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ABSTRACT

Snow provides fresh meltwater to over a billion people worldwide. Snow dominated

watersheds drive western US water supply and are increasingly important as demand

depletes reservoir and groundwater recharge capabilities. This motivates our inter-

and intra-annual investigation of snow distribution patterns, leveraging the most com-

prehensive airborne lidar survey (ALS) dataset for snow. Validation results for ALS

from both the NASA SnowEx 2017 campaign in Grand Mesa, Colorado and the time

series dataset from the Tuolumne River Basin in the Sierra Nevada, in California,

are presented. We then assess the consistency in the snow depth patterns for the

entire basin (at 20-m resolution) and for subbasin regions (at 3-m resolution) from a

collection of 51 ALS that span a six-year period (2013-2018) in the Tuolumne Basin.

Strong correlations between ALS from different years near peak SWE confirm that

spatial patterns exist between snow seasons. Year-to-year snow depth differs in abso-

lute magnitude, but relative differences are consistent spatially, such that deep and

shallow zones occur in the same location. We further show that elevation is the ter-

rain parameter with the largest correlation to snow depth at the basin scale, and we

map the expected pattern distribution for periods with similar snow-covered extents.

Lastly, we show at a subbasin scale that distribution patterns are more consistent in

vegetation-limited areas (bedrock dominated terrain and open meadows) compared to

vegetation-rich zones (valley hillslopes and dense canopy cover). The maps of snow
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patterns and their consistency can be used to determine optimal locations of new

long-term monitoring sites, design sampling strategies for future snow surveys, and

to improve high resolution snow models.
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CHAPTER 1:

AIRBORNE LIDAR SURVEY (ALS)

RELEVANCE AND ACCURACY FOR SNOW

DEPTH MEASUREMENTS

1.1 Introduction

The climate in the mountainous western US is known for its historical extremes,

experiencing periods of severe drought, where water reserves reach record deficits,

contrasted by surfeit wet periods. In many examples, natural ecosystems are adept

at navigating these climate fluxes through strategies that improve functional prop-

erties such as the root system of a plant or leaf area size to store or purge water

and nutrients (Baldocchi et al., 2019). From decades of multi-disciplinary research

endeavors, geoscientists continually work to better represent the physical laws that

govern Earth’s processes, so that we are able to estimate natural resource quantities.

Of particular interest is the overwhelming need to quantify water due to its role in

our ecosystem, the fact that it is vital to human life, and its sensitivity to climate

change (Baldocchi et al., 2019).

In order to quantify available water, we must look to Earth’s terrestrial snow-

covered regions, where snowmelt produces water for one sixth of the world’s popu-
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lation (Barnett et al., 2005). It’s estimated that 70% of the water in the western

US originates as snow and is stored seasonally via dams (Sturm et al., 2017). The

dam infrastructure, along with the network of meteorological sites run by the USDA-

National Resource Conservation Service (NRCS), and regional modeling capabilities,

are used operationally for water management. Steady progress in tracking snow depth

has been made in the field of remote sensing, which offers the ability to map depth

at meter resolution over large basins (Deems & Painter, 2006).

This manuscript - in three chapters - contributes results that will aid high-resolution

model development to forecast water volume and snowmelt timing at the watershed

scale, the most useful scale for regional water managers. Quantifying snow depth pat-

terns and their consistency also provides a tool for determining optimal sites for long

term monitoring, and snow survey design. Here we investigate the spatial patterns of

snow depth with a time series of airborne snow depth observations from Tuolumne

River Basin. This basin, and others in the Sierra Nevada in California, face water

scarcity and intense competition of water resources from a diverse set of stakeholders.

We begin this chapter with a brief history of Light Detection and Ranging (lidar)

technology and its use within the snow community. We then discuss the hydrologic

relevance of lidar snow depth observations at the basin scale and report the known

errors and variability of those errors. Lastly, we present our results in combination

with recent studies to validate the spatial and temporal components of the airborne

lidar snow depth products made available by the Airborne Snow Observatory (ASO).

The first study focuses on the spatial validation of ALS using the 2017 NASA SnowEx

campaign in Grand Mesa, Colorado, while the second investigates temporal trends of

the airborne lidar snow depth products of the Tuolumne Basin in eastern California.
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As a technical resource, we include a description of the open source methods used to

handle the ALS snow depth products used here and in subsequent chapters.

To summarize, chapter one provides background and the current state of air-

borne lidar surveys (ALS) for snow purposes, followed by chapter two: snow distri-

bution pattern trends for the whole Tuolumne Basin (20-m ALS) and chapter three:

inter- and intra-annual residual snow depth patterns sub 150-m in sub regions of the

Tuolumne Basin (3-m ALS).

1.2 Study Area

1.2.1 Grand Mesa, Colorado

Grand Mesa, CO was the primary site for the inaugural SnowEx campaign in 2017

(Figure 1.1). SnowEx is a multi-year NASA funded campaign effort designed to

target the snow community’s leading question - how much water is stored in Earth’s

terrestrial snow-covered region? (Brucker et al., 2017). In order to address this

question, Grand Mesa, Earth’s largest flat-topped mountain, was selected for its

alpine environment at 3050 m with simple topography and vegetation gradient across

the mesa. Land cover on the mesa consists of grass and shrubs and transitions to tree

islands and larger closed-canopy forests to the east.

1.2.2 Tuolumne Basin, California

The Tuolumne Basin is a widely-studied basin for hydrologic purposes (Figure 1.1).

The Tuolumne River and its tributaries are the main source of water for over two

million people in the San Francisco Bay Area, and the basin is largely protected and

managed by Yosemite National Park. The basin has a wide range of elevations (1150

- 4000 m) and is characterized as a large mountain basin (1000+km2) with steep
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gradients in air temperature and a mix of precipitation types (Zhang et al., 2017).

The basin also has a mix of land cover types; the lower elevations have dense conifer

forests, herbaceous meadow vegetation in the mid elevations, and exposed bedrock

at the upper elevations (Cristea et al., 2014). The basin is a snow-dominated system

where the majority of the precipitation input occurs during the winter months and is

stored as snow until the melt season when streamflow peaks. Modeling the hydrologic

response system here is simplified as a result of the predominantly granite bedrock,

which minimizes melt losses to groundwater (Lundquist et al., 2016).

Figure 1.1: Geographic location for Airborne Lidar Survey (ALS) valida-
tion sites. Grand Mesa, Colorado (100+km2) and Tuolumne River Basin 

(1,000+km2) in the Sierra Nevada Mountain Range, California.
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1.3 Background and Methodology

1.3.1 History of Lidar

Shortly after the invention of the laser, Light Detection and Ranging (lidar) made a

practical appearance for satellite distance tracking and terrestrial military targeting.

Lidar had initial applications in meteorology to measure clouds and pollution, but

became known to the general public in the 1970’s when a laser altimeter mapped the

surface during the of the Apollo 15 mission (Kaula et al., 1973). Lidar has high resolu-

tion and high accuracy; the technique is based on measurement of pulsed light waves,

used to record the travel time between the source and receiver. Technical advances

in data storage, and increased precision of global positioning system (GPS) receivers

and inertial measurement units (IMU) in the 1980’s made lidar a practical means to

measure large geographical areas and produce high resolution digital elevation models

(DEM) (Ackermann, 1999). Vertical accuracy increases when the distance between

two objects is decreased and measurement density is high (Hopkinson et al., 2001).

The most recent improvement in lidar technology allows the system to collect and

store the full-waveform lidar response. This method records discrete samples of the

entire back-scattered illumination beam instead of a single discrete return per sample

(Deems et al., 2013).

The snow community recognized lidar technology, henceforth referred to as air-

borne lidar survey(s) (ALS), as the most mature technique for measuring snow depths

over Earth’s snow-covered terrain. Snow depth maps are feasible by conducting an

airborne lidar scan during a snow-free period and again during a snow-covered pe-

riod. Differencing the two DEM products results in a map of snow depths. ALS snow
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depths have much higher resolution than a typical manual snow depth survey, and

can cover much larger areas than terrestrial laser scans (TLS). The Airborne Snow

Observatory (ASO) is one of a few organizations that specializes in snow depth prod-

ucts (Painter et al., 2016). ASO has flown a number of sites in the western US; two

of these sites that contain coincident snow depth measurements were selected in this

study to highlight the relevancy and uncertainties of airborne snow depth mapping.

1.3.2 Datasets: Airborne Lidar Survey (ALS) and Ground-

based Validation

Grand Mesa

The 2017 NASA SnowEx campaign in Grand Mesa, CO has the most comprehensive

ground truthing dataset in which to evaluate ALS. Manual snow depths were collected

via snow probe measurements in north-south and east-west transects. A collection

of 17,000+ measurements make up the dataset, and were collected over the course

of a three-week period. Two ALS from the first and third campaign week, 8 and 25

February, respectively are used with the coincident manual snow depth measurements

that temporally align during the periods of Feb. 7-10 and Feb. 21-25, respectively.

The two ALS scenes have 1-m resolution and cover ∼ 25 km east-west swath across the

mesa (Painter, 2018a) (Figure 2.2a). The estimated vertical uncertainty for manual

snow depth measurements is ±5 cm from the possibility of sampling into the soil

beneath the snow, probing woody shrubs, or inserting the probe at an angle (Currier

et al., 2019). The location error of the snow-probe transects is estimated at better

than ±5 m because transect end points were geolocated to cm accuracy and each 3-m

sample distance was marked off with the probe; locations are therefore more accurate
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near the end points.

Tuolumne Basin

The most comprehensive ALS dataset to date is over the Tuolumne River Basin,

where full coverage ALS is available starting in 2013 and continuing to the present

(Figure 2.2b). For this study, 51 fully-distributed 3-m ALS from 2013-2018 were

available (Painter, 2018b). This unprecedented collection of ALS provides a temporal

component to a rich spatial dataset. The majority of ALS were acquired near or post

peak SWE, with the exception of 2017 when the first mid-winter acquisition occurred

at the end of January. The validation data are three upper elevation in situ snow depth

sensors from the California Cooperative Snow Survey network within the Yosemite

National Park, and were used to validate the 51 ALS over time. ALS grids cells were

averaged in a 9-m2 area overlapping the snow depth sensor location for comparison.
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Figure 1.2: Single ALS at each site. (A) Grand Mesa, CO on 8 February 
2017 and (B) Tuolumne Basin, CA on 26 April, 2016.

1.3.3 Hydrologic Application of Basin Scale Studies

Lidar technology has come a long way, partially due to the influx of several Earth sys-

tem disciplines benefiting from its sub-decimeter vertical uncertainty (Deems et al., 

2013). The high accuracy comes from coupling airborne laser platforms with high-

precision GPS and inertial measurement unit (IMU) systems. This combination of 

sensors provides the necessary accuracy from repeat flights over a basin to allow 

snow depth retrieval. Typical in situ sensor networks are either sparsely distributed 

throughout a large basin, often limited to middle and lower elevations where terrain is
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flatter and more accessible, or densely concentrated in a small headwater catchment

zone. Across larger mountain river basins, these networks typically do not adequately

capture the steep gradients in temperature, precipitation, and rain versus snow frac-

tion (Zhang et al., 2017). Water managers, responsible for regulating downstream

flow, are in need of mountain water balance information to accurately assess snow

storage volumes. Thus, sensor networks alone lack the spatial coverage needed to

make representative basin-wide decisions (Hedrick et al., 2018).

1.3.4 Errors and Uncertainties of Lidar

Data Collection

Lidar has been used to map snow depth for two decades now. Studies that have

coincident snow depth data have reported vertical accuracies ranging from 8-30 cm,

and listed the known uncertainties associated with using lidar-derived snow depth

products (e.g. Reutebuch et al., 2003; Hopkinson et al., 2004; Trujillo et al., 2007;

Deems et al., 2006, 2013; Mazzotti et al., 2019; Currier et al., 2019). Accuracies range

in magnitude due to 1) size and terrain type of validation datasets, and 2) induced

error from the IMU system that tracks the motion associated with the aircraft move-

ments (Deems et al., 2013). Measurement uncertainty has the potential to increase

both horizontally and vertically in complex steep topography or when aircraft altitude

varies (Deems et al., 2013). Whereas, ALS performed over flat surfaces and when the

aircraft maintains a fixed height are prone to less uncertainty. Moreover, the flight

parameters vary by study, terrain complexity, and instrument vendor, causing vari-

ation in reported error quantities. Vendors must consider what data standard they

would like to achieve when determining point density (number of points per square
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meter). For example, we know that lower density point-clouds over dense conifer

canopy cover results in a smaller chance of obtaining ground reflections (Hopkinson

et al., 2012).

Ultimately, errors and uncertainty should be considered for each ALS, since so

much of it depends on the aircraft flying parameters such as the laser scan frequency,

aircraft height, and atmospheric cloud conditions. The specific instruments aboard

the aircraft (i.e. laser, GPS, and IMU) also determine the overall measurement uncer-

tainty. Lastly, the site’s topographic complexity and vegetation density, and chosen

post-processing approaches, play a roll in the accuracy of the final product. One

approach to gain accuracy and reduce overall long-term costs, would be to obtain a

higher density point-cloud for the snow-free period, and reduce the point density on

subsequent snow-on periods. This would approach would result in a more accurate

baseline snow-free digital elevation model (DEM) which is used every time to make

a snow depth map.

Data Post-Processing

Post-processing of lidar acquisitions can occur a few different ways. Data can be

processed via proprietary methods from the vendor and made available as an end

user product; all ALS used in this manuscript were processed using ASO proce-

dures (Painter et al., 2016), which have evolved over the six-year collection period.

As an end user, the post processing sources of error are unknown since algorithms

are proprietary. Alternatively, there are software programs available (e.g. lastools,

http://rapidlasso.com/lastools/)) that can process point-cloud data. For this option

refer to the Currier et al. (2019) for a streamlined workflow; note that the ALS error
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reported in Currier et al. (2019) of 8 cm is not for the ASO-provided depth product,

but rather the custom processed point cloud.

1.3.5 Data Preparation

Grand Mesa - Overlapping ALS points with snow-probe transects

ALS validation points were selected where grid cells overlapped with snow-probe

transect points. The optimal ALS window size to average snow depths was found

which minimized the root-mean-square-difference (RMSD) and maximized the corre-

lation coefficient (R) (Figure 1.3). On average, a 4-m radius window was found to

be optimal, in good agreement with the expected positioning error of the ground ob-

servations. Thus, ALS validation points were computed from an average overlapping

window size of 64-m2 (i.e. 64 grid cells at 1-m resolution per snow depth probe).
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Figure 1.3: Lidar window size optimization. Lowest RMSD (y-axis, left) and 
highest correlation coefficient (y-axis, right) were determined to opti-mize 

overlapping lidar selection to snow-probe transect point.

Tuolumne Basin - Snow depth sensors

Snow depths from three meteorological (met) stations were obtained from Dana

Meadows (301507E, 4196686N, 2988 m, DAN), Tuolumne Meadows (301526E, 4196696N,

2622 m, TUM), and Slide Canyon (286737E, 4218733N, 2797 m, SLI), which are man-

aged by the California Department of Water Resources. Data were obtained through

the California Data Exchange Center portal (https://cdec.water.ca.gov/). Data were

checked for continuity and gaps were filled with a rolling mean linear interpolation.
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Xarray Framework to Ingest Dataset

Some details regarding the framework used to ingest ALS data are outlined, as this

became a computational challenge due to the size of the dataset; the dataset as a

whole was >80 GB, and each ALS had close to 3 million points after re-gridding

to 20-m. From Python’s open source package library, we utilized Xarray, a multi-

dimensional, metadata-storing tool, compatible with dask computing (Hoyer & Ham-

man, 2017). Dask automates parallel computing to avoid bottle-necking and memory

error crashes. With Xarray you can apply operations over different dimensions (i.e.

space and time), select labeled values instead of relying on multiple integer indicies,

and perform vectorized mathematical operations across multiple dimensions. The

dask capability made multi-dimensional computation possible on a typical desktop

computer by initializing fixed chunk sizes to avoid computational memory errors.

ALS rasters were loaded along with a basin mask, digital elevation model (DEM),

and vegetation height layer. These were all aligned in space (x, y) and stacked verti-

cally to create a data package cube that was stored as a netCDF file.

1.4 Results

Grand Mesa

In general, the ALS and snow-probe transects had similar distribution shapes, but the

snow-probe transects consistently had higher snow depths when compared to the lidar

for both 8 and 25 February (Figure 1.4). On average, the median difference, or bias

was 7 cm, between snow-probe transects and ALS. The root-mean-square-difference

(RMSD) for the two ALS dates are 20 and 24 cm, and the correlation coefficient
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(R) is 0.78 and 0.64, respectively (Figure 1.5, Table 1.1). Validation points were

classified as either in the open or in the forest, and both measurement approaches show

snow depths were consistently deeper in the open compared to in the forest (Figure

1.5). Interestingly, the difference between snow-probe transects and ALS shows no

statistical difference between open and forested areas; this was a bit unexpected as it

was thought that lidar depths would be less accurate in the forest. This may be due

to the very high point density used during SnowEx (Figure 1.5).

Figure 1.4: Kernel probability density function (PDF) for ground-based 
and airborne lidar survey observations.
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Figure 1.5: Comparison of ALS with ground-based snow-probe transect 
observations. Points are categorized by forest (≥5m) and open (<5m).(top 

left) ALS date is 8 Feb, snow-probe 7-10 Feb. (top right) ALS date
is 25 Feb, snow-probe 21-25. (bottom) Difference between snow-probe

measurement and overlapping ALS measurement.

Probe

snow depths

ALS

snow depths

RMSD

(cm)
R

Feb 7-10 Feb 8 20 0.78

Feb 21-25 Feb 25 24 0.64

Table 1.1: Summary results for ALS and snow-probe transects.
RMSD=root mean square difference, R=correlation coefficient
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Tuolumne Basin

Three meteorological stations within the upper elevations of Tuolumne Basin show

reasonable temporal agreement with associated ALS grid cells (Figure 1.6). In general,

the depth sensors at all three sites had higher snow depths compared to the ALS.

Periods of no snow align best, while periods after peak snow depth tend to deviate in

extreme years (2015 and 2017). In 2014 there were several times where the ALS had

zero snow cover while the Dana Meadows depth sensor recorded between 10-100 cm,

and in one case 250+cm. The RMSD at Dana Meadows is 58 cm, Tuolumne Meadows

is 22 cm, and Slide Canyon is 38 cm with associated high correlation coefficients (R)

of 0.89, 0.96, 0.97, respectively.
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Figure 1.6: ALS temporal validation with three metrological sites (A) 
Dana Meadows (blue), (B) Tuolumne Meadows (red), (C) Slide Canyon 

(green).



18

1.5 Discussion

Grand Mesa

Currier et al. (2019) did an extensive evaluation of the three different snow depth

measurements types (ALS, TLS, snow-probe transects) from the 2017 SnowEx cam-

paign. Our median difference between snow-probe transects and ALS agrees well, in

that snow-probe transects consistently have a higher snow depth of 7 cm (this study)

and 6 cm (Currier et al., 2019). Conversely, the RMSD for the two measurement

types is different for the overlapping ALS flight date, 8 February. This study found

20 cm RMSD while Currier et al. (2019) found 8 cm RMSD. Although both studies

used the same ALS date, other differences between the comparison likely explain the

large RMSD. First, this study uses the ALS product, while Currier et al. (2019) used

the snow-free and snow-on point-cloud to generate a snow depth map where there

was more control over ground point selection methods. Second, this study computed

RMSD for a 4-day period, 7-10 February (i.e. week 1 field campaign), whereas Currier

et al. (2019) selected snow-probe transects from a 2-day period, 8-9 February (tighter

temporal alignment to the 8 February flight). Meteorological data from two nearby

sites show that 9 and 10 February did experience days with >0°C and snow depth

did decrease for those two days by approximately 5 cm.

The general snow depth trend at Grand Mesa is an overall west-east gradient,

where the west end has shallower snow depths compared to the east end where snow

is deeper (Figure 2.2). This makes the results from Figure 1.5 interesting because

overall the open snow-probed areas had deeper snow, yet the west end is generally

more dominated by open terrain where snow was shallower. Similarly, vegetation

increases to the east where depths also increase, yet the total forested snow-probe
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measurements have shallower snow.

ALS at 1-m with a high-resolution point cloud is not always available when se-

lecting different areas of ALS coverage. Moreover, the famously flat, continuous

terrain with large vegetation-free areas that Grand Mesa provides catered well to

lidar-derived snow depth mapping. Additional validation should be considered for

regions with steep terrain as larger uncertainties are expected.

Tuolumne Basin

The ALS temporal validation in Tuolumne Basin gives context to the ALS time series

dataset. However, we note that the met site network is not representative of the basin

as a whole, since they are located in flat, vegetation-free clearings, and never above

treeline. We expect some amount of error with the collection of ALS, but for the pur-

poses of the following chapters, we are focused on snow depth distribution patterns,

which are extremely well captured by the 3-m ALS products instead of constraining

the dataset’s uncertainty for a hydrologic streamflow model application.

1.6 Conclusion

Airborne lidar technology has proven useful for studying snow depth distribution and

is capable of capturing the spatial distribution of snow at an unmatched resolution.

Validation studies, both ours and more thorough analyses, have constrained the ex-

pected differences between different snow depth measurement techniques. On 8 and

25 February the RMSD between snow-probe transects (4-day period) and ALS are

20 and 24 cm, respectively. While our RMSDs are larger than Currier et al. (2019)

the longer snow-probe transect window (4 versus 2 days) and the difference in using

the ALS product versus the point-cloud likely explain the differences.
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There is no other dataset where 51 ALS over a six-year period can be compared

to in situ snow depth observations. This is a powerful validation tool when you

have confidence in the snow depth sensor network (extreme years, limited personnel,

and remote depth sensor locations make it hard to maintain high elevation temporal

datasets). High resolution temporal datasets, such as depth sensors give context and

will continue to be used in the foreseeable future as remote sensing efforts advance.

The disadvantages of ALS datasets are that data collection is very costly and

weather dependent, temporally limited, and somewhat restricted on regional coverage.

Until other remote sensing products meet the performance of ALS, lidar will continue

to serve as an invaluable tool to map snow depths and use as assimilation data

in high resolution models. By this reasoning, we should continue to leverage the

spatial information gleaned from ALS datasets to further our understanding of snow

distribution patterns and the temporal scales over which they are consistent.



21

CHAPTER 2:

WHOLE BASIN TRENDS IN A MULTI-YEAR

HIGH RESOLUTION AIRBORNE LIDAR

SNOW DEPTH DATASET

2.1 Introduction

Snow is a climate-dependent, terrestrial water resource that plays a dominant role in

the seasonality of fresh water availability. One-sixth of the world’s population resides

in snowmelt-dependent and low-reservoir-storage regions (Barnett et al., 2005). Snow

is particularly important in the western United States, specifically in the state of Cal-

ifornia, where groundwater storage is depleting at increasing rates (Famiglietti et al.,

2011) and climate change has increased the year-to-year variability in total snowfall

(Bair et al., 2018). Monitoring the seasonal snowpack progression is challenging due

to the large spatiotemporal variability of snow properties (Blöschl, 1999).

Water managers continue to rely on sparse networks of meteorological sites to

guide reservoir storage decisions for flood control, power generation, and water allo-

cation to meet domestic, agricultural, and ecosystem needs. Despite the challenges

in quantifying snow water equivalent (SWE), the recent availability of finer spatial

resolution remote sensing capabilities and data assimilation into models has benefited
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water supply forecasting in the Sierra Nevada (Painter et al., 2016; Hedrick et al.,

2018). Airborne lidar surveys (ALS) offer an unparalleled method for measuring snow

depth variability, as it is the primary remote sensing technique used for snow depth

at both the large and small basin scales (Deems et al., 2006; Trujillo et al., 2007,

2009; Cline et al., 2009; Elder et al., 2009; Kirchner et al., 2014; Painter et al., 2016;

Hedrick et al., 2018; Henn et al., 2018). While ALS can be costly and weather depen-

dent, California intends to integrate regular ALS to capture the annual snow depth

evolution over the next ten years, by increasing the water supply forecasting budget.

As ALS become regular over greater portions of the Sierra Nevada, it is important for

us to understand the stability of inter- and intra-annual snow distribution patterns,

so that we can provide guidance on the timing and required number of surveys.

A remote sensing time series dataset enables studying snow depth distribution

patterns for the timing, consistency, and repeatability of spatial accumulation and

melt patterns. Previous work (e.g. Erickson et al., 2005; Deems et al., 2008; Sturm &

Wagner, 2010; Schirmer et al., 2011; Schirmer & Lehning, 2011; Winstral & Marks,

2014) demonstrates that physical parameters force consistent and repeated patterns

in snow accumulation (i.e. snow drift and scour zones). Studies using in situ ground

observations (Winstral et al., 2014; Winstral & Marks, 2014), sparse networks of

meteorological stations (Susong et al., 1999; Garen & Marks, 2005), and temporally

limited remote sensing products (Deems et al., 2008; Trujillo et al., 2009) have all

focused on correlating a suite of physical parameters to the observed snow patterns.

Physical parameters such as precipitation, elevation, wind, topography, and vegeta-

tion that affect snow depth distribution are challenging to model over large regions.

The ALS time series dataset in Tuolumne Basin offers the most complete spatio-
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temporal snow depth dataset to study snow depth distribution patterns at the basin

scale.

The objective of this research is to determine whether there is snow depth cor-

relation between years, and if so, identify spatial snow distribution patterns using

the high-resolution (3-m) ALS dataset. Identifying snow distribution patterns and

quantifying pattern consistency (and variability) over time will benefit high-resolution

water supply forecasting by more accurately distributing snow in space and forecast-

ing melt timing. These results also provide a tool for optimum placement of new

long-term monitoring sites, and design of manual snow surveys. Although snow dis-

tribution patterns will vary for neighboring or distant basins, the results found will

inform future ALS acquisition planning.

2.2 Study Area

The Tuolumne Basin is part of the Sierra Nevada mountain range in eastern California

(Figure 2.1). The Tuolumne River and its tributaries comprise a widely studied basin

that is the main source of water for over two million people in the San Francisco Bay

Area and is largely protected and managed by Yosemite National Park. Snowmelt

is temporally stored in the Hetch Hetchy Reservoir at the basin outlet, before it is

released to downstream users. The basin’s total area is 1180 km2 with a large portion

(90%) of that area over 2000 m in elevation, which is larger and higher than most

research basins in the western US (Lundquist et al., 2016; Hedrick et al., 2018). The

basin is a snow-dominated system where 80-90% of the precipitation input from the

mid to high elevations (2100-4000 m) occurs during the winter months and is stored

as snow until the melt season when streamflow peaks (Rice et al., 2011). The lowest

elevation in the basin is at 1150 m, just above California’s Central Valley floor, and
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extends to the crest of the Sierra at 4000 m. The tree line is near 2900 m and the

predominant forest cover is firs and pines (Hedrick et al., 2018; Ferraz et al., 2018).

Beneath the shallow alpine soils is primarily granodiorite bedrock. This highly intact

bedrock stabilizes channel formation and simplifies modeling efforts, as melt losses

to groundwater are estimated to be very small (Lundquist et al., 2016). The upper

end of the Dana Fork, one of two main forks that make up the Tuolumne River, is

underlain by metavolcanic and metasedimentary rock, which are more susceptible to

melt losses into the groundwater (Lundquist et al., 2016).

Figure 2.1: Digital elevation model (DEM) for the Tuolumne Basin study 
site. The Tuolumne Basin is located in the Sierra Nevada Mountain Range 

in eastern California.



25

2.3 Background and Methodology

2.3.1 Airborne Lidar Survey (ALS) Dataset

The six-year (2013-2018) dataset of 51 ALS snow depth maps for the Tuolumne Basin

were collected by the Airborne Snow Observatory (ASO) at 3-m resolution (Table

2.1) (Painter, 2018b). In the first three years of data collection, the Sierra Nevada

experienced lower than average years, with 2015 being an extreme drought year. 2016

and 2018 were representative of an average snow year, and 2017 was a historically

well-above average snow year. Refer to Figure 2.3a for the annual magnitude of snow

depth and temporal coverage captured by the ASO’s dataset. This study re-gridded

the 3-m ASO product to 20-m by resampling with bilinear interpolation (Figure 2.4).

At 20-m resolution, each ALS has 2.67 million grid cells above 2000 m in elevation

(see section 3.3) within the basin domain.

Year
Number

of ALS

First-Last in

Time Series

2013 6 3 Apr - 8 Jun

2014 11 23 Mar - 5-Jun

2015 10 18 Feb - 8 Jun

2016 13 26 Mar - 8 Jul

2017 9 29 Jan - 16 Aug

2018 2 23 Apr - 28 May

Total 51

Table 2.1: Count and temporal span of ALSO dataset
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Figure 2.2: Spatial coverage from one of 51 ALS snow depth maps of 
Tuolumne Basin, in the Sierra Nevada mountain range in Eastern, Cali-

fornia.
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Figure 2.3: (A) Mean snow depth values for the whole basin. Each ALS 
occurrence is marked (blue points) and connected (dashed blue line) by 
season. Labeled dates mark the maximum basin-wide mean snow depth.

(B) Percent snow covered area (SCA).

2.3.2 Inter-Annual Correlation

As an initial step, we investigated the correlation between snow years. One ALS

was selected from each year nearest the basin’s peak SWE, as modeled by the USDA

Agricultural Research Service-Northwest Watershed Research Center (USDA ARS-

NWRC) at 50-m resolution (Marks et al., 1999; Hedrick et al., 2018). Snow depths

were standardized by computing standardized depth values (SDV), also commonly
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referred to as a z-score, according to methods used by Sturm & Wagner (2010).

SDVi = (di − µ)/σ (2.1)

Each ALS product is standardized according to the mean basin snow depth (µ)

and standard deviation (σ) for snow covered areas for an individual ALS. The SDV

have a distribution where µ=0 and σ=1 for each ALS. For the inter-annual comparison

between two years, only grid cells that had snow depths greater than zero for each

year were compared.

2.3.3 Empirical Cumulative Distribution Function (ECDF)

In general, snow depth distributions are not normally distributed. This is because

snow depths are never negative and there is a large concentration of depths that

are at or near zero. Snow depth then increases during the accumulation period, and

steadily decreases during the ablation period, followed by a gradually diminishing tail

of deeper snow depths on the right-hand side of the distribution (Figure 2.4). Be-

cause of the distribution shape, it was necessary to choose a non-parametric method

to investigate snow depth distribution trends over time and space. The empirical

cumulative distribution function (ECDF) is a non-parametric estimator of the under-

lying cumulative distribution function of a random variable. This approach provides

quantiles of the ranked snow depth distribution. The equation to compute an ECDF

is:

Fn(x) = 1/n
n∑

i=1

I(xi ≤ x) (2.2)
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I(xi ≤ x) =

1, when xi ≤ x

0, when xi > x
(2.3)

Where x is the ordered number of observation points from smallest to largest, xi

is the snow depth at a given grid cell, and n is the total number of observations. I is

the indicator function that gets summed, and Fn(x) is an estimate of the cumulative

distribution function. The result is a step function; however, in our case due to

the large number of data points (n=2.67 million per ALS) the ECDF resembles the

smooth underlying CDF, but the benefit is the quantiles are sampled directly from

the dataset.
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Figure 2.4: Snow depth distribution plotted by year for all ALS in the 
Tuolumne Basin. Color scheme shows first to last ALS by time. For most 
years the first flight was near peak SWE timing in the basin. Snow depth 

distribution is not normally distributed

Ultimately, the rankings assigned by the ECDF are used to compare snow dis-

tribution patterns between years. The ECDF provides the percent of the basin at

a given snow depth or below. For example, at the 50th percentile the corresponding

snow depth represents the basin median. The value of the ECDF for the depth at
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each pixel is found and plotted spatially. To investigate the depth patterns (consis-

tently deep, average, or shallow) and pattern consistency (greater or less variability)

the mean and range of the ECDFs across the ALS, respectively, were computed.

2.3.4 ALS Selection for ECDF Analysis

Similar Snow Cover Extent - inter and intra-annual comparison

It is not reasonable to study all 51 ALS using the ECDF method, as it would be

challenging to interpret a large spread in the range of all ECDFs without conflating

the timing of distinct accumulation, peak, and ablation periods. Therefore, we set

a criterion to select ALS with 80% or greater snow covered areas (SCA). 21 ALS

met this threshold, which in most cases constrained ALS to periods between March

- May, with the exception of earlier ALS in 2015 when snow peaked unusually early,

and later flights in 2017 when snow remained deep and, in the basin, well into June

(Figure 2.3b). Although the selected ALS occur during both the accumulation and

melt periods, the 80% SCA threshold assumes that the basin did not experience in-

tense melting. To avoid interpreting areas more frequently subjected to early melt or

mid-winter rain we selected snow depths at 2000 m (∼ 6500 ft.) and above (Roche

et al., 2018). This still offers a large basin-wide elevation gradient of 2000-4000 m.

Peak SWE timing - inter-annual comparison

The same 6 ALS that were used for the inter-annual correlation analysis were used

for the inter-annual ECDF comparison. Although the timing of the ALS acquisition

does not perfectly align with the modeled peak SWE timing, there is far less seasonal

variation for this inter-annual selection.
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2.3.5 Random Forest Classifier

The outcome from the ECDF mean and range across surveys produce three categories

for both depth patterns and pattern consistency. The categories for depth patterns

are deep, average, and shallow snow depths, and the categories for pattern consis-

tency are greater, average, or less variability in spatial snow distribution. To predict

these categories across different terrain parameters (elevation, aspect, and slope) we

consider a supervised learning algorithm. We use a random forest to construct a

set of classifiers which is composed of a combination of multiple decision trees. A

decision tree is a model that relies on partitioning the feature across different labels.

In this case, the topographic parameters are the features and the predictor algorithm

partitions the feature information and eventually classifies the ECDF values into one

of the three categories mentioned above for both the mean and range inputs.

The random forest classifier is trained on 30% of the data and tested on the re-

maining 70%. There are 100 combinations of decision trees to alleviate the sensitivity

of having only a single decision tree to handle changes to data inputs. Thus, the ran-

dom forest result comes from a combination of decision trees. To avoid overfitting,

a cutoff point, or pruning depth, was set to 20. The pruning depth maximizes the

depth the tree can grow before the final classification node is reached. If run without

the pruning threshold the trees averaged 78 for a maximum depth. The result of the

random forest classifier provides the feature importance for the selected terrain pa-

rameters that influence snow distribution patterns and pattern consistency, providing

insight into the relative influence of these three terrain parameters.
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2.4 Results

2.4.1 Inter-Annual Correlation

Standardized depth values (SDV) across the whole basin show strong correlation

near peak SWE timing for year-to-year comparisons (Figure 2.5). The minimum

correlation value (r) is 0.67 and occurs during the two most dissimilar years, 2015

vs. 2017. The maximum r value is 0.89 and occurs during an average and high snow

year, 2016 vs. 2017. Two other comparisons show similarly high correlation values for

similar years; 2013 vs. 2014, both below average snow years and 2016 vs. 2018, both

near average snow years. The median r for all 15 one-to-one combinations is 0.79,

indicating that snow depth patterns are consistent in many locations across different

winters.
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Figure 2.5: One-to-one correlation for each year with correlation value (r). 
The two years with the greatest correlation are 2016 verse 2017 (r=0.89), 

and the lowest correlation are 2015 verse 2017 (r=0.66), the two most 
different snow years is recent history.

2.4.2 Empirical Cumulative Distribution Function (ECDF)

Mean of the ECDFs

The interpretation of the mean ECDF values is that a value of 0.5 is the 50th per-

centile, therefore it is at the median snow depth. Values below 0.5 represent areas

below the median snow depth and are shallow. Values above 0.5 represent areas above

the median snow depth and are deeper. Figure 2.6 shows a basin map for the mean
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of 21 ECDFs to identify where in the basin snow is ranked based on the quantiles

that represent consistently deep, shallow, and median snowpack. The shallowest (red)

snow in the basin is found at lower elevations, steep valley walls directly above the

Hetch Hetchy Reservoir, and valley floors at higher elevations. Snow that averages

in the 50th percentile is found between deep and shallow zones and typically occurs

where terrain is flat in the mid-elevations and on high peaks. The deepest (blue)

snow in the basin is found almost exclusively at the highest elevations and concen-

trated just below prominent peaks. Figure 2.7 shows the basin map for the mean of

6 ECDFs nearest peak SWE. The snow depth patterns are nearly identical to Figure

2.6.
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Figure 2.6: (A). Mean of the ECDF for 21 ALS with 80% and greater SCA.
(B). 21 ECDFs of snow depth for the whole basin. (C) Close up of ECDF 
values from the mean ECDF (black extent box in A). Gray polygons are 

alpine lakes.
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Figure 2.7: (A). Mean of the ECDF for 6 ALS nearest peak SWE. (B). 6 
Empirical CDFs of snow depth for the whole basin. (C) Close up of ECDF 
values from the mean ECDF (black extent box in A). Gray polygons are 

alpine lakes.
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Range of the ECDFs

The range of the ECDFs describe how consistent the spatial patterns are by looking at

the difference between the maximum and minimum ECDF value at the same location

through time. A low range indicates there is little variability and the snow distribution

at this location maintains a consistent patterns relative to the rest of the basin.

Conversely, a high range value indicates the difference between the maximum and

minimum ECDF was large, therefore snow distribution patterns are less consistent,

and the location is more likely to experience shifts relative to the basin median.

Figures 2.8 and 2.9 show the basin map for the range of 21 ECDFs with 80% SCA

and 6 ECDFs nearest peak SWE, respectively. The difference between Figure 2.8

and 2.9 is that the range that covers inter- and intra-annual time periods (21 ALS

≥80% SCA) has greater variability (more blue) in snow distribution patterns at a

given location than for the range of ECDFs nearest peak SWE timing (more yellow).
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Figure 2.8: (A). Range (maximum – minimum) of the ECDF for 21 ALS 
with 80% and greater SCA. (B). 21 Empirical CDFs of snow depth for the 
whole basin. (C) Close up of ECDF values from the range of ECDF (black 

extent box in A). Gray polygons are alpine lakes.
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Figure 2.9: (A). Range (maximum – minimum) of the ECDF for 6 ALS 
nearest peak SWE. (B). 6 Empirical CDFs of snow depth for the whole 
basin. (C) Close up of ECDF values from the range of ECDF (black extent 

box in A). Gray polygons are alpine lakes.

For both figures 2.8 and 2.9, the areas that similarly have greater pattern consis-
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tency (yellow) appear at the steep valley walls above Hetch Hetchy Reservoir, valley

floors and high flat plateaus, and some upper elevation mountain slopes. Areas that

experience a 50% shift in quantile rankings (greenish) are predominantly at the mid-

elevation hillslopes where vegetation is present and along long narrow ridgelines that

divide parallel drainage valleys. Locations that range beyond the 50th percentile (dark

blue) are isolated to complex, mid-high elevation terrain that are both east and west

facing hillslopes and concentrate just below ridgeline features. Basin edges and alpine

lakes also show the highest variability in the range maps, but we suspect the data

quality has been compromised on the edges, and water bodies were not consistently

processed for the six-year period, and likely water levels varied year to year.

Inter-Annual Comparison for Mean and Range ECDFs

For comparison purposes, Figure 2.10 shows the inter-annual comparison for 6 ALS

nearest peak SWE. The extents match the locations in Figure 2.8 and 2.9. The

majority of the flat areas (valley floors or high elevation plateaus) that experience

the most consistent snow distribution patterns (yellow) are dominated by consistently

deep or shallow snow zones. Areas that experience the most variability in distribution

patterns align with vegetated hillslopes that are near the basin median snow depth,

or along ridgelines where snow patterns appear shallow or deep depending on the

ridgeline orientation.
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Figure 2.10: 6 ALS nearest peak SWE for an inter-annual comparison. 
Gray polygons are alpine lakes. (A). Mean of ECDFs show snow distribu-

tion patterns (B) Range of ECDFs show pattern consistency.
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2.4.3 Terrain Parameters

Inter-annual 2-D Gaussian Kernel Density Estimates (KDE)

The non-parametric quantile ranking approach mapped snow distribution patterns

(mean of ECDFs) and pattern consistency (range of ECDFs) for the whole basin to

provide a qualitative map of the pattern locations at high resolution. Trends were

further quantified using 2-D Gaussian kernel density estimates (KDE) for terrain

parameters (elevation, aspect, and slope) and the mean and range ECDF results

(Figure 2.11). The x-axis shows the frequency of a particular terrain parameter

for the basin and the y-axis shows the mean ECDF values (blue) and range ECDF

values (tan). The individual KDEs for each variable are on the marginal axes (top

and right). The left column (mean ECDF values) shows that elevation has the most

important role in snow distribution at the basin scale, compared to aspect and slope.

The right column shows that the range rarely exceeds an ECDF value of 0.6, meaning

it is possible that a single location experiences a shift where snow depth is below the

basin median and above the median for different years. However, there are more

occurrences where a shift is near 0.2 or smaller, meaning the pattern consistency is

high for that location.
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Figure 2.11: 2-D Gaussian Kernel Density Estimate (KDE) for teach ter-
rain parameter (elevation, aspect, and slope) with the mean and range 
ECDF results for 6 ALS nearest peak SWE. The marginal axes (top and 
right) plot each respective KDE to see the individual distribution of the 

variable.
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Feature Importance from Random Forest Classifier

Results for the random forest classifier accuracy and feature importance for each

terrain parameter are found in Table 1. Feature importance is calculated by removing

each feature, running the random forest without that feature, and calculating the

increase in error. Features that cause the error to significantly increase when they

are not used will have a high feature importance. The results are only reported for

the 6 ALS nearest peak SWE as the results were nearly identical for the 21 ALS

with ≥80% SCA. For both the mean and range ECDF, elevation had the highest

feature importance (58%, 43%) for predicting snow distribution patterns and pattern

consistency, respectively. Elevation was followed by aspect (25%, 30%), and slope

(17%, 26%).

Feature Importance (%)

ECDF Metric ALS Criteria Accuracy (%) Elevation Aspect Slope

mean near peak SWE (ALS=6) 65 58 25 17

range near peak SWE (ALS=6) 67 43 30 26

2.5 Discussion

2.5.1 Inter-Annual Correlation

In general, our results support decades of snow distribution research for large moun-

tain basins. The significance though, comes from the rich spatio-temporal dataset

leveraged to give finer detail at a large scale, as well as represent locations that typ-

Table 2.2: Random Forest Classifier (RFC) results. Maximum tree
depth=20
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ically are too labor intensive or dangerous to collect data. For six consecutive years

and 15 correlation pairs, we show high inter-annual correlation (median r = 0.79) for

ALS near peak SWE. This is interesting because the Tuolumne ALS dataset covers

snow years that have significant departure, in both directions, from an average snow

year. This initial result was key to investigating snow depth distribution patterns

and determine the level of consistency for both ALS with similar snow-covered ex-

tents and near peak SWE timing.

2.5.2 Dataset Selection for ECDF Analysis

Using snow cover extent for ALS selection doesn’t provide information on snowpack

evolution, or timing of SWE in the basin; however, in this case it constrained the time

window to periods where we were confident the basin didn’t experience wide-spread

melt events. The method could be adapted to study snow distribution patterns when

the basin has significantly less snow covered area. In that case, results there would

focus on patterns that occur during late-season melt at the upper elevations where

radiation and sensible and latent heat exchanges contribute the most energy towards

melt (Marks & Dozier, 1992). The combination of using both snow covered area and

the ALS nearest peak SWE timing shows the differences that occur when seasonal

variation is mixed with year-to-year variability. Figures 2.6 and 2.7 show that the

snow depth patterns persist for both ALS selections while the range of ECDF values

in Figures 8 and 9 show that seasonal variation has a greater effect on the pattern

consistency.
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2.5.3 Application of Snow Distribution Patterns and Pattern

Consistency Maps

There are two primary applications for a 20-m resolution map of snow distribution

patterns and pattern consistency. First, snowmelt forecasting models can benefit from

knowing the depth patterns and the variability found over the terrain. The lack of

robust input data and ability to adequately distribute precipitation is found to be

the largest source of uncertainty when running a snowmelt model (Brauchli et al.,

2017). These quantified patterns will help downscale snow model results. Secondly,

the combination of maps gives quantitative reasoning to support strategic locations

for new long-term monitoring sites. For example, focusing on an area with less sea-

sonal or annual variability (yellow) Figures 2.8 - 2.9 (whole basin), and Figure 2.10

(close-up comparison), with a mixture of deep, average, and shallow zones to sample

from would create a sampling strategy that represents the full basin well.

2.5.4 Terrain Parameters

2-D Gaussian KDEs (Figure 2.11) summarize basin-wide trends for three terrain

parameters: elevation, aspect, and slope. For the mean ECDF (left column in blue)

elevation has the strongest relationship. This offers a proof of concept because as

elevation increases in the basin, so does snow depth (mean ECDF values: shallowest

snow=0, deepest snow=1), with the exception of the highest mountain peaks (near

vertical rock faces) in which snow depth decreases (Mott et al., 2014; Schirmer et al.,

2011; Kirchner et al., 2014). The dominant aspects in the basin are southeast and

west-northwest. For these dominant aspects we tend to find mean and shallow snow
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depths. At slopes between 10-15°snow depths are near average and shallow depths

can be found anywhere between 0-25°. There is not much terrain that exceeds 40°.

The deepest snow is on the flatter slopes and not found on steep slopes.

The range ECDF (Figure 2.11, right column in tan) provides information on the

consistency of snow depth patterns relative to each terrain parameter. Interestingly,

there is rarely a range value greater than 0.6, meaning that for the 6 ALS near peak

SWE there was never a time where snow distribution patterns exceed a 60th percentile

shift. The consistently low range values mean that 20-m ALS grid cells are commonly

not changing quantile rank by more than 20%. Elevations above the average rain-snow

line (2000 m) are largely the most consistent (Roche et al., 2018). In the 2500-3000

m the range varies closer to the 50th percentile, but trends towards consistent at

the upper end of that elevation band. For the aspect directions that dominate the

basin (SE and W-NW) snow distribution patterns are all below 0.5 ECDF range

value. There is a wide range of slopes, ∼5-25°, that have consistent snow depth

patterns due to the small range in ECDF values, compared to the 10-20°slope band

that varies more, but not more than the 50th percentiles. The random forest classifier

(RFC) predicted the feature importance based on snow distribution patterns (mean

of ECDFs) and pattern consistency (range of ECDFs). From the results in Table 2.2,

elevation is the most significant predictor of deep vs shallow depth and consistency

(58% for mean ECDF and 43% for range ECDF) in snow depth patterns, likely due

to the effect of elevation on temperature and preferential deposition (Lehning et al.,

2008; Mott et al., 2014) over a basin of this scale.
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2.6 Conclusion

Using the Tuolumne Basin ALS snow depth time series dataset at 20-m resolution

we show snow distribution trends for an entire large mountain basin. The basin has

high inter-annual correlation (median r = 0.79) when ALS are compared near peak

SWE timing. This study also mapped the snow distribution patterns and pattern

consistency for 21 ALS with similar snow cover extent and 6 ALS near peak SWE.

Quantile ranks of snow depth distributions show that the basin has repeat patterns

for consistently deep, average and shallow snow zones, independent of the snow year.

Pattern consistency maps show that there is less variation in the pattern of snow

depth near peak SWE across years, than with similar snow covered areas throughout

a given year.

For a basin of this scale, elevation plays the most important role in snow distribu-

tion compared to aspect and slope, when studied near peak SWE. Snow distribution

pattern maps show a general trend of consistently deeper snow at upper elevations

and consistently shallower snow at lower elevations. More specifically, the 20-m reso-

lution provides high-resolution detail of the average snow distribution patterns for the

entire basin. Snow distribution maps can both be used to distribute forcing data in

snow models and inform strategic locations for new long-term monitoring stations, as

well as assess current stations for basin-wide context. Inevitably, identifying trends at

the large basin scale does not account for a number of other factors (such as wind and

vegetation) that are known to influence snow depth distribution. Sub region analyses

at a finer ALS resolution are part of the next chapter.



50

CHAPTER 3:

LOCAL DEVIATIONS FROM MEAN SNOW

DEPTH AT THE SUBBASIN SCALE:

VISUALIZING INTER- AND INTRA-ANNUAL

PATTERNS

3.1 Introduction

Seasonal snow-covered areas are vital to water resources, especially in the western US.

Industry, agriculture, domestic demand, and natural ecosystems rely on the seasonal

availability of water, which is made available by snowmelt from mountain reservoirs.

Snowmelt water serves over 1.2 billion people, or one sixth of the world’s population

(Barnett et al., 2005). Forecasting water availability is dependent on our ability to

accurately estimate snowpack storage. Due to spatial-temporal variability in snow

and limited full coverage datasets, estimates are challenging to constrain (e.g. Elder

et al., 1991; Luce et al., 1998; Elder et al., 2009; Grünewald et al., 2010; Winstral &

Marks, 2014) and uncertainties in forecasts will increase significantly in a changing

climate (e.g. McCabe et al., 2007; Ye et al., 2008; Lute & Abatzoglou, 2014; Cohen

et al., 2015) Despite uncertainties at the global scale, incremental advancements in

remote sensing data products and representation of physical processes at the basin
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scale are improving streamflow and snowmelt models.

Regionally isolated efforts have been successful in measuring the spatial distribu-

tion of snow using lidar-derived snow depth products (e.g. Deems et al., 2008; Trujillo

et al., 2007, 2009; Grünewald et al., 2010; Tinkham et al., 2014; Harpold et al., 2015).

Airborne Lidar Surveys (ALS) are costly and weather dependent, limiting the poten-

tial to make data products operationally feasible, but have provided an unmatched

ability to measure snow depth at high resolution (1-3 m). The Tuolumne Basin, a

granite-dominated alpine watershed in the Sierra Nevada, California, USA has had re-

peat basin-wide snow depth measurements for six years. This spatio-temporal dataset

offers unparalleled information regarding the snow depth distribution and its evolu-

tion. Timing of spring melt is influenced by the thickness and spatial distribution

of the snow cover (Grünewald et al., 2010), along with localized weather conditions.

And, given that an alpine basin such as Tuolumne relies on snowmelt to contribute

roughly 70% of total seasonal discharge (Stewart et al., 2004), the 3-m ALS dataset

should be fully examined for spatial distribution patterns. Knowing when and where

snow has consistent patterns, and to what extent the patterns vary year-to-year, and

within a given year, will bolster high resolution modeling approaches when data are

limited or non-existent, and will allow more efficient targeted ALS.

Although we set out to identify spatial patterns, the methods used in this chapter

are focused on determining the consistency of the magnitude and scale of spatial pat-

terns at select sub regions across time. Whereas, the previous chapter we investigated

whole basin trends to categorically rank the consistency of spatial patterns by the

cumulative distribution position with respect to the median snow depth.



52

3.2 Study Area

Two sub regions within the Tuolumne Basin in the Sierra Nevada in Eastern Califor-

nia were investigated for this analysis. The first is Dana Meadows, a large roadside

hummocky meadow located on the eastern end of the basin (Figure 3.1). This sub

region is 1-km2, the mean elevation is 2990 m, and it has a permanent meteorolog-

ical station maintained by the National Park Service. Located in the middle of the

site is the Dana Fork, one of two forks that comprise the Tuolumne River, which

flows south as it migrates through old glacial deposits overlain by metavolcanic and

metasedimentary rock, much different than that of the otherwise granite dominated

basin. Soils average 1-m or less, with maximum depths in the flatter portions reaching

up to 5-m (Lowry et al., 2011). This small sub region has little variation in slope or

aspect, aside from the undulating glacial deposits. Areas adjacent to the meadow are

vegetated by medium density conifer groves.

The second site is referred to as Acker Peak and Meadow and is larger at 3-km2

(Figure 3.2). This subregion is in the northwest corner of the basin. The elevation

ranges from 2800-3200 m, evenly splitting the average elevation of Dana Meadows.

The Acker site has both a flat meadow with a sinuous creek and high elevation granite

peaks, giving it a broader range of aspect and slope complexity. East and west

facing aspects dominate the hillslope features, while steep cliffs and bedrock fractures

are dominantly north and south facing. Vegetation is constrained to the meadow

edges and hillslope areas, with less than 50% coverage. Overall the subregion has

increased terrain complexity, offering a more diverse range of elevation, aspect, slope,

and surface features (e.g. exposed bedrock with cliff faces, granite talus piles) when

compared to Dana Meadows.
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Figure 3.1: (A) Dana Meadows (1-km2) on the east side of Tuolumne Basin 
with a mean elevation of 2,290 m. (B) 3-m Snow Depth product from single 
ALS, 26 April 2016 (one of fifty-one). (C) Vegetation height in meadow and 

canopy. (D) Aspect where slope is ≥ 20°. (E) Slopes >20°.
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Figure 3.2: (A) Acker Peak and Meadow (3-km2 ) in the north of Tuolumne 
Basin with an elevation span of 2800-3200 m. (B) 3-m snow depth product 
from a single ALS, 26 April 2016 (one of fifty-one). (C) Vegetation height, 
constrained to hillslopes. (D) Aspect where slope is ≥ 20°. (E) Slopes >20°.
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3.3 Background and Methodology

Both in-situ and remote sensing measurements have shown that snow depth is spatial

and temporally heterogeneous regardless of watershed size and snow climate type

(e.g. Elder et al., 1991; Blöschl, 1999; Baldocchi et al., 2019; Winstral & Marks, 2002;

Pomeroy et al., 2003; Erickson et al., 2005; Trujillo et al., 2007, 2009; Mott et al.,

2010; Dadic et al., 2010). The 3-m airborne lidar survey (ALS) product produced by

the Airborne Snow Observatory (ASO) is leveraged to study the spatial variations

of snow depth through a series of distinct snow seasons (Painter, 2018b). The ALS

dataset in Tuolumne Basin spans periods of drought (2013-15, including a historical

drought in 2015 ( 34% of normal), two near average snow years (2016, 2018), and a

historically large water year, 2017 ( 209% of normal). At the 3-m resolution, natural

terrain features such as creeks, undulating vegetation-free meadows, and ridge lines

are easily distinguishable, and even the roadways when they become snow-free or

plowed are discernible. To evaluate the consistency of snow depth patterns, we chose

an approach where spatial patterns would be contrasted through time. The approach

selected was to remove the ’local’ snow depth mean from each grid cell of the 3-m ALS

product. The local snow depth mean was generated through convolution using a 150-

m moving window gaussian kernel. Due to the high spatial autocorrelation determined

by Currier & Lundquist (2018), a kernel size of 150-m was used, well above the 25-m

correlation length found from variogram analysis (Currier & Lundquist, 2018). While

the kernel size of 150-m is greater than five times the average correlation length

found in the basin, it is of a similar or lower range of what some satellite products

offer. Removing the local mean gives the residual snow depth values, highlighting

the deep and shallow areas. Negative residuals are where the grid cell is below the
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local mean (relatively shallow), 0 cm residuals are where the grid cell value was equal

to the mean snow depth within 75 m in every direction of the cell (half the kernel

size), and residuals greater than zero are where the grid cell is above the local mean

(relatively deep). Studying the residual snow depths is akin to the perspective seen

during the melt season when deep areas remain snow covered, while initially shallow

locations become snow-free; the stark contrast between bare ground and snow cover

becomes easily spotted over the landscape. Due to the large spatio-temporal coverage

of the ALS dataset, only a select combination of results was used to showcase the

local mean analysis method. At both Dana Meadows (1-km2) and Acker Peak and

Meadow (3-km2) we used a consistent kernel size (150-m) to generate the local mean

raster. Dana Meadows is an inter-annual (2013-2018) analysis of one ALS per year

nearest the peak SWE date. Acker Peak and Meadow is an intra-annual (7 April -

25 June) analysis with 5 ALS for 2016, a near average snow year in the Sierra.

3.4 Results

At both locations, Dana Meadows (1-km2) and Acker Peak and Meadow (3-km2), and

for different time scales, snow depth patterns were shown to have repeatable patterns

in space across multiple ALS, as shown by the residual snow depths (Figure 3.3 and

3.4).

3.4.1 Inter-Annual at Dana Meadows

At Dana Meadows, both the hummocky meadow and vegetated portion had spatial

consistency in snow depth patterns for year-to-year ALS nearest basin wide peak

SWE (Figure 3.3). The meadow area showed the most prevailing snow distribution

patterns. Deep and shallow zones are sharply contrasted from north to south over
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the grassy hummocks. The flattest parts of the meadow are closest to the local

mean, with a 0 cm residual. The meadow edges have consistently deeper snow zones

before transitioning to shallower snow underneath the forest canopy, likely due to

interception, wind transport, and increased incoming longwave radiation. Results

varied at the open-forest boundary depending on what size area was selected for

the local mean (see Appendix A). Forested areas with shorter scale transitions have

enhanced contrast between relatively deep and shallow snowpack, which at this scale

could be a combination of tree well occurrence or lidar processing artifacts. For

reference, the north-south line that appears left of center is the Tioga Pass Road

(Figure 3.3). The three most dissimilar snow years (2015-2017) were selected to

demonstrate pattern consistency for the residual snow depths, after the local mean

was removed from the 3-m grid cells (Figure 3.5). The residual snow depth magnitude,

or absolute difference, between the contrasting years varies, but the spatial alignment

of where snow is consistently deep, shallow, and equal to the surrounding local mean

is evident across the meadow.

3.4.2 Intra-annual at Acker Peak and Meadow

The five scenes representing the within-year patterns of snow depth distribution show

an evolution of snow depth from basin-wide peak SWE timing on towards melt for the

near average 2016 snow season (Figure 4). The scenes in June have more melt and zero

snow depths dominate the meadow and transitioning hillslopes. However, through

this series of melt evolution scenes, spatial patterns appear consistent, especially on

the hillslopes and higher elevation features. Ridgeline features show repeated pat-

terns of shallow, likely wind scoured snow on south and west facing aspects from the

synoptic southwest wind patterns off the Pacific Coast, with deeper snow deposition
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adjacent on the easterly slopes. The north side of Acker Peak (upper left) has bands

of shallow and deep snow, again strongly consistent through time. The southeast

knob (bottom right) has south facing chutes with shallow snowpack that gradually

melts away by June. The flat areas in the meadow are more homogenous and remain

close to the local mean since the residual snow depth is near 0 cm. Overall, the scenes

show depth patterns are largely similar, suggesting that the distribution patterns de-

velop during the accumulation period and persist into the melt season. Three scenes,

each roughly two months apart, were selected to demonstrate the accumulation, peak,

and ablation periods for within-year variability in spatial snow depth patterns (Figure

3.6). Areas with hillslopes at higher elevation develop distinct deep and shallow zones

early and are maintained through the peak and into the melt season, while flatter

areas smooth to match the local mean. By June, some exposed high points trend

towards the local mean with 0 cm residual value. Again, the within-year scenes show

that snow distribution patterns are established during the accumulation period and

remain until becoming snow-free.
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Figure 3.3: Dana Meadows local mean analysis. (A) ALS snow depth at 3-m 
resolution. One ALS per year (2013-2018) nearest peak SWE timing.(B) 

Local mean snow depth generated by convolution of 150-m moving 
Gaussian filter. (C) Difference of A and B, or the residual snow depth [cm].
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Figure 3.4: Acker Peak and Meadow local mean analysis. (A) ALS snow 
depth at 3-m resolution. ALS are from 2016 and cover April-June, intra-
annual. (B) Local mean snow depth generated by convolution of 150-m 
moving Gaussian filter. (C) Difference of A and B, or the residual snow 

depth [cm].
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Figure 3.5: Close up of inter-annual residual snow depth patterns for the 
three most dissimilar snow years, 2015 (low), 2016 (near average), 2017 

(high) in recent history.

Figure 3.6: Close up of intra-annual residual snow depth patterns for the 
accumulation, peak and melt portions of 2017.
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3.5 Discussion

Investigating the residual patterns left from differencing the 150-m local snow depth

mean from 3-m ALS in two sub regions of Tuolumne Basin shows promising results

towards spatial pattern identification. This method could be further explored over

different sub regions, catchments zones, and possibly over the basin as a whole with

adequate computational resources. Moreover, additional iterations could be evaluated

using different kernel sizes for the local mean evaluation, which we expect will continue

to emphasize different dominant physical processes at different scales. The extent to

which the kernel size was examined is described in Appendix A.

Many studies have investigated scale invariance between snow depth and physical

processes (e.g. Blöschl, 1999; Deems et al., 2006, 2008; Trujillo et al., 2007, 2009; Lehn-

ing et al., 2008; Merz et al., 2009; Mott et al., 2010; Schirmer et al., 2011; Schirmer &

Lehning, 2011; Kirchner et al., 2014), but have lacked a rich dataset that is both high

resolution and over a large temporal extent. From the features and topography in

the 1-3-km2 sub regions, several of the known factors that influence snow depth het-

erogeneity were identified. Factors that occur typically over larger scales (Grunewald

et al., 2013) and complex topography (Tennant et al., 2017) such as elevation and

aspect dependence were largely seen at the Acker site. Effects of wind redistribution

and vegetation interaction from terrain features appeared at both sites and are known

to occur over shorter length scales (Winstral et al., 2013; Musselman et al., 2015).

Based on the locations of relative deep and shallow zones and nearby terrain features

(Sturm & Wagner, 2010) the magnitude and duration of repeat snow depth patterns

is apparent. Moreover, we have determined the high-resolution patterns that result

at the sub 150-m scale for a flatter, mixed open-forest region (Dana Meadows) and
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aspect-variant, steep bedrock-dominated region (Acker Peak and Meadow).

Terrain features were easily discernible at the sub 150-m scale and had repeat

deep, average, and shallow zones within terrain type boundaries. For example, in

Dana Meadows where the previously glaciated surface has undulating half-meter size

rolling topography bounding the Dana Fork, there are alternating patches of deep and

shallow snow. These patterns are nonexistent when smoothed to 150-m filter (Figure

3b); only a faint outline between the meadow and canopy coverage is identified and

only for a few of the years. A coarser snow depth product (e.g. satellite or land sur-

face model) would show a much smoother depth pattern, and could lead to snowmelt

timing and peak discharge errors (Luce et al., 1998; Marks & Winstral, 2001). Know-

ing that the snow distribution trends towards repeatable and discernible patterns

over time, we can model those expected patterns from the coarser and generally more

temporally available snow depth products.

3.5.1 Inter-Annual at Dana Meadows

This scene has two dominating terrain features: open meadow and adjacent forest

canopy. The boundary area is identifiable in all the residual plots (Figure 3) because

of the sharp contrast between deeper snow at the meadows edge and the shallow

snow directly at the forest canopy edge. This pattern is evident in all scenes, but

especially highlighted in 2013 and 2014. We think the meadow-canopy boundary for

those two years was exaggerated due to the limited accuracy of snow depths in the

forest. Performance over forested regions increased throughout the course of ALS

data collection (Kostadinov et al., 2019). This is observable in the raw snow depths

(Figure 3.3a) where a significant portion of the forested area has snow depth values

near 0 cm, despite the ALS being near peak SWE.
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The snow depth patterns of interest are the acutely apparent ones in the meadow.

When averaged at 150-m there are no discernible deep or shallow zones, but when

differenced, the residual reveals the alternating deep and shallows zones over the

grassy half-meter tall rolling hummocks. Due to the short length scale (5-10m) (Dadic

et al., 2010) and near peak SWE timing as opposed to mid-ablation periods, these

patterns are most likely caused by wind redistribution (Winstral & Marks, 2002).

The majority of eastern Sierra storm tracks supply a southwest wind (Currier &

Lundquist, 2018) that repeatedly scours the southwest slopes and redeposits snow

grains on the northeast face; this pattern is visible in these residual maps.

3.5.2 Intra-Annual at Acker Peak and Meadow

From the within-year example of 2016, a near average snow year (Figure 3.4), focused

from peak SWE into the ablation period, we track the timing of pattern deviation

for the range of features offered in this sub region. Opposing east and west ridgelines

prominent at higher elevations, bare of vegetation, maintain distinct deep and shallow

zones until melt dominates the scene. Similarly, the meadow (bottom center) has

spatially aligned patterns before the appearance of seasonal melt. The two features

described are vegetation-limited or have short, consistent grass cover, respectively,

and show the most contrast between consistently deep and shallow zones. Conversely,

the valley hillslopes where more pronounced vegetation exists show increased variation

of spatial patterns, or patterns simply occur at a significantly smaller scale for deep

and shallow zones. Spatial agreement for the residual snow depths are not desirable

for the more densely vegetated areas at this 3-km2 sub region. The canopy covered

area is more heterogeneous compared to the vegetation-limited areas with respect

to the spatial alignment of residual snow depths. Smaller sub regions may further
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constrain vegetation pattern consistencies, but at this scale, it is likely a combination

of snow deposition changing the forest canopy (weighing down full tree limbs, and

small nimble tree trunks) or that ALS performance decreased in denser canopy.

The example of within-year spatial patterns (Figure 3.6) gives insight into the

value of additional ALS collections, by looking at the intra-annual persistence of depth

patterns. We know that spatial distribution of snow depth affects melt timing (Luce

et al., 1998) and overall discharge (Marks & Winstral, 2001). If spatial patterns are

most distinct prior or near peak SWE, that information could be used in a hydrologic

model. Given the snow depth distribution at peak SWE, varied decay rates for

snowmelt processes could occur at the different terrain features. For this intra-annual

scenario (Figure 3.6), the lowest elevation with minimal slope (flat ground) would

decay at the quickest rate, while the steep hillslopes, predominately north-facing at

elevation would have the slowest decay rate to melt snow.

3.6 Conclusion

Residual snow depths show consistent spatial patterns of snow distribution, both

on inter- and intra-annual timescales for sub regions of Tuolumne Basin. Residual

snow depths patterns are developed in the accumulation season and persist through

the melt period. Vegetation-limited areas (open meadows and bedrock dominated

terrain) have more pronounced consistently deep, shallow, and average zones. While

the patterns of the residuals are consistent, the magnitude increases with mean snow

depth.

At Dana Meadows, the snow distribution patterns of the pronounced deep and

shallow zones occur on a scale that matches wind redistribution. Although residual

snow depths differ in magnitude, the high spatial agreement is independent of the
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snow year. At the Acker site, the intra-annual comparison over a larger and more

topographically dynamic area shows snow distribution patterns are spatially aligned,

but the duration of the pattern is dependent on the location and extent of the residual

snow depth values. The higher the elevation and flatter the terrain, the more per-

sistent the residual patterns are, until grid cells become snow-free. Valley hillslopes

have repeated snow distribution patterns, but not to the extent of the large residual

deep bands on the north and east facing ridgelines.

Our fine-scale study of repeat pattern identification has encouraging initial results

and should be further explored to use the full collection of available ALS data. The

magnitude of snow distribution patterns and temporal duration of an expected can be

characterized for a season from the residual snow depth values. The best application

is for high-resolution snow distribution patterns to be applied to the precipitation

forcing data as a way to accurately distribute snow on a modeled land surface and to

better inform the location of manual snow observations.
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Abbreviations

ALS Airborne Lidar Survey

ASO Airborne Snow Observatory

LIDAR Light Detection and Ranging

TLS Terrestrial Laser Scans

MODIS Moderate Resolution Imaging Spectroradiometer

GPS Global Positioning System

IMU Inertial Measurement Units

SWE Snow Water Equivalent

SCA Snow Covered Areas

NRCS National Resource Conservation Service

USDA-ARS-NWRC United States Department of Agricultural-Agricultural Research

Service-Northwest Watershed Research Center

RMSD Root Mean Square Difference

R Correlation Coefficient

SDV Standardized Depth Values

KDE Kernel Density Estimate

ECDF Empirical Cumulative Distribution Function

RFC Random Forest Classifier
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Merz, R, Parajka, J, & Blöschl, G. 2009. Scale effects in conceptual hydrological

modeling. Water resources research, 45(9).

Mott, Rebecca, Schirmer, Michael, Bavay, M, Grünewald, T, & Lehning, M. 2010.
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The kernel size has an effect on the result of the residual snow depth values.

This is due to the edge effect created from the convolution as the averaging window

changes sizes. The snow depth patterns found in the residual snow depth values have

an enhanced edge effect as the filter size increases. This is noticeable when looking at

the differences between the meadow and canopy boundary. As the filter size increases

(i.e. area of mean local snow depth) it incorporates more of the boundary area for

the convolution.

This needs to be further investigate as to what filter size creates a good local

mean, but doesn’t lead to misrepresentation the snow depth processes. For example,

the 500-m kernel shows that snow is deeper at the meadow’s edge and then becomes

shallow directly under the canopy cover.

The 150-m was selected for the main manuscript because it was between the

correlation length of a flat meadow area in Tuolumne (variogram analysis by (Currier

& Lundquist, 2018) and that of a spaceborne remote sensing platform (e.g. MODIS).
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Figure A.1: Local mean analysis evaluated with a 30-m Gaussian kernel
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Figure A.2: Local mean analysis evaluated with a 150-m Gaussian kernel
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Figure A.3: Local mean analysis evaluated with a 500-m Gaussian kernel
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