream of Bunaveela) were later 5335 

detected in the upper Goulaun, although none of these were subsequently detected in 

the Fiddaunveela, indicating that their upstream movements stopped at the lake. 

These behavioural patterns suggest that upstream dispersal of brown trout from the 

lower catchment may be significantly reduced by the presence of lacustrine habitat, 

an inference that is supported by my finding that juveniles sampled in the upper 5340 

Goulaun were conspicuously admixed while those sampled in the Fiddaunveela, 

upstream of Bunaveela Lough, exhibited little evidence of admixture.  

In contrast to the upstream-moving trout described above, three precocious male 

salmon that were tagged at the Rough River fish trap were subsequently detected 

moving up into Bunaveela (an upstream journey of ~ 10 km) and then into the 5345 

Fiddaunveela over a 72-hour period in December 2018, presumably in search of 

mating opportunities (Finlay et al., MS in prep.). Such ostensible natal dispersal 

behaviours may account for the comparative lack of geographically-based genetic 

structure found amongst Atlantic salmon in the Burrishoole catchment (P. 

McGinnity, pers. comm.).  5350 
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A waterfall located in the upper reaches of the Black River historically made the 

upper Goulaun, Bunaveela and the Fiddaunveela largely inaccessible to salmonids 

that were downstream of it (Matthews et al., 1997). Despite rudimentary 

modification works in 1962 and improvements in 1991 that increased the 

navigability of waterfall in both directions, its presence is likely to have acted as a 5355 

strong evolutionary force selecting against long-distance downstream migrations 

from the upper catchment. Thus, as with the apparent effect of salmon farms on rates 

of anadromy amongst Burrishoole trout (Poole et al., 2007, 1996; Whelan, 2010), 

this feature of the freshwater environment may account for the ostensible absence 

(or, at least, rarity) of relatively long-distance or anadromous migratory strategies 5360 

amongst trout from the upper catchment. Given that the direction of juvenile feeding 

migrations in brown trout can derive from locally-adapted responses to flow 

direction (Jonsson et al., 1994), the presence of this waterfall could also have 

functioned as a post-zygotic ecological barrier to gene flow from the Fiddaunveela to 

the Goulaun in the sense that Fiddaunveela-Goulaun hybrids that hatched in the 5365 

Goulaun and migrated downstream (the ‘correct’ direction for juveniles in the 

Fiddaunveela) were removed from the gene pool. However, this explanation is not 

supported by the apparent downstream bias in gene flow from the Fiddaunveela to 

the Goulaun. 

 While it is possible that long-distance downstream migration or dispersal from the 5370 

upper catchment occurs amongst trout that are below tagging size (i.e. < 65-70 mm), 

and consequently this behaviour was not recorded during my study, it is also 

possible that locally-adapted plastic responses to environmental heterogeneity could 

minimise these occurrences while promoting feeding migrations towards Bunaveela 

Lough from both streams. As discussed in Chapter 4, most of the inflowing 5375 
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Fiddaunveela stream is significantly shallower than the outflowing Goulaun. 

Without the moderating influences of the lake, the Fiddaunveela can fade to barely a 

trickle during droughts and grow to a torrent during heavy rain (R. Finlay, pers. 

obs.). Given the subtle nature of the genetic structure found between the two streams 

and the presumed existence of long-term selection against downstream migration 5380 

past the Goulaun waterfall, it is possible that trout in this area of the catchment are 

generally adapted to conduct feeding migrations in the direction of positive rheotaxis 

(i.e. upstream) where possible. In the outflowing Goulaun this movement would lead 

to a successful outcome (i.e. entry to Bunaveela Lough). Due to the nature of the 

inflowing Fiddaunveela, upstream moving juvenile migrants will rapidly find their 5385 

way blocked by impassable barriers such as culverts, rapids and small waterfalls, 

particularly in periods without rain. Presented with impassable barriers, migrants 

could exhibit a phenotypically plastic response by reversing their migratory direction 

and thereby reach the lacustrine feeding habitat of Bunaveela Lough. Additionally, it 

is possible that the sudden and powerful increases in flow that occur in the 5390 

Fiddaunveela during heavy rain events cause juvenile trout to be displaced and 

washed downstream into Bunaveela passively. Indeed, migration and dispersal 

patterns in numerous species are passively driven by directional environmental 

forces including wind (Cook and Crisp, 2005; Sanmartı et al., 2007) and ocean 

currents (Pringle et al., 2011; Storch and Pringle, 2018). Thus, both behavioural and 5395 

environmental mechanisms could interact to promote lacustrine feeding migrations 

amongst trout that hatch in the inflowing and outflowing streams and whose 

populations are connected by some gene flow. 

As described in Chapter 4 and 5, the spatiotemporal environmental heterogeneity 

found between the Fiddaunveela and the Goulaun is associated with somewhat 5400 
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differing migratory behaviours. In particular, mature trout appear unwilling or unable 

to move from Bunaveela into the shallow Fiddaunveela during periods of low flows, 

while, despite a reduction in movement activity, trout continue to move between 

Bunaveela and the Goulaun during the same periods (Chapter 4, Fig. 2). As a result, 

trout that originate from the Fiddaunveela may be unable to access their natal stream 5405 

at times when they are ready to spawn. Given the geographic proximity of the two 

streams (< 100 m), these impeded Fiddaunveela-origin trout may temporarily 

abandon natal philopatry and conduct exploratory movements into the outflowing 

Goulaun where they find and take opportunities to reproduce. These initially 

exploratory movements could be encouraged by the absence of any ‘incorrect’ 5410 

olfactory signals from the outflowing waters. Additionally, if floods in the 

Fiddaunveela cause fry or parr to be washed into the lake before they imprint on 

their natal habitat, these individuals should be predisposed to straying (Keefer and 

Caudill, 2014). Through these processes, environmentally-driven differences in 

movement timing could contribute to the asymmetrical patterns of gene flow that my 5415 

analyses revealed. Indeed, ~ 62 % of trout that entered the Fiddaunveela also entered 

the Goulaun, with genetic analyses indicating that these putative stayers 

predominantly originated in the Fiddaunveela. Many of the young of the year half 

sibling groups that were found to be distributed between the two streams are likely to 

be the progeny of such fish.  5420 

The microgeographic genetic structure and downstream-biased gene flow I found 

between the Fiddaunveela and the Goulaun have broad implications for conservation 

and fishery management. In particular, my findings suggest that streams that flow 

into lakes may play an important role in contributing to genetic diversity within 

outflowing streams. Additionally, the apparently low rates of gene flow into the 5425 
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Fiddaunveela relative to the Goulaun indicate that populations in inflowing streams 

can remain genetically distinct from those in nearby outflowing streams. Given that 

inflowing streams are often smaller and more affected by rapid environmental 

variations than outflowing streams (Brandt et al., 2017), and given that differing 

migratory behaviours will provide access to lacustrine habitat, differing selective 5430 

pressures may lead to the evolution of distinct local adaptations in inflow-spawning 

populations. Such local adaptations should provide stability to metapopulations 

encountering environmental changes through their contribution to portfolio effects 

(Schindler, Armstrong and Reed, 2015). Together these points indicate that the 

ecological importance of diminutive lake-inflowing streams for salmonids, and 5435 

perhaps also that of headwaters and tributaries, may be greater than their purely 

demographic contributions as spawning or nursery habitats would suggest. 

Consequently, the protection of these habitats and the genetic integrity of their native 

populations should be a primary concern in fishery management. 

As with the spawning migrations of lake-feeding brown trout, I found evidence that 5440 

environmental heterogeneity in the Burrishoole catchment has strong effects on the 

timing of downstream movements by migratory salmon smolts (Finlay et al., MS in 

prep.). Low water levels, or low water temperatures for a given time of year, in 

Lough Feeagh appear to slow or halt the migratory movements of smolts that had 

previously moved quite rapidly towards the lake, causing these individuals to spend 5445 

extended periods in the lacustrine habitat (Appendix A, Fig. 2; 3; 4; 5; 7). Migrants 

that enter the lake during such conditions can suffer mortality rates in excess of 80 

%, while mortality rates during lake passage can drop drastically at times when 

environmental conditions encourage rapid transit (Appendix A, Fig. 6).  
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Despite differences in the degree to which spawning movements in the Fiddaunveela 5450 

and Goulaun were reduced during low rainfall periods, it was apparent from Chapter 

4 that photoperiod, stream height and moon phase had similar influences on 

movement activity in both streams. By primarily moving on nights when the moon 

provided little illumination and high flows provided cover and depth for passage, 

these lake-feeding trout reduced their visibility and, presumably, risk of predation 5455 

while travelling between lacustrine and fluvial habitats. Such behavioural responses 

to temporal environmental variation are likely to reflect spatiotemporal variation in 

predation risk posed by the native predator community in the context of the local 

environment (Bradford and Higgins, 2001; Ovidio et al., 2002; Zavorka et al., 2016; 

Fraser et al., 1995; Ibbotson et al., 2006; Thorstad et al., 2012). As such, predator 5460 

avoidance behaviours may be locally adapted and highly specific (Rustadbakken et 

al., 2004; Hellawell, Leatham and Williams, 1974). Consequently, alterations to the 

environment (e.g. arterial drainage, flow regulation, water extraction or artificial 

lighting) or to the predator community (e.g. introduction of non-native predators) 

may reduce the effectiveness of locally adapted predator avoidance behaviours and 5465 

lead to decreased population performance (Boulêtreau et al., 2018). Such risks 

should be considered when assessing the potential impacts of proposed habitat 

alterations or the movement of species outside their native ranges. 

The clear nocturnal bias in spawning-related movements in the Fiddaunveela and the 

Goulaun was echoed in the nocturnal movements of both adult trout and Atlantic 5470 

salmon smolts past the Black River antenna (Appendix A, Fig. 8). Interestingly, 

downstream salmon smolt movements out of Lough Feeagh in 2017, 2018 and 2019 

were predominantly diurnal, suggesting that their specific behavioural response to 

the cyclical signals of sunrise and sunset may vary depending on the habitat they are 
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currently moving through or from (Finlay et al., MS in prep.). However, previous 5475 

studies have found that Atlantic salmon smolts can switch from nocturnal migration 

to diurnal migration as the season progresses, possibly in response to rising water 

temperatures that increase their ability, as ectotherms, to swim faster and evade 

predators (Fraser, Metcalfe and Thorpe, 1993; Metcalfe, Fraser and Burns, 1998; 

Haraldstad et al., 2016). Given that in 2017, 2018 and 2019 smolt movements past 5480 

the Black River antenna peaked nearly a month before movements out of Lough 

Feeagh peaked (Appendix A, Fig. 9), the shift from nocturnal to diurnal migration 

could also be driven by an increase in photoperiod or temperature. The lack of 

seasonal overlap between detections at the two locations makes it difficult to 

discriminate between the potential effects of habitat and those of season or 5485 

temperature, but it seems clear that the observed changes in diel movement patterns 

were driven by spatial, temporal or spatiotemporal variations in environmental 

conditions.  

The consistency in the distribution of spawning-related movements around the 

winter solstice that I observed in the Fiddaunveela and the upper Goulaun in both 5490 

spawning periods despite differences in lake water temperature (Chapter 4, Fig. 2) 

suggests that the spawning phenology of Bunaveela-feeding trout is entrained by 

variation in photoperiod. While photoperiod is generally regarded as a primary cue 

controlling salmonid spawning phenology, individual populations display differing 

behavioural responses to variation in photoperiod and, thus, differing phenologies 5495 

(Bromage, Porter and Randall, 2001; García-Vega, Sanz-Ronda and Fuentes-Pérez, 

2017; Jonsson and Jonsson, 2011). Locally adapted phenologies should synchronise 

spawning with a time of year that, on average, provided optimum conditions for 

embryo development and fry survival upon hatching (Nevoux et al., 2019; Quinn, 
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Unwin and Kinnison, 2000; Austin, Essington and Quinn, 2019; Quinn and Adams, 5500 

1996). However, different selective pressures can drive the phenologies of males and 

females, commonly resulting in earlier breeding movements of males (Morbey and 

Ydenberg, 2001; Morbey, 2002, 2000; Esteve, 2005; Jonsson and Jonsson, 2011). 

Indeed, I documented that Bunaveela-feeding males not only began their spawning 

movements before females, but that these males were significantly more active (i.e. 5505 

moved past antennae on more days and more times per day) than females (Chapter 4, 

Table 1). Given their higher movement frequency and the supposed tendency of 

male salmonids to roam more widely in search of mates (Aarestrup and Jepsen, 

1998; Carss, Kruuk and Conroy, 1990), I was surprised to find that straying rates 

between the Fiddaunveela and the Goulaun as recorded by our antennae were similar 5510 

for males and females (Chapter 5). However, the possible environmental drivers of 

straying behaviour from the Fiddaunveela to the Goulaun that I proposed above are 

likely to impact males and females equally, and perhaps this accounts for the 

apparent lack of sex bias in straying rates. 

 5515 

PIT telemetry: Applications and considerations 

 

PIT tags and PIT interrogation devices (i.e. fixed antennae and hand-held scanners) 

were essential to the research described in Chapter 4 and 5 and revealed the 

unpublished smolt migration patterns described above (i.e. (Finlay et al., MS in 5520 

prep.)).  Despite its usefulness in fisheries research, though, PIT telemetry has 

distinct limitations and PIT-based projects can be fraught with frustrations (R. 

Finlay, pers. obs.). I therefore provide some observations and considerations below 

that might prove useful when considering or planning a PIT-based project.  
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Firstly, and most importantly, it is important to decide whether PIT telemetry is 5525 

capable of providing data that can help answer our research questions. We must 

therefore be familiar with the inherent limitations of PIT telemetry. Crucially, PIT 

tags have a limited read range that varies substantially depending on tag type (HDX 

or FDX), tag size (i.e. 8mm, 12mm, 23mm and 32mm), tag orientation, tag 

movement speed, reader type (handheld vs in-stream antennae), antenna size, 5530 

antenna shape, antenna pulse rate, antenna tuning, antenna inductance, antenna 

voltage, local geology, water conductivity, environmental or electrical noise and, it 

often seems, a variety of unquantifiable and indefinable factors. However, as an 

example, a decent homemade HDX antenna measuring 60 cm X 300 cm in a low 

noise environment and incorporating modern interrogation components from Oregon 5535 

RFID should be capable of detecting 12 mm tags (as commonly used in juvenile 

salmonids) from at least 35 cm away (i.e. upstream and downstream), providing a 70 

cm reading window and perhaps 8 cm of additional interrogation area around the 

outside of the antenna loop. The pulse rate of the antenna and the expected speed of 

tag movement can be used to calculate whether tags in fish are likely to be detected 5540 

within the read window. Intended study organisms (or inorganic objects) must be 

suitable for tagging, and the correct sized tag must be implanted in the correct 

location. As an example, salmonids can expel intraperitoneal PIT tags during 

spawning (Prentice, Flagg and McCutcheon, 1990; Bateman, Gresswell and Berger, 

2009), so intramuscular tag placement (which is unsuitable for small fish) may 5545 

provide longer tag retention in adult fish.  

Secondly, we must choose whether to use full-duplex (FDX) or half-duplex (HDX) 

tags, and this will dictate what interrogation systems we can use. A full-duplex 

antenna generates a continuous magnetic field, providing power to nearby FDX tags 
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which respond immediately by transmitting their unique ID number at up to 30 times 5550 

per second. A half-duplex antenna generates short magnetic pulses (usually ≤ 15 per 

second) that charge a capacitor inside any nearby HDX tag. When the charge field 

turns off, the tag uses its stored power to send its ID number back to the antenna 

without interference from the antenna’s magnetic field. HDX antennae are much 

simpler and cheaper to construct, are generally more robust, and can be made 5555 

significantly larger than equivalent FDX systems. HDX systems are the obvious 

choice for many projects with limited budgets, where flexibility in antenna 

dimensions is beneficial or where wide or volatile rivers must be spanned. FDX 

systems are usually custom built by manufacturers and are significantly more 

complicated and expensive to construct, although they do provide faster read speeds. 5560 

Consequently, FDX systems are particularly useful in manmade fish passes where 

many tagged fish may rapidly move past an antenna over a brief period.  

Thirdly, if planning to install an in-stream antenna, serious thought should be given 

to site selection. I provide a number of considerations below regarding site selection 

in order of, in my opinion, their importance. 5565 

 

 

1. Research question: Will detections at the location help answer the research 

question? As an example, antennae arrangements suitable for studying 

behaviour or phenology may be unsuitable for studying aspects of survival 5570 

(and vice versa). A single antenna, for instance, does not give any 

information on the direction of travel. 
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2. Accessibility: Is there suitable access to the site? Most remote PIT systems 

are powered by multiple heavy (i.e. > 30 kg) batteries that must be swapped 

out periodically. Vehicle access to, or close to, the installation site is 5575 

invaluable in such situations! Other options are available to power antennas 

in remote sites (i.e. solar panels, gas turbines, diesel generators etc.) but these 

are often costly and complicated to install and may reduce detection 

efficiency by introducing noise into the system.  

3. Riverine conditions: Does the profile and composition of the riverbed and 5580 

banks provide suitable conditions to secure an effective antenna that will 

withstand expected flow conditions and flotsam? Ideal locations for pass-

through antenna have a flat streambed, vertical banks and a substrate that can 

securely hold antenna supports. Additionally, power sources and unsealed 

electronics must be located above the water level during the largest 5585 

anticipated floods, so access to nearby high ground may be required. 

4. Noise: Is the site affected by high noise? Noise reduces the performance 

(read range) of PIT antennae and can be generated by nearby electrical 

equipment (radiated noise), vibrations in the environment or small voltage 

variations in the power supply (conducted noise). High noise sites should be 5590 

avoided where possible. 

 

Finally, when considering PIT antenna installations and designs, we must choose 

between pass-by (or ‘flat-bed’) and pass-through (or ‘swim-through’) orientations. 

Flat-bed antennae lie flat on the streambed, providing less exposure to the current 5595 

and suspended flotsam. As such, a flat-bed antenna will generally encounter less 

strain than a similar sized pass-through antenna in the same location. However, the 
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horizontal orientation of flat-bed antennae severely reduces their vertical read range. 

If study animals are likely to travel more than ~ 20 cm above stream bed, pass-

through antennae are likely to provide much higher detection efficiency than flat-bed 5600 

designs although frequent damage from flotsam can make traditional pass-through 

antennae unfeasible in some locations. The double-breakaway antenna system 

described in Chapter 3 can facilitate the use of pass-through designs in these 

locations. 

 5605 

Conclusions, limitations and future research 

 

The results presented in this thesis reveal how spatiotemporal variation in abiotic and 

biotic components of the natural environment can influence movement patterns, gene 

flow and physiological performance of migratory populations. However, my findings 5610 

and the implicit limitations of my research have opened up various new avenues for 

future research.  

In Chapter 2 I showed that the Irish freshwater strain of P. laevis can survive for a 

minimum of 72 hours while its host is in salt water, although I found no evidence of 

parasite-induced pathologies. However, the salinity and timeframe in my 5615 

experimental tanks was only 26 PPT (representative of local coastal waters 

experienced by the smolts during the first couple of days outside freshwater) and 72 

hours, reducing hypo-osmoregulatory demands on the experimental smolts and 

potentially providing a more tolerable internal environment for P. laevis compared 

with full salinity sea water. Similar experiments conducted over a longer time-span 5620 

in water with a salinity of ~ 35 PPT could help determine the maximum lifespan of 
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P. laevis in Atlantic salmon in an open ocean environment (with implications for 

potential colonization patterns) and, crucially, reveal whether delayed marine 

pathologies occur when these parasites vacate the intestines. Additionally, given the 

consistently low marine survival of trout from the Burrishoole catchment in recent 5625 

decades, it would be interesting to investigate whether P. laevis causes such habitat-

specific pathologies in brown trout. 

In Chapter 4 I revealed strong associations between the timing of spawning-related 

movements and photoperiod, moon phase and water height, concluding that the fine-

scale timing of movements through transitional habitat was likely to represent an 5630 

evolved response to temporal variation in visibility and predation risk. However, 

moon phase is a somewhat imprecise indicator of illumination at night, with the 

distance of the moon from the Earth and the timing of moonrise and moonset 

interacting with cloud cover to determine brightness at any particular moment. 

Additionally, my use of water height data from a nearby stream as a proxy for 5635 

heights in the Fiddaunveela and the Goulaun may have reduced the strength of 

associations between stream height and activity in my models. However, this should 

not undermine the methodology or the findings in this analysis. In the future, it 

would be interesting to use direct measures of brightness and water height or flow 

rate in such streams throughout the day to determine the precise degree of 5640 

synchronisation between these environmental factors and fine-scale temporal 

movement patterns. Such a study could also incorporate a measure of predation, 

spawning success or migrant survival, thereby providing direct evidence of the 

evolutionary advantages of these environment-cued movement behaviours.  

In Chapter 5 I revealed that subtle genetic structure and asymmetrical downstream-5645 

biased gene flow patterns can occur between brown trout in streams that are 
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separated by less than 100 m of lake habitat. In addition, I recorded ostensible 

straying patterns that provide a plausible behavioural explanation for these genetic 

patterns. However, without the opportunity to sample eggs in redds, I used sibship 

analyses of mobile juveniles sampled in the summer to test for more direct evidence 5650 

of multi-river spawning (i.e. straying). While it is likely that these juveniles had not 

moved from their natal stream at the time of sampling (see Chapter 5), sampling of 

eggs in spawning beds would have provided greater certainty. Finally, while it is 

known that various trout populations spawn in lake habitats (Arostegui and Quinn, 

2019), this potentially important component of trout biology is relatively unstudied. 5655 

Given my findings on genetic structure and spawning behaviour between the 

inflowing Fiddaunveela and the outflowing Goulaun, it would be very interesting to 

determine the role, if any, that lake spawning has in maintaining local demographic 

and genetic patterns. 

  5660 
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Appendix A 5900 

 

 

The following figures and table are taken from an additional related branch of 

research I have been conducting in the Burrishoole catchment, using the PIT tag 

technology and installations described in the main body of my thesis, on the 5905 

movement and survival of Atlantic salmon smolts through differing freshwater 

habitats in relation to environmental conditions. I intend to include a number of these 

figures in a paper that is currently in preparation for publication. The figures and 

table use a combination of long-term (1976 – 2019) smolt movement data collected 

from the Salmon Leap and Mill Race fish traps at the outflow of Lough Feeagh (sea 5910 

entry end) and concurrent environmental data (Lough Feeagh surface water 

temperature and water height) as well as PIT-derived movement and survival data 

that I collected between 2017 and 2019. Between March and July in 2017, 2018 and 

2019, 450 individual smolts that had been previously tagged upstream in the 

catchment were detected passing the Black River antenna, the Salmon Leap antenna 5915 

or both. 

Although the Black River antenna (Fig. 1) is located ~ 805 m upstream of Lough 

Feeagh, this section of the river is very slow moving and almost indistinguishable 

from lacustrine habitat during low flow periods. The mean time it takes for smolts to 

move from the Rough River trap to the Black River antenna (~ 3000 m) is 4.5 days, 5920 

with most individuals taking significantly less time and a small number taking 

considerably longer (Fig. 2). As such, smolts moving downstream past the Black 

River antenna are deemed to be on the cusp of entering Lough Feeagh for the 

purpose of these analyses.  
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Fig. 3 shows that smolts entering Lough Feeagh early in the 2017 and 2018 smolt 5925 

runs spent significantly longer in the lake than those that entered the lake later, 

possibly due to a period of low (i.e. < 0.24 m) water levels in April-May 2017 (Fig. 

4. And Fig. 9) and lower than normal water temperatures in April-May 2018 (Fig. 5 

and Fig. 9). In 2019, neither lake level or temperature were low during April-May 

(Fig. 9, temperature data not shown) and the lake transit duration was not correlated 5930 

with entry date (Fig. 3). Fig. 6 is generated from a binary GLMM in which 

successful passage through Lough Feeagh is the binary response variable (Table 1). 

This figure and table show that the probability of successful passage through Lough 

Feeagh (i.e. through-lake-survival) was strongly positively correlated with entry date 

in 2017 and 2018, but not in 2019, which, in conjunction with Fig. 3, indicates that 5935 

through-lake-mortality risk is associated with duration of lake transit (i.e. the longer 

that lake transit takes, the higher the mortality risk).  

Fig 7. is generated from the binary GLMM outlined in Table 2 and shows the 

probability of the daily proportion of the annual smolt run out of Feeagh exceeding 

the long term mean proportion of the annual smolt run for that day number at five 5940 

different lake surface temperature deviations from the long term mean temperature 

for that day number. Lake height is on the x axis and the underlying model was 

restricted to data from the days preceding the date on which 50 % of the smolt run 

exited the lake. This was done because, as the number of smolts upstream of sea 

entry drops, the opportunity for the daily proportion to exceed the long term 5945 

proportion for that day number drops. This figure indicates that, although smolt 

movement is correlated with lake height, the likelihood of a higher proportion of 

smolts moving on a particular day number than the long term mean proportion for 

that day number is greatly reduced when the lake temperature is below average for 
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that day number. All underlying assumptions were met for the models presented in 5950 

Table 1 and 2. 

Fig. 8 shows the diel distribution of first detections of smolts (i.e. one per fish per 

antenna) at the Black River and Salmon Leap antennae, revealing that smolts 

primarily move through the Black River shortly after sunset while movements out of 

the lake are mostly diurnal and decrease substantially after sunset. Fig. 9 shows the 5955 

number of smolts moving through the Rough River Trap and through the sea entry 

traps in 2017, 2018 and 2019 as well as concurrent lake surface temperatures and 

lake water levels.  

 

 5960 
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Figure 1. Map of the Burrishoole catchment showing the location of the Rough 

River fish trap, the Black River PIT antenna (red circle) and the PIT antenna at the 

Salmon Leap fish trap (red circle). 
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 5965 

Figure 2. Day number that individual Atlantic salmon smolts were first detected by 

the Black River antenna (i.e. approaching lake entry) vs day number that the same 

smolts moved downstream through the Rough River trap. Mean time from the Rough 

River trap to the Black River antenna = 4.5 days. Data collection period: March – 

July 2017, 2018 and 2019. 5970 
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Figure 3. Number of days spent in Lough Feeagh vs the day number of lake entry 

for individual smolts detected in 2017, 2018 and 2019. Lake levels were low for 

much of the smolt run in 2017 (Fig. 4) Lake temperature was lower than long term 

mean temperatures in the first half of the smolt run in 2018 (Fig. 5). In 2019 there 5975 

were no low water levels during the smolt run and water temperatures were slightly 

higher than long term mean temperatures (not shown). 
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 5980 

 

 

Figure 4. Red bars are the number of smolts that moved downstream out of Lough 

Feeagh per day. Black curved dashed lines represent the mean temporal distribution 

of the annual smolt run that moved downstream out Lough Feeagh over 43 years 5985 

(1976 – 2019). Green lines represent the daily deviation (in °C) from the long-term 

(1976-2019) mean temperature for that day of the year. Blue lines represent water 

level (m) in Lough Feeagh. Straight black dashed lines designate the mean 

temperature for each day (i.e. when the green line is below this line the temperature 

is below average for that day of the year). Each year shown above experienced a 5990 

period of drought (i.e. lake height < 0.25). 
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Figure 5. Red bars are the number of smolts that moved downstream out of Lough 

Feeagh per day. Black curved dashed lines represent the mean temporal distribution 

of the annual smolt run that moved downstream out Lough Feeagh over 43 years 5995 

(1976 – 2019). Green lines represent the daily deviation (in °C) from the long-term 

(1976-2019) mean temperature for that day of the year. Blue lines represent water 

level (m) in Lough Feeagh. Straight black dashed lines designate the mean 

temperature for each day (i.e. when the green line is below this line the temperature 

is below average for that day of the year). 2011 represents a ‘warm’ year (i.e. 6000 

warmer than the long term mean temperature through April and May), 1986 and 

2018 represent ‘cold’ years and 2008 represents a ‘normal’ year. 
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Figure 6. Probability of successful smolt passage through Lough Feeagh (i.e. 6005 

survival) in relation to entry date for 2017, 2018 and 2019 as predicted from a 

binomial GLMM. Shaded areas represent the 95% confidence intervals.  

 

Figure 7. Probability that the daily proportion of the total annual number of smolts 

migrating downstream out of Lough Feeagh will exceed the long-term (1976-2019) 6010 

mean proportion of the annual smolt run out of Lough Feeagh for that day number vs 

lake height (m) at five levels of water temperature deviation from the long-term 

mean temperature for that day number.  



                                                                                                                                                Appendix A
  

285 
 

 

 6015 

 

 

 

 

 6020 

 

 

 

 

 6025 

 

Table 1. Parameter estimates for the main effects and interaction effects from a binary GLMM, where 

successful passage through Lough Feeagh (i.e. survival) is the binary response variable. Data for model 

come from PIT detections at the Black River antenna and the Salmon Leap and Mill Race traps in 2017, 

2018 and 2019. All estimates and their standard errors are on the logit scale and therefore correspond to log 

odds ratios. The odds ratio is also given (exponent of logit-scale parameter estimates), as well as the 5% and 

95% confidence intervals around this. The intercept corresponds with 2017.  

 Estimate Std. 

Error 

z value Odds 

ratio 

5% CI 95% CI p 

value 

(Intercept) -7.178 2.696 -2.663 0.001 9.06-e06 0.064 0.008 

Lake Entry Day Number 0.073 0.025 2.854 1.075 1.031 1.121 0.004 

Year:2018 2.644 3.144 0.841 0.079 0.079 247.911 0.401 

Year: 2019 8.876 3.879 2.288 7159.911 12.122 4227858.2 0.022 

Lake entry day number × 

Year 2018 

-0.023 0.030 -0.764 0.978 0.931 1.027 0.445 

Lake entry day number × 

Year 2019 

-0.079 0.037 -2.117 0.924 0.869 98.247 0.034 

Table 2. Parameter estimates for the main effects and interaction effects from the binary GLMM, 

where the daily deviation direction from the long-term mean proportion of the smolt run out of 

Lough Feeagh for that day number (either above or below the mean) is the binary response 

variable. Data are restricted to the period of the smolt run prior to the date on which 50 % of the 

smolt run exited Lough Feeagh. All estimates and their standard errors are on the logit scale and 

therefore correspond to log odds ratios. The odds ratio is also given (exponent of logit-scale 

parameter estimates), as well as the 5% and 95% confidence intervals around this. The random 

effect Year has 43 levels corresponding with 1976-2019. Marginal R2= 0.16, Conditional R2= 0.43. 

 Estimate Std 

Error 

z value Odds 

ratio 

5%  95%  p value 

(Intercept) -1.361 0.212 -6.409 0.256 0.181 0.364 <0.0001 

Lake height 0.843 0.083 10.138 2.324 2.027 2.664 <0.0001 

Temperature deviation 0.847 0.126 6.738 2.333 1.897 2.869 <0.0001 

Lake height × 

Temperature deviation 

0.349 0.106 3.284 1.417 1.190 1.688 0.001 

Year (Random effect)    3.465 2.676 4.801  
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Figure 8. Diel timing of first Black River antenna detections (i.e. lake entry) for 

smolts detected in 2017, 2018 and 2019 and lake diel timing of first detections at the 

Salmon Leap trap antenna (i.e. lake exit) for smolts detected in 2018 and 2019. 

 6035 
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Figure 9. Blue bars are the daily percentage of the year’s smolt run that moved 

downstream through the Rough River trap. Pink bars the daily percentage of the 

year’s smolt run that moved downstream out of Lough Feeagh. Blue dotted lines 6040 

represent the average distribution of annual smolt run that moved downstream 

through the Rough River trap over 11 years between 1994 and 2019. Red dotted 

lines represent the average distribution of annual smolt run that moved downstream 

out Lough Feeagh over 43 years (1976 – 2019). Green lines represent water surface 

temperature in Lough Feeagh. Blue lines represent water level in Lough Feeagh. 6045 

Black dashed lines designate 10 °C. Red dashed lines designate a water level of 0.24 

m (i.e. low lake level). 
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Appendix B 

 

ICES Working Group with the Aim to Develop Assessment 6050 

Models and Establish Biological Reference Points for Sea 

Trout (Anadromous Salmo trutta) Populations 

(WGTRUTTA). 

 

Background 6055 

 

The working group was established in 2017. The inclusion of sea trout and other 

diadromous fish in EU policy areas including the CFP and Marine Strategy 

Framework Directive means that it is important to improve the methods currently 

available to managers to assess the status of stocks and investigate the effects of 6060 

management actions.  

The final report and recommendations will guide both individual countries in making 

progress on sea trout assessment and management and will steer ICES on the best next 

steps for sea trout science, assessment and advice. The Working Group addressed the 

following Terms of Reference: 6065 

a) Compile information from a selection of suitable rivers across Europe 

with long-term data on parameters such as juvenile densities, habitat 

characteristics and, if available, abundances of ascending spawners and 

out-migrating smolts 
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b) Develop new, validate and fine tune existing population models for sea 

trout 

c) Establish and evaluate different approaches for estimating Biological 

Reference Points (BRPs) across regions with different characteristics 

and conditions for sea trout 

 

Executive Summary of the Draft Final Report (2020) 

The Working Group “WGTRUTTA” was established in 2017 with the Aim to Develop 

Assessment Models and Establish Biological Reference Points for Sea Trout 

(Anadromous Salmo trutta) Populations. The WG has representatives from every 6070 

country containing a self-reproducing population of sea trout throughout Europe, in 

total 19 countries. Over the 3-year period, 31 experts were actively involved in the 

four workshops: Sweden (Gothenburg, 2017), Denmark (Copenhagen 2018), Portugal 

(Lisbon 2018) and UK (Dorchester 2019), as well as through intersessional activities. 

Four subgroups worked to deliver the three ToR:  6075 

1 - Compile information from a selection of suitable rivers across Europe with long-

term data on parameters such as juvenile densities, habitat characteristics and, if 

available, abundances of ascending spawners and out-migrating smolts;  

2 - Develop new, validate and fine tune existing population models for sea trout; 

3 - Establish and evaluate different approaches for estimating Biological Reference 6080 

Points (BRPs) across regions with different characteristics and conditions for sea trout.  
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However, there is much that remains to be done to fully develop and implement the 

science of sea trout assessment and management, and to this end a resolution for a 

second 3-year term has been proposed. 

The sea trout database structure was completed and populating it with data is well 6085 

underway. This database is designed to provide a central depository for data used by 

the WG, and consists of two components: for environmental and bio-ecological data. 

The WG has created an inventory of data collection methods across the 19 countries 

of the natural range. There are common methodological approaches but few, if any, 

that are uniform across all countries. An inventory of PIT tagging infrastructure has 6090 

also been created and will be made available via a mapping tool. The WG are liaising 

with ICES and their Regional Database and Estimation System (RDBES), working 

towards a time when ICES will host the WGTRUTTA database. 

The WG undertook a comprehensive review of the scientific literature on ecological 

factors affecting the abundance and life history of anadromous fish which has been 6095 

published in Fish and Fisheries (Nevoux et al., 2019), Appendix C. This provides the 

knowledge base to support development of population models, taking into account 

these complexities in the life history of the resident and anadromous components of 

stocks. 

The WG has developed a set of length-based indicators to assess the status of a stock 6100 

(after WKLIFE), using index catchments to demonstrate these indicators and to 

identify where pressures may have had an impact.  Two papers, both published, have 

been developed describing the development and application of these length-based 

indicators of sea trout stock status (Shephard et al., 2019, 2018). 
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The WG has extended the development and application of the Trout Habitat Scores 6105 

(THS) model using Baltic data from Sweden, and commenced testing this with data 

from Northern Ireland. A theoretical Bayesian Population Dynamics Model for Baltic 

sea trout is also being developed. 

The challenges of developing and applying a BRP approach to sea trout were further 

explored by applying several curve fitting approaches (including Beverton-Holt, 6110 

Ricker, Hockey Stick) to ‘data rich’ stocks with data from counts, returning stock 

estimates, catches, and juvenile abundance surveys. A ‘one-size-fits-all’ option is 

highly unlikely, but a suite of tools is more promising, especially if they can be 

targeted towards a relatively small number of sea trout stock groupings. A grouping 

proposed for 16 sea trout stocks in England and Wales, based on growth rates and 6115 

longevity, has been identified as a potential stock grouping tool and it is proposed to 

test and develop this across the natural range of the species in future research. Such 

groupings might be used as the basis for focussing stock-recruitment or other model 

approaches, and/or to make recommendations on selecting index rivers and data 

collection programs.  6120 

The WG developed a Resolution for a second 3-year term, and a proposal for a nested 

series of PhDs to broaden the delivery and dissemination of the WG activities which 

was submitted to the Marie Skłodowska-Curie actions to support Innovative Training 

Networks (ITNs) at the end of 2019. 

 6125 
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Abstract
This	paper	reviews	the	life	history	of	brown	trout	and	factors	influencing	decisions	to	
migrate.	Decisions	that	maximize	fitness	appear	dependent	on	size	at	age.	In	partly	
anadromous	populations,	 individuals	that	attain	maturity	at	the	parr	stage	typically	
become	freshwater	resident.	For	individual	fish,	the	life	history	is	not	genetically	fixed	
and	can	be	modified	by	the	previous	growth	history	and	energetic	state	in	early	life.	
This	phenotypic	plasticity	may	be	influenced	by	epigenetic	modifications	of	the	ge‐
nome.	Thus,	factors	influencing	survival	and	growth	determine	life‐history	decisions.	
These	are	 intra‐	and	interspecific	competition,	feeding	and	shelter	opportunities	 in	
freshwater	 and	 salt	water,	 temperature	 in	 alternative	habitats	 and	 flow	conditions	
in	running	water.	Male	trout	exhibit	alternative	mating	strategies	and	can	spawn	as	
a	subordinate	sneaker	or	a	dominant	competitor.	Females	do	not	exhibit	alternative	
mating	behaviour.	The	relationship	between	growth,	size	and	reproductive	success	
differs	between	sexes	in	that	females	exhibit	a	higher	tendency	to	migrate	than	males.	
Southern	populations	are	sensitive	to	global	warming.	In	addition,	fisheries,	aquacul‐
ture	with	increased	spreading	of	salmon	lice,	introduction	of	new	species,	weirs	and	
river	regulation,	poor	water	quality	and	coastal	developments	all	threaten	trout	popu‐
lations.	The	paper	summarizes	 life‐history	data	from	six	populations	across	Europe	
and	ends	by	presenting	new	research	questions	and	directions	for	future	research.
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1  | INTRODUC TION

Brown	trout	is	a	facultative	(i.e.	partly)	anadromous	species	(Lobón‐
Cerviá,	Rasmussen,	&	Mortensen,	2017).	It	typically	spawns	in	fresh‐
water,	but	may	reproduce	successfully	in	estuaries	at	salinities	below	
4	ppt,	such	as	on	the	coast	of	Gotland	in	the	Baltic	Sea	(Landergren	
&	Vallin,	1998;	Limburg,	Landergren,	Westin,	Elfman,	&	Kristiansson,	
2001).	The	species	 is	partly	migratory	as	some	 individuals	within	a	
population	may	 reside	 in	or	near	 the	spawning	area	all	year	 round,	
whereas	other	individuals	move	out	of	this	area	for	feeding.	Migratory	
trout	 can	 be	 anadromous,	 feeding	 in	 the	marine	 habitat.	Migrants	
generally	return	to	breed	with	high	precision	to	their	area	of	origin	for	
spawning,	but	exceptions	occur	(Jonsson,	Jonsson,	&	Jonsson,	2018).

Brown	trout	are	phenotypically	variable.	Adult	body	length	var‐
ies	from	approximately	10	to	100	cm	(Evangelista,	Boiche,	Lecerf,	&	
Cucherousset,	2014;	Jonsson	&	Jonsson,	2011;	Sánchez‐Hernández,	
Eloranta,	Finstad,	&	Amundsen,	2017).	The	species	exploit	habitats	
ranging	from	small	brooks	to	rivers,	lakes,	estuaries	and	coastal	sea,	
but	 are	 seldom	 found	 in	 the	open	ocean,	 though	 recent	 literature	
indicates	that	some	brown	trout	may	 live	a	more	pelagic	 life	while	
at	 sea	 (Jonsson	 &	 Jonsson,	 2011;	 Kristensen,	 Righton,	 del	 Villar‐
Guerra,	Baktoft,	&	Aarestrup,	2018).	Populations	adapt	trophically	
to	and	vary	ecologically,	morphologically,	behaviourally	and	genet‐
ically	with	local	conditions	over	the	distribution	area.	This	diversity	
complicates	the	systematics	of	the	species	and	makes	some	scien‐
tists	term	Salmo trutta	a	species	complex	rather	than	a	single	species	
(Keller,	Taverna,	&	Seehausen,	2011;	Patarnello,	Bargelloni,	Caldara,	
&	Colombo,	1994;	Sanz,	2017).	Although	the	systematics	of	brown	
trout	have	still	to	be	resolved,	the	phylogeographic	and	the	genetic	
structure	of	the	species	were	recently	clarified	(Sanz,	2017).

Freshwater‐resident	 populations	 are	well	 described	 (Baglinière	
&	Maisse,	 2002;	 Frost	&	Brown,	 1967;	Gosset,	 Rives,	&	 Labonne,	
2006;	 Jonsson,	 1989;	 Maisse	 &	 Baglinière,	 1990).	 More	 complex	
is	 the	ecology	of	anadromous	trout	 (Harris,	2017;	Harris	&	Milner,	
2007),	which	occur	naturally	along	the	length	of	the	Atlantic	coast	
of	Europe	 from	northern	Russia	 to	Portugal,	 Iceland	 included,	and	
occur	as	an	introduced	fish	in	North	and	South	America,	Australia,	
New	Zealand	and	Kerguelen	Islands	(Baglinière,	1999;	Elliott,	1994;	
Jonsson	&	Jonsson,	2011;	Lecomte,	Beall,	Chat,	Davaine,	&	Gaudin,	
2013;	Figure	1).	The	species	is	present	along	the	coast	of	the	Black	
and	 Caspian‐Aral	 Seas	 in	 central	 Europe	 (Baglinière,	 1999;	 Elliott,	
1994;	Jonsson	&	Jonsson,	2011).	Among	all	introduced	Salmonidae	
species,	brown	trout	is	the	species	with	the	highest	success	rate	of	
naturalization	and	the	 largest	distribution	out	of	 its	original	 range.	
This	is	likely	the	result	of	a	high	adaptive	capacity	and	tolerance	for	
habitat	change	(Baglinière,	1999).

Brown	trout	have	been	the	focus	of	several	books	such	as	those	
by	Fahy	 (1985),	Elliott	 (1994),	Baglinière	 and	Maisse	 (1999),	Harris	
and	Milner	 (2007),	Harris	 (2017),	Jonsson	and	Jonsson	(2011),	and	
Lobón‐Cerviá	and	Sanz	(2017).	However,	some	recent	knowledge	on	
migration,	its	complexity	and	plasticity	is	not	included	in	these	books	
(Figure	2).	This	review	is	also	motivated	by	the	desire	to	complement	
the	literature	review	with	a	compilation	of	data	from	six	populations	

across	Europe.	Partly	anadromous	means	that	individual	populations	
can	consist	of	both	freshwater	resident	and	anadromous	individuals.	
In	this	review,	we	present	information	on	both	these	life‐history	com‐
ponents	and	discuss	drivers	of	anadromy,	the	influence	of	the	marine	
environment	on	the	migration,	and	effects	of	spawning	habitat	on	
body	size	and	sexual	size	dimorphism.	Furthermore,	we	summarize	
knowledge	on	effects	of	interspecific	competitors	and	predators	on	
abundance	and	behaviour	of	brown	trout	and	impacts	of	the	para‐
sitic	 sea	 lice	on	 local	 sea	 trout,	which	constitutes	one	of	 the	main	
threats	 to	wild	 populations	 in	 some	 areas	 (Thorstad	 et	 al.,	 2015),	
and	which	has	 led	 to	 significant	population	collapses	 (e.g.	Gargan,	
Poole,	&	Forde,	2006).	Environmental	constraints	in	freshwater	may	
stimulate	migration	of	brown	trout,	including	constraints	from	com‐
petition,	poor	feeding	and	low	growth	opportunities.	We	review	the	
effects	of	 these,	as	well	as	negative	environmental	 impacts	at	sea	
that	may	select	against	the	propensity	to	migrate	(Poole	et	al.,	2007).	
Last,	we	present	important	questions	for	further	research.

2  | RESIDENT VERSUS ANADROMOUS 
BROWN TROUT

2.1 | Historical overview

Carolus	 Linnaeus,	 in	 his	 10th	 edition	 of	 Systema	 Naturae	 (1758),	
classified	anadromous	(sea)	trout	(Salmo eriox)	as	a	different	species	
from	river	trout	(Salmo trutta).	The	classification	was	based	on	col‐
ouration	and	body	form,	a	taxonomic	classification	maintained	into	
the	 19th	 century	 (Jonsson	&	 Jonsson,	 2011).	 Among	others,	Dahl	
(1904)	questioned	the	classification	as	he	observed	that	river	trout	
could	 move	 downstream	 to	 sea.	 Furthermore,	 Regan	 (1911)	 pro‐
posed	that	anadromous	and	nonanadromous	 trout	could	be	 freely	

F I G U R E  1  Endemic	distribution	of	brown	trout:	dashed	lines	
give	distribution	area	of	anadromous	populations,	and	shaded	
areas	give	those	of	freshwater‐resident	populations.	After	Jonsson	
and	Jonsson	(2011).	Localization	of	six	brown	trout	populations,	
from	north	to	south:	River	Hals	70°N	(Norway),	River	Vosso	60°N	
(Norway),	River	Burrishoole	54°N	(Ireland),	River	Tamar	51°N	
(England),	River	Bresle	50°N	(France)	and	River	Oir	48°N	(France)
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interbreeding	 fractions	of	 a	 single	 species.	Nevertheless,	 until	 the	
development	of	modern	genetic	techniques	in	the	1980s,	much	un‐
certainty	remained	about	whether	or	not	sea	trout	and	river	trout	
were	the	same	or	separate	species	(Frost	&	Brown,	1967).

2.2 | Two phenotypes and a single species

Brown	 trout	 may	 have	 split	 from	 Atlantic	 salmon	 (Salmo salar, 
Salmonidae)	between	10	and	14	million	years	ago	(Crête‐Lafrenière,	
Weir,	 &	 Bernatchez,	 2012),	 and	 the	 five	 major	 evolutionary	 line‐
ages	of	brown	trout	evolved	in	its	native	Eurasian	and	North	African	
range	of	distribution	with	geographic	 isolation	occurring	during	the	
Pleistocene	Ice	Ages	and	have	largely	remained	allopatric	since	then	
(Bernatchez,	2001).	Their	evolutionary	histories	have	been	shaped	by	
glaciations,	habitat	loss	and	varying	potential	for	dispersal.	They	sur‐
vived	in	ice‐free	refuges	during	the	periods	of	glaciation	and	colonized	
rivers	as	the	ice	cover	retreated	(McKeown,	Hynes,	Duguid,	Ferguson,	
&	Prodöhl,	2010).	After	the	last	glaciation	period	some	14,000	years	
ago,	they	entered	rivers	 in	the	former	glaciated	northern	areas	and	
gradually	acquired	their	natural	area	we	see	today	(Ferguson,	2006).	
The	 anadromous	 behaviour	 probably	 existed	 before	 speciation	 of	
the	salmonid	family	and	the	anadromous	types,	mainly	of	the	genus	
Salmo,	evolved	from	the	freshwater	forms	(Balon,	1980).

By	origin,	brown	trout	is	chiefly	a	European	species,	but	popu‐
lations	have	been	introduced	to	areas	outside	their	natural	range	
they	were	 unable	 to	 reach	 naturally	 (Jonsson	&	 Jonsson,	 2011).	
For	 instance,	 offspring	 of	 anadromous	 trout	 were	 released	 in	
some	 North	 American	 rivers,	 and	 from	 these	 progenitors,	 both	
anadromous	 and	 nonanadromous	 trout	 developed	 (Rounsefell,	
1958),	proving	that	the	two	trout	forms	could	develop	from	single	
gene	 pools.	 Similar	 evidence	 was	 obtained	 from	 releases	 in	 the	
Kerguelen	 Islands	 (Davaine	&	Beall,	1997).	The	close	connection	
between	the	two	phenotypes	was	further	highlighted	by	the	ob‐
servation	that	offspring	of	a	population	of	resident	mountain	living	
brown	trout	feed	and	grow	well	at	sea	when	transferred	to	a	coastal	
river	with	 free	 access	 to	 and	 from	 the	 sea	 (Jonsson,	 Jonsson,	&	
Hansen,	1994).	They	also	survive	and	grow	when	they	are	released	
directly	 into	 sea	 water	 as	 unsmoltified	 parr	 or	 immature	 brown	

1	INTRODUCTION 2

2	RESIDENT	VERSUS	ANADROMOUS	BROWN	
TROUT

2

2.1	Historical	overview 2

2.2	Two	phenotypes	and	a	single	species 3

2.3	Contrast	in	gene	expression 4

2.4	Phenotypic	plasticity 5

2.5	Epigenetics 6

3	TRADE‐OFFS	BETWEEN	GROWTH	AND	
SURVIVAL

6

3.1	Habitat	selection	theory 6

3.2	Migration	to	improve	growth 7

3.3	Migration	can	improve	survival 7

3.4	Improved	fecundity 8

3.5	The	energy	surplus	hypothesis 8

4	SEX‐SPECIFIC	RESPONSE 10

4.1	Bias	in	sex	ratio 10

4.2	Strong	size	dependence	in	females 10

4.3	An	alternative	strategy	in	males 10

5	ENVIRONMENTAL	DRIVERS	OF	ANADROMY	IN	
JUVENILES

11

5.1	Food	availability 11

5.2	Thermal	condition 11

5.3	Flow	condition 12

5.4	Density	dependence 12

5.5	Interspecific	competition 12

5.6	Predation 13

6	INFLUENCE	OF	THE	MARINE	ENVIRONMENT	
ON	MIGRATION	OUTCOME

13

6.1	Growth	potential 15

6.2	Seascape 15

6.3 Sea lice 15

7	INFLUENCE	OF	THE	SPAWNING	HABITAT	ON	
REPRODUCTION	OUTCOME

16

7.1	Habitat	suitability 16

7.2	Flow	condition	and	scouring	risk 16

7.3	Thermal	condition	and	spawning	phenology 17

7.4	Oxygen	and	siltation 17

7.5	Male	mating	strategies:	frequency	dependence,	
density	dependence	and	shelter

17

8	HUMAN	IMPACTS	ON	SEA	TROUT 18

8.1	Climate	change 18

8.2	Fisheries 18

8.3	Aquaculture 18

8.4	Degradation	of	water	quality 19

8.5	Threat	to	connectivity 19

8.6	Coastal	development 19

8.7	Interactions	among	impact	factors 20

9	RESEARCH	QUESTIONS	AND	FUTURE	
DIRECTIONS

20

9.1	Assessment	of	partial	anadromy 20

9.2	Responses	to	climate	change 20

9.3	Epigenetics 21

9.4	Management	strategies 21

ACKNOWLEDGEMENTS 21

DATA	AVAILABILITY	STATEMENT 22

REFERENCES 22



4  |     NEVOUX Et al.

trout	 (Jonsson,	 Jonsson,	Hansen,	&	Aass,	1994),	 although	osmo‐
regulatory	 performance	 is	 favoured	by	 a	 progressive	 transfer	 to	
seawater	 (Boeuf	&	Harache,	1982).	Experimentally,	Skrochowska	
(1969)	 and	 Ombredane,	 Siegler,	 Baglinière,	 and	 Prunet	 (1996)	
demonstrated	that	anadromous	and	nonanadromous	parents	pro‐
duced	both	freshwater	resident	and	sea‐run	migratory	offspring.	
However,	the	proportion	of	anadromous	offspring	was	higher	for	
anadromous	than	nonanadromous	parents,	indicating	a	difference	
in	gene	expression	between	the	two	forms.	Also,	within	single	river	
systems,	anadromous	and	nonanadromous	 trout	 spawn	 together	
as	have	been	observed	in	the	field	(Charles,	Guyomard,	Hoyheim,	
Ombredane,	 &	 Baglinière,	 2005;	 Cucherousset,	 Ombredane,	
Charles,	Marchand,	&	Baglinière,	2005;	Jonsson,	1985;	Vøllestad,	
2017),	 but	 the	 proportions	 of	 anadromous	 versus	 resident	 ma‐
ternal	origin	parr	will	probably	differ	 in	different	sections	of	 the	
stream	 (Rohtla	 et	 al.,	 2017).	 Population	 diversification	 through	
anadromous	 and	 nonanadromous	 individuals	 is	 not	 unique	 to	
brown	 trout,	 but	 is	 also	 found	 in	 other	 salmonids	 (e.g.	 rainbow	
trout;	Oncorhynchus mykiss,	 Salmonidae;	 Arctic	 charr;	 Salvelinus 
alpinus,	Salmonidae)	and	some	nonsalmonid	species	(e.g.	American	
shad;	Alosa sapidissima,	Clupeidae;	Jonsson	&	Jonsson,	1993).

2.3 | Contrast in gene expression

Although	 anadromous	 and	 nonanadromous	 trout	 are	 genetically	
similar	 when	 in	 sympatry	 (Charles	 et	 al.,	 2005;	 Cross,	 Mills,	 &	

Courcy	Williams,	 1992;	 Hindar,	 Jonsson,	 Ryman,	 &	 Ståhl,	 1991;	
Pettersson,	 Hansen,	 &	 Bohlin,	 2001),	 around	 50%	 of	 the	 vari‐
ability	 in	 migration	 versus	 residency	 among	 individuals	 within	
a	 population,	 may	 be	 due	 to	 genetic	 variance	 (Ferguson,	 Reed,	
Cross,	 McGinnity,	 &	 Prodöhl,	 2019).	 Recent	 evidence	 suggests	
differences	 in	 the	gene	expression	 influencing	the	 life	history	of	
the	two	trout	phenotypes	 (Giger	et	al.,	2006;	Lemopoulos	et	al.,	
2018,	2017).	For	 instance,	Giger	et	al.	 (2006)	demonstrated	that	
the	 gene	 expression	was	 primarily	 related	 to	 the	migratory	 trait	
and	not	to	genetic	relatedness,	whether	the	fish	migrate	to	the	sea	
or	a	lake.	They	found	that	migrant	and	freshwater‐resident	brown	
trout	from	the	same	area	exhibited	different	gene	expression	pro‐
files,	whereas	evolutionarily	or	geographically	distant	populations	
sharing	 the	 same	 life	 histories	 showed	 similar	 gene	 expression,	
that	is	similar	levels	of	mRNA	transcripts.	For	example,	a	resident	
population	 belonging	 to	 a	 Mediterranean	 lineage	 that	 diverged	
more	than	500,000	years	ago	from	the	Atlantic	lineage	exhibited	
a	gene	expression	profile	like	that	of	resident	Atlantic	populations.	
By	contrast,	migratory	and	resident	trout	from	the	same	river	had	
very	 different	 profiles	 (sets	 of	 mRNAs).	 Migration	 destination	
(mainstream	river,	lake	or	sea)	also	appears	to	be	genetically	pro‐
grammed	(Ferguson	et	al.,	2019).	Giger	et	al.	(2006)	suggested	that	
the	genetic	difference	between	life‐history	types	of	brown	trout	is	
the	result	of	a	few	controlling	genes	that	determine	the	expression	
of	many	other	genes	defining	the	life‐history	pattern.	They	found	
that	life‐history	differences	explained	45%	of	the	total	variability	

F I G U R E  2  Schematic	representation	of	brown	trout	life	history,	and	some	of	the	major	threats	affecting	its	abundance	(©	Bengt	Finstad	
and	Kari	Sivertsen,	NINA).	Figure	appears	in	colour	in	the	online	version	only
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in	 gene	 expression	 levels,	 three	 times	more	 than	 the	 variability	
explained	 by	 genetic	 diversity	 between	 populations.	 Thus,	 gene	
expression	appears	 to	be	 influenced	by	 the	environment	and	 in‐
teractions	between	genes	and	environment	that	drive	life	history	
and	migration	decisions.

2.4 | Phenotypic plasticity

There	 is	 considerable	 variation	 in	 life‐history	 strategies	 among	
individuals	and	populations,	 and	 in	 the	 timing	and	duration	of	ma‐
rine	migrations	of	brown	trout	(Aldvén	&	Davidsen,	2017;	Jonsson,	
1989;	Thorstad	et	al.,	2016).	Figure	2	illustrates	this	diversity:	after	
1–7	years	in	freshwater,	some	individuals	make	a	physiological	trans‐
formation	from	parr	to	smolt	and	migrate	to	sea.	Young	parr	may	also	
make	excursions	into	brackish	water.	Downstream	migration	usually	
takes	place	in	spring	and	autumn	(Aarestrup,	Birnie	Gauvin,	&	Larsen,	
2017;	 Poole	 et	 al.,	 2007;	Winter,	 Tummers,	 Aarestrup,	 Baktoft,	 &	
Lucas,	2016).	Anadromous	trout	spend	from	1	up	to	36	months	at	sea	
on	their	maiden	sea	sojourn.	In	the	marine	habitat,	they	feed	on	poly‐
chaetes,	crustaceans	and	small	fish	(Knutsen,	Knutsen,	Gjøsæter,	&	
Jonsson,	2001),	and	grow	more	than	in	freshwater.	Sometimes,	ana‐
dromous	trout	perform	an	early	(premature)	return,	characterized	by	
a	brief	 incursion	in	brackish	or	fresh	water,	before	heading	back	to	
the	sea;	this	phenomenon	may	be	exacerbated	by	sea	louse	infesta‐
tion	(Birkeland,	1996).	 In	summer,	autumn	and	even	winter,	mature	
anadromous	trout	return	to	their	natal	river	to	breed.	While	imma‐
ture	anadromous	trout	from	northern	Europe	may	spend	the	winter	
in	brackish	or	freshwater	(often	not	in	their	natal	river)	before	moving	
back	to	the	sea	in	the	following	spring	(Thomsen,	Koed,	Nielsen,	&	
Madsen,	2007).	Mature	 trout	 spawn	 in	 freshwater	 in	 the	 autumn/

winter	 and	 return	 to	 sea	 immediately	 after	 spawning	 (Jonsson	 &	
Jonsson,	2009b,	2002)	or	in	the	subsequent	spring	(Jonsson,	1985).	
The	 former	 is	more	 dominating	 for	 trout	 spawning	 in	 small	 water	
courses	 with	 poor	 shelter	 for	 wintering	 trout	 (Jonsson,	 Jonsson,	
Brodtkorb,	 &	 Ingebrigtsen,	 2001;	 Jonsson,	 Jonsson,	 &	 Jonsson,	
2018).	 Survivors	 typically	 undertake	 a	 shorter	 sea	 sojourn	 before	
heading	back	to	freshwater	as	repeat	spawners	(Jonsson	&	Jonsson,	
2009b).	Some	of	the	parr	do	not	smolt	and	remain	in	freshwater	dur‐
ing	their	entire	life.	Resident	and	anadromous	trout	can	reproduce	on	
sympatric	spawning	grounds,	or	spawn	in	separate	areas	of	the	same	
river	(Hindar	et	al.,	1991;	Rohtla	et	al.,	2017).

Brown	trout	exhibit	a	large	range	of	body	sizes	across	their	en‐
demic	distribution	range,	with	resident	trout	being	on	average	smaller	
that	anadromous	trout	(Figure	3).	Within	a	given	catchment,	resident	
trout	 rarely	become	as	 large	 as	 their	 anadromous	 counterparts	of	
similar	age.	However,	older	resident	trout	may	become	larger	than	
young	anadromous	trout	and	the	largest	resident	trout	can	be	larger	
than	the	smallest	anadromous	specimen	within	age‐classes	(i.e.	total	
age	from	birth).	Large	resident	trout	feeding	on	fish	can	grow	equally	
large	or	larger	than	anadromous	trout	do.	Ferox	trout	from	Scottish	
and	Irish	Lochs	are	examples	of	such	large	resident	trout	(Campbell,	
1979;	Hughes	et	al.,	2019).

The	parameters	controlling	juvenile	growth	rate	play	an	import‐
ant	role,	and	various	thresholds	regulate	the	individual's	decision	
of	 life	 history	 and	migration	 strategy.	 Growth	 rate	 variation	 in‐
duces	two	antagonistic	phenomena:	sexual	maturation	and	migra‐
tion	(Baglinière	&	Maisse,	1985;	Jonsson	&	Jonsson,	1993;	Maisse	
&	 Baglinière,	 1999).	 The	 higher	 the	 growth	 rate,	 the	 earlier	 the	
onset	of	maturation	or	migration.	Presumably,	the	developmental	
threshold	for	precocious	sexual	maturation	appears	earlier	in	the	

F I G U R E  3  Mean	length	at	age	for	resident	(filled	square)	and	
anadromous	(open	dot)	brown	trout	combined	for	the	River	Hals,	
River	Vosso,	River	Tamar,	River	Bresle	and	River	Oir.	The	total	age	
represents	the	freshwater	age	for	resident	trout	and	the	sum	of	the	
freshwater	age	and	the	sea	age	for	anadromous.	See	Table	S1	for	
details
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F I G U R E  4  Mean	length	at	age	for	brown	trout	smolts	at	
River	Hals	(diamond),	River	Vosso	(triangles	point	down),	River	
Burrishoole	(squares),	River	Bresle	(dots)	and	River	Oir	(triangles	
point	up).	Values	are	presented	±	1	SD,	except	for	River	Burrishoole.	
See	Table	S1	for	details
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season	than	that	for	migration.	In	partly	anadromous	populations,	
mature	parr	typically	become	freshwater	resident,	although	a	few	
of	 them	may	migrate	 to	 sea	 in	 a	 later	 year	 (Jonsson	&	 Jonsson,	
2011).	The	characteristics	of	these	thresholds,	relative	to	the	life	
stage	of	the	fish,	depend	on	environmental	factors,	the	stage	and	
sex	of	the	trout,	and	its	genotype	(Baglinière,	Guyomard,	Héland,	
Ombredane,	 &	 Prévost,	 2001).	 Across	 its	 European	 distribution	
area,	 the	 age	 of	 smolt	 vary	widely,	 from	 1–3	 years	 in	 France	 to	
5–7	years	in	northern	Norway	(Figure	4).	Within	each	population,	
the	size	of	smolts	increases	with	age.	This	large‐scale	pattern	sug‐
gests	 that	despite	phenotypic	plasticity	 and	 local	 environmental	
constraints,	 a	 physiological	 threshold	may	 underlie	 smolt	migra‐
tion	in	brown	trout.	We	may	add,	however,	that	smolt	size	is	par‐
ticularly	small	among	trout	spawning	in	small	streams,	with	some	
smolts	as	small	as	8	cm	being	recorded	(Jonsson	et	al.,	2001).

Like	in	the	Atlantic	salmon,	the	parr–smolt	transformation	takes	
place	 in	 the	 largest	 juvenile	 trout	 of	 a	 given	 population	 (Tanguy,	
Ombredane,	 Baglinière,	 &	 Prunet,	 1994)	 and	 smolting	 occurs	 in	
spring.	Silvering	encompasses	a	peak	of	gill	Na+/K+‐ATPase	activity	
and	 a	 simultaneous	 decrease	 in	 plasma	 prolactin	 is	 observed,	 to‐
gether	with	morphological	changes	(Aarestrup,	Nielsen,	&	Madsen,	
2000;	Boeuf	&	Harache,	1982).	But,	compared	to	the	Atlantic	salmon,	
no	 surge	 in	 growth	hormone	 is	 documented	 (Tanguy	et	 al.,	 1994).	
Hypoosmoregulatory	ability	is	greatest	at	the	time	of	peak	gill	Na+/
K+‐ATPase	activity,	and	it	increases	in	spring	in	all	trout,	irrespective	
of	smolt	status	(Nielsen,	Aarestrup,	&	Madsen,	2006).	Smolting	ap‐
pears	less	stringent	in	brown	trout	than	in	Atlantic	salmon	and	does	
not	seem	to	be	an	obligatory	process	for	seawater	adaptation	in	this	
species.	The	level	of	smolting	also	depends	on	stock	origin	and	body	
size;	for	example,	fast‐growing	juveniles	can	migrate	to	sea	without	
smolting	 (Tanguy	et	al.,	1994).	Usually,	 juvenile	 trout	migrate	 from	
rivers	in	spring	(March–June	in	Europe;	Byrne,	Poole,	Dillane,	Rogan,	
&	Whelan,	2004;	Flaten	et	al.,	2016;	Jensen	et	al.,	2012),	but	may	
also	migrate	at	other	times	of	the	year,	for	example	during	autumn	
(Aarestrup	et	al.,	2017;	Jonsson	&	Jonsson,	2009a,	2002;	Jonsson	
et	 al.,	 2018;	 Poole	 et	 al.,	 2007;	 Poole,	Whelan,	 Dillane,	 Cooke,	 &	
Matthews,	 1996;	 Taal	 et	 al.,	 2014;	Winter	 et	 al.,	 2016),	 indicating	
that	the	time	of	seaward	migration	is	highly	plastic.	There	are	indi‐
cations	that	smolt	run	timing	may	be	changing	with	migrations	oc‐
curring	earlier	 in	 recent	years	 (Byrne	et	 al.,	 2004),	 a	phenomenon	
also	observed	in	Atlantic	salmon	(Jonsson,	Jonsson,	&	Finstad,	2014;	
Otero	et	al.,	2014),	possibly	caused	by	climate	change.

Post‐smolt	brown	trout	feed	at	sea	and	some	immature	fish	return	
to	 estuaries	 or	 freshwater	 to	 overwinter,	whereas	 others	 remain	 at	
sea	(Jonsson	et	al.,	2001,	2018).	Evidence	of	unsmoltified	parr	making	
brief	brackish	water	excursions	to	switch	streams	has	also	been	docu‐
mented	(Taal	et	al.,	2018).	In	northern	Europe,	immature	trout	can	also	
return	to	freshwater	in	summer	after	a	short	stay	at	sea.	Ionoregulation	
in	 sea	water	 at	 low	 temperature	 is	 arduous,	 but	 anadromous	 trout	
have	been	observed	at	sea	during	winter	and	tolerate	full	salinity	sea‐
water	at	temperatures	as	low	as	1–2°C	(Eldøy	et	al.,	2017;	Jensen	&	
Rikardsen,	 2012;	 Knudsen	 et	 al.,	 2009;	 Olsen,	 Knutsen,	 Simonsen,	
Jonsson,	&	Knutsen,	2006).	In	the	brackish	Baltic	Sea,	parr	can	migrate	

from	freshwater	to	the	Baltic	coastal	zone	without	undergoing	smolt‐
ing.	There,	they	may	experience	little	or	no	physiological	cost	in	terms	
of	lower	survival	and	growth	from	this	transition	(Landergren,	2005).	
Otoliths	collected	from	brown	trout	in	the	Baltic	Sea	sometimes	show	
no	evidence	of	a	freshwater	history,	 raising	the	possibility	of	a	con‐
tingent	 of	 the	 coastal	 population	 that	 does	 not	 depend	 on	 riverine	
spawning	or	that	the	fish	move	to	sea	as	fry	(Limburg	et	al.,	2001).	The	
duration	and	timing	of	marine	migrations	are	likely	governed	by	trade‐
offs	between	mortality	risk	and	growth	opportunities	in	different	hab‐
itats,	and	the	most	beneficial	strategy	may	vary	among	individuals	and	
populations.	Based	on	life	table	analysis,	Jonsson	(1981)	found	that	the	
product	of	survival	and	fecundity,	as	a	measure	of	fitness,	was	similar	
for	freshwater	resident	and	anadromous	brown	trout	of	the	same	pop‐
ulation.	Possibly,	the	fitness	of	different	aged	smolts	is	also	similar	as	
indicated	from	calculations	of	survival	and	fecundity	of	female	Atlantic	
salmon	(Jonsson,	Jonsson,	&	Albretsen,	2016).

2.5 | Epigenetics

Divergent	 life‐history	phenotypes	may	be	 the	 result	 of	 epigenetic	
modifications	 that	 link	 environmental	 factors	 and	 the	 genome	 to	
regulate	 internal	cues	as	reported	from	studies	on	steelhead	trout	
(the	anadromous	form	of	the	rainbow	trout;	Baerwald	et	al.,	2016).	
The	most	studied	epigenetic	effect	is	a	consequence	of	DNA	meth‐
ylation.	High	methylation	levels	are	associated	with	silencing	of	gene	
expression,	and	demethylation	is	linked	to	active	gene	transcription	
(Bird,	2002).	Evidence	of	an	epigenetic	effect	on	life‐history	varia‐
tion	was	reported	by	Moran	and	Pérez‐Figueroa	(2011).	They	found	
a	link	between	DNA	methylation	and	maturation	in	Atlantic	salmon	
male	parr.	Mature	male	parr	exhibit	reduced	probability	of	smolting	
in	brown	trout	(Jonsson,	1985)	and	Atlantic	salmon	(Berglund,	1995).	
Epigenetic	effects	can	be	mediated	early,	such	as	at	the	embryonic	
stage	 (Jonsson	&	Jonsson,	2019).	For	 instance,	 thermal	 conditions	
during	 the	embryogenesis	may	 influence	 later	growth,	as	 found	 in	
Atlantic	 salmon	 (Finstad	&	 Jonsson,	2012)	 and	 zebra	 fish	 (Scott	&	
Johnston,	2012).	Furthermore,	there	is	evidence	of	multiple	differen‐
tially	methylated	genes	between	anadromous	and	nonanadromous	
rainbow	 trout	 (Baerwald	 et	 al.,	 2016).	 They	 reported	 that	 smolt‐
ing	of	steelhead	trout	is	associated	with	DNA	methylation	pattern.	
Furthermore,	it	has	been	shown	that	salt‐induced	alterations	in	DNA	
methylation	 patterns	 play	 a	 role	 in	 sea	water	 adaptation	 in	 fishes	
(Artemov	et	al.,	2017;	Moran,	Marco‐Rius,	Megías,	Covelo‐Soto,	&	
Pérez‐Figueroa,	2013).	One	may	hypothesize	that	early	environmen‐
tal	factors	may	also	influence	life‐history	decisions	and	phenotypic	
plasticity	in	brown	trout,	although	this	has	not	yet	been	investigated.

3  | TR ADE‐ OFFS BET WEEN GROW TH AND 
SURVIVAL

3.1 | Habitat selection theory

Mobile	organisms	are	expected	to	select	the	most	profitable	feed‐
ing	 habitat.	 They	 should	 choose	 the	 habitat	where	mortality	 (µ)	
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over	growth	(g)	(µ/g)	is	minimized	(Werner	&	Gilliam,	1984).	These	
two	components	are	main	determinants	of	their	fitness.	The	rela‐
tive	value	of	feeding	habitats	in	terms	of	survival	and	growth	often	
changes	 seasonally,	 or	 in	 relation	 to	 the	developmental	 stage	of	
the	individual.	Thus,	selection	should	favour	migration	from	fresh‐
water	to	the	sea	when	this	reduces	the	value	of	µ/g,	and	habitat	
choices	should	be	 influenced	by	benefits	and	costs	 in	each	habi‐
tat.	However,	organisms	only	experience	the	situation	where	they	
currently	are,	and	do	not	know	the	profitability	of	moving	to	dis‐
tant	 feeding	 grounds	 unless	 this	 is	 innately	 determined	 through	
an	 epigenetic	 threshold	 type	 response	 or	 a	 genetically	 prede‐
termined	 behaviour.	 Sea	 trout	must	 therefore	 rely	 on	 additional	
cues,	 such	 as	 present	 growth	 or	 size,	 to	 bias	 their	 movements	
towards	 the	 appropriate	 feeding	 ground	 (Dodson,	 Aubin‐Horth,	
Thériault,	 &	 Páez,	 2013).	 Their	 response	 is	 fine‐tuned	 through	
natural	 selection,	 although	 the	 response	 appears	 phenotypically	
plastic,	allowing	the	fish	to	cope	with	environmental	stochasticity	
and	variation.	However,	the	degree	of	plasticity	 is	at	 least	partly	
inherited	 and	 varies	 among	populations	 (Fusco	&	Minelli,	 2010).	
There	 is	 little	 knowledge	on	 the	 extent	of	 epigenetic	 effects	 on	
behavioural	 decisions	 (Baerwald	 et	 al.,	 2016),	 although	 Jonsson	
and	Jonsson	(2018)	showed	that	the	temperature	experienced	by	
Atlantic	salmon	embryos	influences	the	timing	of	their	homing	mi‐
gration	years	later,	when	they	as	adults	return	from	the	ocean	to	
spawn	in	freshwater.

3.2 | Migration to improve growth

Growth	of	trout	depends	largely	on	food	consumption	and	tempera‐
ture.	Young	trout	experiencing	reduced	growth	because	of	food	re‐
strictions	may	either	move	to	a	more	profitable	 feeding	habitat	or	
attain	sexual	maturation	at	an	early	age	to	make	the	most	of	a	poor	
environment	(Jonsson,	1985).	Thus,	feeding	migration	is	a	viable	al‐
ternative	if	distant	habitats	provide	improved	growth	opportunities	
without	a	disproportional	decrease	in	survival	(Jonsson	&	Jonsson,	
1993).	Growth	is	typically	higher	at	sea	than	 in	freshwater.	For	 in‐
stance,	length	increase	during	the	second	year	in	freshwater	is	typi‐
cally	6	cm	in	Southern	Norway	(L’Abee‐Lund	et	al.,	1989),	which	is	
approximately	half	the	length	increase	obtained	by	immature	trout	
spending	their	second	year	at	sea	(Jonsson	&	Jonsson,	2011;	Poole	
et	al.,	1996),	but	growth	decreases	with	age	and	sexual	maturation.	
In	northern	Norway,	the	difference	between	freshwater	and	marine	
growth	may	be	even	 larger	 (Berg	&	 Jonsson,	1990).	 In	addition	 to	
better	feeding	opportunities,	growth	at	sea	may	be	less	constrained	
because	of	reduced	population	density	and	intraspecific	competition	
in	northern	temperate	and	sub‐Arctic	areas.	In	some	systems,	lakes	
may	also	offer	better	growing	condition	than	the	nearby	mainstream	
river	and	reduced	costs	of	migration	compared	to	seaward	migration	
(e.g.	short	migration	distance,	low	predation).	A	similar	pattern	may	
hold	true	for	brown	trout	moving	from	tributaries	to	the	mainstream,	
further	downstream,	in	large	river	systems.	Distinct	populations	of	
adfluvial	 trout	 have	 been	 identified,	 such	 as	 the	 Dollaghan	 trout	
in	Lough	Neagh,	northern	Ireland,	and	the	Croneen	trout	in	Lough	

Derg	 on	 the	 Shannon,	 Ireland	 (Ferguson,	 2004).	 Such	 a	 trade‐off	
may	also	be	driving	lacustrine	migration	in	landlocked	trout	popula‐
tions,	as	observed	in	Lake	Geneva	(Champigneulle,	Buttiker,	Durand,	
&	Melhaoui,	1999).

The	aggregation	of	six	data	sets	from	across	Europe	allowed	us	to	
highlight	some	new	patterns	(Figure	5).	Within	our	six	populations,	
we	observe	a	general	pattern	that	emerges	in	the	form	of	a	positive	
correlation	in	body	length	between	anadromous	and	resident	trout.	
This	means	that	rivers	with	 large	resident	trout	also	produce	 large	
anadromous	trout.	Moreover,	the	relative	growth	gained	by	the	sea	
migration	(i.e.	the	deviation	from	the	1:1	line	in	Figure	5)	is	larger	in	
populations	of	large	brown	trout.	Apparently,	for	anadromy	to	be	a	
viable	life‐history	tactic,	the	growth	rate	of	anadromous	fish	must	be	
higher	than	that	of	corresponding	freshwater	residents.

3.3 | Migration can improve survival

Mortality	 is	 higher	 during	 the	marine	migration	 than	 in	 freshwa‐
ter,	 with	 sea	 trout	 facing	 high	 predation	 rates	 during	 early	 sea	
migration	when	 they	 are	 small	 and	 cross	 the	 estuarine	 zone.	 For	
instance,	precise	estimates	 from	Black	Brows	Beck,	Lake	District,	
England,	showed	that	the	instantaneous	rate	of	survival	of	brown	
trout	was	about	0.88%	day−1	during	the	second	year	in	freshwater	
while	 the	 return	 rate	of	 post‐smolts	 at	 sea	 averages	0.25%	day−1 
(Elliott,	1993).	Aldvén,	Hedger,	Økland,	Rivinoja,	and	Höjesjö	(2015)	
detected	a	significantly	higher	mortality	rate	in	brown	trout	smolts	
moving	from	the	river	into	a	shallow	estuary	(mortality	26%–51%)	

F I G U R E  5  Correlation	between	mean	length	at	age	for	resident	
and	anadromous	brown	trout	at	the	River	Hals	(green),	River	Vosso	
(yellow),	River	Burrishoole	(red),	River	Tamar	(pink),	River	Bresle	
(black)	and	River	Oir	(blue).	The	solid	line	represents	the	1:1	line.	
The	dotted	line	represents	the	relative	growth	gain	attributable	
to	sea	migration,	with	a	slope	estimated	at	1.377	(SD:	0.138)	and	
significantly	different	from	1	(χ2 = 318.2, df = 1, p	=	.006).	Values	
are	presented	±	1	SD,	except	for	River	Burrishoole.	See	Table	S1	for	
details.	Figure	appears	in	colour	in	the	online	version	only
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than	in	smolts	entering	a	deep	fjord	(17.5%–29.2%).	Dieperink,	Bak,	
Pedersen,	 Pedersen,	 and	 Pedersen	 (2002),	 Dieperink,	 Pedersen,	
and	Pedersen	(2001)	studied	avian	predation	on	emigrating	wild	and	
domesticated	sea	trout	post‐smolts	in	fjords	of	the	western	Baltic	
Sea	and	North	Sea.	In	total,	65%	of	the	post‐smolts	were	eaten	by	
fish‐eating	birds,	and	during	the	first	2	days	after	entering	the	sea,	
both	wild	and	domesticated	post‐smolts	suffered	a	daily	predation	
rate	estimated	at	20%–34%.	Thus,	the	trout	appeared	to	experience	
a	transient	period	with	elevated	risk	of	predation	immediately	after	
exposure	to	sea	water.	However,	in	other	places,	the	early	mortality	
is	noticeably	 lower.	Survival	of	 smolts	migrating	 through	Randers	
and	Mariager	Fjord	in	Denmark	showed	survivals	between	76%	and	
80%	30	days	after	fjord	entry	and	in	Poole	Harbour	in	England	88%	
of	 the	 trout	 smolts	 entering	 the	 estuary	made	 the	 12	 km	 transi‐
tion	to	the	open	sea	(Aarestrup,	Baktoft,	Koed,	del	Villar‐Guerra,	&	
Thorstad,	2014;	Lauridsen	et	al.,	2017;	del	Villar‐Guerra,	Aarestrup,	
Skov,	&	Koed,	2013).	Predation	rates	appear	to	be	influenced	by	the	
time	and	size	at	migration,	and	sea	trout	of	the	River	Imsa,	Norway,	
exhibit	highest	survival	 if	migrating	in	May	(ca.	15%	until	river	re‐
turn)	 and	 low	 survival	 if	 migrating	 to	 the	 sea	 between	 July	 and	
December	(ca.	2%)	(Jonsson	&	Jonsson,	2009a).	However,	in	Gudsø	
Stream,	Denmark,	the	return	rates	of	spring	and	autumn	migrants	
were	similar	 (Birnie	Gauvin	&	Aarestrup,	2018).	This	suggests	dif‐
ference	 in	 autumn	mortality	 between	 rivers.	Also,	 one	would	 ex‐
pect	that	sea	migration	in	the	autumn	would	benefit	other	fitness	
components,	 such	 as	 growth,	 and	 compensate	 for	 this	 potential	
high	initial	migration	cost.

By	migrating,	sea	trout	can	avoid	adverse	environmental	condi‐
tions	in	the	home	stream,	such	as	winter	icing‐up	of	streams	or	sum‐
mer	drought.	For	 instance,	 in	small	 streams	 regularly	experiencing	
summer	drought,	sea	trout	can	migrate	to	sea	at	a	small	size	early	
in	 life	 and	 in	 this	 way	 avoid	 poor	 growth	 and	 survival	 conditions	
(Jonsson	et	al.,	2001;	Landergren,	2004;	Titus	&	Mosegaard,	1992).	
This	pattern	resembles	the	strategy	followed	by	some	Pacific	salmo‐
nids,	such	as	pink	salmon	(Oncorhynchus gorbuscha,	Salmonidae)	and	
chum	salmon	(Oncorhynchus keta,	Salmonidae),	which	both	start	their	
seaward	migration	early	 in	 life.	Trout	from	streams	with	low	water	
level	during	winter	may	migrate	to	a	neighbouring	watercourse	for	
overwintering	 (Aldvén	&	Davidsen,	2017)	or	stay	 in	marine	waters	
(Eldøy	et	al.,	2017;	Jonsson	et	al.,	2018;	Olsen	et	al.,	2006).

3.4 | Improved fecundity

Fecundity,	 or	 number	 of	 ova	 per	 unit	 length,	 changes	 between	
stocks	(Fahy,	1985;	Poole,	Byrne,	Dillane,	Whelan,	&	Gargan,	2002)	
and	between	stocks	in	different	regions	(Jonsson	&	Jonsson,	1999;	
Solomon,	1997).	But,	with	larger	body	size,	sea	trout	increase	their	
gamete	production	and	direct	competitive	ability	on	the	spawning	
ground,	and	thus	obtain	augmented	reproductive	success	(Fleming,	
1996;	Gross,	1987;	Hutchings	&	Myers,	1985).	For	 instance,	mean	
fecundity	of	sea	trout	from	Vangsvatnet	Lake,	Norway,	was	1,790	
eggs	compared	to	330	eggs	for	nonanadromous	females	of	similar	
age	 (i.e.	 <20%;	 Jonsson,	 1981,	 1985).	 Egg	 size	 increases	 with	 the	

size	of	 the	mother,	and	with	 increasing	egg	size,	early	growth	and	
viability	 of	 offspring	 increase	 (Bagenal,	 1969;	 Segers	 &	 Taborsky,	
2011).	However,	 these	 relationships	 are	 dependent	 on	 the	 female	
life	history,	with	females	investing	in	larger	ova	as	the	fish	become	
larger	and	older.	It	seems	that	anadromous	females	had	smaller	ova	
compared	 with	 freshwater‐resident	 females	 of	 similar	 body	 size	
(i.e.	 older	 fish)	 and	 achieved	higher	 fecundity	 as	 they	grew	bigger	
(Acolas,	Roussel,	&	Baglinière,	2008).	Another	advantage	for	the	off‐
spring	of	 anadromous	 females	may	 come	 from	an	earlier	hatching	
date	in	the	season,	as	reported	in	anadromous	brown	trout	(Jonsson	
&	Jonsson,	1999)	and	 rainbow	trout	 relative	 to	sympatric	 resident	
trout	 (Zimmerman	 &	 Reeves,	 2000).	 A	 longer	 spawning	 period	 in	
resident	trout	may	buffer	this	phenological	difference	in	some	cases,	
for	 example	River	Oir,	 France	 (Maisse	 et	 al.,	 1991).	 Less	 is	 known	
about	the	production	of	male	milt	and	spermatozoa	in	brown	trout,	
although	differences	in	sperm	count	were	observed	between	stocks	
and	the	length	of	the	spawning	migration	(Jonsson	&	Jonsson,	2006)	
and	a	negative	trend	was	linked	with	size	and	age	of	males,	possibly	
indicating	a	lower	fertilizing	ability	of	older	fish	within	any	one	stock	
(Poole	&	Dillane,	1998).

3.5 | The energy surplus hypothesis

Several	studies	suggest	that	anadromy	in	brown	trout	is	triggered	by	
energy	limitation	in	natal	rivers	(reviewed	by	Dodson	et	al.	 (2013))	
and	can	be	terminated	if	the	relative	advantage	of	migration	changes	
(Sandlund	&	Jonsson,	2016).	Some	early	studies	documented	an	as‐
ymptotic	size	at	one	year,	which	is	limited	by	the	carrying	capacity	
of	the	river	(Baglinière	&	Maisse,	1990).	Thus,	to	meet	their	energy	
requirements	 and	 grow	 further,	 individuals	 should	 change	 habitat	
and	move	towards	a	more	productive	habitat	further	downstream	in	
the	watershed	or	at	sea	(Baglinière	&	Maisse,	2002).	Brown	trout	ap‐
pear	to	favour	a	migration	strategy	when	the	energy	surplus	useable	
for	growth	becomes	low	(Forseth,	Nesje,	Jonsson,	&	Hårsaker,	1999;	
Jonsson	&	Jonsson,	1993).

Experimentally,	Davidsen	et	al.	(2014)	induced	migration	by	de‐
creasing	ration	size	during	the	6	months	prior	to	smolting.	Similarly,	
Jones,	Bergman,	and	Greenberg	(2015)	demonstrated	that	reduced	
winter	 and	 spring	 feeding	 increased	 the	 tendency	 to	 smoltify	 for	
lake	 feeding	 brown	 trout	 from	 the	 River	 Klarälven,	 Sweden.	 In	
contrast,	 another	 experiment	 reported	 that	 trout	 facing	 food	 re‐
striction	 in	 late	autumn	exhibited	 lower	 rate	of	silvering,	which	 is	
indicative	of	a	delay	in	smolting	(Näslund,	Sundström,	&	Johnsson,	
2015).	Thus,	winter/beginning	of	spring	appears	to	be	a	critical	pe‐
riod	when	the	decision	is	made	about	whether	to	smolt	and	migrate	
to	a	better	feeding	area.	These	experimental	findings	contrast	with	
Thorpe	and	Metcalfe's	(1998)	hypothesis	that	autumn	is	the	critical	
time	 in	Atlantic	 salmon,	when	decisions	 of	migration	 versus	mat‐
uration	 are	 taken.	 This	 implies	 that	 brown	 trout	 are	more	 plastic	
and	energy	intake	during	winter	and	spring	may	over‐rule	an	initial	
decision,	depending	on	the	energetic	state	of	the	fish	(cf.	Jonsson,	
Jonsson,	&	Finstad,	2013).	In	contrast,	rearing	brown	trout	in	aqua‐
culture	with	optimum	rations	reduces	the	probability	of	smolting,	
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leads	 to	 early	 maturation	 and	 lowers	 the	 return	 rates	 from	 sea	
releases	 (Byrne,	Poole,	Dillane,	&	Whelan,	2002;	Mills,	Piggins,	&	
Cross,	1990).

Within	brown	trout	populations,	fast	growers	tend	to	migrate	at	
a	younger	age,	and	typically	smaller	size	than	slow	growers	(Jonsson,	
1985;	 Økland,	 Jonsson,	 Jensen,	 &	 Hansen,	 1993),	 and	 within	 a	
given	cohort,	 larger	 juveniles	 tend	 to	undertake	 longer	migrations	
(Ombredane	et	al.,	1996).	Individuals	with	a	high	metabolic	rate	may	
migrate	downstream	earlier	as	 their	energy	demands	more	rapidly	
exceed	those	available	in	their	current	habitat	than	in	smaller	trout	
(Ferguson,	Reed,	McGinnity,	&	Prodöhl,	2017;	Forseth	et	al.,	1999;	
Peiman	et	al.,	2017).	Sea	trout	smolts	have	very	low	energy	density	
at	the	time	of	migration	(ca.	350	kJ/100	g	wet	mass),	which	is	similar	
to	that	of	resident	trout	after	spawning	(Jonsson	&	Jonsson,	1997,	
1998).	This	is	due	to	a	low	lipid	density	(ca.	1.5	g/100	g	wet	mass),	

which	may	contribute	to	the	compensatory	growth	exhibited	by	sea	
trout	during	 the	 first	weeks	at	sea	 (Marco‐Rius,	Caballero,	Moran,	
&	 Leaniz,	 2012).	 In	 brook	 trout	 (Salvelinus fontinalis,	 Salmonidae),	
Morinville	and	Rasmussen	 (2003)	 reported	that	 in	 the	year	before	
migration,	 migrant	 brook	 trout	 have	 consumption	 rates	 1.4	 times	
higher	than	those	of	resident	brook	trout.	However,	migrants	have	
lower	 growth	 efficiencies	 (ratio	 of	 growth	 to	 consumption)	 than	
residents,	indicating	that	migrants	have	higher	metabolic	costs,	and	
relatively	 less	 surplus	 energy	 available	 at	 the	 time	 the	migrations	
commences.

Individual	growth	rate	better	integrates	the	mechanisms	under‐
lying	migration	decision	whereas	body	size	is	more	strongly	related	
to	survival	 in	 trout	 (Acolas,	Labonne,	Baglinière,	&	Roussel,	2012).	
Intrinsic	 differences	 between	 individuals	 explain	 why	 migrants	
and	residents	differ	 in	body	size	 in	many	partial	migratory	species	

River Life stage Per cent females Reference

Voss,	Norway Smolts 58 Jonsson	(1985)

Tweed,	Scotland Smolts 59 Campbell	(1977)

Nybroån,	Sweden Smolts 61 Dellefors	(1996)

Istra,	Norway Smolts 61 Jensen	(1968)

Bresle,	France Smolts 62 Quéméré	et	al.	(2011)

Jutland	(several	streams),	
Denmark

Smolts 75 Nielsen	(1994)

Verkeån,	Sweden Smolts 75 Svärdson	(1966)

Vindelälven,	Sweden Smolts 73 D.	Palm	(personal	
communication)

Mean	±	1	SD Smolts 65.5	±	7.4  

Mørfjær,	Sweden Adult 44 Jonsson	et	al.	(2018)

Själsöån,	Sweden Adult 48 Rubin	et	al.	(2005)

Urvold	lake,	Norway Adult 52 J.	G.	Davidsen	
(personal	
communication)

Bresle,	France Adult 55 Quéméré	et	al.	(2011)

Bottenvassdraget,	
Norway

Adult 56 J.	G.	Davidsen	
(personal	
communication)

Saltdalselva,	Norway Adult 58 J.	G.	Davidsen	
(personal	
communication)

Vindelälven,	Sweden Adult 61 Norrfors	fishlad‐
der,	Vattenfall	
Vattenkraft	AB

Åvaån,	Sweden Adult 63 Alm	(1950)

Ihra,	Sweden Adult 64 Hessle	(1935)

Voss,	Norway Adult 66 Jonsson	(1985)

Verkeån,	Sweden Adult 73 Svärdson	(1966)

Vistula,	Poland Adult 76 Svärdson	(1966)

Oir, France Adult 79 F.	Marchand	
(personal	
communication)

Mean	±	1	SD Adult 61.2	±	10.6  

TA B L E  1  Sex	ratio	of	smolts	and	
sexually	mature	sea	trout	as	reported	
from	various	rivers	across	Europe
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(Chapman	et	al.,	2012).	Improved	feeding	opportunities	and	growth	
is	thus	the	main	benefit	of	anadromy	for	fish	spawning	in	freshwater	
(Frier,	1994;	Gross,	Coleman,	&	McDowall,	1988).

Size	may	 also	 interact	 with	 the	 ability	 of	 juveniles	 to	 estab‐
lish	 and	 hold	 territories;	 thus,	 smaller	 and/or	 younger	 parr	 may	
be	 forced	 to	 leave	 the	 stream	 by	 larger	 and/or	 older	 conspecif‐
ics	 (Landergren,	2004).	 In	Atlantic	salmon,	some	populations	ex‐
hibit	 a	 bimodality	 in	 size	by	 the	end	of	 the	 first	 growing	 season	
(Baglinière	&	Maisse,	1985).	Individuals	from	the	upper	mode,	that	
is	 large	 juveniles,	 smolt	 and	migrate	 to	 sea	 the	 following	 spring	
(Baglinière	 &	 Maisse,	 1985;	 Thorpe,	 Talbot,	 &	 Villarreal,	 1982).	
Atlantic	salmon	appear	to	smolt	when	the	young	have	reached	a	
critical	size,	although	this	pattern	may	not	be	detected	in	slower	
growing	 populations	 of	 northern	 Europe	 (Økland	 et	 al.,	 1993).	
This	is	probably	because	survival	at	sea	is	strongly	size	dependent	
(Flaten	et	al.,	2016;	Jonsson	et	al.,	2016).	 In	 trout,	 it	 is	unknown	
to	what	degree	size	influences	age	at	smolting	(Figure	4).	Juvenile	
size	bimodality	 has	not	been	detected	 at	 the	end	of	 the	 growth	
season	 (Baglinière,	 Prévost,	 &	Maisse,	 1994).	 This	 suggests	 that	
the	migration	decision	may	be	taken	later	in	trout,	highlighting	the	
greater	flexibility	of	trout	life	history	compared	to	Atlantic	salmon	
(Baglinière	et	al.,	2001).

4  | SE X‐SPECIFIC RESPONSE

Skewed	sex	ratios	are	commonly	observed	within	the	anadromous	
and	resident	components	of	partially	migratory	brown	trout	popula‐
tions.	The	skewed	sex	ratios	result	from	differences	in	physiological	
constraints	 and	 life‐history	 trajectories	 in	males	 and	 females.	 The	
fitness	of	 females	appears	more	closely	associated	with	body	size	
than	 in	males.	Although	 the	 same	environmental	 conditions	 inter‐
act	with	 threshold	 limits	 to	determine	 individual	 life	histories,	 the	
mechanisms	selecting	for	migration	or	residency	differ	between	the	
sexes.	This	results	in	sexually	divergent	thresholds	and	rates	of	ana‐
dromy	(Jonsson	et	al.,	2001).

4.1 | Bias in sex ratio

Although	the	sex	ratio	of	parr	is	even	in	brown	trout,	there	appears	
to	 be	 a	 female	 surplus	 among	 emigrating	 smolts	 (Cucherousset	
et	al.,	2005;	Jonsson,	1985;	Klemetsen	et	al.,	2003).	 In	northern	
France,	 the	 percentage	 of	 females	 among	migrating	 smolts	 var‐
ies	 between	 57%	 and	 67%	 (Euzenat,	 Fournel,	 &	 Richard,	 1999;	
Quéméré,	 Gentil,	 &	 Launey,	 2011),	 which	 fits	 well	 with	 what	 is	
found	 elsewhere	 (Table	 1).	 Also,	 females	 typically	 outnumber	
males	 among	 adults	 entering	 streams	 for	 spawning	 (Campbell,	
1977;	Euzenat,	Fournel,	&	Fagard,	2006;	 Jensen,	1968;	 Jonsson,	
1985;	 Mills	 et	 al.,	 1990;	 Okumuş,	 Kurtoglu,	 &	 Atasaral,	 2006;	
Poole	 et	 al.,	 2007).	On	 the	 spawning	 grounds,	 however,	 the	op‐
erational	sex	ratio	may	be	skewed	in	favour	of	males	because	they	
stay	longer	and	if	possible,	spawn	with	several	females	(Aarestrup	
&	Jepsen,	1998).

The	size	of	the	stream	used	for	spawning	may	influence	spawn‐
ing	 success	 and	 therefore	 indirectly	 the	 sex	 ratio,	 with	 male	 sur‐
plus	reported	in	several	small	streams	(Jonsson	et	al.,	2018;	Rubin,	
Glimsäter,	&	Jarvi,	2005).	The	highest	proportion	of	females	among	
the	 anadromous	 trout	 are	 found	 in	 the	 nutrient	 rich	 and	 produc‐
tive	streams	and	large	rivers	of	the	Baltic	and	the	North	Sea	areas	
(Table	1),	and	this	bias	may	be	larger	when	the	high	proportion	of	re‐
peat	spawners,	as	postspawning	survival	is	greater	in	females	than	in	
males.	In	small	streams,	males	mature	younger	and	smaller	than	fe‐
males,	and	relatively	more	males	will	therefore	survive	to	adulthood	
(Jonsson,	1985;	Jonsson	&	Jonsson,	2015).	Where	there	is	a	female	
surplus	among	the	smolts,	it	may	be	evened	out	among	anadromous	
adults	 because	males	mature	 younger	 than	 females	 and	more	will	
therefore	survive	to	adulthood	(Jonsson	et	al.,	2018).

Anadromous	 females	 typically	 outnumber	 anadromous	 males	
in	 larger	 streams,	 and	 the	 same	 is	 reported	 from	other	 species	of	
partly	migratory	 trout	and	charr,	 such	as	 rainbow	trout	 (McMillan,	
Katz,	&	Pess,	2007;	Rundio,	Williams,	Pearse,	&	Lindley,	2012;	Van	
Doornik,	 Berejikian,	 &	 Campbell,	 2013),	 Arctic	 charr	 (Nordeng,	
1983),	 whitespotted	 charr	 (Salvelinus leucomaenis, Salmonidae; 
Tamate	&	Maekawa,	 2004)	 and	 some	Atlantic	 salmon	populations	
(Jonsson,	 Jonsson,	 &	 Hansen,	 1998),	 although	 exceptions	 occurs	
(J.‐L.	 Bagliniere,	 personal	 communication).	 Dodson	 et	 al.	 (2013)	
noted	 an	 increase	 in	 male	 anadromy	 of	 brook	 trout	 towards	 the	
north.	This	has	not	yet	been	investigated	for	brown	trout.

4.2 | Strong size dependence in females

Large	female	size	is	selected	by	natural	selection	as	reproductive	suc‐
cess	is	more	strongly	associated	with	body	size	in	females	than	males	
(Jonsson,	1985;	Kendall	et	al.,	2014).	Furthermore,	body	size	varia‐
tion	is	smaller	in	females	than	in	males.	This	may	be	because	females	
do	not	exhibit	alternative	spawning	tactics	(sneaking	versus	fighting)	
as	males	 do	 (McLean,	Bentzen,	&	Quinn,	 2004).	 Furthermore,	 the	
gonad	development	of	females	requires	more	energy	(Baglinière	et	
al.,	2001;	Fleming,	1996;	Prouzet,	LeBail,	&	Heydorff,	1984).	Thus,	
females	are	more	likely	to	migrate	to	more	food	rich	areas	and	stay	
there	 for	 longer	 periods	 of	 time	 to	 grow	 larger	 before	 spawning	
(Bordeleau	et	al.,	2018;	Cucherousset	et	al.,	2005;	Ferguson,	2006;	
Northcote,	1992).	Undertaking	a	 longer	and	more	risky	sea	migra‐
tion	may	reduce	survival,	resulting	in	relatively	few	anadromous	fe‐
male	 trout	 returning	as	adults.	Higher	marine	mortality	 in	 females	
than	males	has	been	reported	for	anadromous	whitespotted	charr	
by	Tamate	and	Maekawa	(2004),	but	no	empirical	evidence	is	availa‐
ble	for	sea	trout.	On	the	other	hand,	postspawning	survival	is	higher	
in	female	charr	(and	salmon)	than	in	males,	which	may	also	hold	for	
brown	trout.	Thus,	sex	ratio	of	repeat	spawners	may	be	even	more	
skewed	in	favour	of	females	(Euzenat	et	al.,	1999).

4.3 | An alternative strategy in males

A	large	male	size	may	be	favoured	because	of	both	natural	and	sex‐
ual	selection	 (Young,	2005).	They	are	favoured	by	natural	selection	
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because	 large	males	 have	 larger	 testes	 (Jonsson	 &	 Jonsson,	 2005,	
1997),	win	spawning	contests	more	often	and	therefore	spawn	more	
times	than	smaller	males	(Fleming,	1996).	They	are	favoured	by	sexual	
selection	because	females	prefer	large	males	as	partners	(Petersson,	
Järvi,	Olsén,	Mayer,	&	Hedenskog,	1999;	Serbezov,	Bernatchez,	Olsen,	
&	Vøllestad,	2010)	and	large	males	gain	better	access	to	females	due	
to	higher	fighting	success.	On	the	other	hand,	male	size	is	not	directly	
associated	with	 reproductive	 success	 (Poole	 &	Dillane,	 1998)	 even	
though	 large	 males	 do	 enjoy	 strong	 competitive	 advantages	 over	
smaller	resident	males	when	fighting	for	mates	(Bohlin,	Dellefors,	&	
Faremo,	1990).	Some	males	may	adopt	an	alternative	spawning	be‐
haviour	(Dominey,	1984;	Gross,	1991).	While	large	males	gain	access	
to	females	through	fighting,	small	resident	males	effectively	employ	
a	 sneaking	 tactic	 to	 the	 same	ends	 (Olsén,	 Järvi,	Mayer,	Petersson,	
&	 Kroon,	 1998),	 avoiding	 the	 risks	 of	migration,	 and	 breeding	 at	 a	
younger	age	 (Foote,	Brown,	&	Wood,	1997).	However,	 “precocious”	
maturation	is	less	pronounced	in	brown	trout	than	in	Atlantic	salmon,	
where	males	 can	mature	 before	 the	 age	of	 1	 (Baglinière	&	Maisse,	
1985).	 Since	 maturation	 and	 smolting	 may	 be	 considered	 compet‐
ing	developments	 in	 terms	of	energy	allocation	and	physiology,	 the	
energy	 requirements	 for	 smolting	 after	maturing	may	 be	 too	 large	
to	 allow	 migration	 within	 a	 reasonable	 seasonal	 schedule.	 Indeed,	
maturation	 in	brown	trout	correlates	with	delayed	or	reduced	rates	
of	smolting	(Bohlin	et	al.,	1990;	Cucherousset	et	al.,	2005;	Dellefors	&	
Faremo,	1988;	Jonsson,	1985),	but	nevertheless	does	happen.

Intermediate‐sized	 individuals,	 in	 contrast	 to	 large	 or	 small	 in‐
dividuals,	may	be	 ineffective	at	both	 fighting	and	sneaking	mating	
strategies,	 putting	 them	 at	 a	 competitive	 disadvantage	 and	main‐
taining	the	separation	of	two	distinct	male	phenotypes	as	observed	
within	many	wild	salmonid	populations	(Gross,	1985).	 It	 is	possible	
that	where	intermediate‐sized	mature	males	are	present	on	spawn‐
ing	 grounds,	 they	 utilize	 female	mimicry	 in	 order	 to	 approach	 fe‐
males	 without	 attracting	 the	 aggression	 of	 large	 dominant	 males	
(Esteve,	2005).	This	behaviour,	which	is	associated	with	altered	male	
colouration	 resembling	 that	of	mature	 females,	has	been	 reported	
in	 Arctic	 charr,	 pink	 salmon,	 chum	 salmon	 and	 red‐spotted	 masu	
salmon	(Oncorhynchus masou ishikawae,	Salmonidae;	Kano,	Shimizu,	
&	 Kondou,	 2006;	 Keenleyside	 &	 Dupuis,	 1988;	 Sigurjónsdóttir	 &	
Gunnarsson,	1989).

5  | ENVIRONMENTAL DRIVERS OF 
ANADROMY IN JUVENILES

Anadromy	and	residency	in	brown	trout	are	considered	alternative	
tactics	within	a	single	strategy	 (Dodson	et	al.,	2013).	The	decision	
to	migrate	 to	 sea	 results	 from	 a	 trade‐off	 between	mortality	 and	
growth	 in	fresh	and	salt	waters	so	that	the	overall	 fitness	 is	maxi‐
mized,	and	individuals	must	use	proximate	cues	to	adopt	the	most	
appropriate	life	history	(Kendall	et	al.,	2014).	Environmental	factors	
influencing	growth	in	early	life	are	probably	the	main	cues	on	which	
the	decision	is	made	(Baglinière	et	al.,	2001;	Ferguson	et	al.,	2017;	
Jonsson	&	Jonsson,	1993).

5.1 | Food availability

Both	 empirical	 and	 experimental	 studies	 have	 reported	 negative	
correlations	 between	 the	 proportion	 of	 migratory	 trout	 and	 food	
availability	 in	 the	 natal	 freshwater	 system	 (review	 in	 Ferguson	 et	
al.	 (2017)).	 For	 instance,	 the	migration	 of	 brown	 trout	 between	 a	
tributary	where	they	spawned	and	the	main	river	ceased	when	the	
growth	opportunities	in	the	main	river	decreased	because	of	dam‐
ming	and	reduced	flow	in	the	main	river	(Jonsson	&	Sandlund,	1979;	
Sandlund	&	 Jonsson,	 2016).	 Kendall	 et	 al.	 (2014)	 noted	 that	 food	
quality,	which	is	energy	value,	may	be	as	important	as	food	quantity.	
Hence,	 resident	 trout	 appear	 to	be	 abundant	 in	 the	most	produc‐
tive	areas,	with	a	high	 invertebrate	biomass.	Where	 lakes	are	pre‐
sent,	 a	 lacustrine‐adfluvial	 migration	 pattern	 often	 predominates	
(Ferguson,	 2004;	 Ferguson	 et	 al.,	 2017;	Gresswell,	 Liss,	&	 Larson,	
1994),	as	some	lakes	may	offer	good	growth	condition	with	a	lower	
predation	cost	than	sea	migration.	This	is	supported	by	the	observa‐
tion	that	stocking	well	 fed,	 juvenile	hatchery	trout	often	produces	
freshwater‐resident	fish,	but	starving	the	fish	before	release	induces	
a	migratory	 behaviour	 (Davidsen	 et	 al.,	 2014;	 Larsson,	 Serrano,	&	
Eriksson,	2011).	Thus,	growth	opportunities	in	the	local	habitat	play	
an	important	role	in	the	decision	whether	to	migrate	or	not	(Larsson	
et	al.,	2011).	Also,	environmental	stochasticity	 in	the	river,	such	as	
winter	 frost	 or	 summer	 drought,	 can	 seasonally	 constrain	 feeding	
opportunities	and	initiate	migration.	In	this	case,	trout	may	opt	for	
migration	to	the	marine	environment,	which	may	appear	more	stable	
and	protective	against	harsh	physical	conditions	(Aldvén	&	Davidsen,	
2017;	Ferguson	et	al.,	2017).

5.2 | Thermal condition

Temperature	 is	 a	 key	 factor	 structuring	 freshwater	 ecosystems.	 It	
may	influence	migratory	decisions,	with	both	absolute	temperature	
and	variation	in	temperature	being	important	(Kendall	et	al.,	2014;	
Morita,	 Tamate,	 Kuroki,	 &	 Nagasawa,	 2014).	 Optimum	 tempera‐
ture	for	growth	of	juvenile	1	g	brown	trout	is	found	to	be	13–14°C	
(Forseth	 et	 al.,	 2009),	 but	 it	 can	be	high	 if	 energy	 consumption	 is	
very	 high	 such	 as	 in	 piscivorous	 trout	 (Forseth	 &	 Jonsson,	 1994),	
and	 lower	 if	 the	 fish	 are	 particularly	 large	 or	 feeding	 is	 reduced	
(Morita,	Fukuwaka,	Tanimata,	&	Yamamura,	2010).	Temperature	 is	
clearly	 linked	 to	 food	availability,	 feeding	activity,	metabolism	and	
lipid	storage	(Ferguson	et	al.,	2017).	High	temperature	allows	higher	
food	 consumption	 but	 also	 increases	maintenance	 costs	 and	may	
accelerate	energy	shortages.	Furthermore,	standard	metabolic	rate	
may	be	affected	by	the	temperature	experienced	by	the	yolk	feed‐
ing	larvae	(Álvarez,	Cano,	&	Nicieza,	2006).	Thus,	unless	food	pro‐
duction	increases	by	the	same	order	of	magnitude,	individuals	may	
not	be	able	to	meet	their	energetic	requirements	when	temperature	
increases.	 However,	 this	 pattern	 may	 be	 attenuated	 by	 tempera‐
ture	itself,	as	abnormal	temperature	may	also	act	as	a	physiological	
stressor	and	induce	migration	(Peiman	et	al.,	2017).	However,	an	in‐
crease	in	temperature	may	fuel	the	production	of	invertebrates	and	
thereby	offer	improved	feeding	opportunities	for	resident	trout,	as	
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explained	above	(Morita	et	al.,	2014;	Olsson,	Greenberg,	Bergman,	
&	Wysujack,	2006).	But	 further	projected	 increases	 in	 river	water	
temperature	 above	 the	 optimal	 temperature	 for	 growth	will	 likely	
decrease	growth,	body	length	and	increase	age	at	smolting,	and	ul‐
timately	reduce	the	survival	of	trout	(Davidson,	Hazlewood,	&	Cove,	
2007;	Fealy	et	al.,	2010).	However,	the	relative	contribution	of	tem‐
perature	to	trout	growth	compared	to	other	environmental	drivers	
remains	difficult	to	quantify.	In	Atlantic	salmon,	Bal,	Rivot,	Prévost,	
Piou,	 and	 Baglinière	 (2011)	 reported	 that	 variation	 in	 freshwater	
temperature	had	only	a	small	effect	on	the	growth	of	juveniles	com‐
pared	to	variation	in	salmonid	density.

5.3 | Flow condition

In	the	rivers,	trout	are	largely	ambush	predators,	relying	on	the	flow	
to	bring	food	to	them	although	they	are	more	active	hunters	than	
Atlantic	salmon.	In	darkness,	they	can	pick	zoobenthos	on	the	bot‐
tom.	The	nursery	habitat	may	differ	between	resident	and	anadro‐
mous	conspecifics	as	reported	by	Morinville	and	Rasmussen	(2003).	
They	 studied	 brook	 trout	 and	 found	 that	 the	 young	 of	migratory	
trout	used	faster	running	water	than	young	resident	trout,	and	that	
they	 also	 fed	on	different	 food	 items.	This	 pattern	 is	 expected	 to	
come	 from	 intrinsic	 differences	 in	 metabolic	 requirement	 and	 is	
not	indicative	of	an	effect	of	flow	condition	on	migration	decision.	
High	 flow	 often	 correlates	with	 high	 availability	 in	 food	 resource,	
which	influences	the	opportunities	for	growth	(Kendall	et	al.,	2014;	
Morinville	&	Rasmussen,	2003).	Furthermore,	flow	may	have	an	ef‐
fect	on	anadromy	in	rainbow	trout,	at	least	in	climate	zones	where	
summer	flows	are	a	 limiting	factor	 (Kendall	et	al.,	2014).	Flow	that	
regularly	 reaches	 zero	may	 represent	 a	 population	 bottleneck	 for	
nonmigratory	fishes	(Courter,	Justice,	&	Cramer,	2009),	and	low	flow	
may	explain	the	small	size	at	first	smolting	of	brown	trout	in	some	
small	streams	(Borgstrøm	&	Heggenes,	1988;	Jonsson	et	al.,	2001).	
More	generally,	unsuitable	flow	condition	in	streams	is	likely	to	drive	
the	propensity	 to	migrate	 to	 sea,	 for	 example	due	 to	 low	 flow,	or	
highly	variable	flow	conditions	in	the	home	stream,	or	a	reduction	in	
suitable	habitat	and	high	keen	competition	from	conspecifics	(den‐
sity	dependence	effect).

So	far,	there	are	empirical	evidences	of	a	positive	correlation	be‐
tween	flow	and	the	number	of	migrating	smolts	 in	brown	trout.	 In	
the	Danish	River	Lilleaa,	the	migration	speed	of	wild	sea	trout	smolts	
was	positively	correlated	with	water	discharge	(Aarestrup,	Nielsen,	
&	Koed,	2002).	But	when	the	flow	remains	low,	trout	may	wait	until	
the	 temperature	 increases	 over	 a	 certain	 level	 (Aarestrup	 et	 al.,	
2002).	In	a	Swedish	west	coast	stream,	smolts	remained	in	the	rivers	
during	years	with	 low	precipitation	until	 the	 temperature	 reached	
10°C,	 and	 migration	 increased	 thereafter	 irrespective	 of	 the	 dis‐
charge	(Aldvén	et	al.,	2015).	A	shift	from	nocturnal	to	diurnal	migra‐
tion	appears	to	occur	when	the	water	temperature	is	12–13°C	and	is	
most	pronounced	in	large	smolts	(Haraldstad,	Kroglund,	Kristensen,	
Jonsson,	&	Haugen,	2017).	Single	 large	 temperature	 increases	can	
also	initiate	a	daytime	migration	(Aarestrup	et	al.,	2002).	Water	tem‐
perature	 and	 flow	 influence	 the	phenology	of	 the	 sea	 trout	 smolt	

migrations.	 Temperature	 regulates	 the	 timing	of	 the	 start	 and	 the	
end	of	the	migration	period	while	water	level,	change	in	water	flow	
and	water	 temperature	 influence	 the	 number	 of	 smolts	migrating	
each	day	(Byrne	et	al.,	2004;	Jonsson	&	Jonsson,	2002).

5.4 | Density dependence

The	 food	 availability	 interacts	with	 fish	 density	 in	 limiting	 the	 re‐
sources	available	per	capita.	Higher	competition	for	food	and	space	
at	 high	 density	 results	 in	 fewer	 residents,	with	migrants	maximiz‐
ing	 growth	 by	moving	 into	 the	 sea	 (Ferguson	 et	 al.,	 2017;	Olsson	
et	al.,	2006).	During	periods	of	drought	or	hydropower	regulation,	
density	 will	 increase.	 Stradmeyer,	 Höjesjö,	 Griffiths,	 Gilvear,	 and	
Armstrong	(2008)	showed	how	the	importance	of	dominance	status	
for	maintaining	 food	 intake	 increases	 as	 the	polarization	between	
the	top	ranked	fish	and	others	increased.	As	a	result,	fewer	fish	will	
mature	and	become	residents;	thus,	migration	may	be	an	alternative	
(Jonsson	&	Jonsson,	1993).

5.5 | Interspecific competition

Similarly,	 competing	 species	may	 also	 influence	 the	 proportion	 of	
brown	trout	that	migrate,	mediated	through	a	density	dependence	
process	(Olsson	et	al.,	2006).	Young	brown	trout	and	Atlantic	salmon	
compete	 for	 food	 and	 space	 in	 rivers,	 as	 evidenced	by	 the	 spatial	
segregation	observed	between	the	two	species	(Jonsson	&	Jonsson,	
2011).	Young	Atlantic	salmon	are	mainly	found	in	shallow,	fast‐flow‐
ing	habitats	of	the	main	river	while	young	trout	colonize	tributaries	
and	 headwaters	 (Baglinière	&	Arribe‐Moutounet,	 1985;	 Baglinière	
&	 Champigneulle,	 1982;	 Kalleberg,	 1958).	 In	 the	 Shelligan	 Burn	
(Scotland),	the	density	of	young	Atlantic	salmon	was	negatively	cor‐
related	with	that	of	young	trout	(Egglishaw	&	Shackley,	1982).	Brown	
trout	are	territorial	and	very	aggressive,	and	through	 interference,	
they	 constrain	 young	 Atlantic	 salmon	 from	 shallow,	 slow‐flowing	
areas	(Harwood,	Metcalfe,	Armstrong,	&	Griffiths,	2001;	Heggenes,	
Baglinière,	&	Cunjak,	1999;	Houde,	Wilson,	&	Neff,	2017;	Kalleberg,	
1958).	 This	 trend	 is	 accentuated	 by	 the	 early	 hatching	 of	 trout	
(Baglinière	et	al.,	1994),	which	are	larger	and	have	already	established	
a	 territory	 by	 the	 time	 Atlantic	 salmon	 fry	 emerge.	 Furthermore,	
when	brown	trout	are	removed,	young	Atlantic	salmon	expand	their	
habitat	into	former	trout‐defended	areas,	that	is	competitive	release	
(Hearn,	 1987;	 Kennedy	 &	 Strange,	 1986).	 Experimentally,	 Gibson	
and	Erkinaro	(2009)	showed	that	brown	trout	were	four	times	more	
aggressive	than	corresponding	Atlantic	salmon.	As	a	result	of	their	
more	aggressive	behaviour	and	larger	size,	brown	trout	have	a	com‐
petitive	advantage	in	slow	flowing,	shallow	areas	along	stream	banks	
and	 pools	 where	 they	 monopolize	 the	 food	 resources	 (Gibson	 &	
Erkinaro,	2009;	Höjesjö,	Stradmeyer,	Griffiths,	&	Armstrong,	2010).	
Atlantic	salmon,	on	the	other	hand,	make	more	use	of	cover,	deep	
pools	 and	 fast‐flowing	 riffles	where	 food	 is	 difficult	 to	 defend.	 In	
addition,	their	more	streamlined	body	shape	and	larger	pectoral	fins	
are	assumed	to	give	young	Atlantic	salmon	a	selective	advantage	in	
rapidly	flowing	rivers	(Karlström,	1977),	and	they	may	outcompete	
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trout	 in	fast‐flowing	streams	 (Montorio,	Evanno,	&	Nevoux,	2018).	
The	interaction	between	young	brown	trout	and	Atlantic	salmon	in	
rivers	is	adversely	competitive;	that	is,	increased	abundance	of	the	
one	 leads	 to	 a	 decrease	 in	 abundance	 of	 the	 other.	 This	 is	 exem‐
plified	 in	 formerly	 acidified	 rivers	 treated	with	 calcium	 carbonate	
(limestone	powder).	As	the	abundance	of	Atlantic	salmon	increased	
with	time,	the	density	of	brown	trout	decreased	(Hesthagen,	Larsen,	
Bolstad,	Fiske,	&	Jonsson,	2017).	However,	when	the	abundance	of	
Atlantic	salmon	 increases	at	 the	expense	of	brown	trout,	 the	total	
output	of	salmonid	smolts	increases	(cf.	Kennedy	&	Strange,	1986).

The	aggressiveness	of	brown	trout	is	energetically	costly.	Their	
high‐energy	use	is	assumed	to	be	the	main	reason	why	brown	trout	
are	outcompeted	by	Arctic	charr	because	of	a	much	 lower	growth	
efficiency	in	cold,	food	limited	habitats	(Finstad	et	al.,	2011).	In	shal‐
low,	 temperate	 localities	 richer	 in	 food,	on	 the	other	hand,	brown	
trout	outcompete	Arctic	charr	because	of	its	higher	aggressiveness.	
In	sympatry,	the	two	segregate	spatially,	with	charrs	shifting	to	the	
pelagic	or	the	profundal	zone	(Heggberget,	1984;	Klemetsen	et	al.,	
2003;	Langeland,	L’Abée‐Lund,	Jonsson,	&	Jonsson,	1991).

There	is	also	competition	between	grayling	(Thymallus thymallus, 
Salmonidae)	and	brown	trout.	Mäki‐Petäys,	Vehanen,	and	Muotka	
(2000)	suggested	that	competition	between	these	species	increases	
in	streams	during	winter	when	ice	decreases	the	habitat	availability.	
Competition	 between	 the	 two	 species	may	 be	 a	 reason	 for	 their	
partial	segregation	in	rivers	(Greenberg,	Svendsen,	&	Harby,	1996).	
However,	 recruitment	of	grayling	and	 trout	was	positively	associ‐
ated	 in	an	English	chalk	 stream	 (Bašić,	Britton,	Cove,	 Ibbotson,	&	
Gregory,	2018).	Also,	Alpine	bullhead	(Cottus poecilopus,	Cottidae)	is	
a	strong	competitor	to	juvenile	brown	trout	where	these	species	co‐
occur	(Hesthagen	&	Heggenes,	2003;	Holmen,	Olsen,	&	Vøllestad,	
2003).	For	instance,	Holmen	et	al.	(2003)	reported	that	brown	trout	
density	was	five	to	10	times	higher	at	the	upper,	allopatric	site	than	
in	 downstream	 areas	 where	 it	 lived	 in	 sympatry	 with	 the	 Alpine	
bullhead.	Diet	composition	suggested	that	brown	trout	in	sympatry	
with	Alpine	bullhead	foraged	more	on	invertebrate	drift	and	surface	
arthropods	than	allopatric	brown	trout	did.

In	addition,	novel	species	that	invade	brown	trout	areas,	naturally	
or	because	of	human‐mediated	releases,	may	influence	brown	trout	
migration	and	habitat	use.	Brown	trout	living	in	sympatry	with	brook	
trout	consumed	more	terrestrial	prey,	and	had	smaller	home	ranges	
and	a	 stouter	body	 shape	 (Závorka	et	 al.,	 2017).	 Sympatric	brown	
trout	 also	had	 lower	 specific	 growth	 rates,	 suggesting	 a	 lower	 fit‐
ness.	Other	introduced	species,	such	as	rainbow	trout	affect	brown	
trout	 negatively.	 Blanchet,	 Loot,	 Grenouillet,	 and	 Brosse	 (2007)	
found	by	use	of	laboratory	and	field	studies	that	rainbow	trout	sig‐
nificantly	affected	native	brown	trout	habitat	selection	and	apparent	
survival.	In	contrast,	Baran,	Delacoste,	Lascaux,	Bauba,	and	Segura	
(1995)	demonstrated	a	competition	advantage	of	the	brown	trout	in	
mountainous	rivers	when	the	two	species	live	in	sympatry.	The	more	
similar	the	ecology	of	the	interacting	species,	the	greater	the	impact	
of	competition	is.

There	 are	 examples	 of	 rivers	 where	 Atlantic	 salmon	 and	 resi‐
dent	trout	co‐exist,	but	 little	or	no	sea	trout	run	is	observed,	as	 in	

Ireland	and	Brittany	 (France).	 In	the	 Irish	systems,	the	presence	of	
lakes	 and	 running	 river	 sections	may	promote	 habitat	 segregation	
and	 reduce	 interspecific	 competition	while	 in	 large	 salmon	 rivers,	
the	occurrence	of	sea	trout	is	often	restricted	to	the	lower	stretches	
and	to	small	tributaries	close	to	or	directly	entering	an	estuary	(Fahy,	
1985;	 Whelan,	 1989).	 Similarly,	 the	 tree‐like	 shape	 of	 the	 water‐
sheds	in	Brittany,	characterized	by	many	small	tributaries,	may	max‐
imize	segregation	and	reduce	competition	between	the	two	species	
(Baglinière	et	al.,	1994).

It	 is	 still	 unclear	 whether	 interspecific	 competition	 in	 fresh‐
water	 influences	 the	 tendency	 to	 migrate	 to	 the	 sea.	 However,	
one	may	hypothesize	that	brown	trout	will	exhibit	a	stronger	ten‐
dency	to	migrate	if	their	resource	use	in	freshwater	is	constrained	
by	 competing	 species,	 as	 shown	 for	 increased	 competition	 from	
conspecifics	(Olsson	et	al.,	2006).	Montorio	et	al.	(2018)	provided	
empirical	 evidence	 for	 interspecific	 competition–exclusion	 rela‐
tionship.	They	found	a	negative	effect	of	trout	density	on	growth	
and	survival	 in	 juveniles,	but	a	positive	effect	of	Atlantic	salmon	
density	 on	 the	 probability	 of	migration	 in	 young	 trout.	 They	 re‐
ported	 that	 in	 years	 following	 a	 high	 recruitment	 in	 salmon,	 the	
propensity	of	trout	 leaving	the	stream	was	high.	Atlantic	salmon	
may	be	a	main	competitor	in	temperate	areas	and	Arctic	charr	in	
sub‐Arctic	and	Arctic	areas.

5.6 | Predation

The	 role	 of	 predators	 in	 shaping	 patterns	 of	 partial	migration	 has	
been	 historically	 neglected	 (Chapman	 et	 al.,	 2012).	 However,	 if	
the	 decision	 to	 migrate	 is	 a	 balance	 between	 growth	 opportuni‐
ties	 and	 mortality	 risk,	 increased	 predation	 in	 freshwater	 should	
select	 for	 anadromy	 in	 trout.	Predation	 risk	may	constrain	habitat	
use	and	 thereby	 reduce	 individual	growth	 (Johnsson,	Rydeborg,	&	
Sundström,	2004).	Alternatively,	high	predation	 in	 freshwater	may	
offer	more	resource	per	capita	to	the	remaining	individuals	with	an	
opposite	effect	on	the	opportunity	for	growth.

Predation	is	expected	to	be	particularly	high	during	the	smolt	run	
and	in	the	first	few	days	after	the	smolts	reach	sea	water	(Dieperink	
et	al.,	2002;	Thorstad	et	al.,	2016).	If	there	are	alternative	prey,	such	
as	Atlantic	salmon	smolts	migrating	to	sea	at	the	same	time,	this	may	
reduce	the	mortality	and	increase	the	fitness	of	sea	trout	(Jonsson	
&	Jonsson,	2009b),	or	it	may	stimulate	the	aggregation	of	predators	
(Jepsen,	Holthe,	&	Økland,	2006).	Thus,	although	effects	of	preda‐
tion	on	 the	 life‐history	 strategy	of	 trout	 are	not	well	 studied,	 this	
does	not	mean	that	predation	is	unimportant	in	this	respect.

6  | INFLUENCE OF THE MARINE 
ENVIRONMENT ON MIGR ATION OUTCOME

The	 decision	 to	 migrate	 is	 a	 trade‐off	 between	 benefit	 and	 cost.	
Costs	associated	with	sea	migrations	include	energy	used	for	swim‐
ming	and	increased	probability	of	death,	for	example	owing	to	preda‐
tion,	parasitism	and	diseases,	but	also	the	physiological	adjustments	
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F I G U R E  6  Characterization	of	the	
migration	strategy	in	brown	trout	along	
a	latitudinal	gradient	of	populations:	
River	Hals	70°N	(Norway),	River	Vosso	
60°N	(Norway),	River	Burrishoole	54°N	
(Ireland),	River	Tamar	51°N	(England),	
River	Bresle	50°N	(France)	and	River	
Oir	48°N	(France).	Left	panel:	relative	
additional	growth	for	anadromous	
trout	related	to	sea	age	and	smolt	age,	
expressed	as	a	growth	difference	with	
resident	trout	of	similar	age.	Some	values	
are	missing	when	no	resident	trout	of	a	
similar	total	age	were	caught.	Right	panel:	
age	structure	of	returning	anadromous	
trout,	in	terms	of	sea	age	and	smolt	age.	
The	darker	the	cell,	the	higher	the	value
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for	salt	excretion	(Gross	et	al.,	1988).	Distance	to	the	coast	and	deep	
sea	areas	may	 limit	 the	distribution	of	sea	trout.	 It	 is	generally	as‐
sumed	 that	most	 anadromous	brown	 trout	 feed	 in	 shallow	waters	
within	 100	 km	 from	 the	 river	 mouth	 (Jonsson	 &	 Jonsson,	 2011;	
Thorstad	 et	 al.,	 2016).	Nevertheless,	 there	 are	 some	evidences	of	
large	within‐	and	between‐population	variations	in	marine	migration	
distance	(Jonsson	&	Jonsson,	2014;	Kristensen	et	al.,	2018;	Potter,	
Campbell,	Sumner,	&	Marshall,	2017;	Prodöhl	et	al.,	2017).

6.1 | Growth potential

Growth	 levels	off	with	 age	 and	 spawning	history,	 but	 the	differ‐
ence	 in	 size	 between	 resident	 and	 anadromous	 trout	 increases	
with	age	(Figure	6,	left	panel).	This	suggests	that	the	best	growth	
strategy	in	brown	trout	would	be	to	leave	early	and	stay	longer	at	
sea.	In	the	Burrishoole	River	(Ireland)	and	the	River	Bresle	(France),	
fish	with	the	combination	of	smolt	age	and	sea	age	that	results	in	
the	highest	growth	gain	are	well	represented	among	the	returning	
anadromous	trout	(Figure	6,	right	panel).	However,	some	of	these	
strategies	are	represented	by	a	low	proportion	of	trout.	Data	sup‐
port	a	mismatch	between	the	age‐specific	additional	growth	and	
the	age	structure	of	the	anadromous	trout	in	River	Vosso	(Norway),	
River	Tamar	(England)	and	River	Oir	(France).	In	these	populations,	
data	show	a	shorter	marine	sojourn	and/or	an	older	age	at	smolting	
than	expected	under	the	hypothesis	of	growth	maximization.	We	
argue	that	strong	constraints	in	the	marine	environment,	in	terms	
of	mortality,	may	 select	 against	 growth	maximization	 strategies.	
For	instance,	young	smolts	may	be	too	small	to	escape	length‐bi‐
ased	predation,	thus	favouring	late	runners.	Furthermore,	marine	
survival	may	be	too	 low	to	support	 long	marine	sojourns;	that	 is,	
very	few	two	sea	winter	sea	trout	may	survive	until	spawning.

By	driving	 the	 level	of	mortality	and	growth	 in	 trout	 that	 initi‐
ate	seaward	migration,	the	marine	environment	influences	the	bal‐
ance	between	the	cost	and	benefit	of	the	time	at	sea.	If	the	costs	of	
feeding	at	sea	exceed	the	gains,	selection	should	favour	freshwater	
residency	(Gross	et	al.,	1988).	In	only	a	few	generations,	altered	envi‐
ronmental	conditions	can	terminate	the	tendency	to	migrate	(Olsson	
et	 al.,	 2006;	 Sandlund	&	 Jonsson,	2016).	 The	marine	environment	
acts	as	a	selective	filter	on	anadromy,	and	any	increase	in	mortality	
at	sea	is	likely	to	contribute	to	the	reduction	in	sea	trout	abundance	
over	space	and	time.

6.2 | Seascape

Quéméré	et	al.	(2016)	explored	effect	of	seascape,	for	example	the	
marine	 landscape,	on	 the	connectivity	of	brown	 trout	populations	
between	rivers,	and	how	the	seascape	influences	the	life	history	of	
brown	 trout	 across	 northern	 France.	 They	 found	 two	 genetically	
distinct	 populations	 that	 strongly	 differed	 in	 terms	 of	 migratory	
propensity	 and	 stock	 characteristics.	Western	 populations	 mainly	
produce	freshwater‐resident	trout	and	small	sea	trout	(finnock,	 i.e.	
post‐smolt	 returning	 in	 the	same	year	as	 they	went	 to	sea	 for	 the	
first	 time),	while	 eastern	 populations	 produce	 large	 sea	 trout	 that	

perform	 long	sea	sojourns.	They	hypothesized	that	such	a	pattern	
may	be	driven	by	 the	 spatial	 arrangement	 and	 feeding	opportuni‐
ties	of	marine	habitats,	which	promotes	a	clinal	variation	 in	migra‐
tory	behaviour.	In	the	highly	productive	Eastern	basin	of	the	English	
Channel,	anadromous	trout	can	achieve	very	large	size	and	long	sea	
sojourn,	which	may	 favour	 dispersal	 and	 gene	 flow	 among	 neigh‐
bouring	streams.	In	the	Western	basin,	marine	feeding	opportunities	
are	 poor	 and	 trout	 have	 evolved	mainly	 a	 freshwater‐resident	 life	
history	 (Quéméré	 et	 al.,	 2016).	 The	 dispersal	 barrier	may	 act	 as	 a	
forcing	factor	for	a	distinct	life	history	(Richardson,	Urban,	Bolnick,	
&	Skelly,	2014).	On	the	other	hand,	the	rivers	appear	different,	and	
habitat	characteristics	may	also	add	to	the	variation	observed.	Fahy	
(1985)	also	observed	differences	in	trout	size,	growth	and	condition	
between	trout	returning	from	different	regions,	such	as	the	Irish	Sea	
compared	to	the	Irish	west	coast	and	even	from	different	bays	along	
the	west	coast	(R.	Poole,	unpublished).

6.3 | Sea lice

The	sea	lice	(Lepeophtheirus salmonis,	Caligidae	and	Caligus elonga‐
tus,	Caligidae)	are	natural	parasites	of	sea	trout	that	can	propose	
major	threats	to	trout	in	the	marine	environment.	During	the	last	
30	years,	salmon	farming	has	increased	the	abundance	of	sea	lice	
(Finstad	&	Bjørn,	2011;	Fjørtoft	et	al.,	2017;	Thorstad	&	Finstad,	
2018;	Thorstad	et	al.,	2015;	Tully,	Poole,	&	Whelan,	1993;	Tully,	
Poole,	Whelan,	&	Merigoux,	1993).	Sea	lice	induce	ionoregulatory	
dysfunction,	 physiological	 stress,	 anaemia,	 reduced	 feeding	 and	
growth,	 changes	 in	 post‐smolt	 behaviour,	 increased	 susceptibil‐
ity	 to	 secondary	 infections,	 reduced	disease	 resistance	 and	ulti‐
mately	mortality	 of	 individual	 sea	 trout	 (Finstad	 &	 Bjørn,	 2011;	
ICES,	 1997;	 Poole,	 Nolan,	 &	 Tully,	 2000).	 Wild	 adult	 sea	 trout	
in	 farm‐free	 areas	 exhibit	 relatively	 low	 sea	 lice	 levels	 (Gargan,	
Tully,	&	Poole,	2003;	Schram,	Knutsen,	Heuch,	&	Mo,	1998).	On	
the	other	hand,	in	farm‐intensive	areas,	sea	lice	levels	on	wild	sea	
trout	are	typically	higher	(Gargan	et	al.,	2003;	Moore	et	al.,	2018;	
Tully	et	al.,	1993;	Tully	&	Whelan,	1993).	Sea	 lice	 infestations	 in	
these	areas	regularly	exceed	more	than	0.35	lice	per	gram	of	fish	
mass,	initiating	physiological	disturbance	to	the	trout	with	weight	
range	 from	 16	 to	 70	 g	 (Wells	 et	 al.,	 2006,	 2007).	 At	 higher	 lice	
levels,	mortality	may	occur	(Taranger	et	al.,	2015).	The	sea	lice	lev‐
els	on	wild	sea	trout	are	particularly	high	within	30	km	of	salmon	
farms,	but	elevated	lice	 infestations	extend	beyond	this	distance	
(Gargan	 et	 al.,	 2003;	 Moore	 et	 al.,	 2018;	 Serra‐Llinares,	 Bjørn,	
Finstad,	Nilsen,	&	Asplin,	2016;	Serra‐Llinares	et	al.,	2014;	Tully,	
Gargan,	Poole,	&	Whelan,	1999).	Therefore,	sea	lice	in	intensively	
farmed	areas	negatively	 impact	wild	sea	trout	through	a	suite	of	
primary	and	secondary	impacts	reducing	marine	growth	and	sur‐
vival	of	sea‐run	fish	(Halttunen	et	al.,	2018;	Shephard,	MacIntyre,	
&	Gargan,	2016).	Quantification	of	these	impacts	remains	a	chal‐
lenge,	 although	 population‐level	 effects	 have	 been	 quantified	
in	Atlantic	 salmon	using	 field	experiments	 (Krkošek	et	 al.,	 2013;	
Skilbrei	et	al.,	2013;	Vollset	et	al.,	2016),	showing	higher	survival	
in	 groups	 of	 antiparasitically	 treated	 fish	 relative	 to	 nontreated	
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control	 groups.	 Reduced	 growth	 and	 increased	 mortality	 in	 the	
marine	environment	decrease	the	benefits	of	marine	migration	for	
sea	 trout	 (Halttunen	 et	 al.,	 2018),	 and	 high	 sea	 lice	 levels	might	
select	against	anadromy.	 In	some	populations,	 immature	anadro‐
mous	trout	return	frequently	to	rivers	during	the	growth	season.	
Such	 “premature	 returning”	 may	 be	 an	 early	 warning	 signal	 of	
heavy	salmon	 lice	 infestations	 (Halttunen	et	al.,	2018;	Maisse	et	
al.,	 1991).	 Sea	 lice‐induced	 effects	 on	 sea	 trout	may	 in	 extreme	
cases	 lead	 to	 local	 loss	 of	 anadromous	 trout	 and	 a	 transition	 to	
entirely	resident	trout	populations	(discussed	in	Poole	et	al.	(2007)	
with	 reference	 to	 the	Burrishoole	 sea	 trout	 stock).	However,	 re‐
cent	studies	showed	the	complexity	of	 the	relationship	between	
brown	trout	and	sea	lice	infestations	in	the	wild	(relationship	be‐
tween	size	of	trout	and	distance	of	farm	cage)	and	emphasized	the	
requirement	of	further	research	to	quantify	these	effects	(Moore	
et	al.,	2018).

7  | INFLUENCE OF THE SPAWNING 
HABITAT ON REPRODUC TION OUTCOME

Marine	migration	is	a	strategy	that	allows	brown	trout	to	escape	
from,	or	reduce	the	influence	of,	density	dependence	and	resource	
limitation	 in	 freshwater,	 and	by	 that	maximize	 reproductive	out‐
put	 (Jonsson	&	Jonsson,	2006;	Lobón‐Cerviá,	2007;	Marco‐Rius,	
Caballero,	Moran,	&	Leaniz,	2013).	But	 to	 reproduce,	 trout	must	
return	 to	 freshwater	 and	 compete	 for	 access	 to	 suitable	 spawn‐
ing	sites	and	mates.	Intense	spawning	competition	may	introduce	
both	 density‐	 and	 frequency‐dependant	 pressures	 (Berejikian	 et	
al.,	2010;	Foote	et	al.,	1997;	Gross,	1985),	where	body	size	is	im‐
portant	 for	 determining	 reproductive	 success	 (Serbezov,	 Jorde,	
Bernatchez,	Olsen,	&	Vøllestad,	2012).	 Interference	 competition	
generally	 favours	 large	 individuals	 (Olsén	 et	 al.,	 1998);	 however,	
in	small	shallow	tributaries,	small	resident	trout	may	have	higher	
fitness	 because	 these	 habitats	 are	 less	 accessible	 for	 large	 indi‐
viduals.	 In	 populations	 dominated	 by	 individuals	 with	 short	 sea	
sojourns,	 there	 is	 larger	 spatial	 overlap	 between	 the	 spawning	
grounds	 of	 resident	 and	 anadromous	 trout	 than	 in	 populations	
dominated	by	longer	sea	sojourn.	Interbreeding	between	the	two	
phenotypes	 (Charles,	 Roussel,	 Lebel,	 Baglinière,	 &	 Ombredane,	
2006)	 produces	 fertile	 offspring	 (Ombredane	 et	 al.,	 1996),	 but	
these	 offspring	 have	 reduced	migration	 probability	 because	 the	
migratory	 strategy	 is	 partly	 inherited	 (Baglinière	 et	 al.,	 2001;	
Jonsson,	1982).	Size‐specific	spawning	success	of	both	sexes	is	in‐
fluenced	by	habitat	characteristics	as	well	as	the	competitive	abil‐
ity	and	density	of	the	competitors,	although	contrasting	selective	
mechanisms	 operate	 on	males	 and	 females	 (Jonsson	&	 Jonsson,	
2015).	Hence,	the	effect	of	each	of	these	selective	variables	is	sex‐
specific	and	determined	by	both	the	environment	and	the	popula‐
tion	 structure	 (Young,	 2005).	 Thus,	 spawning	 requirements	 play	
an	 important	 role	 in	 determining	 the	 frequency,	 abundance	 and	
sex	ratio	of	anadromous	brown	trout	(Jonsson	&	Jonsson,	2015).

7.1 | Habitat suitability

In	order	to	breed	successfully,	female	brown	trout	require	a	specific	
combination	of	 hydrological	 conditions	 and	 substrate	 composition	
(Baglinière,	Champigneulle,	&	Nihouarn,	1979;	Gauthey	et	al.,	2015;	
Montgomery,	Buffington,	Peterson,	Schuett‐Hames,	&	Quinn,	1996;	
Tappel	&	Bjornn,	 1983).	 In	many	 circumstances,	 the	 availability	of	
habitat	that	adequately	meets	these	conditions	represents	the	pri‐
mary	 factor	 limiting	 the	 size	 of	 salmonid	 populations	 (Buffington,	
Montgomery,	&	Greenberg,	2004;	Kondolf	&	Wolman,	1993).

Despite	their	difference	in	body	size,	the	specific	spawning	hab‐
itat	 requirements	 of	 anadromous	 trout	 versus	 freshwater‐resident	
trout	have	hardly	been	studied	(Nika,	Virbickas,	&	Kontautas,	2011;	
Walker	&	Bayliss,	2007).	It	seems	clear,	however,	that	growth	asso‐
ciated	with	anadromy	will	 represent	differing	 reproductive	advan‐
tages	depending	on	the	nature	of	available	spawning	habitat.

The	extra	energy	expenditure	of	migrating	a	 longer	distance	 is	
indicated	by	 the	gradual	decrease	 in	 the	condition	 factor	of	anad‐
romous	brown	trout	with	increasing	migratory	distance	inland.	The	
gonadosomatic	index	of	males	(I	=	mass	of	gonads/somatic	mass)	de‐
creases	with	migratory	distance	(Jonsson	&	Jonsson,	2006).	Bohlin,	
Pettersson,	and	Degerman	(2001)	hypothesized	that	the	fitness	of	
migrants	 is	negatively	related	to	the	altitude	of	 the	spawning	area	
because	of	migratory	costs,	and	in	support	of	this,	they	found	that	
anadromous	trout	were	replaced	by	nonanadromous	conspecifics	at	
an	altitude	of	 ca.	150	m	 in	 southern	Sweden.	More	 than	distance	
itself,	 it	 is	 the	 energetic	 demand	 required	 to	 reach	 the	 spawning	
ground	that	matters.	As	such,	the	cumulative	effect	of	barriers	(nat‐
ural	 or	 artificial)	 can	 greatly	 impede	 sea	 trout	migration	 inland	 in	
fragmented	rivers.

7.2 | Flow condition and scouring risk

Prior	to	spawning,	female	salmonids	flex	their	flanks	and	tail	fin	to	
excavate	depressions	 (nests)	 in	the	streambed	into	which	eggs	are	
deposited.	Due	 to	 the	 allometric	 relationship	 between	 fish	 length	
and	 caudal	 thrust,	 salmonid	 females	 can	 construct	 their	 nests	 in	
gravel	where	the	median	particle	diameter	does	not	exceed	10%	of	
their	 fork	 length	 (Kondolf	&	Wolman,	 1993).	 Thus,	 nest	 sizes	 and	
depths	 are	 positively	 correlated	 with	 body	 size	 (Crisp	 &	 Carling,	
1989;	Elliott,	1984;	Gauthey	et	al.,	2015).	The	depths	of	gravel	mo‐
bilized	during	high	flow	events	are	influenced	by	the	strength	of	the	
stream	flow,	stream	gradient	and	substrate	composition	 (Harrison,	
Legleiter,	Wydzga,	&	Dunne,	2011).	Within	water	courses	prone	to	
such	riverbed	“scour”,	individual	scour	events	are	likely	to	kill	trout	
eggs	 located	above	 the	maximum	scour	depth,	 thereby	exerting	a	
strong	selective	pressure	for	a	locally	determined	minimum	female	
body	size	(Montgomery	et	al.,	1996).	Thus,	due	to	their	ability	to	dig	
deeper	 nests	 and	move	 heavier	 gravel,	 large	 anadromous	 females	
may	enjoy	a	distinct	advantage	over	small	resident	females	as	scour	
depth	and	gravel	particle	size	increase.	This	size‐dependent	mecha‐
nism	may	interfere	with	habitat	selection	in	trout	within	a	river	basin,	
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leading	to	positive	correlation	between	female	body	size	and	river	
size	at	the	spawning	area.

Furthermore,	 female	 brown	 trout	 show	 a	 marked	 preference	
for	spawning	in	previously	utilized	nests	containing	incubating	eggs	
(Gortázar,	 Alonso,	 &	 Jalón,	 2012).	 This	 behaviour,	 known	 as	 redd	
superimposition,	 includes	a	period	of	excavation	that	 leads	to	high	
mortality	rates	among	eggs	deposited	by	earlier	spawners	(McNeil,	
1964;	Nomoto	et	al.,	2010).	This	behaviour	has	also	been	reported	
where	 brown	 trout	 and	Atlantic	 salmon	 share	 the	 same	 spawning	
ground	(Baglinière	et	al.,	1979).	The	intensity	of	redd	superimposi‐
tion	depends	on	the	density	of	spawners,	the	size	of	the	spawning	
area,	 the	 duration	 of	 the	 spawning	 period	 and	 the	 distribution	 of	
spawners	within	 the	 river	 system.	 As	with	 environmentally	 based	
scour,	the	survival	of	eggs	depends	on	whether	they	are	deposited	
below	the	depth	of	gravel	mobility	during	subsequent	excavations.	
As	a	result,	the	ability	of	large	(i.e.	anadromous)	females	to	construct	
deeper	nests	 than	smaller	 freshwater‐resident	 females	may	 repre‐
sent	a	distinct	interspecific	and	intraspecific	advantage	where	pop‐
ulation	density	is	high	or	where	suitable	spawning	habitat	is	in	short	
supply.

7.3 | Thermal condition and spawning phenology

In	some	populations,	freshwater	residents	appear	to	spawn	later	in	
the	spawning	period	than	their	anadromous	counterparts	(Jonsson	
&	Jonsson,	1999).	The	asynchronous	spawning	of	anadromous	and	
resident	females	may	lead	to	the	eggs	of	anadromous	females	hatch‐
ing	earlier	 than	 those	of	 resident	 females,	potentially	 conferring	a	
competitive	 advantage	 on	 the	 progeny	 of	 anadromous	 females	
through	 early	 growth	 opportunities.	 But	 this	 different	 temporal	
spawning	pattern	between	resident	and	anadromous	trout	does	not	
exist	everywhere.	In	France,	the	spawning	period	of	sea	trout	(mid‐
December	to	late	January)	occurs	within	the	larger	spawning	period	
of	resident	trout	(late	November	to	mid‐February)	(J.‐L.	Baglinière,	
personal	communication).

The	 efficiency	 of	 yolk	 conversion	 to	 body	 tissue	 declines	 as	
water	temperature	increases	(Fleming	&	Gross,	1990),	meaning	that	
rising	water	temperatures	during	spring	are	 likely	to	have	a	more	
pronounced	negative	 impact	on	the	growth	performance	of	eggs	
spawned	later	in	the	breeding	period.	It	is	possible	that	the	higher	
energy	 density	 found	 in	 the	 eggs	 of	 resident	 females	 relative	 to	
those	of	anadromous	females	from	the	same	population	(Jonsson	
&	Jonsson,	1997,	1999)	represents	an	adaptation	which	mitigates	
the	 competitive	 disadvantages	 that	 result	 from	 late	 spawning.	
Possibly,	thermal	differences	between	eggs	fertilized	early	or	late	
during	 the	 spawning	 period	may	 also	 influence	 later	 growth	 and	
reproductive	allocations,	as	 they	appear	 to	do	 in	Atlantic	salmon	
(Finstad	&	Jonsson,	2012;	Jonsson	&	Jonsson,	2014,	2018).

7.4 | Oxygen and siltation

In	 addition	 to	 benefitting	 from	 increased	 fecundity,	 large	 anadro‐
mous	females,	which	tend	to	accumulate	high	somatic	mass	during	

marine	feeding,	are	 likely	to	produce	larger	eggs	than	smaller	resi‐
dent	females	(Hendry	&	Day,	2003;	Jonsson	&	Jonsson,	1999).	While	
increased	redd	depth	is	beneficial	in	protecting	eggs	from	washout	
during	scour	events,	the	threat	of	egg	asphyxiation	due	to	sedimenta‐
tion	or	weakly	oxygenated	water	increases	with	burial	depth	(Haury,	
Ombredane,	&	Baglinière,	1999).	Einum,	Hendry,	and	Fleming	(2002)	
found	that	the	fitness	of	brown	trout	eggs	at	differing	oxygen	lev‐
els	is	size‐dependant,	with	larger	eggs	exhibiting	significantly	higher	
survival	than	small	eggs	when	the	oxygen	concentration	is	low,	pos‐
sibly	as	a	result	of	their	increased	surface	area	which	facilitates	dif‐
fusion.	Laboratory	experiments	with	brown	trout	embryos	suggest	
that	sublethal	stress	in	the	gravel	nest	caused	by	hypoxia	can	alter	
the	behaviour	and	survival	of	trout	during	the	early	juvenile	period	
(Roussel,	2007).	It	follows	that	the	nature	of	local	scour	regimes,	dis‐
solved	oxygen	levels,	siltation	rates	and	riverbed	gravel	composition	
may	all	influence	the	relative	fitness	and	frequency	of	differing	adult	
female	phenotypes.	These	factors	should	select	for	increased	body	
size	and	egg	mass	associated	with	anadromy	where	scour	 is	deep,	
gravel	particles	are	large,	and	siltation	or	deoxygenation	represents	
a	significant	threat	to	egg	survival.

7.5 | Male mating strategies: frequency 
dependence, density dependence and shelter

There	 is	 strong	 regional	 and	 local	 variation	 in	age	at	maturity	and	
freshwater	 residency	 rates	 of	 males,	 indicating	 that	 populations	
are	locally	adapted	with	regard	to	body	size	and	migratory	strategy	
(Bohlin	et	al.,	1990;	Dellefors	&	Faremo,	1988).	Where	the	habitat	
permits,	small	males	may	safely	remain	close	to	spawning	females	by	
utilizing	crevices,	rocks,	debris	or	shallow	areas	as	refuges	where	the	
aggression	of	 large	males	 is	avoided	(Gross,	1985).	Thus,	the	avail‐
ability	of	appropriate	refuge	habitats	near	spawning	sites	may	be	a	
factor	 influencing	the	fitness	and,	consequently,	 the	proportion	of	
male	brown	trout	that	forego	marine	migration	or	mature	at	a	small	
size	(Jonsson	&	Jonsson,	2011).

While	 the	abiotic	 characteristics	of	 spawning	habitat	and	 local	
hydrological	 regimes	 are	 likely	 to	 influence	 the	 relative	 fitness	 of	
anadromous	 and	 freshwater‐resident	 phenotypes	 in	 brown	 trout,	
direct	competition	on	spawning	grounds	may	exert	density‐depen‐
dent	selection	on	these	phenotypes.	But	also,	polymorphism	among	
mature	 males	 appears	 to	 be	 maintained	 by	 frequency‐dependent	
selection	during	spawning	that	increases	the	relative	fitness	of	the	
rarer	 phenotype	 and	 promotes	 the	 co‐occurrence	 of	 both	mating	
strategies	 (Berejikian	et	 al.,	 2010;	Foote	et	 al.,	 1997;	Gross,	1985;	
Hutchings	&	Myers,	1985).	For	instance,	in	Atlantic	salmon,	aggres‐
sive	competition	for	mates	between	 large	males	occupies	much	of	
their	focus,	allowing	young	and	small	males	to	go	unnoticed	and	suc‐
cessfully	employ	their	sneaking	tactic	when	courting	females.	As	the	
density	of	 large	males	 increases,	 this	alternative	mating	behaviour	
may	 confer	 a	 greater	mating	 success,	 balanced	 against	 the	 risk	 of	
getting	killed	by	a	large	male.	Conversely,	the	fitness	of	large	males	
is	 likely	 to	be	 reduced	by	competition	 for	mates	as	 the	 frequency	
of	 large	males	 increases	 (Engqvist	&	 Taborsky,	 2016).	 Similarly,	 as	
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the	frequency	of	precocious	males	increases,	their	individual	genetic	
contribution	is	likely	to	diminish	due	to	increased	competition	from	
other	precocious	males	(Hutchings	&	Myers,	1994).	In	brown	trout,	
males	do	not	mature	as	early	and	small	as	in	salmon,	but	the	contrast	
between	small	resident	and	large	migrant	individuals	provides	a	sim‐
ilar	framework.

It	has	been	argued	that	the	development	and	maintenance	of	an	
evolutionarily	stable	alternative	male	reproductive	strategy	require	
a	strong	underlying	genetic	basis,	although	the	expression	of	these	
strategies	is	conditional,	in	the	sense	that	environmental	conditions	
associated	with	growth	and	survival	interact	with	genetically	based	
threshold	 responses	 to	 determine	 individual	 strategy	 (Engqvist	 &	
Taborsky,	2016;	Tomkins	&	Hazel,	2007).	However,	one	cannot	rule	
out	epigenetic	mechanisms,	which	might	provide	a	 rapid	 response	
to	 changing	 environmental	 conditions	 (Moran	 &	 Pérez‐Figueroa,	
2011).	Hutchings	 and	Myers	 (1994)	 suggested	 that	within	 a	 given	
trout	population,	an	evolutionarily	stable	continuum	of	strategy	fre‐
quencies	is	maintained	by	polygenic	thresholds	(which	are	likely	to	
differ	significantly	between	sexes	as	well	as	between	individuals)	of	
environmentally	controlled	traits	(primarily	associated	with	growth).	
In	 this	 sense,	 the	 polyphenic	mating	 strategies	 employed	 by	male	
brown	trout	may	be	regarded	as	both	locally	adapted	and	phenotyp‐
ically	plastic,	resulting	from	the	interplay	between	genotype,	envi‐
ronmental	conditions	and	both	 frequency‐	and	density‐dependent	
pressures.	While	density‐dependent	pressures	are	 likely	to	 lead	to	
high	rates	of	migration	and	anadromy	where	feeding	opportunities	
are	poor	in	the	home	river,	frequency‐dependent	pressures	largely	
maintain	alternative	mating	strategies	and	associated	polyphenism	
through	 intrasexual	 competition	 on	 the	 spawning	 beds	 (Forseth	
et	al.,	1999;	Landergren,	2005;	Wysujack,	Greenberg,	Bergman,	&	
Olsson,	2009).

8  | HUMAN IMPAC TS ON SE A TROUT

8.1 | Climate change

Possible	 effects	 of	 climate	 change	 on	 sea	 trout	 populations	 have	
been	extensively	reviewed	(Elliott	&	Elliott,	2010;	Graham	&	Harrod,	
2009;	 Jonsson	&	 Jonsson,	 2009a;	 Lassalle	&	Rochard,	 2009).	 The	
expected	climate	change	in	the	Atlantic	region	is	for	warmer,	drier	
spring	and	summer	seasons,	and	for	milder	and	wetter	winters,	with	
more	precipitation	falling	as	rain	and	less	as	snow,	shorter	ice‐cov‐
ered	 periods,	 and	more	 frequent	 periods	 of	 extreme	weather,	 in‐
cluding	 droughts,	 heavy	 rain	 events	 and	 strong	 spates.	 A	 shorter	
ice‐covered	period	may	increase	the	activity	and	energy	use	of	trout	
in	 rivers	and	decrease	production	unless	 feeding	opportunities	 in‐
crease	to	a	similar	extent	(Watz	et	al.,	2015).

Climate	change	may	also	be	responsible	for	increased	rates	of	
land	 erosion,	 which	 is	 reinforced	 by	 land‐use	 change	 in	 agricul‐
ture	and	 forestry	practices.	As	a	 result,	an	 increase	 in	 river	sed‐
iment	 is	 likely.	 Suspended	 sediment	 affects	 trout	 behaviour	 and	
survival	directly.	Sediment	loads	clog	gravel	beds	impeding	brown	
trout	from	spawning	and	reducing	recruitment	success	(Scheurer,	

Alewell,	Bänninger,	&	Burkhardt‐Holm,	2009).	 Invertebrate	com‐
munities	and	growth	opportunities	for	trout	are	also	affected	by	
increasing	sediment	input	(Jones	et	al.,	2012).	An	increase	in	water	
temperature,	notably	during	the	spawning	period,	 is	 likely	to	 im‐
pact	reproductive	behaviour	and	egg	mortality	as	observed	in	ex‐
perimental	 conditions	 in	Atlantic	 salmon	 (Beall	&	De	Gaudemar,	
1999),	ultimately	leading	to	a	drastic	reduction	in	the	species	dis‐
tribution.	Overall,	Jonsson	and	Jonsson	(2009a)	predicted	a	north	
and	 northeastward	movement	 of	 the	 distributional	 range	 of	 sea	
trout,	with	decreased	production	and	population	extinction	in	the	
southern	regions	and	invasion	of	new	spawning	and	nursery	rivers	
and	feeding	areas	in	the	north.

8.2 | Fisheries

Trout	are	exploited	through	fishing	both	in	freshwater	and	marine	
habitats.	Overexploitation,	that	is,	when	a	population	is	exploited	
to	the	extent	that	the	optimal	recruitment	cannot	be	maintained	
due	 to	 a	 lack	 of	 spawners	 and	 thereby	 insufficient	 egg	 deposi‐
tion,	 leads	to	population	declines,	and/or	a	shift	 the	balance	be‐
tween	 anadromous	 and	 freshwater‐resident	 compartments	 of	
populations.	 Because	 brown	 trout	 are	 iteroparous,	 the	 impact	
of	 exploitation	 is	 cumulative	 on	 older	 and	 larger	 fish	 (Solomon	
&	 Czerwinski,	 2007).	 Catch	 statistics,	 as	 well	 as	 information	 on	
catch	per	unit	effort	and	catch	rates,	are	important	for	the	moni‐
toring	of	sea	trout	and	assessments	of	levels	of	exploitation.	In	the	
Burrishoole	 catchment,	 fishing	 effort	was	 found	 to	 be	 the	most	
important	determinant	of	catch	with	a	weaker	but	significant	rela‐
tionship	between	catch	and	stock	(Mills,	Mahon,	&	Piggins,	1986).	
The	quality	of	catch	statistics	for	trout	is	adequate	in	some	fisher‐
ies	and	countries,	but	needs	improvement	in	others	(Milner	et	al.,	
2007).	The	extent	of	unreported	sea	trout	fishing	is	unknown,	but	
can	be	significant	in	some	countries.

8.3 | Aquaculture

Salmon	 farming	affects	 sea	 trout	by	 spreading	 infectious	diseases	
caused	 by	 viruses,	 bacteria,	 fungi	 and	 parasites,	 as	 well	 as	 often	
functioning	as	a	barrier	to	migration	(Aarestrup	&	Koed,	2003).	Such	
diseases	may	affect	both	 the	 freshwater	and	marine	stages	of	 the	
sea	 trout	 life	cycle.	Although	numerous	 studies	document	 the	 im‐
pact	of	 salmon	 lice	 (see	previous	section	on	sea	 lice),	 little	knowl‐
edge	and	monitoring	are	available	on	other	effects	of	 fish	farming	
on	wild	brown	trout	populations	 (Bakke	&	Harris,	1998).	However,	
considering	the	importance	of	the	parasitism	impact	on	wild	salmo‐
nids	 in	Norway,	an	operational	 salmon	 lice	model	has	been	devel‐
oped	to	provide	an	improved	monitoring	system	for	risk	assessment	
(Myksvoll	et	al.,	2018)	as	well	as	the	implemented	“traffic	light	sys‐
tem”	for	a	sustainable	fish	farming	in	Norway	(Vollset	et	al.,	2018).	
In	Ireland,	Single	Bay	Management	(Anon,	2008)	was	implemented	
in	 the	 early	 1990s	which	 included	 close	monitoring	 and	 advice	 to	
harvest	or	treat	lice,	especially	in	the	immediate	months	before	and	
during	the	wild	smolt	runs.
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8.4 | Degradation of water quality

Water	 acidification,	 pollution	 (e.g.	 from	 agriculture,	 sewage	 treat‐
ment	 works,	 roads	 and	 mining),	 hydropower	 developments,	 flow	
regulation,	water	abstraction,	migratory	barriers	 and	habitat	 alter‐
ations	 as	diverse	 as	high	diffuse	organic	 load	or	 clearing	 riffles	of	
stones	for	passing	logs	through	affect	trout	populations	negatively	
(reviewed	by	Thorstad	et	al.,	2014;	Whelan	&	Poole,	1993).

Freshwater	 acidification,	 arising	 from	 industrial	 emissions	of	 sul‐
phur	 dioxide	 and	 nitrogen	 oxides	 to	 the	 atmosphere	 and	 the	 sub‐
sequent	 acid	 precipitation,	wiped	 out	 trout	 populations	 in	 southern	
Fennoscandia	 during	 the	 last	 century.	 Although	 emissions	were	 re‐
duced	after	1990,	many	rivers	in	this	area	are	still	affected	by	chronic	or	
episodic	acidification	(e.g.	Hesthagen	et	al.,	2017;	Kroglund	et	al.,	2007;	
Rosseland	&	Kroglund,	2010).	Brown	 trout	are	vulnerable	 to	acidifi‐
cation,	 although	 to	 a	 lesser	degree	 than	Atlantic	 salmon	 (Henrikson	
&	Brodin,	1995).	Hence,	 it	 is	 likely	 that	 any	 liming	 strategy	adopted	
specifically	for	Atlantic	salmon	may	also	restore	water	to	a	quality	suit‐
able	for	sea	trout.	However,	liming	strategies	can	still	be	optimized	to	
improve	conditions	for	sea	trout	in	tributaries	and	small	streams	that	
presently	are	not	included	in	the	liming	programme	of	the	main	stem	of	
rivers.	Furthermore,	competition	with	more	acid	sensitive	species	than	
brown	trout,	such	as	Atlantic	salmon,	seems	to	 increase	as	a	conse‐
quence	of	liming	and	reduce	the	abundance	of	trout	in	some	acidified	
waters	treated	with	calcium	carbonate	(Hesthagen	et	al.,	2017).

Contaminants	derived	from	intensive	agriculture,	afforestation,	
mining	and	other	industries	impact	sea	trout	negatively,	both	as	a	
consequence	of	direct	and	indirect	effects	in	freshwater	(Jonsson,	
Jonsson,	 &	 Ugedal,	 2011).	 High	 nitrite	 concentrations	 are	 lethal	
for	embryos,	this	impact	being	higher	when	dissolved	oxygen	con‐
centrations	are	low	(Massa,	Baglinière,	Prunet,	&	Grimaldi,	2000).	
Livestock	grazing	contributes	to	river	eutrophication	due	to	runoff	
from	livestock	manure.	Interestingly,	intensive	agriculture	systems	
relying	on	a	large	quantity	of	nutrients	led	to	an	increase	in	produc‐
tivity	 in	River	Scorff,	France	(Roussel	et	al.,	2013).	This	coincided	
with	an	increase	in	growth	performance	in	juvenile	Atlantic	salmon	
and	a	decrease	in	mean	age	at	smolting	(Rivot	et	al.,	2009).	However,	
this	positive	effect	on	fish	may	only	hold	within	a	reasonable	level	
of	eutrophication.	In	the	Burrishoole,	Ireland,	land‐use	change	was	
found	to	have	no	significant	 impact	on	the	freshwater	survival	of	
either	 salmon	 or	 trout	 (de	 Eyto	 et	 al.,	 2016).	 Nevertheless,	 con‐
taminants	also	alter	 the	parr–smolt	 transformation,	and	 influence	
the	 run	 timing	 and	 survival	 of	 smolts	 once	 they	 enter	 sea	water	
(McCormick,	 Hansen,	 Quinn,	 &	 Saunders,	 1998;	 Rosseland	 &	
Kroglund,	2010).	Contaminants	may	damage	fish	gills	and	thereby	
compromise	the	ionoregulatory	capacity	of	smolts	(Kroglund	et	al.,	
2007;	McCormick	et	al.,	1998;	Moore,	Lower,	Mayer,	&	Greenwood,	
2007).	 Sublethal	 exposure	 to	 contaminants	 during	 smolting	 may	
therefore	 have	 implications	 for	 the	 survival	 for	 trout	 at	 sea	 and	
their	 tendency	 to	 migrate.	 Livestock	 trampling	 of	 stream	 bank	
may	induce	direct	destruction	of	eggs	and	fry	(Gregory	&	Gamett,	
2009),	 potentially	 leading	 to	 population	 decline,	 as	 illustrated	 in	
a	 cutthroat	 trout	 model	 (Peterson,	 Rieman,	 Young,	 &	 Brammer,	

2010).	 Stream	bank	 trampling	 also	 increases	 siltation	 sedimenta‐
tion	of	salmonid	redds,	which	limits	the	interchange	of	surface	and	
intragravel	water	 and,	 therefore,	 the	 supply	 of	 dissolved	 oxygen	
to	 the	embryo	 (Heywood	&	Walling,	2007).	Stock	exclusion	 from	
watercourses	 using	 riparian	 fencing	 and	 limited	 pool	 excavation	
has	the	potential	to	preserve	and	enhance	wild	trout	populations	in	
headwaters	(Summers,	Giles,	&	Stubbing,	2008).	This	rehabilitation	
work	 has	 become	 a	 widely	 recommended	 fisheries	 management	
practice	(Summers,	Giles,	&	Willis,	1996).

Road	and	railway	activities	contribute	to	freshwater	pollution,	but	
there	is	little	available	information	on	effects	for	trout.	Meland	et	al.	
(2010)	suggested	that	traffic‐related	contaminants,	especially	those	
emanating	from	contaminated	tunnel	wash	water,	reduce	growth	of	
juvenile	trout.	In	winter,	salt	from	the	roads	may	also	be	an	issue.	In	
addition,	poor	water	quality	in	rivers	may	be	responsible	for	various	
skin	 diseases.	 For	 instance,	 UDN‐like	 (Ulcerative	Dermal	Necrosis)	
disappeared	from	Europe	in	the	1970s,	but	in	1993,	Roberts	wrote:	
“it	 seems	 likely	 that	UDN	 is	 a	 cyclical	 disease	 (…).	 It	 can	 therefore	
be	expected	to	return	again	before	the	middle	of	the	21th	century”	
(Roberts,	1993).	Currently,	a	UDN‐like	disease	is	becoming	an	import‐
ant	driver	of	adult	mortality	in	Baltic	salmonids,	and	this	disease	has	
been	detected	in	Latvia,	Poland,	Germany	and	Sweden	(ICES,	2018).

8.5 | Threat to connectivity

Hydropower	stations,	dams	and	weirs	may	all	comprise	major	ob‐
stacles	to	migratory	trout	and	cause	marked	alteration	of	riverine	
habitats.	Building	of	roads,	railways,	bridges	and	other	installations	
may	incur	migratory	barriers	for	sea	trout.	In	some	cases,	migrations	
may	 be	 completely	 blocked,	whereas	 in	 others,	 culverts	 or	 other	
constructions	may	 not	 be	 sufficiently	well‐designed	 to	 enable	 or	
facilitate	fish	passage	(Larinier,	2002).	River	flow	regulation	for	irri‐
gation,	freshwater	fish	hatcheries,	channel	modification	to	facilitate	
boat	traffic	(e.g.	locks)	and	the	building	of	infrastructure	along	riv‐
ers	all	pose	challenges	to	migratory	fish	like	those	from	hydropower	
regulation.	There	are	numerous	studies	on	restoration	of	spawning	
habitats,	 changes	 in	 overwintering	 environmental	 conditions,	 fish	
stranding	due	 to	 rapid	 flow	decreases,	migration	barriers,	 turbine	
mortality	and	the	effects	of	 flow	and	temperature	regimes	on	 ju‐
venile	growth,	behaviour	and	 recruitment	of	 trout	 (e.g.	Aarestrup	
&	Koed,	2003;	Alonso‐González,	Gortázar,	Sanz,	&	De	Jalón,	2008;	
Pulg,	Barlaup,	Sternecker,	Trepl,	&	Unfer,	2013;	Saltveit,	Halleraker,	
Arnekleiv,	 &	 Harby,	 2001).	 Also,	 passages	 through	 hydrological	
barriers	 and	 temperature	 changes	 affect	 energy	 expenditure	 and	
decrease	 the	 fitness	gain	of	migration.	Furthermore,	 recent	 stud‐
ies	 show	 that	 the	 presence	 of	many	 dams	 negatively	 affects	 the	
energetic	status	of	sea	trout	kelts	during	their	seaward	migration,	
reducing	iteroparity	(Haraldstad	et	al.,	2018).

8.6 | Coastal development

There	 is	 little	 information	 on	 how	 anthropogenic	 factors	 and	 in‐
creased	 human	 development	 activity	 in	 coastal	 areas	 affect	 sea	
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trout	survival	and	movements.	It	is	not	known	how	harbours,	piers,	
bridges,	 fish	 farms,	 or	 industrial	 developments	 and	 deposits	 from	
mining	activity	in	coastal	areas	affect	sea	trout.	This	is	compounded	
by	the	construction	of	port	facilities	with	piers	or	tethering	systems	
that	extend	 far	offshore,	 as	necessitated	by	 the	 increasing	 size	of	
ocean‐going	 vessels.	 The	 construction	 of	 tidal	 power	 turbines	 is	
currently	widely	debated	but	the	indirect	impact	of	habitat	changes	
associated	 with	 necessary	 damming	 and	 the	 direct	 impact	 of	 the	
spinning	blades	could	be	substantial	for	migratory	species	like	trout.	
An	increasing	portion	of	rivers	and	the	ocean	is	also	now	being	illu‐
minated	at	night.	It	is	not	known	how	such	facilities	impact	sea	trout,	
but	 negative	 effects	 of	 light	 pollution	 have	 been	 demonstrated	
on	 salmon	 migratory	 behaviour	 (Riley,	 Bendall,	 Ives,	 Edmonds,	 &	
Maxwell,	 2012)	 and	may	 be	 expected	 to	 exert	 the	 same	negative	
effects	on	trout.

8.7 | Interactions among impact factors

Often,	 several	 anthropogenic	 factors	 impact	 trout	 populations	 si‐
multaneously,	 but	 studies	 of	 synergistic	 effects	 of	 anthropogenic	
disturbances	on	fish	populations	are	often	complicated	and	expen‐
sive	 to	 conduct,	 and	 very	 few	 such	 studies	 on	 any	 species	 exist.	
Synergistic	effects	of	two	or	more	impact	factors	are	complex,	non‐
linear	and	unpredictable,	and	certainly	not	apparent	from	combin‐
ing	knowledge	of	 the	effects	of	 single	 factors	studied	 in	 isolation.	
As	one	example,	Finstad	et	al.	(2012,	2007)	investigated	effects	of	
salmon	lice	and	acidification	on	Atlantic	salmon	post‐smolt	survival.	
These	studies	showed	that	smolts	exposed	to	freshwater	acidifica‐
tion	were	 subsequently	more	vulnerable	 to	 salmon	 lice	 than	were	
control	groups	held	in	good	quality	freshwater	before	migrating	to	
sea.	Vulnerability	to	salmon	lice	was,	however,	reduced	if	there	was	
a	 recovery	 period	 following	 the	 acidification	 episode	 and	 prior	 to	
exposure	to	salmon	 lice.	The	 interaction	between	higher	tempera‐
ture	and	reduced	sea	louse	generation	time	has	been	implicated	in	
exacerbating	 the	 farm	 lice	 sea	 trout	 impact	 (Tully,	1992)	 in	 a	 con‐
text	of	global	warming.	The	 interaction	between	run	timing	of	sea	
trout	smolts	and	the	point	in	time	at	which	those	smolts	gain	a	sea	
louse	 burden	 has	 been	 demonstrated	 to	 lead	 to	 additional	 stress	
on	 those	 smolts	 (Poole	 et	 al.,	 2000).	 Therefore,	we	 conclude	 that	
in	years	when	environmental	conditions	are	less	favourable	for	sea	
trout	transition	from	freshwater	to	saltwater	and	a	high	abundance	
of	sea	lice	is	present	in	the	area,	the	combined	impact	on	trout	will	
be	greater	than	in	more	“normal”	years	or	locations.

9  | RESE ARCH QUESTIONS AND FUTURE 
DIREC TIONS

9.1 | Assessment of partial anadromy

In	brown	trout,	partial	anadromy	is	driven	by	complex	interactions	
between	intrinsic	and	extrinsic	factors,	leading	to	a	wide	variety	of	
life‐history	patterns.	In	particular,	partial	migration	is	influenced	by	
juvenile	growth	in	freshwater,	largely	determined	by	temperature	

and	feeding	opportunities	(Jonsson,	1981)	and	resulting	in	a	con‐
tinuum	of	 life‐history	strategies	 in	brown	trout	 (Cucherousset	et	
al.,	 2005).	 However,	 there	 are	 few	 empirical	 data	 sets	 available	
because	studies	rarely	consider	simultaneously	sea	trout	and	resi‐
dent	trout	from	the	same	population.	The	development	of	passive	
integrated	 transponder	 (PIT)	 tag	monitoring	 programmes	 across	
Europe	 is	 promising	 but	 currently	 limited	 to	 small	 to	 medium	
coastal	 streams	 or	 tributaries	 and	 do	 rarely	 encompass	 catch‐
ment	or	population‐level	surveys.	Scale	samples	and	the	relative	
concentrations	 of	 strontium	 (Sr)	 and	 calcium	 (Ca)	 in	 the	 otoliths	
can	be	used	as	proxies	of	movement	of	anadromous	fish	between	
freshwater	and	salt	water.	Also,	 investigations	of	nutritional	sta‐
tus,	which	differs	between	 freshwater	 resident	and	anadromous	
fish,	or	spawning	ground	surveys	of	types	of	spawners	may	offer	
alternative	methods	to	study	partial	anadromy.	In	parallel,	future	
research	should	explicitly	 incorporate	both	resident	and	anadro‐
mous	individuals	(and	possibly	all	 intermediate	life	histories),	and	
use	these	 in	population	models	to	 improve	our	understanding	of	
the	complex	dynamics	within	partly	anadromous	population.	For	
instance,	a	recent	meta‐analysis	highlighted	that	partial	migration	
may	confer	a	selective	advantage	in	a	stochastically	varying	envi‐
ronment	 (Gilroy,	Gill,	Butchart,	 Jones,	&	Franco,	2016).	Thus,	 in‐
vestigating	whether	partial	anadromy	under	chronic	global	change	
may	promote	a	greater	resilience	in	the	brown	trout	compared	to	
other	anadromous	fish	should	be	an	important	issue	for	ecologists	
and	managers.

9.2 | Responses to climate change

By	 influencing	 metabolic	 rate,	 growth	 and	 feeding	 opportunities,	
temperature	 is	 considered	 a	 key	 driver	 of	 migration	 decisions	 in	
brown	 trout.	With	 climate	 change,	 temperature	 tends	 to	 increase	
more	rapidly	 in	rivers	than	 in	the	ocean,	but	the	effect	of	temper‐
ature	on	growth	opportunities	depends	on	whether	 it	 is	 above	or	
below	 some	 optimal	 temperature.	 If	 temperature	 increases	 above	
the	 optimal	 temperature	 for	 growth,	we	 hypothesize	 that	 the	 de‐
gree	of	anadromy	will	increase,	provided	that	the	risk	of	mortality	in	
fresh	relative	to	marine	waters	remains	similar.	If	the	temperature	in	
freshwater	 is	below	the	optimal	 temperature	for	growth,	 freshwa‐
ter	residency	should	be	favoured	as	the	temperature	increases.	The	
latter	is	the	case	in	masu	salmon,	where	the	proportion	of	resident	
fish	 increases	with	 temperature	 increase	 in	 freshwater	 (Morita	 et	
al.,	 2014).	 Furthermore,	 flow	 conditions	 are	 likely	 to	 interact	with	
temperature,	 by	 either	 accentuating	 or	 attenuating	 the	 impact	 of	
temperature	on	brown	trout	depending	on	the	situation.	But	surely,	
expected	changes	in	flow	regime	would	increase	environmental	sto‐
chasticity	in	freshwater.	As	a	result,	we	predict	that	the	influence	of	
climate	change	on	anadromy	rates	will	differ	from	northern	to	south‐
ern	populations	in	brown	trout.	The	flexibility	of	partial	anadromy	is	
an	issue	for	future	research.

Climate	also	influences	the	phenology	of	fish	species	(Anderson,	
Gurarie,	Bracis,	Burke,	&	Laidre,	2013;	Jonsson,	Jonsson,	&	Jonsson,	
2017).	 In	 a	 warmer	 climate,	 eggs	 may	 hatch	 earlier	 (Alp,	 Erer,	 &	
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Kamalak,	2010),	the	length	of	the	growth	season	may	increase	until	
a	certain	point	 (Elliott	&	Hurley,	1998),	 smolts	should	migrate	ear‐
lier	to	sea	(Jonsson	&	Ruud‐Hansen,	1985;	Otero	et	al.,	2014),	and	
adults	return	later	for	spawning	(Alm,	1950),	thereby	increasing	the	
duration	of	the	sea	sojourn.	In	rivers,	water	flow	appears	to	influence	
time	of	freshwater	entry	and	upstream	migration,	especially	in	small	
streams	(Jonsson	et	al.,	2001,	2018).	Furthermore,	the	tendency	to	
spend	the	winter	at	sea	may	increase	when	the	sea	water	tempera‐
ture	increases	(Olsen	et	al.,	2006).	The	spawning	period	in	southern	
populations	may	be	prolonged	as	observed	in	Spain	(Larios‐López,	de	
Figueroa,	Galiana‐García,	Gortázar,	&	Alonso,	2015).	Investigations	
of	 latitudinal	 gradients	 in	 phenological	 and	 life‐history	 traits	 will	
help	anticipate	how	climate	change	will	influence	sea	trout	in	the	fu‐
ture.	However,	because	migratory	distances	to	the	home	rivers	dif‐
fer,	such	gradient	studies	do	not	give	direct	evidence	of	changes	in	
traits	affected	by	migratory	costs.	Therefore,	experimental	research	
involving	model	species	may	also	be	helpful	in	studies	of	future	phe‐
nology	and	life	history	of	sea	trout.

In	a	future	warmer	climate,	age	at	smolting	throughout	much	of	
the	 brown	 trout's	 distribution	 should	 decrease	 because	 of	 higher	
growth	rate	in	freshwater;	however,	the	opposite	may	be	the	case	in	
the	southern	part	of	their	distribution,	as	optimum	temperature	for	
growth	will	 be	 exceeded	more	 frequently.	Whether	 smolt	 size	will	
change	or	not,	depends	not	only	on	growth	rate,	but	selection	for	op‐
timal	size	depending	on	size‐specific	mortality	at	sea	(Jonsson	et	al.,	
2016).	If	mortality	of	small	smolts	increases	more	than	that	of	large	
smolts,	selection	will	favour	larger	smolts	and	high	survival	at	sea,	and	
vice	versa	if	mortality	increases	most	for	large	smolts.	Furthermore,	
the	ability	to	osmoregulate	may	be	impaired	at	higher	temperatures	
(McCormick,	Shrimpton,	Zydlewski,	Wood,	&	McDonald,	1996)	with	
possible	full	loss	of	anadromy	in	southern	areas,	similar	to	Arctic	charr.

Flow	conditions	 in	 rivers	will	 change	 in	 the	 future	 climate.	With	
increasing	flow	in	small	streams,	the	size	of	both	residents,	smolts	as	
well	as	adult	trout	may	increase,	and	vice	versa	if	the	flow	decreases	
(Jonsson	et	al.,	2001).	Furthermore,	more	water	may	influence	the	rela‐
tive	size	of	males	and	females.	Apparently,	males	need	more	water	than	
similar	sized	females	to	be	reproductively	successful	because	of	their	
high	activity.	Therefore,	males	may	be	smaller	 than	 females	 in	 small	
streams,	and	less	so	when	stream	size	increases	(Jonsson	&	Jonsson,	
2015).	 Conversely,	 predicted	 increase	 in	 the	 frequency	 of	 extreme	
summer	drought	is	likely	to	jeopardize	juvenile	survival	and	growth.

Mean	male	size	relative	to	mean	female	size	of	the	anadromous	
trout	may	 increase	 towards	 the	 north	 (Jonsson	&	 Jonsson,	 2015).	
This	 might	 be	 because	 conditions	 in	 freshwater	 make	 freshwater	
residency	less	favourable	in	the	north.	However,	the	mechanism	de‐
termining	 the	 sex	 ratio	of	 freshwater	 resident	 versus	 anadromous	
trout	is	still	unknown	and	open	for	research,	as	the	proportion	of	the	
two	varies	among	rivers	(Table	1).

9.3 | Epigenetics

Increased	winter	temperature	might	influence	embryo	development,	
and	 in	 this	 century,	 winter	 temperatures	 are	 expected	 to	 increase	

more	than	summer	temperatures	(IPCC,	2013).	Heritable	variation	in	
phenotypic	plasticity	suggests	that	although	increasing	temperatures	
are	 likely	to	affect	some	populations	negatively,	they	may	have	the	
potential	 to	 adapt	 to	 changing	 temperature	 regimes	 (Jensen	 et	 al.,	
2008).	The	mechanism	of	 this	 flexibility	 is,	however,	unknown,	but	
appears	to	involve	a	change	in	gene	expression,	possibly	caused	as	an	
epigenetic	response	to	early	thermal	conditions	(Jonsson	&	Jonsson,	
2014,	2016).	There	is	still	little	knowledge	about	epigenetic	influence	
on	phenotypically	plastic	traits	(Jonsson	&	Jonsson,	2019).

9.4 | Management strategies

Stock	 assessments	 for	 brown	 trout	 are	 generally	 lacking	 across	
Europe.	Little	is	known	about	productivity	and	recruitment	in	brown	
trout,	as	well	as	river‐specific	carrying	capacities.	Data	are	lacking	to	
quantify	the	mortality	induced	by	fisheries	at	sea,	in	freshwater	and	as	
potential	by‐catch.	There	is	also	lack	of	information	on	sea	trout	stocks	
regarding	human	impacts	(e.g.	aquaculture	and	spread	of	diseases	and	
parasites,	 pollution	 and	water	 quality,	 agriculture,	 road	 and	 railway	
activities).	Estimates	of	straying	among	watercourses	are	sometimes	
large	(Quéméré	et	al.,	2016),	but	variable,	possibly	influenced	by	the	
size	of	 the	 river	 and	presence	of	 lakes	where	 trout	 spend	 the	win‐
ter	 in	 a	 protected	 habitat.	 If	 straying	 between	 neighbouring	 popu‐
lations	 is	high,	 they	may	be	managed	 together	as	meta‐populations	
(Meier,	Hansen,	Bekkevold,	Skaala,	&	Mensberg,	2011).	However,	 in	
the	future	climate,	autumn	and	winter	precipitation	may	increase	and	
thereby	 reduce	 the	 rate	of	 straying	with	 effects	on	 the	 size	of	 the	
management	 unit.	 As	 brown	 trout	 are	 partly	 anadromous,	 a	 future	
management	programme	should	be	coordinate	with	data	collection	
programmes	across	Europe.	To	aid	in	its	implementation,	data	collec‐
tion	suitable	for	supporting	management	of	sea	trout	stocks	should	
be	cheap,	easy	and	pragmatic,	such	as	the	length‐based	indicator	(LBI)	
system	proposed	in	Shephard,	Davidson,	Walker,	and	Gargan	(2018).

In	many	countries,	sea	trout	management	is	viewed	as	a	by‐prod‐
uct	of	Atlantic	 salmon	management,	 and	 this	 is	 completely	discon‐
nected	 from	 resident	 trout	 management.	 Thus,	 there	 is	 an	 urgent	
need	 to	 develop	 new	 recommendations	 dedicated	 to	 brown	 trout	
ecology	 and	 plasticity	 to	 promote	 the	 conservation	 of	 this	 iconic	
species.	Because	trout	are	only	partly	anadromous,	more	research	is	
needed	to	define	the	relative	contribution	of	sea	trout	and	resident	
trout	to	population	dynamics,	as	well	as	more	general	data	comparing	
sea	survival	and	growth	in	populations	across	the	native	distribution	
area.	Preferably,	this	should	be	done	using	individual	tagged	fish	(such	
as	PIT	tagged)	in	order	to	directly	couple	life	history	to	individual	pa‐
rameters	(and	avoid	problems	with	straying,	age	reading,	etc.).	Future	
research	should	define	relevant	management	units	and	provide	rec‐
ommendations	for	dedicated	management	actions	able	to	account	for	
the	large	plasticity	in	individual	life‐history	trajectories	in	trout.
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IRISH PEATLAND ECOSYSTEM

Elvira de Eyto, Brian Doyle, Niall King, Tommy Kilbane,  
Ross Finlay, Lauren Sibigtroth, Conor Graham, Russell Poole,  

Elizabeth Ryder, Mary Dillane and Eleanor Jennings

ABSTRACT

Peatlands are being degraded by the combined impacts of land use and climate change. Carbon stored 
in peat is a key constituent of aquatic food webs in rivers and lakes of humic catchments, and changes 
in the downstream transport of this allochthonous carbon may have considerable implications for 
the production of Atlantic salmon and brown trout. Understanding the food web of these keystone 
species is therefore crucial to their conservation in a changing world. Here, we use a combination 
of stomach content analysis (SCA) and stable isotope analysis (SIA) to characterise the diet of juve-
nile salmonids in aquatic habitats of a typical Irish peatland catchment (Burrishoole). SCA showed 
that Diptera, Ephemeroptera, Plecoptera and Trichoptera were the main components of the diet 
of juvenile salmonids. Daphnia were the primary prey item in salmon smolt stomachs. The average 
stable isotope signature of salmonids was 9.26 ± 0.87‰ δ 15N and -25.6 ± 1.99‰ δ13C, but differed 
between species, age class and habitat (river vs lake). Salmonids were supported by a wide range of 
carbon energy sources, with δ13C increasing as fish moved downstream out of the headwater rivers 
and into a large downstream lake.

INTRODUCTION

Peatlands occupy approximately 20% or 14,000km2 
of the land area of Ireland (Connolly and Holden 
2009), holding up to 75% of national soil carbon 
stocks (Renou-Wilson et al. 2011). Healthy peat-
lands provide a wide range of ecosystem services, 
including carbon storage, climate regulation, bio-
diversity support, water filtration and supply, and 
hydrological control (Bonn et al. 2009). The waters 
draining peatlands underpin many of these services, 
and the ecological quality of the rivers and lakes in 
peatland catchments are crucial to the functional 
integrity of peatlands as a whole. The rivers and 
streams draining peatlands are important conduits 
linking terrestrial and oceanic ecosystems by trans-
porting soil organic carbon from land to sea (Asmala, 
Carstensen and Räike 2019). It is widely acknowl-
edged that peatlands and their aquatic ecosystems 
are especially sensitive to climate change (Ise et al. 
2008), and that resultant changes in these import-
ant long-term stores are occurring. For example, 
increases in organic carbon (OC) concentrations 
has already been reported in many aquatic peatland 
ecosystems in the Northern Hemisphere (Freeman 
et al. 2001; Jennings et al. 2010; Couture, Houle and 
Gagnon 2012; Asmala et al. 2019).

Salmonids (Atlantic salmon Salmo salar L., 
brown trout Salmo trutta L.) and European eel 
(Anguilla anguilla L.) are keystone native species in 
the aquatic habitats of peatland catchments span-
ning the Atlantic seaboard of western Europe. These 
species exert considerable top down control on all 
aspects of the ecology of rivers and lakes in these 
catchments (O’Gorman, Lantry and Schneider 2004; 
Layer et al. 2011). Terrestrial (allochthonous) support 
of aquatic food webs, such as pulses of organic mat-
ter (both particulate and dissolved) can be signifi-
cant (e.g. Solomon et al. 2011; Bartels et al. 2012; 
Wilkinson et al. 2013), meaning that changes such as 
peatland degradation or increased afforestation can 
have significant implications for the production of 
juvenile fish (Tanentzap et al. 2014).

It is currently unknown how changes in the 
terrestrial carbon cycling in peatlands will affect 
the production of salmon and trout, although 
recent work indicates that it is likely to be a com-
plex response (Finstad et al. 2014). In addition, the 
role that salmonids have on controlling carbon 
cycling through river and lakes has yet to be deter-
mined. Recent research has quantified the role that 
marine fish populations have on the carbon cycle 
of oceanic waters (Trueman et al. 2014), where it 
was estimated that benthopelagic fishes from the 
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likely to increase further as peatlands destabilise with 
climate warming (Jones, Donnelly and Albanito 
2006; Gallego-Sala et al. 2010). However, a current 
gap in our knowledge is the role that fish play in the 
aquatic food web, and to what extent their produc-
tion is determined by carbon sources. A first step in 
filling this gap is to fully characterise the food web 
of the rivers and lakes in Burrishoole, which is the 
aim of this study. Stable isotope analysis (SIA) and 
stomach content analysis (SCA) were carried out on 
the same fish samples, with the aim of cataloguing 
and understanding how the feeding ecology of sal-
monids in Burrishoole varies with species (salmon 
and trout), age class (0+, 1+ and smolt) and habitat 
(river, littoral lake and pelagic lake) over the short 
(days) to medium (months) term. SCA was used to 
provide a snapshot of the diet of fish at a given time 
and inform the SIA. Shifts in diet along the head-
water to sea gradient were also inferred from the 
SIA, along with the trophic position of invertebrates 
and fish. In conducting this study, we wish to pro-
vide a baseline against which future changes can be 
assessed, and background for the design of studies 
with more specific research questions.

MATERIAL AND METHODS

Burrishoole is a small (100km2) upland catchment 
(53° 56’ N, 9° 35’ W) draining into the North-east 
Atlantic through Clew Bay (Fig. 1). Climatically 
influenced by the Atlantic Ocean (Jennings et al., 
2000; Allott, McGinnity and O’Hea, 2005; Blenckner 
et al., 2007), the catchment experiences a temperate, 
oceanic climate with mild winters and relatively cool 
summers. Maximum summer air temperatures rarely 
exceed 20°C, while minimum winter temperatures 
are usually between 2°C and 4°C. The base geology 
on the western side of the catchment is predominantly 
quartzite and schist, leading to acidic runoff with 
poor buffering capacity. By comparison, the geol-
ogy on the eastern side is more complex as quartz-
ite and schist are interspersed with veins of volcanic 
rock, dolomite and wacke, leading to higher buffering 
capacity and aquatic production. Soils in the catch-
ment comprise poorly drained gleys, peaty podzols 
and blanket peats. Lough Feeagh is the largest fresh-
water lake in the catchment (Surface area = 4km2, 
maximum depth = 45m), and is oligotrophic (total 
phosphorous <10 µg l-1), highly coloured (c. 80mg l-1 

PtCo) due to high levels of dissolved organic carbon 
(DOC), and slightly acidic (pH = c. 6.7) with low 
alkalinity (<20mgl-1 CaCO

3
) (de Eyto et al. 2016b).

BIOLOGICAL ANALYSIS

Samples for isotopic determination were collected 
concurrently around Lough Feeagh in 2015 and 

UK-Irish continental slope capture and store a vol-
ume of carbon equivalent to over 1 million tonnes 
of CO2 every year. It is possible that the freshwater 
fish of peatland habitats can exert a similar influ-
ence, but the magnitude of the transfer of carbon to 
fish biomass along the LOAC (land-ocean-aquatic 
continuum) is, as yet, unknown. The Burrishoole 
catchment on the western seaboard of Ireland is an 
internationally important index site for diadromous 
fish monitoring, with long-term records of salmon, 
trout and eel densities and migration (Poole et al., 
2006, 2018; McGinnity et al. 2009; de Eyto et al. 
2016a). Over the last 20 years, considerable prog-
ress has been made on resolving the carbon cycle 
of the aquatic ecosystems in the catchment through 
the use of the long-term environmental monitor-
ing data. It has already been shown that the supply 
of allochthonous carbon to surface waters is largely 
determined by hydrological and meteorological fac-
tors (discharge, air temperature) (Ryder et al. 2014; 
Doyle et al. 2019), which are projected to change as 
climate change accelerates (Fealy et al. 2014). This 
is predicted to result in larger exports of organic 
carbon from peat to rivers and lakes (Jennings et al. 
2010). Palaeolimnological investigations of the two 
largest freshwater lakes in the catchment (Feeagh 
and Bunaveela) have revealed a changing aquatic 
environment, primarily related to land use changes 
in the second half of the twentieth century (Dalton 
et al. 2014). Commercial coniferous forestry was 
established from the 1950s and currently covers 23% 
of the catchment area. In addition, sheep numbers 
in the catchment increased rapidly from about 500 
in the 1970s to a high of ~10,000 by 2000, before 
decreasing as a result of destocking incentives. 
Organic matter (% LOI: loss on ignition) fluctuated 
throughout sediment cores taken from the lakes, but 
increased in the second half of the century, coinci-
dent with increased erosion of upland peats. Increases 
in levels of %C (~10 to 20) and δ15N (<2 to 2.5‰) 
in the sediments of Feeagh coincided with organic 
matter increases and are within the range character-
istic of terrestrial plants, and ratios of C:N greater 
than twenty indicated a predominantly terrestrial 
source for organic matter (Meyers 2003). These land 
use changes manifested as increased erosion of peat, 
increased export of sediment into the lakes and a 
reduction in water clarity (Sparber 2012). Biological 
communities in Lough Feeagh (diatoms and cladoc-
erans) have been impacted by these changes (Dalton 
et al. 2014), and we know that the pelagic com-
munities in Lough Feeagh are currently primarily 
supported by allochthonous carbon at specific times 
in the year (Ryder 2015).

There is, therefore, much evidence to sug-
gest that the aquatic food webs of Burrishoole are 
dependent on, or influenced by, terrestrial alloch-
thonous sources, and that this influence may have 
increased over the last six decades. This influence is 
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to a fine powder in a pestle and mortar, and weighed 
into individual pre-weighed tin cups.

Five samples of peat soils were collected on 
Lettermaghera bog (Fig. 1) in October 2015 using a 
plastic corer. Cores were taken from bare peat only. 

2016 (Fig. 1) according to methods described below 
(and listed in Table 1) and following techniques 
described in Solomon et al. (2011), Karlsson et al. 
(2012) and Tanentzap et al. (2014). All samples were 
dried in an oven for 24 hours at 50°C, then crushed 

Figure 1—Map showing the location of samples collected in and adjacent to Lough Feeagh for 
stable isotope analysis.
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Mineral soils were collected at five separate locations 
on the eastern side of Lough Feeagh. The chosen 
soil samples represent a range of mineral soils that 
occur in the lake catchment. The mineral soils sam-
pled were mostly podzols with strongly stratified 
horizons. The mineral soils were sampled at loca-
tions shown in Fig. 1. Surficial lake sediment was 
taken from traps in the north and centre of Lough 
Feeagh, which were in place between 15 June and 
20 October 2015. Sediment from five traps was 
emptied into separate bottles. A subsample of each 
bottle was filtered through GF/F filter paper and the 
filtered solid used for analysis.

Terrestrial primary producers (leaves) were 
sampled in October 2015. Representative bog 
plants were sampled by selecting fresh (growing) 
vegetation from hummocks on Lettermaghera bog 
(Fig. 1). The leaves and young branches of Calluna 
vulgaris (L.) Hull, Molinia caerulea (L.) Moench and 

Sphagnum spp. were cut and put into a zip lock bag. 
Conifer needles were cut directly from a stand of 
Pinus contorta Douglas ex Loudon conifers adjacent 
to the Srahrevagh river. In addition, decomposing 
leaf litter was collected from dead leaves floating 
in the littoral area of Lough Feeagh. Leaves were 
mostly from Fraxinus (L.), Salix (L.), Betula (L.), and 
Quercus (L.) species. All samples were cut into small 
pieces for processing.

Five samples of river periphyton were collected 
from the Black River (Fig. 1) in October 2015. One 
rock submerged in the river channel was chosen 
per sample. Each rock was placed in a white tray, 
scrubbed with a tooth brush and washed with dis-
tilled water. The water from each sample was stored 
in a pre-washed separate bottle. In the laboratory 
each of the five samples was filtered thorough GF/F 
filers and the filtered solid used for analysis. Lake 
periphyton was sampled from tiles were placed in 

Table 1—Samples collected for Stable Isotope Analysis including number of individuals, loca-
tion and date of sampling

Sampling method Number 
of samples

Location 
(Fig 1)

Date

Consumer
Lake Trout (0+) Draft net 10 15 7 Oct 2015
Lake Trout (1+) Draft net 10 15 7 Oct 2015
Lake Salmon (0+) Draft net 10 15 7 Oct 2015
Lake Salmon (1+) Draft net 10 15 7 Oct 2015
River Trout (0+) Electrofishing 5 16 and 17 12 Oct 2016
River Trout (1+) Electrofishing 5 16 and 17 12 Oct 2016
River Salmon (0+) Electrofishing 5 16 and 17 12 Oct 2016
River Salmon (1+) Electrofishing 5 16 and 17 12 Oct 2016
Migrating Salmon (smolts) Lake Outflow Trap 20 14 3-25 May 2016
Source
Terrestrial

Peat Cores 5 12 19 Oct 2015
Lake leaves Hand collection 5 3 19 Oct 2015
Mineral Soils Cores 5 * 19 Jan 2015
Bog plants Hand picked 5 1 19 Oct 2015
Conifer needles Hand picked 5 2 19 Oct 2015
Diptera (adult flies) Hand picked 4 20 31 Oct 2016

Pelagic
Zooplankton (Daphnia sp.) Vertical haul 3 21 19 Oct 2015
Zooplankton (Cyclopoid sp.) Vertical haul 3 21 19 Oct 2015

Benthic
River periphyton Scrapped off rocks 5 13 19 Oct 2015
Lake periphyton Tiles 5 4 19 Oct 2015
Lake invertebrates (Gammarus 
duebenii)

Sweep net 3 5 19 Oct 2015

Lake invertebrates (Heptagenia sp.) Sweep net 5 5 19 Oct 2015
River invertebrates (Mayfly sp.) Sweep net 3 6 27 Oct 2016

Profundal
Surficial sediment Sediment traps 5 18 and 19 19 Oct 2015
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considered as a sample. Five Gammarus individuals 
were considered a sample. River invertebrates (a 
mix of three may fly species, Baetis rhodani (Pictet 
1843), Heptagenia sp. and Rhithrogenia semicolorata 
(Curtis 1834)) were similarly sampled and processed. 
Winged (adult) Diptera were sampled by handpick-
ing them from the lake shore as they were caught 
in spider webs suspended at approximately 1 metre 
height. Five to ten flies were grouped for a sample, 
and four samples were collected.

Littoral lake samples of salmon and trout (+0 
and +1) were caught in a draft net in October 2015 
(Fig. 1). River samples of salmon and trout (+0 and 
+1) were caught by electrofishing in October 2016 
from two upland rivers above Lough Feeagh (the 
Lodge and Srahrevagh river). Salmon smolts (2+) 
were sampled as they migrated downstream through 
fish traps at the seaward end of Lough Feeagh 
during the smolt run of May 2016 and these were 
classified as having come from pelagic lake habitat. 
Fish sample sizes are given in Table 1. As the trout 
population of Burrishoole is primarily resident (i.e. 
non-anadromous), only 0+ and 1+ fish were sam-
pled for this study, both from river and littoral lake 
habitats (Table 2). The fish were immediately stored 
in a freezer (-18 °C) until the time of dissection. The 
fish were later (within 3 months of being caught) 
defrosted and their digestive tracts removed. A sam-
ple of white flesh was removed from each fish and 
care was taken to avoid bone, skin, scales and other 
non-muscle material. The stomach content of each 
fish was dissected, and the occurrence of various 
prey items was counted. Individuals were generally 
identified to order.

the littoral zone of Lough Feeagh in on 5 August 
2015 and removed on 20 October 2015. Each tile 
was scrubbed with a toothbrush and rinsed with dis-
tilled water into a separate pre-washed bottle. In the 
laboratory each sample was filtered through GF/F 
filter paper and oven-dried. Following drying it was 
discovered that the required mass of material could 
not be scraped off the filters for analysis. Instead, sev-
eral cores of each sample were taken from each of the 
filter papers and weighed into a pre-weighed tin cup. 
Cores were also cut from unused, dried filters and an 
average weight was measured (N = 10). The mass of 
each lake periphyton sample were calculated as:

(Mass of sample + core) –  
(Average mass of unused core) = Mass of sample

Zooplankton were sampled in October 2015 
using a vertical haul through the water column from 
20m with a conical zooplankton net (53µm mesh). 
100 individual cyclopoid copepods, calanoid cope-
pods and Daphnia sp. were counted into beakers 
containing filtered lake water and left overnight to 
allow their guts to evacuate. Three samples of each 
group (nine beakers in total) were prepared. Each 
sample was then washed with deionised water and 
placed in porcelain crucibles for processing.

A kick-sample net was used to sample benthic 
invertebrates in the lake littoral region in October 
2015. Individuals of Gammarus duebenii celticus Stock 
and Pinkster 1970 and Heptagenia sp. Walsh, 1863 
were picked out by hand and left in filtered lake 
water overnight for them to expel their gut con-
tents. For Heptagenia (mayfly), ten individuals were 

Table 2—Stomach contents of salmon and trout of differing ages and habitats in the 
Burrishoole catchment. Values are the number of fish stomachs which contained each taxa.

Salmon Trout Total % 
occur-
rence

Age 0+ 1+ 0+ 1+ 2+ (smolt) 0+ 1+ 0+ 1+
Habitat littoral littoral river river pelagic littoral littoral river river
n 7 10 5 5 24 12 10 6 5 84
Diptera 3 10 3 1 16 5 8 5 5 56 67%
Ephemeroptera 5 8 0 0 3 7 6 2 1 32 38%
Plecoptera 3 3 2 4 2 6 7 2 2 31 37%
Trichoptera 0 7 3 2 6 0 3 1 4 26 31%
Coleoptera 0 2 4 2 0 3 5 2 3 21 25%
Daphnia 0 0 0 0 21 0 0 0 0 21 25%
Mollusca 0 7 1 2 0 0 1 0 1 12 14%
Amphipoda 1 0 0 0 0 2 3 0 0 6 7%
Bosmina 0 0 0 0 6 0 0 0 0 6 7%
Cyclopoid 0 0 0 0 5 0 0 0 0 5 6%
Hymenoptera 1 0 0 0 0 0 3 0 0 4 5%
Lepidoptera 1 0 0 0 0 1 1 0 0 3 4%
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All pre-weighed samples were analysed by the 
Colorado State Plateau Stable Isotope Laboratory 
at Northern Arizona University, using a Thermo-
Electron Delta V Advantage IRMS configured 
through a Finnigan CONFLO III for automated 
continuous-flow analysis of δ15N and δ13C, and a 
Carlo Erba NC2100 elemental analyser for combus-
tion and separation of C and N. Stable isotope ratios 
were expressed in δ notations as parts per thousand 
(‰) using the following equation:

δX = [(R
sample

/R
standard

)-1] x 1000

The standard for carbon was the Vienna Pee 
Dee belemnite (VPDB) and atmospheric nitrogen 
(AIR) for nitrogen. NIST 1547 (peach leaves) was 
used as the internal laboratory working standard to 
check on measurement reproducibility throughout 
each run. The isotope correction standards used 
were IAEA CH6 and CH7 for δ13C, and IAEA N1 
and N2 δ15N. The precision for this analysis run (cal-
culated from the standard deviations for the NIST 
peach leaves) was ±0.09‰ for δ13C and ± 0.08‰ 
for δ15N.

DATA ANALYSIS

The stomach contents of groups of fish were visu-
alised using nMDS (following double square root 
transformation and calculation of Bray-Curtis dis-
similarities) with the R package vegan (Oksanen 
et al. 2015) and analysed for differences between 
groups using the adonis function (analysis of variance 
using distance matrices) (McArdle and Anderson 
2001). The input data for this analysis was the num-
ber of individuals of each taxon that were found in 
each fish stomach (Supplemental information II)

Following the recommendation of Post et al. 
(2007), animal samples with a C:N ratio >3.5 were 
lipid corrected, as lipids are depleted in δ13C, using 
the equation:

δ13C
normalized 

= δ13C
untreated 

-3.3 + 0.99 * C:N

Trophic position (TP) was estimated within 
each sampled habitat (river and lake) using either 
periphyton or a primary consumer as a baseline, 
using the equation:

TP
consumer

 = ([δ15N
consumer 

− δ15N
baseline

]/3.23) + λ

where 3.23 ‰ is the trophic-enrichment factor 
taken from the literature, δ15N baseline is the mean 
δ15N value of the baseline resource of the system, 
and λ is the trophic position of the baseline resource 
(1 for periphyton, 2 for primary consumer) (Vander 
Zanden and Rasmussen 2001; Manetta, Benedito-
Cecilio and Martinelli 2003; Dekar et al. 2011; 
Wieczorek et al. 2018).

We used mixing models with the SIAR package 
in R to determine the most likely dietary sources 
for river and lake fish and hence evaluate the pro-
duction base supporting juvenile salmonids in both 
habitats. SIAR is a Bayesian mixed model that uses 
Markov Chain Monte Carlo simulations to deter-
mine the probable contribution to diet of different 
prey sources (Parnell et al., 2008). We used con-
sumer-based dual- isotope models (δ13C and δ15N) 
for fish from each habitat, with the end members 
being the signatures of aquatic macroinvertebrates, 
adult flies and pelagic zooplankton. All sampled food 
sources were included in the lake model (both river 
and lake invertebrates) as theoretically, lake fish may 
only have been in the lake for a very short period 
of time and may still maintain a ‘riverine’ dietary 
signal. In contrast, we assume that fish caught in the 
rivers had never spent time in the lake, and so the 
end members for the river model were only those 
invertebrates sampled in the river (mayfly) and adult 
flies. We used trophic enrichment values of 0.91 ‰ 
± 1.04 for δ13C and 3.23 ‰ ± 0.41 for δ15N (Dekar 
et al., 2011).

RESULTS

STOMACH CONTENT ANALYSIS

We carried out stomach analysis on 84 fish as part 
of this study, and 12 different taxa were represented 
across all fish (Table 2). One individual each of 
Hymenoptera (ants) and Lepidoptera (moths and 
butterflies) were found in the stomachs of the river 
salmon – these were excluded from analysis owing 
to their rarity. Diptera (flies) were the most com-
mon food item found in the stomachs, with a mix 
of both terrestrial and aquatic life stages. 67% of fish 
had Diptera in their stomachs at the time of sam-
pling, followed by Ephemeroptera (mayflies: 38%), 
Plecoptera (stoneflies: 37%) and Trichoptera (caddis-
flies: 31%). When all 84 fish were analysed together, 
there were significant differences in the stom-
ach contents of the various groups of fish (adonis, 
p=0.001, F=6.13, n=84), the most notable differ-
ence being the diet of 2+ salmon (smolts migrating 
from the pelagic zone of Lough Feeagh) when com-
pared with all other groups (Fig. 2). For fish sampled 
in the Lodge and Srahrevagh rivers, species was a 
significant source of variation in observed stom-
ach contents (adonis, p=0.03, F=3.27, n=21), with 
trout stomachs containing relatively more Diptera, 
while salmon were eating more Plecoptera (Fig. i, 
Supplemental Information). Age class was not a sig-
nificant source of variation in the diets of river fish, 
with large overlap between the food items of 0+ and 
1+ fish. In contrast, in the littoral region of Lough 
Feeagh, the age of the fish (0+ vs 1+) was a more 
important discriminant of diet (adonis, p=0.009, 
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sampled in the rivers, although they were very com-
mon in the lake fish. While the diet of 0+ and 1+ 
river salmon overlap considerably, there was quite 
a divergence between 0+ and 1+ diets in the lake 
fish, with Trichoptera and Mollusca being absent 
from 0+ stomachs, but occurring in 70% of the 1+ 
stomachs.

Although there was more overlap in the stom-
ach contents of trout than those of salmon described 
above, there were still some significant differences in 
the taxa found in the stomachs of lake trout com-
pared to those of river trout (adonis, p<0.01, F=2.14, 
n=33) (Fig. 4). In particular, Amphipoda (Gammarus 
duebenii) were found in several lake trout, but not 
at all in river trout, while lake trout also had higher 
occurrences of Plecoptera and Ephemeroptera 
(Table 2). When amphipods were found in trout 
stomachs, it was in large numbers (17, 53 and 101 
individuals in three fish)

STABLE ISOTOPE ANALYSIS

All the invertebrate samples (but not the fish) had 
a C:N ratio of >3.5, and so were lipid normalised. 
The δ13C of samples ranged between -19.70‰ 
(lake periphyton) and -31.92‰ (conifer needles), 
and the δ15N ranged between -3.26‰ (bog plants) 

F=3.02, n=39) than the species (salmon vs trout), 
with the 0+ feeding more on Ephemeroptera and 
Plecoptera, and 1+ fish of both species feeding more 
on Trichoptera and Diptera (Fig. ii, S.I.).

In order to examine the changes in diet as 
fish aged, salmon and trout were also analysed sep-
arately. There was a difference between the stom-
ach contents of the pelagic salmon smolts (2+) and 
the 0+ and 1+ salmon from river and lake littoral 
habitats (adonis, p<0.001, F=14.77, n=49) (Fig. iii, 
S.I.). The smolts were eating mainly zooplankton, 
predominantly Daphnia sp., with an average num-
ber of 200 individual Daphnia per smolt stomach. 
21 out of 23 salmon smolts examined had large 
numbers of Daphnia in their stomachs. Two other 
zooplankton taxa, Bosmina sp. and cyclopoid cope-
pods, were also found in the salmon smolt stom-
achs, along with Diptera and small numbers of EPT 
(Ephemeroptera, Plecoptera and Trichoptera). When 
analysed separately from the salmon smolts, there 
was some separation between the stomach contents 
of salmon sampled in rivers and those sampled in the 
lake littoral region (Fig. 3) (adonis, p<0.001, F=7.17, 
n=27). Coleoptera and Plecoptera were found more 
frequently in the river salmon, while the lake salmon 
had higher occurrences of molluscs. Ephemeroptera 
were not found in the stomachs of any salmon 

Figure 2—nMDS ordination of the stomach contents of salmon and trout sampled in the 
Burrishoole catchment from river and littoral lake habitats. Ellipses are plotted as the standard 
error of the (weighted) average of scores, and the grey lines indicate segments connecting each 
sample to the group centroid. Stress = 0.15, n= 84.
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and 10.02‰ (Salmon 1+ lake) (Table 3). While the 
δ13C of the lake periphyton seems to be an out-
lier in comparison to all other samples, it is within 
the range of other measurements in freshwater 
ecosystems (Jardine et al. 2003) and so we have 
included it in further analysis. The δ13C measured 
in the fish ranged between -31.32 and -21.54, with 
fish becoming less depleted in δ13C as they moved 
down the catchment from headwaters towards the 
sea. The dual isotope plots clearly show the trophic 

structure of the river and lake aquatic ecosystems 
in the catchment, with at least three trophic levels 
being characterised. Terrestrial primary producers 
(plants) are clearly separated at the base of the food 
web, with δ15N values less than 0‰, while fish are 
grouped together at the top, with δ15N between 8‰ 
and 10‰. In the middle of these two extremes are 
invertebrate consumers and a mix of periphyton, 
soils and sediments perhaps colonised with complex 
microbial assemblages (Fig. 5). The trophic position 

Figure 3—nMDS ordination of the stomach contents of salmon sampled in the Burrishoole 
catchment from river and littoral lake habitats (i.e. excluding smolts). Ellipses are plotted as the 
standard error of the (weighted) average of scores, and the grey lines indicate segments 
connecting each sample to the group centroid. Stress = 0.16, n= 27.

Trichoptera

Mollusca

Diptera

Littoral 0+

Littoral 1+

River 1+

River 0+

Coleoptera

Plecoptera

Ephemeroptera

0.5

1.0

0.0

–0.5

–1.0

–1.5 –1.0 –0.5 0.0

NMDS1

N
M

D
S

2

0.5 1.0 1.5 2.0

Figure 4—nMDS ordination of the stomach contents of trout sampled in the Burrishoole 
catchment from river and littoral lake habitats. Ellipses are plotted as the standard error of the 
(weighted) average of scores, and the grey lines indicate segments connecting each sample to 
the group centroid. Stress = 0.16, n= 27.

Plecoptera Ephemeroptera

Mollusca

Diptera

Trichoptera

Amphipoda

Coleoptera

–1.5 –1.0 –0.5

NMDS1

Littoral 0+

Littoral 1+

River 1+
River 0+

0.0 0.5 1.0

–1.0

–0.5

N
M

D
S

2

0.0

0.5

1.0

This content downloaded from 
��������������86.41.18.39 on Thu, 23 Apr 2020 09:17:30 UTC�������������� 

All use subject to https://about.jstor.org/terms



CharaCterisation of salmonid food webs in the rivers and lakes

9

Table 3—Average stable isotope results from samples taken around the Burrishoole catchment 
in 2015/2016.

Sample n d13C ‰ d13Cnorm‰ d15N ‰ %C %N C:N

Basal resources
Peat Soil 5 -28.17 -0.07 59.50 2.45 24.37
Mineral soil 5 -27.77 3.51 12.15 0.50 22.50
Surficial Sediment 5 -28.59 3.55 13.18 0.82 16.29
Bog plants 5 -29.38 -3.26 49.72 1.16 42.92
Conifer Needles 5 -31.92 -1.84 49.04 1.16 42.18
Lake leaves 5 -31.76 -0.82 44.87 1.52 29.48
River Periphyton 5 -27.73 2.77 7.04 0.51 16.16
Lake Periphyton 4 -19.70 4.52 10.10 1.36 7.59
Invertebrates
Adult DIptera 4 -31.50 -30.40 4.08 46.80 10.53 4.47
Mayflies (River) 3 -27.46 -24.58 4.82 51.54 8.27 6.27
Gammarids (lake) 3 -23.77 -22.69 7.02 35.75 8.06 4.44
Mayfly (lake) 5 -27.33 -26.64 8.38 48.66 12.03 4.05
Daphnia 3 -30.17 -27.50 7.34 33.29 5.79 6.05
Cyclopoid 3 -28.08 -26.22 9.64 46.35 8.84 5.23
Fish
Trout 0+ (river) 6 -27.07 8.29 41.83 13.12 3.19
Salmon 1+ (river) 5 -27.65 8.50 42.31 13.06 3.24
Trout 0+ (lake) 17 -25.52 8.67 43.54 13.31 3.34
Salmon 0+ (river) 5 -28.96 8.76 40.98 12.68 3.23
Salmon 0+ (lake) 10 -26.18 8.92 42.78 12.78 3.35
Trout 1+ (river) 5 -27.08 9.03 40.00 12.47 3.21
Trout 1+ (lake) 10 -26.33 9.44 46.04 14.30 3.22
Salmon 2+ (smolt) 24 -24.62 9.67 42.58 13.61 3.14
Salmon 1+ (lake) 20 -24.15 10.02 44.82 13.72 3.27

Figure 5—Dual isotope plot (c13C and c15N) for basal resources, invertebrates (labelled) and fish 
(unlabelled – see Fig. 6) sampled in the Burrishoole catchment. Grey dashed lines indicate 
arbitrary ranges for trophic groups (c15N ) from Jardine et al. (Jardine et al., 2003) and are for 
indicative purposes only. Error bars indicate one standard deviation.
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of lake primary producers, primary consumers 
and predators appears to be elevated in compari-
son to the same groups in rivers, indicating a more 
complex food web downstream in the catchment 
(Fig. 5). The δ15N of river periphyton was 2.77‰, 
compared to 4.51‰ for lake periphyton. River 
mayflies (primary consumers) had a δ15N of 4.82‰, 
while Gammarus in the littoral regions of Lough 
Feeagh had a δ15N of 7.02‰. Interestingly, mayfly 
in Lough Feeagh appear to be feeding at more than 
one trophic position higher than the same family in 
river, with a δ15N of 8.38‰, which was within the 
range of δ15N measured in fish (Fig. 6). Similarly, 
cyclopoid copepods in Feeagh, which are generally 
considered to be primary consumers had an average 
δ15N of 9.57‰, which was considerably higher than 
the other pelagic consumer, Daphnia, which had an 
average δ15N value of 7.33‰.

If periphyton is used as the baseline for the 
aquatic food webs in Burrishoole’s rivers and lakes, 
salmon and trout occupy a trophic position between 
2 and 3, with a considerable range, particularly in 
lake fish (Fig. xi, S.I.). When a primary consumer 
is used as the baseline, with a trophic position of 2, 
there is a slight shift upwards in the trophic position 
of fish inhabiting the lake, but still occupying a range 
between 2 and 3. Lake mayfly appear to be feeding 

at the same trophic position as the 0+ trout and 
salmon. As we did not sample the true phytoplank-
ton baseline that we would expect zooplankton to 
be feeding on, the trophic position of Daphnia and 
Cyclopoid copepods in Figure 7 should be treated 
with caution, but we note that cyclopoids do seem 
to be feeding at a slightly higher trophic level than 
their pelagic co-inhabitants Daphnia. In the river 
food web, using a primary consumer (a mix of may-
fly species) as a baseline leads to estimated trophic 
positions of greater than three for all four fish groups 
(0+ and 1+ salmon and trout) (Fig. xi, S.I.).

A total of nine fish groups were sampled for 
stable isotope analysis (Table 3) and there was a 
large amount of overlap in the isotope signatures 
of these groups. The most enriched δ15N was found 
in 1+ salmon sampled from the littoral area of 
Lough Feeagh, while 0+ river trout had the least. 
Interestingly, both cyclopoids and mayflies sampled 
in Lough Feeagh had SI ratios in the same range as 
those of fish. Although there is a lot of overlap in the 
SI signatures of the groups of fish, significant dif-
ferences do appear between species, habitat and age 
class. δ15N was less enriched in river fish when com-
pared to lake fish (ANOVA, p < 0.01, F= 21.5), trout 
had significantly lower δ15N than salmon (ANOVA, 
p < 0.01, F = 14.0) and fish became more enriched 

Figure 6—Dual isotope plot (c13C and c15N) for invertebrates and fish (Salmon – S; Trout – T; 
0+ and 1+ and s – 2+ smolt) sampled in the Burrishoole catchment. Grey dashed lines indicate 
arbitrary ranges for trophic groups (c15N ) from Jardine et al. (Jardine et al., 2003) and are for 
indicative purposes only. Green circles are river fish (Rv), red are lake fish (Lk) and black are 
invertebrates for reference. Error bars indicate one standard deviation.
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The diet of 0+ lake trout was roughly similar 
to that of 0+ salmon, with riverine mayflies and 
adult flies making up approximately one third each 
of their diet. Finally, adult flies make up the biggest 
proportion of the diet of 1+ trout in Lough Feeagh, 
followed by riverine mayflies and Daphnia. The diet 
of 1+ trout is the only place where Daphnia appears 
to be somewhat important, indicating that perhaps 
these fish spend some time in the pelagic zone (S.I.).

The biplot of the river dwelling salmonids with 
their prey items indicates that we may have missed 
some important prey items when conducting our 
field sampling, as there were no prey items bounding 
the upper limit of the δ15N range (Fig. 8). However, 
based on this initial analysis, the data indicate that 
mayflies and adult flies can contribute significant 
energy to salmonids in the rivers leading into Lough 
Feeagh. In particular, adult flies may constitute about 
80% of the diet of 0+ salmon in the Srahrevagh and 
Lodge rivers (S.I.).

DISCUSSION

The food items found in the stomachs of salmon 
and trout in Burrishoole were generally as we 
would expect from literature. Salmonids in Ireland 
are known to feed primarily on both the larval and 
adult life stages of EPT taxa and Diptera (Frost 1938; 

in δ15N as they grew from 0+ to 1+ (ANOVA, 
p < 0.01, F = 11.2). Although salmon smolts (2+) 
had higher δ15N than 0+ salmon, it was actually 
lower than the δ15N signature of 1+ lake salmon. 
δ13C did not vary as much as δ15N amongst groups, 
with the only significant difference being between 
habitat (ANOVA, p < 0.01, F = 39) where river fish 
were significantly depleted in δ13C in comparison to 
lake fish. δ13C did not vary with species or age class.

We used the R package SIAR to ascertain the 
likely food sources of groups of fish. In the isoto-
pic δ15N - δ13C biplot, all lake fish fell within the 
area bounded by their prey items, all of which had 
been found during stomach content analysis (Fig 7). 
The results from the Bayesian model indicated vary-
ing prey items were important for each group of 
fish. Riverine mayflies and adult flies were the most 
important prey items for 0+ salmon sampled from 
the littoral region of the lake (S.I.). Riverine may-
flies were also important in the diet of 1+ salmon in 
the lake, but adult flies were not. Instead, Gammarus 
made up approximately one third of the diet of these 
fish. Both riverine mayflies and Gammarus were also 
important components of smolt diets. It is of note 
that Daphnia did not appear, from the SIA, to be an 
important part of the diet of smolts migrating out 
of the lake, even though stomach content analysis 
of the same fish showed that Daphnia were the most 
numerous prey items at the time of capture, with the 
stomachs containing an average of 200 individuals.

Figure 7—Raw isotope data for sources and consumers (lake fish) as a bi-plot. Trophic 
enrichment factors have been applied to the sources. Group 1 = Salmon 0+, group 2 = salmon 
1+, group 3 = salmon smolts, group 4 = trout 0+ and group 5 = trout 1+.
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Stinson 1957; Lehane et al. 2001) and our results 
support this. While some studies report a consid-
erable amount of molluscs and crustaceans in trout 
diets (Dauod, Bolger and Bracken 1986; Byrne, 
Poole and McGinnity 2000), we did not find this to 
be the case, with the exception of some Gammarus 
in five out of 33 trout sampled, all from the lake. 
This is probably a reflection of the acidic nature of 
the Burrishoole catchment and its underlying geol-
ogy, which has low alkalinity, and low concentra-
tions of base cations such as calcium. Occurrences 
of invertebrate taxa that require lots of calcium are 
therefore rare, apart from small pockets in Lough 
Feeagh and some of the rivers draining the east 
side of the catchment where there are veins of well 
buffered rocks. Previous studies have concluded 
that the importance of terrestrial insects becomes 
greater with increasing age of fish (Kelly-Quinn and 
Bracken 1990; Dineen, Harrison and Giller 2007), 
and this may account for some of the differences in 
stomach contents with age class in both salmon and 
trout in this study. However, the largest difference in 
diet, according to SCA, was associated with habitat. 
The stomach contents of lake and river dwelling fish 
of both species were significantly different, likely 
reflecting the differing availability of prey items in 
lentic and lotic habitats.

One surprising feature of the SCA was the pre-
dominance of Daphnia in the stomachs of salmon 
migrating through Lough Feeagh. Salmon can 
successfully feed and grow on a diet of Cladocera 
(Holm and Møller 1984), and some previous studies 
have reported Daphnia in the stomach contents of 

juvenile lake dwelling salmonids (Morrison 1983). 
However, we were unable to find much literature 
describing the binge-feeding that we observed in 
this study. According to the SIA results, both riverine 
mayflies and Gammarus were important components 
of the diet of salmon smolts, which seems counter-
intuitive when compared with the SCA data which 
implied a predominantly pelagic lake diet. It may be 
that the smolts we sampled had come straight out of 
the upstream rivers into the lake, without spending 
enough time in the lake to accumulate a ‘lake’ diet 
signal. We note that it could take up to three months 
for the isotopic composition of new prey items to 
be detectable in consumers (Persson and Hansson 
1999; Davis et al. 2018) and is more useful in assess-
ing diets over weeks to months. Our combined SCA 
and SIA results indicate that even though smolts 
were feeding almost exclusively on Daphnia as they 
migrated through the lake, it was over a relatively 
short period of time, and most of their energy was 
previously derived from benthic invertebrates. It is 
currently unknown what proportion of Burrishoole 
smolts have spent the whole previous year in the 
lake (i.e. when they migrate permanently out of the 
upstream rivers into Lough Feeagh).  However, these 
results imply that their migration time through the 
lake might only be a couple of days or weeks, rather 
than months. As we sampled the smolts over the 
whole migration period, we assume we sampled the 
variation in lake dwelling that occurs in Burrishoole 
salmon, and we conclude that salmon in this system 
generally use the lake habitat for only a very short 
period of time, immediately prior to their migration 

Figure 8—Raw isotope data for sources and consumers (river fish) as a bi-plot. Trophic 
enrichment factors have been applied to the sources. Group 1 = Salmon 0+, group 2 = salmon 
1+, group 3 = trout 0+ and group 4 = trout 1+.
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similar trophic levels in both studies. However, the 
δ15N in trout reported in Dineen (2005) was slightly 
higher, indicting an additional trophic level in that 
study, possibly encompassing 2+ fish, or higher lev-
els of nitrogen in the system. All the trout in our 
study were relatively small 0+ and 1+ fish and their 
δ15N reflects this. Some of the larger values of δ15N 
found across Ireland and Scotland (Table 4) can 
be partially attributed to the size of the fish (e.g. 
Keaveney, Reimer and Foy 2015), as trout become 
progressively more 15N-enriched with fish length, 
particularly as they move to a more piscivorous diet 
(Grey 2001). When comparing δ15N amongst fish 
from different systems however, it is important to 
note that one of the primary determinants of δ15N 
will be the nutrient status of the aquatic habitat, and 
so any comparisons will be more informative when 
the baseline conditions are taken into account.

The range of δ13C measured across Ireland is 
large, particularly for salmon, indicating large vari-
ation in the food sources of salmonids across the 
country. Even data from the most comparable study 
(Dineen 2005) indicated a slightly more enriched 
carbon signature than that recorded in this study, 
with values of -22‰ recorded in some rivers (in 
comparison to our highest value of -24.2‰). This 
may be owing to the inclusion of fish from more 
productive rivers in north Mayo, where significant 
biofilms can provide a source of nutrition. It may 
also be owing to the fact that sampling occurred 
slightly earlier in the year than in the present study, 
and we know that SI signatures can vary significantly 
with time (Syväranta, Hämäläinen and Jones 2006; 
Ryder 2015). Some of the very low values in δ13C 
(e.g. salmon in the river Outeragh) can be attributed 

to sea. Sampling these smolts at a later stage may elu-
cidate the contribution of this binging on Daphnia 
to their overall lifetime success. In general, Daphnia 
are present in Lough Feeagh around the same time 
as the smolt run (late spring into early summer), 
raising the question of what would happen in years 
where there is a mismatch between the smolt run 
and Daphnia bloom. One serious shortcoming of 
our study is that the SIA of Daphnia reported here 
was carried out on samples which were obtained 
several months prior to the smolt sampling (October 
2015 vs May 2016), and it is quite likely that the SI 
signature of Daphnia in May is different from that 
obtained in October of the previous year. Previous 
analysis of the SI signature of Daphnia in Lough 
Feeagh displayed some seasonal variation, with δ13C 
varying between -25.2‰ in October 2011 and 
-27.3‰ in May 2012, and δ15N increasing from 
6.7‰ to 7.8‰ (Ryder 2015). The results from this 
study measured -27.5‰ and 7.34‰, which were 
actually nearer to the values recorded in May 2012 
than those of October 2011. We therefore conclude 
that the Daphnia signal used in our SIAR analysis 
gives a fair indication of the occurrence of Daphnia 
in smolt diet.

While SIA is not a new technique, studies of the 
stable isotope signatures of Irish salmon and trout 
are rather rare. We found reference to five other Irish 
studies (Table 4), some unpublished. Dineen (2005) 
measured δ13C and δ15N in salmon and trout from 
various rivers in North Mayo, including several in the 
Burrishoole catchment. δ15N values in salmon were 
comparable to those reported here, ranging between 
7.8‰ and 11.8‰. Our salmon results ranged 
between 8.5‰ and 10.0‰, indicting fish feeding at 

Table 4—Average stable isotope signatures of juvenile salmon and trout in Irish and Scottish 
waterbodies.

Country Species d13C ‰ d15N ‰ Source

This study Ireland Salmon -28.9 to -24.2 8.5 to 10.0
Mayo rivers Ireland Salmon -29.8 to -22.0 7.8 to 11.8 (Dineen 2005)
Outeragh River Ireland Salmon -39.2 to -35.3 9.4 to 10.7 (Graham et al. 2013)
Lough Neagh Ireland Salmon -30.2 to -28.7 10.8 to 15.7 (Harrod unpublished)
River Inny Ireland Salmon -33.4 to -27.7 11.8 to 15.0 (Maguire et al. 2011)
Upper Lough Corrib Ireland Salmon -28.5 to -26.6 12.5 to 14.0 (Maguire et al. 2011)
This study Ireland Trout -27.1 to -25.5 8.3 to 9.4
Mayo rivers Ireland Trout -29.3 to -22.4 8.4 to 11.0 (Dineen 2005)
River Awbeg Ireland Trout -29.4 to -26.4 10.5 to 12.4 (Graham et al. 2013)
Lough Neagh Ireland Trout -28.8 to -20.0 12.3 to 16.8 (Harrod unpublished)
River Inny Ireland Trout -32.6 to -26.7 11.1 to 17.8 (Maguire et al. 2011)
Upper Lough Corrib Ireland Trout -31.2 to -24.8 8.4 to 15.6 (Maguire et al. 2011)
Lough Erne Ireland Trout -32.6 to -28.8 14.1 to 19.4 (Keaveney et al. 2015)
Lough Lomond Scotland Trout -27.7 to -17.8 8.4 to 14.4 (Etheridge et al. 2008)
River Enrick Scotland Trout -26.0 to -22.5 7.5 to 9.9 (Grey 2001)
Loch Ness Scotland Trout -27.9 to -21.1 8.0 to 14.2 (Grey 2001)
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to the calcareous nature of the system, with possible 
fixation of methane by primary producers leading 
to depleted carbon isotope ratios (Graham, Harrison 
and Harrod, 2013).

The results from this study show that salmo-
nids in Burrishoole are supported by a wide range 
of carbon energy sources, with the main split along 
the allochthony / autochthony gradient occurring 
as fish move downstream out of the headwater rivers 
and into Lough Feeagh. The shift in δ13C between 
river and downstream lake habitats is consistent 
with the stream continuum concept whereby con-
sumers are highly dependent on allochthonous car-
bon sources in headwaters, and that this dependence 
shifts more to autochthonous sources in down-
stream habitats (Doucett et al. 1996). This is not to 
say that allochthonous sources of energy in down-
stream lakes (e.g. lake litter) are not important, but 
rather that in-lake processing of organic matter and 
the addition of aquatic primary production (lake 
phytoplankton and phytobenthos) may lessen this 
importance. Determining the exact contribution 
of allochthonous and autochthonous sources to the 
diet of salmonids in Burrishoole was not possible 
with the data collected during this study, although 
the results presented here provide a very informative 
first step in designing a follow-up study with more 
targeted fieldwork. This might include trying to 
physically isolate phytoplankton and phytobenthic 
samples and hence accurately measure the baseline 
autochthonous isotopic signature required in mod-
els detecting the carbon source utilized in food web 
studies (Wilkinson et al. 2013; Keaveney et al. 2015).

The inclusion of allochthonous sources, and 
microbial processing of organic matter is likely to be 
the main reason for the range of trophic levels that we 
observed in the salmonid food web of Burrishoole. 
Primary producers (plants) are clearly separated at 
the base of the food web, with δ 15N values less than 
0‰, while fish are grouped together at the top, with 
δ 15N between 8 and 10‰. In the middle of these 
two extremes are invertebrate consumers and a mix 
of periphyton, soils and sediments perhaps colonised 
with complex microbial assemblages. Using both 
periphyton and primary consumers as baselines for 
trophic position calculation placed salmonids some-
where between 2 and 3.5. Determination of trophic 
position is heavily influenced by the baseline δ 15N 
that is used (Anderson and Cabana, 2007), and it 
may be that either the periphyton or the primary 
consumers which we used as our baselines in both 
river and lake habitats were not the true baselines. In 
upstream rivers, we found a large gap in the trophic 
position between our baseline consumer (mayflies) 
and the fish, and it is likely that we missed some sec-
ondary consumers in this food chain. Lake periph-
yton may not truly represent the first trophic level 
of the lake food chain, as it may already have been 
colonised by a wide range of microinvertebrates and 

microbes. For example, had we used decomposing 
leaf litter as our baseline, salmonids would have been 
assigned to a trophic position greater than three. The 
wide range of observed trophic positions assigned 
to juvenile salmon and trout in Burrishoole is likely 
to be a consequence of omnivory, but differences 
in fractionation of nitrogen from one trophic level 
may also play a part (Jones and Waldron 2003). It 
also hints at food web complexity in both Lough 
Feeagh and the upstream rivers. Fish are functionally 
multi-chain omnivores, deriving energy from both 
periphyton- and phytoplankton-based food chains 
(Vadeboncoeur et al. 2005), as demonstrated by the 
wide range of δ 13C values recorded amongst fish 
cohorts (min=-31.3‰, max = -21.5‰), indicating 
wide utilisation of allochthonous and autochtho-
nous sources.

The combination of stomach content analysis 
(SCA) and stable isotope analysis (SIA) is infor-
mative at several levels. For salmon, SCA indicated 
clear separation between the diets of fish from the 
three habitats: river, lake littoral and lake pelagic, and 
also a separation between the diet of 0+ and 1+ 
salmon in the lake littoral region. This distinction by 
habitat and/or age corresponded with a significant 
difference in δ13C amongst salmon occupying the 
two habitats, and also manifested as a difference in 
δ15N amongst groups. This change in δ15N is consis-
tent with fish changing their trophic position with 
habitat and age, perhaps as they grow larger, and are 
able to eat larger prey items. Although separation 
was less obvious in the trout samples examined for 
SCA, there was some differentiation between the 
diets of river and lake fish, but not between trout of 
different ages.

According to the SIA, 1+ trout are the only 
cohort apart from the salmon smolts where Daphnia 
appears to be somewhat important, indicating that 
perhaps these fish spend some time in the pelagic 
zone. The suggestion from this analysis is that riv-
erine mayflies are a more likely source of energy 
to lake fish than mayfly living in the lake. This is 
rather surprising, but perhaps understandable when 
we look at the position of these lake mayflies in the 
isotope biplots (Fig. 6), where they are situated very 
close to the 0+ lake fish. It is possible that these 
lake mayflies are too big for juvenile salmonids to 
eat (they were all large Heptagenia sp. individuals), 
and we may have missed characterising smaller may-
fly for this analysis. In contrast, the riverine mayfly 
samples comprise a mix of three species, includ-
ing the smaller Baetis rhodani, which is probably a 
more palatable prey item for these small fish. Had 
we known the results from the stomach content 
analysis before we carried out the fieldwork, we 
would have paid more attention to characterising 
the prey items found in the river fish. For example, 
we decided to collect mayfly in the rivers as a signal 
of aquatic invertebrates, but these were not actually 
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anthropogenic drivers behind upward trends in 
organic carbon concentrations in boreal rivers. 
Environmental Research Letters 14, 124018. https://
doi.org/10.1088/1748–9326/ab4fa9

Bartels, P., Cucherousset, J., Steger, K., Eklöv, P., Tranvik, 
L.J. and Hillebrand, H. 2012 Reciprocal subsi-
dies between freshwater and terrestrial ecosystems 
 structure consumer resource dynamics. Ecology 93, 
1173–82. https://doi.org/10.1890/11–1210.1

Blenckner, T., Adrian, R., Livingstone, D.M., Jennings, 
E., Weyhenmeyer, G.A., George, D.G., et al. 2007 
Large-scale climatic signatures in lakes across Europe: 
a meta-analysis. Global Change Biology 13, 1314–26. 
https://doi.org/10.1111/j.1365–2486.2007.01364.x

Bonn, A., Allott, T., Hubacek, K. and Stewart, J. 2009 
Managing change in the uplands - challenges in 
shaping the future. In: Drivers of environmental change 
in uplands (Eds A. Bonn, T. Allott, K. Hubacek and J. 
Stewart), 475–94. Routledge, London and New York.

Byrne, C., Poole, R. and McGinnity, P. 2000 Food 
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trutta L., and salmon, Salmo salar L., in an Irish lake. 
SIL Proceedings, 1922–2010 27, 185–88. https://doi.
org/10.1080/03680770.1998.11901223

Couture, S., Houle, D. and Gagnon, C. 2012 Increases of 
dissolved organic carbon in temperate and boreal 
lakes in Quebec, Canada. Environmental Science 
and Pollution Research 19, 361–71. https://doi.
org/10.1007/s11356–011–0565–6

Dalton, C., O’Dwyer, B., Taylor, D., de Eyto, E., Jennings, 
E., Chen, G., et al. 2014 Anthropocene environ-
mental change in an internationally important oli-
gotrophic catchment on the Atlantic seaboard of 
western Europe. Anthropocene 5, 9–21. https://doi.
org/10.1016/j.ancene.2014.06.003

Dauod, H.A., Bolger, T. and Bracken, J.J. 1986 Age, Growth 
and Diet of the brown trout Salmo Trutta L. in the 
Roundwood Reservoir System

Davis, M.J., Woo, I., Ellings, C.S., Hodgson, S., Beauchamp, 
D.A., Nakai, G., et al. 2018 Integrated Diet Analyses 
Reveal Contrasting Trophic Niches for Wild and 
Hatchery Juvenile Chinook Salmon in a Large River 
Delta. Transactions of the American Fisheries Society 147, 
818–41. https://doi.org/10.1002/tafs.10088

Dekar, M.P., King, R.S., Back, J.A., Whigham, D.F. and 
Walker, C.M. 2011 Allochthonous inputs from 
grass-dominated wetlands support juvenile salmonids 
in headwater streams: evidence from stable isotopes 
of carbon, hydrogen, and nitrogen. Freshwater Science 
31, 121–32. https://doi.org/10.1899/11–016.1

Dineen, G. 2005 Terrestrial Energy Subsidies for Salmonids. 
University College Cork, Cork.

Dineen, G., Harrison, S.S.C. and Giller, P.S. 2007 Diet 
partitioning in sympatric Atlantic salmon and brown 
trout in streams with contrasting riparian vegeta-
tion. Journal of Fish Biology 71, 17–38. https://doi.
org/10.1111/j.1095–8649.2007.01441.x

Doucett, R.R., Power, G., Barton, D.R., Drimmie, R.J. and 
Cunjak, R.A. 1996 Stable isotope analysis of nutrient 
pathways leading to Atlantic salmon. Canadian Journal 
of Fisheries and Aquatic Sciences 53, 2058–66. https://
doi.org/10.1139/f96–132

Doyle B.C., Eyto E. de, Dillane M., Poole R., McCarthy 
V., Ryder E., et al. 2019 Synchrony in catchment 

found in the stomachs of the river salmon. Inclusion 
of some Trichoptera or Plecoptera might have given 
us more accurate end-members for the Bayesian 
mixing model conducted with SIAR. Similarly, the 
fact that riverine mayflies appear to be important 
in the diet of lake fish indicates either that the lake 
fish were moving in and out of areas in the lakes 
where smaller mayflies (with a riverine signal) were 
available for consumption, or alternatively, that we 
missed sampling an important portion of the food 
web that matches the SI signature of riverine may-
flies. Nevertheless, the SCA and SIA both confirm 
the reliance of many salmonids on adult flies as a 
source of energy. The two analyses also show that 
there is clear separation between age classes and 
species as fish move between different habitats. The 
combination of SCA and SIA also highlights the 
swift binging of the smolts on zooplankton as they 
move downstream through Lough Feeagh to the sea, 
and indicates that this may be a very short lived, but 
likely important, phenomenon. The SIA has allowed 
us to construct a first draft of the food web support-
ing salmonids in Burrishoole, and this will support 
future research on determining how changes in land 
use and climate may affect different trophic levels, 
and hence fish production.
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