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ABSTRACT

Climate change poses serious threats to global agriculture, however some localities

and crops may benefit from increasing temperatures. Grape production in southern

Idaho may be a beneficial example as vineyard acreage has increased over 300% since

the designation of the Snake River American Viticultural Area (SRVAVA) in 2007.

We perform a statistical characterization of agroclimate within the SRVAVA that

centers around four primary objectives: utilization of a novel, 30-year high resolution

climate dataset to provide insight and agrometrics unavailable at coarser resolutions,

climatic implications of the unique topography within the SRVAVA, identification of

statistical trends, and correlation of SRVAVA climate to large-scale climate indica-

tors such as the El Nino Southern Oscillation (ENSO). In Chapter 3 we build on

the identified correlations to large scale climate and utilize a long short-term memory

(LSTM) model in conjunction with empirical mode decomposition (EMD) to create a

novel, data driven method to forecast regional temperature trends with lead times up

to one year. Favorable results for local viticulture include an increase in growing de-

gree days and season length, as well as reduced frequency of freezing events. Possible

disadvantages include increased risk to shoulder season freezing events with warmer

winters, increased magnitude of strong freezing events, mid-season heat stress, and

higher susceptibility to powdery mildew outbreaks. Additionally, with strong correla-

tions identified with large-scale climate indicators, we find EMD an effective method
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to increase modeling power by using multiple frequencies of the signals as input into

a LSTM machine learning algorithm that can accurately predict temperature trends

up to one year in advance. This climatic characterization and modeling framework

could potentially inform many agricultural management decisions such as cultivar

choice, vineyard site selection, fungicide spray timing, irrigation strategy, and canopy

management.
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CHAPTER 1:

AGRICULTURE AND VITICULTURE IN THE

SNAKE RIVER VALLEY OF IDAHO

1.1 Motivation

The vulnerability of agricultural commodities is driven primarily by both climate

and weather. Climate, at the regional scale, informs the general suitability of an

agricultural zone. Weather events are often associated with agricultural risk. Though

relationships between climate and agriculture are obvious, they are complex, and the

intrinsically chaotic nature of the total climate system poses great challenges to the

entire agricultural industry (Liang et al., 2017). With increasing evidence of the

impacts of climate change on the agricultural sector and availability of novel high-

resolution datasets, there is an increasing need for examining historical climate and

forecasting future climate in ways that agriculture can benefit at local scales.

Climate change has both direct (hazardous climate and weather phenomena) and

indirect (increased pressure from pests and pathogens) impacts on agricultural pro-

duction (Walthall CL, 2013). Current literature suggests that without adaptation

strategies, these impacts will negatively impact future agricultural production on

large scales. Examples include a reduction of yield in maize, rice, and wheat in both

tropical and temperate regions (Challinor et al., 2014); reduction of agricultural land
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due to sea-level rise (Gornall et al., 2010); and a potential reduction of U.S. total factor

production up to 4% (Liang et al., 2017). However, benefits to agriculture stemming

from a changing climate also exist in such forms as increased growing season length

(Jones et al., 2010), increase of photosynthetic rate of C3 crops as a result of higher

CO2 concentrations (Gornall et al., 2010), reduced number of freezing events (Mira

de Orduña, 2010), and potential expansion of suitability of certain crops (Sacchelli

et al., 2017). Many of these impacts are crop specific and it is beneficial to take a

detailed view of climate with respect to a particular agricultural sector and region.

For this study, we primarily examine climate through the lens of viticulture - the

growing of grapes for wine production - and constrain our analysis to the Snake River

Valley American Viticultural Area (SRVAVA) region in Southern Idaho. Although

this study provides analysis through the perspective of grape growing, much of the

analysis will be useful to other specialty crops or Idaho agriculture as a whole.

The remainder of this chapter provides an overview of viticulture and the con-

ditions that control its successful production. Chapter 2 statistically characterizes

climate within SRVAVA over 30 years using a high resolution dataset generated lo-

cally at Boise State University. Chapter 3 leverages the trends found within this data

to produce a data driven seasonal forecasting model that may be useful as a tool for

viticultural decision making.

1.2 Idaho Agriculture

Idaho has a long history of productive agriculture. Idaho agribusiness currently

ranks in the top 10 for 26 separate crops in annual production (United States Depart-

ment of Agriculture National Agricultural Statistics Service, 2017), accounts for 26.4

billion dollars in sales, and provides over 120,000 local jobs, which is approximately 1
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in every 8 jobs within the state (Watson, 2019). When combined with food process-

ing, this accounts for approximately 20% of Idaho’s total economic output (Koong

et al., 2018). Potatoes, barley, sugarbeets, and Austrian winter peas are some of the

top Idaho exports but other specialty crops such as grapes and hops have expanded

substantially in recent years. There’s a total of 11.7 million acres of land within

Idaho utilized for agriculture and this number is expected to grow in coming decades

(United States Department of Agriculture National Agricultural Statistics Service,

2017).

Idaho Viticulture

Viticulture, the production of grapes (vitis vinifera) for the purpose of making

wine is considered to be one of the fastest growing sub-segments of the agricultural

industry in Idaho, though it only accounts for a small percentage of current planted

acreage (Idaho Wine Commission, 2018). The first known grapes planted in Idaho

were in the Northwestern city of Lewiston in 1864 (Idaho Wine Commission, 2020).

However, the passing of prohibition in the 1920s put a halt to productive vineyards

that did not see any new grapes planted until the year 1970. In 2007, Idaho designated

its first American Viticultural Area (AVA) and was quickly followed by two smaller

Idaho AVA designations. An AVA can be described as a legally designated grape

growing region for the mutual benefit of growers and consumers (Alcohol and Tobacco

Tax and Trade Bureau, 2020). It was the designation of the Snake River Valley AVA

(SRVAVA) in 2007 that sparked a boom in new Idaho vineyards and wineries which

began to give Idaho a national name for the production of quality wines. As of 2017,

Idaho has 60 wineries, over 1300 hundred acres of grapes planted, and produced 2942
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tons of grapes with an estimated economic impact of 209.6 million dollars (Idaho

Wine Commission, 2018; Watson, 2019). This is nearly a 300% increase from an

economic impact of 73 million just 10 years prior.

1.2.1 Snake River Valley American Viticultural Area

The SRVAVA region encompasses 21,400 km2 and is one of the largest AVAs in the

U.S. It is unique in that it is the only AVA that extent is geologically bounded - by

an elevation of 1050 meters above sea level - the approximate extent of Pliocene Lake

Idaho (Gillerman et al., 2006). Its range covers much of southern and southwestern

Idaho and partially extends into eastern Oregon (Figure 1.1). As the vast majority

of grapes, and agriculture in general, are planted within the bounds of the SRVAVA,

our analysis will be constrained to the spatial extent of the SRVAVA.

Figure 1.1: Geographic boundary of the Snake River Valley American Viticultural Area
and Sunnyslope Wine trail (red). Established in 2007.
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1.2.2 General Climate and Geology

There are many geologic and climate factors that comprise a desirable agricultural

zone, some general, and some specific to any given crop. Broadly, Idaho experiences

a semi-arid climate with hot days and cool nights, low precipitation (yet adequate

surface and groundwater), and well drained soils. Geologic variability that influences

agricultural suitability may include topography (slope and aspect), as well as soil

type, depth, and fertility.

Using the Koppen climate classification, the SRVAVA is primarily classified as a

Bsk - a cold semi-arid (steppe) climate. This climate type is generally characterized

by low amounts of precipitation, warm-to-hot summers, and cold winters. They are

generally isolated from large bodies of water and exhibit large diurnal temperature

variations. Nearly all of these characteristics are ideal for grapes as cold winters and

low precipitation discourage fungal and bacterial pathogens, hot summers significantly

increase photosynthetic potential, and large daily temperature swings provide balance

between acidity and sugar levels important for the quality of wine produced (Jackson,

2014). Although many of the general characteristics of the Snake River Valley are

favorable for viticulture, there exists much more variance in regional weather than

other notable wine producing regions such as Napa and Willamette Valleys. This

larger variance in regional weather poses a greater risk for unhealthy conditions in

vineyards. Examples include major freeze events in the shoulder and dormant seasons,

extreme heat in the summer, hail damage, and flash flooding. These risks are of major

concern as short term hazardous weather events can have effects on production that

can span several years. The frequency and magnitude of such events, as well as long

term trends are thoroughly examined in the following chapter.
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The climate was not always arid in the Snake River valley, as much of the region

was previously underwater. The large body of water, Lake Idaho, was drained through

the western edge of the valley through Hells Canyon, as it’s known today, approxi-

mately two to three million years ago. But perhaps the most notorious event to shape

agriculture in SRVAVA was the Bonneville flood. Just after the last glacial maximum

14,500 years ago, Lake Bonneville - a massive body of water in central/northern

Utah covering the present-day Salt Lake basin - breached Red Rock Pass in Southern

Idaho. The breach sent a massive amount of water towards the Snake River which

ultimately led to the breaking of multiple natural dams. At its peak, a 125 meter wall

of water, with an estimated volumetric flow of 930,000 m3/s at over 110 km/hour,

scoured the valley and deposited the well drained, sandy-silt topsoils we see today

(U.S. Geological Survey, 2002).

1.3 Grape Suitability

Broadly, the three primary factors of crop suitability can be attributed to climate,

topography, and soil. Furthermore, a French concept known as terroir, is used to

further evaluate these controls. Terroir is broadly defined as the combination of all

environmental factors that affect a crop’s phenotype (Gillerman et al., 2006). The

primary factors considered in terroir are similarly climate, soil, and cultivar. However,

any factor that contributes to a physiological change in a crop can also be a factor,

including anthropogenic influences such as irrigation methodology, cultivar selection,

or any other vineyard management decision. The concept of terroir is more commonly

implemented for crops used to make secondary products that are more scrutinized for

quality, and more specifically, flavor. Examples include grapes for wine-making, coffee

beans, and tobacco. American Viticultural Areas work in parallel with the terroir
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concept, that often have similar geologic and climate terroir profiles at medium-to-

large scales. An understanding of each of these factors are the main decision driving

metrics for determining ideal site locations.

1.3.1 Climatic Controls

Although Chapter 2 provides a historical analysis of climate within the Snake

River AVA, it is useful to first provide some initial context of the importance of each

phenomena.

Solar Radiation

Solar insolation provides the primary energy needed for grape growth and matura-

tion through photosynthesis. The most notable variability will again be exaggerated

based on distance from the equator, with the photosynthetic period (hours of sun-

light) becoming increasingly non-uniform. Despite being the primary energy input,

the large variance of insolation throughout the growing season at high latitudes seems

to have a relatively minor effect compared to other metrics such as mean tempera-

ture. It is quite possible that these effects would become much more meaningful at

latitudes above 50 degrees, although temperatures at these latitudes do not currently

support viticulture.

Temperature

Temperature is widely considered the primary metric for evaluating suitability

for vitis vinifera. There are numerous metrics derived from temperature important

for viticulture that extend beyond a simple mean monthly temperature, for example.

And once again, we generally see higher variance of temperature expressions in higher
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latitudes. This is compounded with the effects of regional weather patterns that are

prone to develop in the mid-latitudes where the majority of vineyards are located.

The most notable temperature derived metric used for suitability analysis is the heat

accumulation unit known as the degree day. Other temperature-based metrics of

interest are day of first and last frost (or inversely frost-free days) , diurnal variation,

and the frequencies and magnitudes of minimum and maximum temperature. The

combination of these temperature expressions have a wide range of impacts.

Degree days, more commonly known as growing degree days (GDD), is a heat

summation unit developed for phenology that is used as a heuristic for determining

basic crop suitability (Jackson, 2014). It is widely used by farmers to predict phe-

nological development rates and timing. For grapes, this could include: bud burst,

bloom, fruit set, cluster closure, véraison and fruit maturity (harvest). As different

crops have different phenological demands, a specific reference temperature is utilized

for specific crops. The reference temperature, also known as the base temperature, is

the minimum temperature required for growth. For grapes, a warm weather crop, the

base temperature is set to 10 ◦C. In addition to the minimum temperature, some crops

also make use of a maximum reference temperature which represents the temperature

at which increased photosynthesis ceases (30 ◦C for grapes).

An example of the calculation of GDD uses the mean daily temperature and

subtracts the reference temperature of with the following constraints: you cannot

have a negative GDD value and any daily mean above 30 degrees Celsius is set to 30

degrees. This is broadly represented as

GDD =

∫
(T(t) − T(base))dt (1.1)
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However, this is usually approximated as

GDD =
Tmax + Tmin

2
− Tbase (1.2)

with Tmax and Tmin representing the daily maximum and minimum temperatures, and

the reference (base) temperature being set to 10 ◦C. GDD is generally only summed

over the growing season (typically April 1st through October 31st for viticulture).

This is not only used as a general suitability index for a crop, but can also be useful

in differentiating suitability for varietal differences, many of which have substantial

differences. Figure 1.2 shows the approximate temperature requirements for a variety

of vitis vinifera species.

The magnitude and duration of minimum or maximum temperatures will have

adverse effects on vitis vinifera. Minimum temperatures that cause frost or plant

tissue freezing are generally of more concern due to their higher impact and larger

frequency. However, extreme high temperatures are known to burn both leaves and

fruit (Hayman et al., 2012). Any temperature below freezing is considered harmful,

however, the timing of such events is of extreme importance. Depending on the an-

nual growth stage, events of the same magnitude can have drastically different effects.

A minor, harmless frost event in the midst of the dormant season may have no ef-

fect at all, whereas the same event just after bud break could significantly alter the

seasonal yield. One primary concern with climate change is an early deacclimation

of cold weather followed by early season frost events (Meier et al., 2018). Addition-

ally, there can be dormant season cold events of such magnitude that can completely

overcome plant acclimation and do significant damage. January of 2017 was an ex-

ample of this, when a large scale arctic cold front moved into the valley and brought



10

Figure 1.2: Approximate mean temperature requirements for vitis vinifera varietals
(Jones, 2003).

temperatures in some vineyards down to nearly -30 ◦F. Many vines died and required

replanting. However, some vineyards with slightly higher elevations and those with

snow cover (insulating the roots from the extreme temperature) suffered much less

damage. Events such as these can have disastrous economic impacts as cutting (trim-

ming only the damaged part of the vine) or replanting have production effects that

span years.
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Precipitation and Humidity

Excessive moisture and precipitation is generally a more serious issue for grapes

than conditions that are too arid, especially when irrigation is available. Excess

water in the growing season can lead to abundant canopy growth which can lead to

oversized berries lacking quality flavor. Additionally, excess precipitation can lead to

higher humidity which greatly enhances the risk of fungal pathogens such as powdery

mildew. This is one reason there are very few vineyards near the east coast of the U.S.

despite adequate seasonal temperatures. Although, during the off-season in areas that

are at risk for extreme cold events, large snow events can help insulate the trunk and

roots during major freeze events. Quick draining soils also help mitigate humidity and

excess available water. Where irrigation is utilized (all vineyards within the SRVAVA

are irrigated), vines are often “stressed” by limiting the water availability. This will

restrict shoot growth and berry maturation which can lead to smaller more desirable

fruit (Jackson, 2014). However, too little water can affect the vine negatively by

leaving the berries vulnerable to sun damage or worse not having enough water to

deliver nutritional content. Lastly, strong thunderstorms that produce hail can cause

significant damage to vineyards and farms alike. However, the spatial distribution

of hail is sparse and most large wine regions don’t have a climate structure that is

conducive to regularly generating large hail producing storms.

1.3.2 Topographic Controls

Topography influences vine and grape production primarily through controlled

radiative input, frost severity, and water drainage. Potential disadvantages may in-

clude lack of uniformity across a site, snow cover reduction or a premature winter
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deacclimation, and soil erosion.

The two most important attributes of topography are slope (degree vertical in-

cline) and aspect (compass direction of the slope). The most significant metric derived

directly from topographic orientation is radiative input. This is especially true for

higher (or lower in the southern hemisphere) latitudes as the seasonal variance of solar

radiation is directly proportional to latitude. Equatorial facing slopes are exposed to

much more solar input than their poleward counterparts. In topographically complex

regions, or even individual sites, slope and aspect can have an extreme impact on

varietal suitability of the area.

Reduced frost severity from topography is primarily driven by two factors: in-

creased radiation from equatorial facing slopes and pathways for cold air drainage.

In the former, the additional hours, or even minutes, of direct solar input can shorten

the duration of freezing conditions harmful to the fruit or vine. Though an exception

to this may be the additional melting of a layer of snow on the ground that was for-

merly insulating the trunk and roots, and could thus expose them to harsher winter

conditions. Cold air drainage is mostly driven by slope and by planting row orienta-

tion. The lack of solar heating after sunset aids in allowing dense, cool air to sink and

settle in ground level valleys and troughs. If this air mass has no mechanism to be

transported out of the zone, it can have devastating effects depending on the magni-

tude of temperature and exposure time. Thus, an unobstructed, gravitational outlet

is needed for effective transport of lethal cold air pools. The higher the magnitude

of the slope (5-10 degrees is common), the more velocity (and thus momentum) the

sinking air has to be transported. Thus, it is preferable to have an outer boundary

of a vineyard as the lowest elevation which would operate as the exit point for cold
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pools. It is also important to have the exit path be free of obstacles. To achieve this,

rows are often planted more parallel to the aspect, as perpendicular (to the aspect)

orientations could have the vine canopy itself blocking the transport of cool air.

Proper water drainage is critical for keeping a proper amount of water in the soil

that is available to the roots. If there is too much water available to the plant, an

excess of energy is sent to the canopy rather than the fruit which can yield undesirable

results. In viticulture, it’s common practice to “stress” the vines by limiting their

water availability. A sloped site provides a gravity fed drainage of excess soil water

similar to cold air drainage. This is increasingly important in regions that have shal-

low hardpans, prolonged precipitation events, or high intensity precipitation events

such as thunderstorms.

Lastly, it is worth mentioning altitude when discussing topography. Altitude plays

a significant role, however, it is primarily expressed through climate factors such as

temperature that are discussed independently. There are potentially some biological

effects of the lower air pressure at high altitude, but those impacts are minor and

outside the scope of this thesis.

1.3.3 Soil Controls

Of geologic and climatic influences, soil characteristics are one of the least im-

portant factors influencing the quality of grapes (Maltman, 2008; Wahl, 1988). Soil

attributes affecting vine and fruit growth include texture composition, depth, pH,

drainage (permeability), and nutrient availability. These attribute influences can

be generally expressed as heat retention, water availability, and nutritional status.

For example, different texture compositions and color can have a different planetary

albedo which influences the soil heat retention. The amount of retained heat in the soil
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then has effects on the local microclimate with regard to frost protection. Although

soil characteristics may be considered less important than atmospheric conditions,

they still have direct impacts. Consistent conditions, or soil uniformity, across a vine-

yard may be more important than the overall characteristics themselves (Jackson,

2014).

Soil textures, in agricultural soil, are broadly classified by the relative volume

fractions of sand, silt and clay. The texture component directly influences all three

primary characteristics: heat, water availability and nutritional status. Heavier soils

(clay dominated) are known to have a lower albedo and retain more heat, hold much

more water due to a lower permeability, and have a higher capacity to hold nutrients.

The opposite is generally true for lighter (sand dominated) soils. Although clay

retains significantly more water than sand, it is often unavailable to plants as the

surface area to volume ratio is large and the water bonding is too strong for the

plant root to overcome. For this reason, silt is often considered the best texture for

plants to thrive in as it balances water retention and availability. However, grapes

are known to thrive in lighter soils with light water retention as the improved water

drainage promotes heat radiation from the soil protecting from frost. Additionally,

high permeability leads to less berry fissures which has an increased risk from fungal

and bacterial pathogens. Lastly, limited soil fertility is known to be highly beneficial

for quality grape production. Soils with restricted (yet adequate) nutrients restrict

vegetative growth and direct more sugars (photosynthates) to the fruit (Jackson,

2014).

In addition to soil texture, soil depth has a direct effect on water availability of

roots. Hardpans close to the surface have an inherent risk of water logging, despite
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soil texture, if large amounts of water are delivered to the ground. Natural soil

compaction over time also creates problems by increasing soil density to levels that

water and roots have a difficult time moving through. A common practice to deal

with this problem is soil “ripping” - mechanically breaking up compacted soil and/or

shallow hardpans - prior to planting new vines.

1.4 Summary

With the establishment of the SRVAVA in 2007, Idaho has experienced enormous

growth in the viticultural sector. Its success is primarily controlled through factors

expressed through soil, topography, and climate. Current literature points to many

negative implications of climate change on future agriculture and food production.

However, viticulture in the Snake River Valley could potentially benefit from current

climate trends due to reduced risk of cold-damage and longer growing seasons.
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CHAPTER 2:

AGROCLIMATE ANALYSIS OF THE SNAKE

RIVER VALLEY AVA

2.1 Introduction

A climatological normal is a concept in applied climatology defined as a 30-year

period of weather that serves as a comparison to other time periods that is both long

enough to smooth out internal variability (when taking a mean) and short enough

to see trends within that variability (WMO Climatological Normals, 2020). How-

ever, there is a general trade-off between resolution (spatially and temporally) and

the length of time periods of publicly available climate products. As a result, most

gridded climate products that span 30 years or more have coarse resolutions that do

not capture important phenomena impactful to agriculture, and specifically, viticul-

ture. This is especially important in topographically complex regions such as the

Snake River Valley AVA, where large variance in temperature and other relevant

metrics exist across very small extents. We address this issue by utilizing a novel

30-year, high-resolution regional climate dataset generated by the Weather Research

and Forecasting model (WRF) that has the advantages of resolving phenomena at

smaller scales and is long enough to statistically characterize trends through time.

This chapter focuses on seeking agriculturally relevant insight from the internal
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variability of climate in the Snake River Valley AVA from October 1987 through

September 2017. The analysis primarily highlights four distinct areas: creating novel

agroclimate metrics and insights as a direct result of higher resolution data, the

unique geologic layout of the Snake River AVA and the resulting climatic influences,

identifying agroclimate trends and impacts, and correlating interannual variability as

a result of large scale climate phenomena.

2.2 Utility of High Resolution Data

The chaotic nature of the atmosphere and its interactions and feedbacks with the

land surface can change quickly. These rapid changes in the atmosphere can result in

many important events that can resolve over the course of 24 hours and be unseen at

coarse temporal resolutions. Examples include: convective thunderstorms producing

hail and flash floods, sea and land breezes, propagation of squall lines, and cold air

transport and/or pooling. Temperatures are particularly relevant for viticulture, and

hourly data provides a much better picture of the duration of these events, which

is often as important as the extremes. There are of course flows and small scale air

masses that resolve within sub-hourly time scales, but the magnitude and duration of

temperature swings within an hour (yet not seen with hourly resolution) are unlikely

to significantly affect health and production of a grapevine. Thus, hourly data appears

to be an appropriate resolution to characterize temperature driven events important

to viticulture.

Furthermore, hourly data allows the derivation of agroclimate metrics otherwise

not possible. Examples include metrics to better characterize the magnitude, fre-

quency and duration of frost and freezing temperatures - the primary threat to vine-

yards in the SRVAVA - as well as other hazard indicators such as the Powdery Mildew
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Risk Index that specifically requires hourly input. Additionally, other standard met-

rics such as mean temperature and growing degree days can be improved on with

hourly data. For example, growing degree days are most frequently calculated with

the minimum and maximum daily temperatures as opposed to a mean calculated with

all 24 daily observations.

Spatially, many climate products are often statistically downscaled to a finer reso-

lution with a variety of interpolation methods. However, these methods can be highly

inaccurate and inappropriate if there are land surface complexities (such as topog-

raphy) between interpolation points or if there are a wide variety of terrain types

across a domain. A spatial resolution of 1 km generated directly from a physically

based model such as WRF, allows for a much finer representation of the complexi-

ties of a land surface and their resulting influence on the climate. It can accurately

capture large variances in data over small spatial scales important to crops, such as

cold pools and differences in radiative input due to terrain slope. As such, high spa-

tially resolved data can more accurately denote suitable agricultural locations and

the associated risks within a topographically complex region such as the SRVAVA.

2.3 Weather Research and Forecasting Model

The Weather Research and Forecasting (WRF) model is an open-source numerical

weather prediction model used for both operational forecasting, historical hindcasting,

and research (Skamarock et al., 2008). Most global models operate on large grids

(> 0.25◦) which don’t resolve complex interactions between the atmosphere and the

land surface, specifically complex topography, that are important to agriculture. A

primary advantage to using WRF is its ability to dynamically downscale data from

coarse to fine resolutions in both space and time using a higher resolution grid of the
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land surface. Coarser climate data is used as lateral boundary conditions in a limited

area domain which is downscaled through a series of nested domains that generally

resolve equations of motion at smaller and smaller scales. The availability and usage

of long-term reanalysis data for input to the WRF model allows for a limited area,

long-term, climate reconstruction with resolutions that provide insight not available

at typical climate resolutions.

Other advantages of WRF specific data often not available in other climate datasets

include precipitation partitioning (differentiating between liquid and frozen precipi-

tation), vertical atmospheric profiles (up to 50 layers), and additional variables such

as humidity, wind speed/direction, and snow parameters (depth, cover, SWE), all

contained within a single dataset. Furthermore, other difficult to measure agrocli-

mate metrics such as evapotranspiration (ET) can be estimated and derived from

WRF output (using radiation, soil moisture, specific humidity, wind, and tempera-

ture). The primary disadvantage of running large climate simulations with WRF is

the high computational cost and the storage requirements. However, rapidly evolv-

ing cloud-computing frameworks such as Amazon Web Services are helping mitigate

these challenges.

2.4 Data

A full regional climatological dataset was generated with WRF by the Lab for

Ecohydrology and Applied Forecasting (LEAF) laboratory at Boise State University

(Flores et al., 2016), and spans water years 1988 - 2017. The model was forced

with the North American Regional Reanalysis (NARR), a gridded data assimilation

product with a 32 km spatial and 3-hour temporal resolution produced by the National

Centers for Environmental Prediction (NCEP) (Kalnay et al., 1996). The WRF setup
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featured a nested domain with a 3 km outer domain and an inner domain of 1 km.

Temporal resolution was downscaled from 3-hours to 1-hour throughout the entire

domain. Each water year (October 1st - September 31st) was run as a separate

simulation with a model spin-up period of two weeks. Extents for each domain are

illustrated in figure 2.1.

Figure 2.1: Geographic boundary of WRF domain setup with 3km (outer) and 1km
(inner) extents.

Our primary area of study, the Snake River Valley AVA, is nearly entirely con-

tained within the inner, highest resolution (1km) domain. Only the very western tip

of the AVA overreaches the inner domain boundary. With over 98% of the AVA area

contained within the inner domain, we choose to only use data from the inner do-

main and exclude the small portion not lying within the domain. To our knowledge,

this is the highest resolution (both temporally and spatially) climate dataset in the

region and provides the ability to conduct novel data analyses that are useful in an



21

agricultural context.

2.4.1 Data Subsets

WRF output files contain over 260 variables, some of which are 4-dimensional

(x, y, z, time), resulting in output of daily files, each 13 GB in size. However, this

application requires analysis of only a few of these variables. After specific variables

were subset, the data was resampled from hourly to daily data to further the size

reduction and make the data more accessible. Table 2.1 shows the subset of raw

WRF output variables of interest.

Table 2.1: Variable subset of raw WRF output.

Raw WRF Variable Description

T2 2-Meter Temperature

Q2 2-Meter absolute humidity

SWDOWN Downward shortwave radiation

SWNORM Slope-dependent downward shortwave radiation

RAINNC
Accumulated total precipitation
(since beginning of simulation)

I RAINNC Bucket for accumulated precipitation

SNOWNC Accumulated total snowfall

For each 24-hour period, a sum, mean, or other functional transformation was

applied to the raw output to derive other useful metrics. In addition to some basic

transformations of raw WRF output, there are four unique variables that we derived

directly as a result of having hourly resolution. (1) 24-hour method of calculating
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Table 2.2: Derived variables from raw WRF output.

Derived Variable Description Calculation

TMIN
Minimum 2-meter

temperature
Minimum T2 of
24 daily values

TMAX
Maximum 2-Meter

temperature
Maximum T2 of
24 daily values

TMEAN
Mean 2-meter
temperature

Mean T2 of
24 daily values

TSPREAD
Mean Diurnal
temperature

variation
TMAX − TMIN

PRCP
Hourly total precipitation

accumulation
(RAINNC + I RAINNC)t −
(RAINNC + I RAINNC)t−1

SNOW
Hourly snowfall
accumulation

SNOWNCt − SNOWNCt−1

GDD Growing degree days TMIN+TMAX
2

−10◦

GDD24
Growing degree days

(24-hour method)
TMEAN− 10◦

FROSTH Frost hours
Number of T2 output

below 0◦ per day

FDD Frost degree days
Sum of (0◦ - T2)

for all T2 values < 0◦

per day

PMI
Powdery mildew

risk index
See section 2.6.4

growing degree days (GDD24), growing degree days calculated from a mean daily

temperature of all hourly data points (as opposed to a mean calculated from the

minimum and maximum temperatures). (2) Frost hours (FROSTH), number of hours

below 0 ◦C. (3) Frost degree days (FDD), an index we created to help combine the
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magnitude and duration of freezing temperatures. (4) Powdery mildew index (PMI),

an index created by the University of California Davis to help control the outbreak

of powdery mildew in vineyards. Each new variable and the relationship between

the derived quantities and the raw output is shown in table 2.2. Analysis of each is

discussed in the section 2.5.

Lastly, the entire new dataset was masked with a shape file of the Snake River

Valley AVA. Thus, any spatial means taken in the subsequent analysis will always

represent the AVA as a whole.

2.5 General Characterization of Climate in the

Snake River Valley AVA

In Chapter 1 we discussed the importance of topography and slope as a mechanism

for airflow pathways at the vineyard scale. However, this phenomenon also exists at

the regional scale. With the large valley structure of the SRVAVA, we can expect the

cooler, denser air at the boundaries of the AVA to be gravitationally fed into the valley

in the evenings as the sun drops below the horizon and solar radiation ceases. This

is demonstrated in figure 2.2 comparing daily maximum and minimum temperatures

with elevation. Daily maximum temperatures show a clear correlation, with the low

elevations (and latitudes, as denoted by color) having higher values, as expected

due to the typical atmospheric profile of decreasing temperatures with increases in

elevation. Minimum temperatures, however, have a much different relationship due

to the common temperature inversions known to take place in valleys when the denser

cool air flows towards the bottom of the valley reversing the atmospheric profile (for

our purposes, the term inversion means a reversal of the atmospheric temperature
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profile at any point in time, not necessarily a long lasting event that many Boise locals

think of when they speak of inversions). The correlation is not quite an inverse of the

TMAX relationship, however, many of the lower elevation locations have a notable

shift to cooler temperatures. The coldest mean temperatures are still clustered around

1000 m but the temperature gradient between high and low temperatures has been

reduced. A couple of possible explanations for this is that there is 1) not enough

average momentum for the cool day time air to flow to the bottom of the valley,

and/or 2) not enough time (overnight) for the dense air to make it to the bottom of

the valley.

Figure 2.2: Mean minimum and maximum daily temperatures against elevation in the
Snake River Valley AVA.

The primary risks associated with these daily temperature inversions are frost

and freezing damage due to the freezing air flowing into the base of the valley where

the majority of vineyards are located. These daily inversions are common but are

usually reversed to a typical atmospheric profile the next day when the solar radiation
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heats the ground in the morning and afternoon. Occasionally, these conditions come

with intense fog and low cloud cover which can prevent daytime solar insolation

from fully penetrating to the ground (especially in the winter when solar incidence

angles are low), thus keeping the temperature inversion in place (Yao & Zhong, 2009).

This mechanism can provide more time for the coolest air to be fed to the lowest

elevation and lead to an increased chance of freezing the plant tissue depending on

the magnitude and duration of the temperatures. Figure 2.3 show the locations of

extreme freezing events highlighting the inversion effect and the magnitude of these

extremes. We see that the most extreme of the events (such as the one in January of

2017), recording temperatures below -35 ◦C, are contained near the base of the valley

around the Snake River. Looking at the number of events in the less extreme plots,

we see a shift to many more events in the eastern segment of the AVA. This is likely a

product of the steeper slope of the canyon, along with cooler base temperatures due

to the higher slightly higher elevation, providing much more momentum for the air

to travel down and may not require the extended inversion periods to get the coldest

air to the base of the valley. It is also interesting to note that the cooler air in the

eastern AVA tends to settle well north of the Snake River, and that area south of

the river, specifically from longitudes of approximately 115.5◦ W to 116.5◦ W, has a

similar record of extreme frost as the well known sunny slope region.

The growing season length is often characterized by the timespan between the

last frost of the spring and the first frost of the fall season, also known as consecutive

frost-free days. Figure 2.4 provides a look at the total distribution of seasonal frost

timing and it’s standard deviation through time. We see a bi-modal distribution for

both the first and last frosts, with the “short” portions of the bi-modal distribution
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Figure 2.3: Number of extreme cold temperature events in the SRVAVA (1988 - 2017).
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Figure 2.4: Probability density functions of frost timing and variance in the SRVAVA
(1988 - 2017).

being areas of much higher risk for viticulture. Those distributions have frost events

extending into May and starting as early as September which would be unsuitable

for most vines, although, some species can ripen sooner than others and not require

as long of growing season. Traditionally, the growing season for grapes is classified as
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April 1st through October 31st, a season length of 214 days. The mean season length

of points within the AVA is 201 days (not shown), and the bulk of the distribution lies

within a 150 and 250 day season length with half of the area within the AVA having

a mean season length of over 200 days. Fall frosts have much narrower distribution

in both space and time which indicates that the weather of the AVA changes much

more as a whole in the fall and is prone to more intraregional variance in the spring.

Despite a significantly narrower distribution in the fall, the overall magnitude of the

variance is significantly higher in the fall with a mean deviation of about 19 days. The

wide distribution of timing in the spring has a mean of approximately 15 days. The

combination of both shows there’s a mean standard deviation of 25 days for the total

growing season. This could help inform some vineyard planting and management

decisions that still allow for successful production when growing seasons deviate to a

shorter length by more than a month.

General mean temperatures in the SRVAVA are shown in figure 2.5 and shows a

small seasonal lag in the summertime with August being the warmest month despite

the largest amount of solar radiation occurring in July. December is the coldest

month, but not lagged as it also provides the least amount of solar heating. Outliers

in low mean temperatures are much more common in the winter months and are most

likely more evidence of the positive feedback of long lasting temperature inversion

patterns known to be more frequent in the wintertime.

As discussed in chapter 1, large diurnal temperature swings in the growing season

has positive benefits to viticulture as it improves grape quality by balancing sugar

and acid levels in the fruit. The SRVAVA has some of the largest diurnal swings out

of any area that is otherwise suitable for viticulture in the Pacific Northwest with
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Figure 2.5: Mean temperature distribution in the SRVAVA (1988 - 2017).

Figure 2.6: Diurnal temperature variation in the SRVAVA (1988 - 2017).

its seasonal distributions shown in figure 2.6. It follows a similar seasonal pattern as

mean temperature with the highest spreads in late summer and early fall when it’s

most important for the ripening fruit. Additionally, you can see narrower distributions

in the spring that is evident of the more localized convective weather present in the
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spring.

All vineyards within the SRVAVA are fully irrigated and do not rely on direct

precipitation, but rather on mountainous snowpack. However, there have been some

drought years that did not provide enough snowmelt to the irrigation canals for some

vineyards without priority water rights. Drought is a normal and complex component

of Idaho climate, however the Idaho State Hazard Mitigation Plan report (State of

Idaho Hazard Mitigation Plan, 2018) has noted that future increases in the magnitude

and frequency of drought events are likely.

Annual AVA precipitation distributions are shown in figure 2.7. Although rare,

when significant droughts do take place and water is not available towards the end of

the season, it can impact production of current and future grape production. Current

year production can be forced to harvest ahead of schedule with lower yields and lower

quality fruit. Future years can be affected by not having the ability to “flood” the

vineyards after harvest, a common practice to reduce the impact of early frost events

due to the high heat capacity of water.

2.6 Agroclimate Analysis

2.6.1 Growing Degree Days (24-hour method)

Growing degree days are classified as a heat summation unit that serves as a

heuristic tool to represent the total relevant heat used for plant growth and devel-

opment. Growing degree days are most frequently calculated by estimating a daily

mean temperature by taking an average of the daily minimum and maximum temper-

atures. However, the distribution of temperatures throughout a day is often skewed

in one direction that averaging the minimum and maximum temperature would not
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Figure 2.7: Spaghetti plot of cumulative aggregated precipitation in the SRVAVA (1988-
2017).

accurately reflect a mean daily temperature. Furthermore, the difference in skewness

of daily temperature profiles across different locations and/or regions can lead to the

metric being better or worse suited in certain locations.

Literature has shown that utilizing hourly data to calculate growing degree days

is a more accurate representation of plant phenology timing (Gu et al., 2014). Thus,

we employ a method to utilize all 24 hourly temperatures as shown earlier in table

2.2. Figure 2.8 shows the seasonal sums of growing degrees using the traditional

method vs the 24-hour method which shows a significant overestimation of GDD

using the traditional method. Differences of over 100 GDD ◦C are noted in multiple

years which could potentially alter planting and management decisions by farmers

if historical data was given using a 24-hour method. Additionally, this difference

between the methods is getting smaller through time which is due to climate change

and the relative changes to minimum and maximum temperatures used with the

traditional method.
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Figure 2.8: Differences in seasonal growing degree days estimating mean daily tem-
perature in two various ways (TMIN/TMAX only, vs 24 hourly observations) in the
SRVAVA (1988-2017).

The traditional method for calculating GDD is still considered the industry stan-

dard, presumably due to the simple requirement of only needing a minimum and

maximum daily temperatures. As data at higher temporal resolution becomes in-

creasingly common, other methods may become more popular. However, for the

remainder of this analysis, all references to GDD will be shown using the 24-hour

method and summed during the growing season (April 1st - October 31st).

The SRVAVA provides a similar amount of growing degree days to other famed

wine growing regions such as Napa Valley (figure 2.9). The approximate area of the

sunny slope region is shown by the black bounding box and on average has about

1900 GDD ◦C (3420 ◦F) which is suitable for most grapes outside those with the

highest heat demands such as Zinfandel or Grenache. However, there is a standard

deviation of about 130 GDD ◦C (234 ◦F) which can pose risk of certain varietals

not fully ripening (even without the risk of frost). Mean deviation is smaller in the

southeast portion of the AVA, but as seen earlier, this area experiences a higher risk
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for severe frost. Also of note is the large area of GDD over 2100 ◦C (colored in yellow)

which represents the urban heat island effect of the Boise metropolitan area and is

captured by the land surface model used by WRF.

2.6.2 Frost Hours

Freezing temperatures are the primary threat to vineyards in the SRVAVA. How-

ever, the frequency, magnitude and duration of freezing temperatures are all impor-

Figure 2.9: Mean and standard deviation of growing degree days in the SRVAVA (1988-
2017).
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tant factors and it can be difficult to tease apart relative contributions of each. Frost

hours (FROSTH) aim to characterize the frequency and duration components by

simply summing binary values where any hour that is below 0 ◦C is ‘1’, and all non-

freezing temperatures are ‘0’. This is particularly helpful compared to daily data,

as the effects of only a single hour of freezing temperatures or the entire day being

below freezing (undetermined with daily data) could have significant effects on the

health of a crop. This is especially important for the shoulder seasons when vines

are not fully acclimated to cold temperatures and are much more vulnerable. Figure

2.10 highlights the large variance and timing of total cumulative frost hours. Other

use cases for frost hours is determining the length of the growing season which is

commonly referred to the period between the last (spring) and first (fall) frosts of the

season. Although frost hours are useful in determining periods that may pose a risk to

viticulture, it does not take into account the magnitude of the freezing temperatures,

which is the subject of the next metric.

Figure 2.10: Cumulative mean aggregated freezing hours in SRVAVA (1988-2017).
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2.6.3 Frost Degree Days

The frost degree day (FDD) is a metric computed from hourly data to better

characterize the magnitude of freezing temperatures without the need of creating

multiple thresholds in addition to the freezing threshold. It is calculated by summing

the difference between 0 ◦C and any negative temperature for each hour of the day

and is represented by the formula in table 2.2. A simplified hypothetical example

would be if the temperature was -2 ◦C for the entire day (24 hours) the FDD would

be (0 − (−2)) ∗ 24 = 48. If the temperature was -10 for the entire day, the daily FDD

would be (0 − (−10)) ∗ 24 = 240, and represent the magnitude of the temperatures.

The previously introduced frost hour metric would be 24 for both cases. Combining

both duration and magnitude into a single metric provides a more complete picture

of how vines have been affected by certain hazardous conditions. A look at the

relative difference between frost hours and frost degree days (figure 2.11) demonstrates

a shift to more high impact events despite the same amount of time spent below

freezing. This is emphasized in figure 2.12 showing a universal drop in the amount of

hours below freezing, yet many low-elevation areas (particularly in the lower valley)

experienced an increase in total FDD.

2.6.4 Powdery Mildew Index

Powdery mildew is the most widely known fungal pathogen to affect grapes, al-

though many other harmful pathogens exist such as: black rot, bunch rot, and downy

mildew. Powdery mildew can have a number of negative effects including reduced vine

growth, yield, fruit quality, and cold-hardiness. It thrives in warm, humid conditions

with an ideal temperature range of 21 - 30 ◦C (70 - 85 ◦F). It’s common practice for

vineyard managers to widely use the fungicide copper sulfate (CuSO4) as a measure
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Figure 2.11: 15-year split of frost degree days against frost hours. Magnitude of freeze
events is stronger per hour in most recent time period.

Figure 2.12: 15-year differences of FROSTH and FDD. An increase of FDD, indicating
an increase in the magnitude of freezing events, is noted in the lower valley where many
vineyards are located.

to mitigate powdery mildew outbreaks, which is both expensive and often damag-

ing to local aquatic ecosystems. Despite the much drier conditions of the SRVAVA

compared to other famed wine regions, powdery mildew is still a considerable threat.

UC Davis created the powdery mildew index (PMI) as a tool to help determine
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disease pressure and adjust fungicide spray timings accordingly (DR & Bettiga LJ,

Revised continuously). The index ranges from 0 - 100, with values lower than 30

to be considered mild pressure, 30 - 60 moderate pressure, and greater than 60 high

pressure. The risk index calculation requires hourly data and is calculated with a two

step process, initialization and adjustment. The initialization process is started with

the following procedure:

1. There must be three consecutive days with 6 or more continuous hours of canopy

temperatures between 70 - 85 ◦F

2. Once, number 1) has been satisfied, starting with the index at 0 on the first day,

add 20 points for each day with 6 or more continuous hours of temperatures

between 70 and 85 ◦F

3. Until the index reaches 60, if a day has fewer than 6 continuous hours of tem-

peratures between 70 and 85 ◦F, reset the index to 0 and continue

4. Once the index reaches 60, the index has been initialized and adjustment pro-

cedures should be followed

Adjustment (after initialization) constrained with the following guidelines:

• If the index is already at 100, you can’t add points

• If the index is already at 0, you can’t subtract points

• You can’t add more than 20 points a day

• You can’t subtract more than 10 points a day
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• If fewer than 6 continuous hours of temperatures occurred between 70 and 85

◦F, subtract 10 points

• 6 or more continuous hours of temperatures occurred between 70 and 85 ◦F,

add 20 points

• If temperatures reached 95 ◦F for more than 15 minutes, subtract 10 points

• If there are 6 or more continuous hours with temperatures between 70 and 85

◦F AND the temperature rises to or above 95 ◦F for at least 15 minutes, add

10 points (this is the equivalent of combining points 2 and 3 above)

Figure 2.13: Mean powdery mildew risk index. Majority of current vineyards located
within the sunny slope region denoted by the black bounding box.

To our knowledge, this is the only regional climate dataset that has been used

to produce a spatio-temporal map of PMI. With the complex topography in the
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SRVAVA, PMI can aid in site selection by identifying areas with higher or lower risk,

on average, and areas more prone to extreme events. There is high variance in PMI

due to the complex topography and flow paths in the SRVAVA as seen in figure 2.13.

Of particular interest is the large variance of PMI within the “sunny slope” region,

where the majority of vineyards are located, as denoted by the black bounding box.

2.7 Climate Trends

A large amount of natural and anthropogenic variance exists within the earth’s

climate and occurs at a variety of timescales. Our trend analysis seeks to describe

the overall variance within the 30 year climate normal. Our aim is two-fold: 1) to

perform linear trend estimation and other statistical tests to understand the long

term changes that can help better understand future climate and its agricultural

implications, and 2) to investigate the intraperiod variability and potential linkages

to large scale climate with a cyclical nature.

2.7.1 Linear Trend Estimations

According to the National Oceanic and Atmospheric Administration (NOAA),

global mean temperatures have risen by approximately 0.07 ◦C per decade since

1880, and by 0.18 ◦C per decade since 1981 (Lindsey, 2020). These estimates include

warming to both the land and ocean, which would have significant differences if looked

at separately, as water requires more heat than the land or atmosphere to rise to the

same temperature. Thus, we may expect temperatures in the SRVAVA to see increases

higher than 0.18 ◦C per decade as our analysis is nearly entirely constrained to a land

surface. This is confirmed with SRVAVA linear trend estimates of +0.72 (TMEAN),

+0.80 (TMAX), and +0.62 ◦C (TMIN) which break down to +0.24, +0.27, and +0.21
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Figure 2.14: Mean temperature changes from October 1987 - September 2017.

◦C per decade increases (figure 2.14). Daily maximums are increasing over 29% faster

than daily minimums, which is contrary to the majority of the globe, where minimums

are increasing faster than maximums (Lindsey, 2020). This results in a larger diurnal

temperature spread that can potentially benefit vineyards by helping balance sugar

and acidity in the fruit. However, the distribution of temperature changes are not

evenly distributed by month (figure 2.15).

Figure 2.15: Monthly mean temperature changes from October 1987 - September 2017.
Error bars represent one standard deviation comprised of 1000 Monte Carlo Samples.

Error bars are represented as one standard deviation pulled from a Monte Carlo
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simulation using random samples of 80% of the data to help constrain the effects

of high magnitude events. Summers within the SRVAVA are warming faster than

winters, with the agricultural shoulder seasons warming the slowest. April is the

only month that is cooling, and could have negative impacts for viticulture by earlier

deacclimation to cold weather in late winter making them slightly more vulnerable

to freezing events in spring. Additionally, the larger increases in maximum tem-

peratures in the summer poses additional threat of burning the leaves or fruit. A

statistical summary of each metric including its associated linear trend (per decade)

and accompanying p-value is presented in table 2.3.

GDD24 was the only metric found to have a statistically significant linear trend (p-

value < 0.10), though raw temperature and frost metrics have relatively low p-values

compared to other metrics. One explanation for the lack of significance in linear

trends is the relatively low sample size (30, as everything was annually aggregated)

coupled with a noisy signal which is typical in climate dynamics. A small presence of

high magnitude anomalous years could highly impact significance within a relatively

short climate period. It is entirely possible that a longer time series would result in

many metrics having a significant linear trend. Despite the lack of significance of this

particular statistical t-test, the general trends may have some qualitative usefulness.

Total GDD are increasing at a rate of 43 heat units [◦C] per decade (128 over 30

years) which is approximately equal to the annual standard deviation over the same

period. Benefits of this include new suitability for more heat demanding varietals

such as malbecs and zinfandels, as well as reduced risk for more moderate demanding

varietals to reach optimal GDD on years that deviate below the mean. Additionally,

as climate warming is widely expected to continue increasing at similar or higher
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Table 2.3: Spatially aggregated Statistical summary of each metric within the SRVAVA
from October 1987 through September 2017. Linear trends calculated with annually
aggregated data according to method.

Metric Method Mean Min 25% 50% 75% Max STD
Trend

(units per
decade)

P-val
% Change
w/ respect

to STD

TMIN Annual mean 6.04 4.74 5.62 6.29 6.41 7.59 0.66 0.21 0.14 95%

TMEAN Annual mean 11.69 10.08 11.03 11.88 12.12 13.31 0.73 0.24 0.12 100%

TMAX Annual mean 18.59 16.61 17.85 18.80 19.13 20.33 0.85 0.27 0.14 96%

TSPREAD Annual mean 12.6 11.6 12.3 12.5 12.9 13.3 0.44 0.06 0.52 42%

GDD Seasonal sum 1857 1656 1788 1849 1949 2090 105 25.1 0.26 73%

GDD24 Seasonal sum 1756 1484 1684 1763 1855 2024 123 42.6 0.10 106%

Season
Length

Consecutive
days

131 85 117 130 146 183 22 2.54 0.16 35%

First Frost
(Fall)

Date
threshold

Sep
26

Aug
25

Sep
15

Sep
25

Oct
6

Oct
26

17 4.54 0.22 80%

Last Frost
(Spring)

Date
threshold

May
17

Apr
18

May
7

May
15

May
30

Jun
16

16 2.01 0.56 38%

FROSTH Annual sum 1104 609 1003 1075 1222 1649 249 -48.6 0.36 -60%

FDD Annual sum 4006 1319 2713 3860 4637 8193 1872 -203.0 0.62 -33%

PMI Annual mean 9.62 5.34 7.70 9.16 11.11 15.35 2.66 0.47 0.41 54%

PRCP Annual sum 518 115 344 438 497 598 760 9.87 0.69 26%

Q2 Annual mean 4.51e−3 4.05e−3 4.36e−3 4.48e−3 4.67e−3 5.25e−3 2.57e−4 4.2e−5 0.45 50%

SWNORM Annual mean 217.7 211.4 215.5 218.3 219.9 222.9 3.25 -0.178 0.80 -17%

rates, these benefits will be further enhanced.

Both frost related metrics, FROSTH and FDD are shown to be decreasing through

time. However, in addition to the general reduction of freezing temperatures, the tim-

ing of such events is important. Figures 2.16 and 2.17 show the spatially aggregated

annual timings of the first and last frost and the growing season length (span between

last and first frost) and the associated trends. Interestingly, there is a seasonal shift

towards the end of the calendar year for both the first and last frost. However, the

trend for spring has moved by approximately 6 days forward and the fall frost shifting
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by about 14 days, thus having the total growing season increased by almost 8 days.

Two potential implications of this would be, 1) traditional planting and harvesting

dates may not be as valuable and require adjustment, and 2) a longer total growing

season offers more time for fruit to develop.

Figure 2.16: Cumulative distribution functions of frost timing and season length.

Figure 2.17: Frost timing by year.
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Overall, we see important linear trends across all temperature driven metrics that

by and large, are potentially beneficial to viticulture in the SRVAVA. This includes

an increase of growing degree days, reduction of freezing events, and a longer growing

season. Additional statistical tests can also be applied to further characterize changes

through time.

Spatial Distribution Tests

Although SRVAVA annual climate does not seem to change in a strict linear fashion

as denoted by insignificant student t-tests with linear regression, other statistical tests

are applied to better understand changes through time. In table 2.4 we apply two

statistical tests, the 2-sample Kolmogorov-Smirnov (KS) test and Mann-Whitney

(MW) rank test, over spatial SRVAVA distributions aggregated over 15-year time

periods. We compare most of the same metrics as a single tailed test over the mean

distribution of water years 1988-2002 vs 2003-2017. The hypothesis for each single

tailed test is determined as either ’Greater’ or ’Less’ for the relative means of each

15-year period. For example, if the first 15-year mean is less than the last 15-year

mean, the hypothesis will be tested as ’Greater’ than, and vice versa.

Both the KS and the MW tests are nonparametric tests to check if independent

samples are drawn from the same continuous distribution. However, their methods

are sensitive to different properties of the distributions. The KS test is sensitive to

any change in the distribution, such as standard deviation, skewness, or median, and

is calculated by looking at the maximum difference of the cumulative distribution

functions of each set of data. The MW test is largely only sensitive to changes in

median, and is calculated based on the numeric rank (low to high) of all data points,
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Table 2.4: 2-sample Kolmogorov-Smirnov and Mann-Whitmann statistical test results
for mean spatial distributions over the first and last 15-year periods.

Metric
30YR
Mean

First 15YR
Mean

Last 15YR
Mean

Hypothesis
KS

Statistic
KS

P-value
MW

Statistic
MW

P-value

TMIN 6.04 5.88 6.20 Greater 0.13 0.00 2.74e8 0.00

TMEAN 11.69 11.48 11.89 Greater 0.24 0.00 3.03e8 0.00

TMAX 18.59 18.35 18.84 Greater 0.21 0.00 2.91e8 0.00

GDD 1858 1830 1885 Greater 0.19 0.00 2.95e8 0.00

GDD24 1756 1713 1798 Greater 0.30 0.00 3.20e8 0.00

FROSTH 1105 1147 1063 Less 0.21 0.00 1.73e8 0.00

FDD 4006 4076 3936 Less 0.07 0.00 2.15e8 0.00

PRCP 286.25 291.91 280.58 Less 0.07 0.00 2.10e8 0.00

SWNORM 217.72 217.61 217.83 Greater 0.02 1.25e−2 2.37e8 0.00

Q2 4.51e−3 4.49e−3 4.52e−3 Greater 0.22 0.00 2.89e8 0.00

and then calculates the mean rank of each distribution. The test statistics for both

tests represent a rejection of the null hypothesis with high test statistic values and low

p-values. The range for the KS test statistic is 0-1 and the max of the MW statistic

is the sum of the ranks of the distribution.

P-values across all metrics for each test indicated significance at the 1% level (p-

value < 0.01), however SWNORM has a low KS statistic (0.02) indicating a lack of

significance. KS test statistics were highest for GDD24, TMEAN, and TMAX which

is in agreement with the largest total linear change in table 2.3. TMIN on the hand,

has relatively low KS statistic, but a relatively high MW statistic, indicating the

total median has likely increased through time as well as a change in the shape of

distribution. One cause could be a significant difference in long-lasting temperature

inversion patterns that can be common in the valley. Other metrics such as PRCP
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and FDD show reductions in total median as well, however the strength of the test

statistics are lower. These tests do not quantify by how much the metrics have

changed over time, but rather if they have any statistically different changes present,

and provides further support of the validity of the linear trends noted earlier.

Although these statistical tests have been useful for seeing big picture trends, it

does not characterize the large variance of climate well, which is evident by the large

standard deviations seen earlier in table 2.3. The following section takes a closer look

at the annual variance of climate in the SRVAVA.

2.7.2 Interannual Variability and Correlations to Large Scale

Climate

In the previous section, we identified strong linear trends in many agriculturally

relevant metrics in the SRVAVA, but largely glanced over the annual variability. Char-

acterizing the interannual variability is important to help understand the associated

agricultural risk. Furthermore, we seek to understand if there is an identifiable non-

linear signal in regional climate that accounts for some of the annual variance. The

objective of this section is to take a qualitative approach to look at the same metrics

as the previous section, and argue that there is a strong overlying signal that guides

the variance of climate within the Snake River AVA.

One method to help identify a low frequency signal, is to apply a high pass filter

over the same data. We first demonstrate this by adding a filter to the same frost

timing figure (figure 2.18) we used in the previous section. Here, we see a clear signal

highlighting the nonlinear variance of frost timing in both the spring and fall. Of

particular interest, is the clear inverse relationship between the two signals which

are represented by periods over seven months apart. This negative covariance is
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Figure 2.18: Evidence of similar low-frequency patterns in timing of both first and last
frosts suggesting strong relationship to large scale climate.

interpreted as having a similar effect based on overall state of the climate within the

entire year. In other words, the seasonal frost dates move together with relation to

temperature. Specifically, if there is a late frost in spring, it’s more likely for an early

frost to occur in the fall and vice versa. This may indicate that overall variance in

annual temperature may have a signal with a frequency longer than six months, which

would explain the negative covariance of first and last frost dates. Further evidence

of lower frequency signals are verified with a plot of temperature anomalies by year,

where of all 30 years, there are 5 consecutive periods of at least four years where the

anomalies are of the same sign (figure 2.19). In addition to the presence of a low

frequency signal, we see more evidence that the overall variability within the AVA

varies more as a whole region than within the AVA itself as noted by the small spatial
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variance of each year.

Figure 2.19: Temperature anomalies through space and time.

In addition to identifying a clear low frequency signal in annual temperature and

other temperature derived metrics, it is of interest to see if the frequency of extreme

anomalous events within a year also has a cyclical nature. Figures 2.21 and 2.20

show the number of daily temperature events that rise above and below the 1 and
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Figure 2.20: Distribution of > 99% anomalous temperatures. Relative high anomalies
are much more likely in the springtime. Clear low frequency signals appear in the
annual distribution.

99 percentiles relative to the mean for that same day of year (there are 10958 days

in our 30 year dataset, thus we see 1% of the data, or 110 days, in each figure).

Figure 2.21: Distribution of < 1% anomalous temperatures. Relative TMIN low anoma-
lies are much more likely in the wintertime.
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They are then summed by either month or year. Starting with the yearly sums

above the 99th percentile, minimum temperatures (years where the number of days

extreme minimum temperatures are well above normal) show the clearest evidence of

a low oscillating signal, that also has a notable positive trend. Mean and maximum

temperatures show similar wave like signals, though not quite as clear as the minimum

temperatures. The same can be seen in the < 1% percentile events in all categories.

This has implications that regional weather fronts (cold or warm) that are responsible

for extreme heat waves and cold air outbreaks are also correlated with other larger

scale climate mechanisms that vary slower through time.

With evidence that both mean metrics and outlier frequency are externally driven,

we can hypothesize a correlation with known large scale climate phenomena such as

the Pacific Decadal Oscillation (PDO) and/or El Nino Southern Oscillation (ENSO).

Correlations of these large scale climate indicators and regional climate are well doc-

umented. Examples include relationships of ENSO to drought in the southwestern

United States (DeFlorio et al., 2013) and PDO to total snowpack in Idaho (Kunkel

& Pierce, 2006). Despite these apparent correlations between regional and large scale

climate, the working relationship between them is not well understood. Chapter 3

takes a closer look at the relationships between regional climate in the Snake River

AVA and large scale climate and proposes a modeling technique to better utilize the

relationships between them.

2.8 Summary

Climate in the SRVAVA is well suited for viticulture with its adequate heat ac-

cumulation throughout the growing season, arid conditions that discourage fungal

outbreaks, high diurnal temperature swings, and complex topography to enhance
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airflow. Freezing temperatures pose the greatest risk, particularly from long last-

ing temperature inversion patterns common to the lower parts of the valley due to

complex topography, though other risks include extreme high temperatures in the

summertime and powdery mildew.

Using a 30-year, high-resolution climate dataset produced by the Weather and Re-

search Forecasting model provides numerous advantages such as: representing both

climate and weather components across a climatological normal, resolving important

phenomena within a topographically complex region such as cold air transport, and

allowing the use and creation of many metrics otherwise not available that can help

better characterize an agricultural zone. These characterizations include using new

methods to accurately calculate growing degree days (which show a 10-15% overesti-

mation using the traditional method), a custom frost index (FDD) to better repre-

sent the magnitude and duration of freeze risk, mapping potential threat of powdery

mildew, and more precise spatial mapping useful for site comparison within complex

topography.

After examining the data for long term trends for a variety of relevant viticultural

metrics, we found statistically significant changes in all temperature driven metrics.

These include a substantial increase in growing degree days, an increase in total grow-

ing season length, a forward shift in the growing season, an increase in mean diurnal

temperature swings, and a reduction of time enduring freezing temperatures (how-

ever the magnitude of these events could be increasing in the lower valley). Broadly,

these changes should be beneficial to viticulture within the SRVAVA as overall risk is

decreasing and more aggressive varietals are more viable than they were 30 years ago.

As global climate change is expected to increase for the foreseeable future, we can
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expect local temperature driven trends to continue. However, this is all predicated

on there being enough snowpack to provide adequate irrigation. As precipitation

variance is widely expected to increase as a result of global climate change, this could

increase the number of drought years and put an increased importance on seniority

of water rights.

Additionally, the SRVAVA climate experiences large interannual variance which

can have large implications on fruit yield and quality, although the variance is becom-

ing less of a risk due to the aforementioned trends. Furthermore, we identify strong

low frequency signals in both mean annual climate and number of extreme weather

events. These signals tend to oscillate at a multi-year (but sub-decadal) scale which

can help inform stakeholder decisions. For example, a late spring frost can indicate

a higher likelihood for an early fall frost of the same year which may inform some

canopy management techniques to prepare for a potential early harvest. We suggest

these low frequency signals may be related to large-scale climate indicators such as

the El Nino Southern Oscillation (ENSO) which we investigate in Chapter 3.
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CHAPTER 3:

FORECASTING REGIONAL CLIMATE FROM

LARGE SCALE CLIMATE: A DATA DRIVEN

APPROACH

3.1 Introduction

Large scale climate indicators, also known as atmospheric teleconnections, are

used to characterize climate variability at a global scale. Teleconnections specifically

refer to climate anomalies - usually sea-surface temperature (SST) and/or sea-level

pressure (SLP) - that are related at long distances (usually over 1000 km) and are

often simplified to a positive, negative, or neutral mode depending on the strength of

the relative anomalies. The most widely known teleconnection, the El Nino South-

ern Oscillation (ENSO), has been significantly correlated with many regional climate

phenomena across the globe. For example, effects related to the warm phase of ENSO

have been shown to be associated with: drought conditions in South Africa, southern

India, Australia, and the Philippines (Richard et al., 2001), stronger hurricanes in the

Pacific (Zheng, 1995), and flooding in the southern United States and northeastern

South America (Ward et al., 2014). Examples of correlations using other teleconnec-

tions include a strong correlation between the negative phase of the Arctic Oscillation
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(AO) and a weakening of the polar vortex (Kennedy & Lindsey, 2014), the frequency

of heavy precipitation events in the mediterrainian and the North Atlantic Oscillation

(NAO) (Ouachani et al., 2013), and similarly the Pacific Decadal Oscillation (PDO)

and precipitation in the Pacific Northwest (DeFlorio et al., 2013).

Despite the many identified correlations between large-scale and regional climate,

using teleconnections as the sole input to forecast the timing of specific regional

events, specifically at the monthly time scale, has been limited compared to forecasts

at the seasonal+ scale. Potential reasons for this include the highly variable lead and

lag periods in the correlation between teleconnections and regional events, and the

widely distributed covariance between different teleconnections across different time

spans. Although using large-scale climate to forecast regional events at the monthly

time scale has not yet been widely successful, the usefulness of teleconnections is

demonstrated by the substantial effort that has been put into forecasting ENSO and

other teleconnections with lead times up to two years (see: https://psl.noaa.gov/

enso/enso.forecast.html).

This chapter aims to first identify correlations between regional climate in the SR-

VAVA and specific teleconnections, and secondly, to explore a large-scale-data-driven

modeling technique to forecast regional climate at the monthly scale with lead times

up to one year. We address the former by identifying an underlying relationship be-

tween monthly temperature trends in the SRVAVA to both the PDO and the Southern

Oscillation Index (SOI) component of ENSO. We address the latter by implementing

a long short-term memory (LSTM) model, a specific type of recurrent neural net-

work, that utilizes sequential data to help overcome the inconsistent lead and lag

times present between large-scale and regional phenomena. Additionally, we utilize

https://psl.noaa.gov/enso/enso.forecast.html
https://psl.noaa.gov/enso/enso.forecast.html


55

an empirical mode decomposition (EMD) algorithm on the PDO and SOI signals to

identify and feed our network with signals at varying frequencies. By decomposing

the signals with EMD, we provide a much more robust representation of the signal

to help minimize the effect of noise and maximize the effect of separate frequencies

within the raw signals.

3.2 Large-scale Climate

Throughout the last few decades, ENSO has been found to be one of the most

impactful climate factors when correlating large-scale and regional-scale phenomena

at various locations on earth. Other teleconnections have a history of strong corre-

lations with certain events as well, but the strength of these correlations are often

localized. For example, most documented correlations with the Madden-Julian Oscil-

lation (MJO) are constrained to the tropics, and most influences of the Pacific Decadal

Oscillation (PDO) are related to countries bordering the Pacific Ocean. There are

multiple studies that demonstrate the relationship of PDO with regional climate in

the greater Pacific Northwest, as well as Idaho and the Snake River plain (Goodrich,

2007; Mantua et al., 1997; DeFlorio et al., 2013; Kunkel & Pierce, 2006). It is for these

reasons - the popularity and widely distributed impact of ENSO, and the relative dis-

tance from the Pacifc - that we choose to focus on these two Pacific teleconnections.

3.2.1 El Nino Southern Oscillation

The phase of ENSO is determined by a combination of differences between relative

anomalies for both SLP and SST near Darwin, Australia and Tahiti in the east Pacific.

The El Nino (EN) portion of the ENSO is the SST anomaly which was first noted by

Peruvian fisherman seeing the strong variability in quality fishing as a result of the
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upwelling (of lack thereof) of cool, nutrient rich water to the surface for fish to feed

on. The Southern Oscillation aspect, known as the Southern Oscillation Index (SOI),

of ENSO represents the SLP anomalies. Changes in SLP and SST in this scenario are

directly related to one another through a phenomena known as the Walker circulation

(figure 3.1).

Figure 3.1: Generalized Walker Circulation pattern in different ENSO states. (Di Lib-
erto, 2014)
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The Walker circulation is broadly driven by differences in mean land and ocean

temperatures. This is amplified by an ocean-atmosphere feedback: pressure gradients

(largely in place from atmospheric Rossby wave flow) driving the trade winds, and the

trade winds forcing warm surface waters towards the coast, thus mitigating upwelling

along that coastline and further encouraging the pressure gradient with the warm

waters contributing to convective, unstable air.

A variety of related sub-indices are used to help define and characterize an El Nino

event, partially due to different countries having varying effects and definitions for

an El Nino event (in other words, there is no globally standardized El Nino index).

Despite a variety of different indices that capture ENSO behavior, including the Nino

3.4, TNI, ONI, BEST, SOI (see: https://psl.noaa.gov/data/climateindices/

list/) the most common definition of the onset of an El Nino / La Nina event is

five consecutive months of a three month moving average of SST anomaly (centered

30-year base periods updated every 5 years) being greater (El Nino) than 0.5 ◦C or

less (La Nina) than 0.5 ◦C.

Event duration for El Nino events is typically 9-12 months and for La Nina events,

up to two years. The difference in duration between the two events not currently

understood. Frequency of each event spans approximately two to seven years, which

is longer than many other identified tropical teleconnections, but smaller than other

large scale modes that change phases on a decadal scale.

3.2.2 Pacific Decadal Oscillation

The Pacific Decal Oscillation (PDO) emerged as an additional indicator of climate

variability in the late 1990s when researchers noted relationships between Alaskan

salmon production, ocean temperatures, and climate (Mantua et al., 1997). It is

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
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similar to ENSO in that PDO measures climate in the Pacific, although PDO is only

a measure of SST anomalies. Additionally, the PDO represents changes in SST over

the mid-latitudes rather than the tropics. It is formally calculated as the time series of

the principal component analysis (PCA) of the standardized mean SST anomalies in

the east and west Pacific Ocean above 20 degrees north. Unlike ENSO, its phase shift

is on a decadal scale of approximately 20 to 30 years. One of the major mechanisms

for the slower phase shift is the significantly reduced speed of oceanic Rossby waves

in poleward latitudes. A time series demonstrating the frequency, magnitude and

duration of historical ENSO and PDO events is shown below (3.2).

Figure 3.2: Historical ENSO and PDO events. Mild/moderate events shown in light
grey with extreme events in dark grey. Raw signal represented by points.

Also unlike ENSO, the PDO index does not formally define the duration of a

phase event similar to an ‘El Nino’ or ‘La Nina’ event that is brought on by meeting
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sequential thresholds through time. Subsequently, it’s phase is determined by the

aggregated monthly anomalies being either positive (warm in the western pacific) or

negative (cool in the western pacific). As a result of quasi-regional weather events

in the Pacific, the phase of PDO switches at intervals significantly shorter than a

decadal time scale. In other words, the PDO signal is noisy and itself contains signals

with varying frequencies. This idea proves useful for our purposes though, as we are

interested in linking regional events that may be linked to both the low and high

frequency signals.

3.2.3 Climate of the Snake River Valley

Our objective is not only to identify correlations between climate in the SRVAVA

and large scale teleconnections, but to also utilize the teleconnections to forecast the

regional climate at a seasonal scale. As most of the low-frequency signals we identified

in chapter two were metrics derived from temperature, it is appropriate for us to start

with temperature as the primary metric to be forecasted. As teleconnection indices

are produced by NOAA’s Earth Systems Research Laboratory at the monthly time

scale (although computed from daily values), we must upsample our climate data

to match the monthly time scale. Additionally, as climate indices are normalized

anomalies, we remove the seasonal signal and noise of regional temperature which is

discussed further in the methodology section.

3.3 Properties and Relationships of Climate

Signals

The low frequency signals present within teleconnection indices inherently imply

a high degree of autocorrelation in the signals. Autocorrelation refers to the corre-
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lation coefficient between a signal and the same signal at preceding/proceeding time

intervals. Figure 3.3 demonstrates the high autocorrelation found in both the SOI

and PDO index, which persists for much longer in the PDO than SOI, as expected

for a slower oscillating signal. SOI is clearly correlated for up to approximately one

year, and PDO over two years. Correlation exists for the SRVAVA regional climate

anomalies as well, but is only present for two months. Additionally, when autocor-

relations are extended throughout the length of the data set, clear oscillations in the

total signal are also observed and function similarly to a low pass filter.

Figure 3.3: Unfiltered autocorrelations. PDO has significantly longer memory than
ENSO and regional temperature.
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Cross-correlation reflects the degree of correlation of one signal to a different signal

as a function of time displacement (technically, autocorrelation is a cross-correlation

with itself). Figure 3.4 presents the cross-correlations between PDO and SOI them-

selves, as well as their respective correlation to SRVAVA temperature. Between SOI

and PDO, represented as PDO(t) vs SOI(t +/- n), we see strong negative correla-

Figure 3.4: Unfiltered cross-correlations. The Southern Oscillation has a strong influ-
ence on PDO.
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tions (the fact they are negative is only a product of how the teleconnection anomalies

were defined). Of particular interest is the much stronger and longer lasting correla-

tions in the negative direction, indicating that PDO is partially, dynamically driven

by the ENSO/SOI signal, which has been thoroughly examined in other research as

well (Newman et al., 2003). However, the lingering existence of some correlation in

the positive direction could be an indicator that SOI/ENSO is also influenced by

PDO. Correlation between the teleconnections and regional temperature, PDO(t +/-

n)/SOI(t +/- n) vs TMEAN(t), are of a lower magnitude, but still clearly present.

Although there are clear correlations between the signals, they are of relatively

small magnitude that could potentially be driven by an excess of noise or other higher

frequency signals. Figure 3.5 demonstrates the relatively weak correlation between all

three components: PDO, SOI, and TMEAN. The negative linear correlation between

each respective teleconnection is present which also aligns with the magnitude of

regional temperature anomalies; high magnitude events with a large PDO and low

SOI, and vice versa. However, there is some clear overlap and many events happening

in the center or neutral state as well.

To evaluate the correlation of the signal with a reduction of noise (or high fre-

quency signals), we applied a low-pass filter to the PDO signal and compared the time

series of it to that of the SRVAVA climate which shows significantly higher correlation

between the two signals of nearly 0.7 (figure 3.6).

The Comparison shows a significantly higher correlation between the two signals

of nearly 0.7. This provides evidence that certain frequencies of the large-scale signals

may be more useful than the raw signal itself, and a combination of them may help

better forecast or historically reconstruct other climate signals. For example, there is a
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Figure 3.5: Unlagged relationship between teleconnection states and regional temper-
ature.

Figure 3.6: Unlagged relationship between PDO and regional minimum temperatures.
Lagged correlations are inconsistent.
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clear lag present in the PDO to temperature signal present throughout the time series,

but the length of the lag is clearly inconsistent (as noted by longer lags earlier in time).

This problem of inconsistent lags and correlations serves as the primary motivation

to use an LSTM network for representing sequences of data in time, in conjunction

with a deconstructed large-scale signal using Empirical Mode Decomposition.

3.4 Methodology

Although many relationships have been identified between various teleconnections

and regional phenomena in the Pacific Northwest, efforts to use teleconnections to

accurately forecast regional phenomena have been limited. Contributing factors that

complicate this goal include inconsistent lag periods of correlations (most regression

models require static lag periods) and noise or varying frequencies of the large scale

signal weighting models that don’t accurately capture meaningful signals. We address

these issues by 1) utilizing a long short term memory (LSTM) neural network - a

special type of recurrent network - that can represent long sequences of time series

data and properly represent varying lag periods, and 2) decompose the teleconnections

into multiple signals with an empirical mode decomposition (EMD) to be input as

individual features (and thus weight the model based on multiple frequencies).

3.4.1 Long Short Term Memory Model Overview

Artificial neural networks (ANNs) are a popular tool to model highly non-linear

and complex systems. However, when ANNs are applied to time series data, no se-

quential information is retained. The importance of the prior sequential information,

or memory of the signal, can easily be demonstrated with a natural language pro-

cessing (NLP) problem, the field where LSTMs first gained popularity. For example,
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take the sentence, “I lived in France as a teenager, where I studied the language and

became fluent in .” It is easy for a human to make this prediction of the word

‘French’ based on the context of living in France. In other words, our thoughts have

persistence. ANNs have no persistence, thus a recurrent neural network (RNN) was

developed to address the lack of persistence. In this example, the word French must

be primarily informed by the word France 13 sequence steps prior.

Figure 3.7 is a common diagram to represent the architecture of a basic feed-

forward neural network, where each input layer is connected to each hidden node,

and each hidden node connected to each output layer, all propagating forward. If

each input layer were considered a separate time step in this scenario, the impor-

tant takeaway is that there is no exchange of information between the hidden layers

themselves, resulting in no persistence of the sequence of information.

Figure 3.7: Basic ANN Structure.

Figure 3.8, on the other hand, shows a simplified unrolled RNN that connects each

time step by each cell passing information to both the output cell and the adjacent

sequential cell allowing the sequence to persist. Thus, each hidden cell after the first

of the entire sequence is informed by two inputs rather than one.

Although RNNs have been developed for memory persistence, the length of their
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Figure 3.8: Basic RNN Structure.

meaningful memory is less than 10 steps long due to the vanishing gradient problem

(Bengio & Simard, 1994). Most neural networks are trained using stochastic gradient

descent which uses the current prediction error of the model to estimate a gradient

to more accurately reflect weight changes with each iteration. This error gradient is

then back-propagated from the output to the input. Since gradients are calculated

based on their partial derivatives and propagated via the chain rule, the magnitude

of the gradients diminish rather quickly and become close to zero after only a few

steps away from the output, thus having a “short memory.”

LSTMs were designed specifically to increase the memory length of RNNs. Each

node within the hidden layer is replaced with an LSTM cell, which has an additional

output referred to as the cell state. The cell state is a vector influenced by three

specific gates: a forget gate (ft), input gate (it), and output gate (Ot), all with their

own sigmoid activation function. Each gate can conceptually be thought to act as

a binary switch as determined by its respective sigmoid function: the input gate is

used to control weather the memory cell is updated or not, the forget cell is used to

control if the vector is reset to zero, and the output gate is used to control weather

the cell state is visible or not (figures 3.9 and 3.10). Thus, it is the cell state vector

itself that contains the memory of previous time steps at any length (up to the full

length of the sequence fed as input), and thus unaffected by a vanishing gradient.

Furthermore, it allows the state to only use the past memory state when determined
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it is useful. A detailed explanation of the architecture of an LSTM is outside the

scope of this thesis, however many resources exist that cover this topic in detail.

Figure 3.9: LSTM Cell State.

Figure 3.10: Basic LSTM Structure.

Although use of LSTMs gained popularity in the NLP domain for speech recogni-

tion, use of LSTMs within the earth sciences, and hydrology specifically, has grown

substantially in recent years. Kratzert et al. (2018) demonstrated the effective use of

an LSTM as a hydrological model to predict daily streamflow in a variety of basins.

Conceptually, streamflow hydrology is an excellent use case for LSTMs as there is long

persisting memory at varying temporal scales. By using sequence lengths of 365 days,

the LSTM cell can begin to learn seasonal patterns such as snow melt dynamics, as

well as lagged delays in snowmelt runoff. Additionally, they demonstrated snowmelt

dynamics can be visualized by plotting the LSTM cell state values in conjunction

with mean temperature, which helps address the large “black box” criticism of neural

networks (figure 3.11).
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Figure 3.11: Snowmelt dynamics represented by the cell state value of an LSTM net-
work (Kratzert et al., 2018)

As lag times appear to be inconsistent for relationships between large scale climate

indicators and regional climate, and further complicated by noise or other higher

frequency signals, LSTMs are a good candidate for exploiting the persistent temporal

relationships between them. However, trials to map the raw teleconnection data alone

(as the only input) to regional climate via LSTM were unsuccessful, possibly due to

an abundance of noise. Thus, we chose to first decompose the large scale climate data

in an effort to inform our LSTM with varying frequency signals.

3.4.2 Empirical Mode Decomposition

Empirical mode decomposition (EMD) is an adaptive method of breaking down

a time series signal into multiple signals of equal length without leaving the time
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domain. The resulting signals, referred to as intrinsic mode functions (IMFs), sum

to form the complete signal and do not rely on any pre-existing assumptions about

the data. Other methods to break down a signal exist such as singular spectrum

analysis and wavelet and Fourier transforms, but do not offer the finite oscillation time

scale components that can often directly represent different processes that influence

the signal as a whole (Lambert et al., n.d.). Each IMF represents information on a

different scale of the original data and must meet the following criteria: 1) throughout

the entire raw signal, the number of zero-crossings must be not higher than one more

of the number of extrema; 2) at any point the mean of the envelope determined by

the extremas must be zero. The general sifting procedure used to create a complete

set of IMFs is as follows (figure 3.12):

1. Identify all local minima and maxima.

2. Use a three-spline interpolation function to create the upper and lower en-

velopes.

3. Calculate the mean values of the upper and lower envelopes designated as m1(t).

4. The difference, h1(t), between the signal x(t) and the mean m1(t), expressed as

h1(t) = x(t) − m1(t), is regarded as the primary definition of the first IMF.

5. To determine the first IMF more accurately, h1(t) is treated as a new signal,

its upper and lower envelopes, and their new mean m2(t) are calculated, and a

new difference h2(t) = h1(t) −m2(t) is determined. This h2(t) is again treated

as a new signal, iterated by k until the IMF criterion satisfies. hk(t) is the first

IMF, designated by H1(t).
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6. The first residual, d1(t) = x(t) −H1(t), is calculated with steps 1 through 4 to

obtain the second IMF H2(t) and is repeated until the last residual shows little

to no variation.

7. The number of IMFs for a given signal is thus variable depending on the com-

plexity of the original signal.

Figure 3.12: Process to generate IMFs through EMD.

3.4.3 Data Preparation

As mentioned earlier, the ENSO signal is composed of both SST and SLP compo-

nents, and PDO is composed of only an SST component. We chose to only incorporate

the SLP component, the Southern Oscillation Index (SOI), of ENSO into our model
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for two primary reasons: 1) it is known to be highly correlated to the SST signal of

ENSO via the positive ocean-atmosphere feedback, and thus still broadly represents

the overall process; 2) to attempt to reduce the correlation between PDO and ENSO

by using two separate components that may better represent the influence of each

index. We incorporate the EMD algorithm to both the SOI and PDO monthly signals

from October 1987 to September 2017 producing 9 IMFs for each signal (figure 3.13)

to be used as input to our model.

As the primary goal of this modeling effort is to determine if we can successfully

map large scale teleconnection data to regional climate in a way useful for forecasting,

we chose to only use the trend component of our regional temperature data by remov-

ing the noise and seasonal component. We accomplish this by applying an additive

time series decomposition method that decomposes the series into three components:

seasonal, trend, and residual that all sum to the original signal. Additive methods,

as opposed to multiplicative methods, are utilized when there is not an underlying

trend that is proportional to the entire level of the time series. In other words, if there

is a relatively consistent trend throughout the time series, a multiplicative method

is preferred. As climate change could potentially be considered a continuous trend,

we chose to address this by removing the linear trend in temperature first and then

applying an additive decomposition.

Seasonality is computed by taking the mean temperature for each month of the

year over the entire record, and then subtracting it from the absolute mean monthly

temperature. The trend component is calculated by a simple centered moving aver-

age based on the frequency of the data within a period (12 months), thus taking an

average of the first 12 values and iterating by one throughout the entire index. As a
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Figure 3.13: Intrinsic Mode Functions of SOI and PDO.
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Figure 3.14: Example of additive decomposition regional temperature.

result (figure 3.14), you will end up with a time series that has a length shorter than

the original signal by one frequency (6 months truncated off each end for monthly

data with a frequency of 12). The resulting residual, or noise, is then represented as

residual = original signal − trend − seasonal component. This results in 348

months (April 1988 - May 2017) of mean aggregated temperature trends in the SR-

VAVA to be used as the dependent variable in our model. To match the length of our

input and output data, we additionally truncate the first and last six months of tele-

connection data. Lastly, as most neural networks perform optimally with scaled data,

we scale all 30 years of data to values between -1 and 1. Our full data preprocessing

procedure is as follows (figure 3.15):

1. Upsample daily aggregated temperature data to mean monthly data for our 30

year regional data in the SRVAVA

2. Apply a simple linear model to all 360 months, and remove the linear trend
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3. Apply additive decomposition and pull only the trend component

4. Truncate the first and last six months of large scale data to match the regional

temperature data

5. Scale all data (independently) from -1 to 1

Figure 3.15: Conceptual data preprocessing flow chart.
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3.4.4 Model Framework and Results

The hyperparameter tuning of neural networks is a very active area of research, as

each model and the accompanying data pose unique challenges. Although our model

is relatively light in respect to data volume, the focus is not necessarily on optimal

performance, but more evidence that LSTMs can be useful in climatic forecasting.

Thus, a rigorous hyperparameter tuning scheme was not the main priority of this

research. A trial and error method of tuning hyperparameters was utilized for the

most commonly impactful parameters.

The model was developed using Python with the ‘keras’ deep neural network

module with a Tensorflow backend. We trained the model using the ‘Adam’ optimizer

algorithm with a learning rate of 0.008 over 40 epochs and a batch size of 192. We

used a single LSTM layer of size 50 (nodes), and found the optimal sequence length

to be 6 (months). Other parameters not listed were used as the default ‘keras’ values

and the model was evaluated with mean squared error function (MSE).

With only 348 monthly data points, we chose to separate our data into only

training and testing sets - as opposed to training, validation, and testing - to supply

as much training data as possible. With sequential time series data (vector inputs that

require sequential time steps), traditional randomized cross-validation techniques are

not possible as it is necessary to have one continuous length of data for both training

and testing. As a response to this issue, we choose to perform two experiments split

by 25 years of training and 5 years of testing. The first uses 1994 - 2017 as training

and 1988 - 1993 as testing, and the second using 1988 - 2012 as training and 2013 -

2017 as testing. We run the model with the dependent variable lagged by periods of

1, 3, 6, 9, and 12 months. Additionally, we choose to run eight ensemble runs per
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experiment to better constrain the uncertainty of each model.

Figure 3.16: SRVAVA Temperature trend forecasts with varying lead times in two
separate scenarios.

Results indicate good pattern adherence at all lead times, up to one year (we did
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not test at further lead times), with general decay in performance with increasing lead

time, as expected (figure 3.16). The testing period from 1988 - 1993 had multiple

local maximas/minimas which made for a more interesting signal to model and caused

a larger variance between ensemble runs. This appears to be a good use case for

ensemble runs, as the mean of the ensemble runs has a lower RMSE (not shown)

than the majority of individual runs. There is some disagreement on the 6-month

lead time run in the early test set, which could relate to the chosen sequence length

of six months representing some seasonal differences in SOI or PDO. We also tested

using longer sequences (up to two years), however, the overall best performance was

achieved with a six month sequence. The pattern of the more recent testing set was

also captured at all lead times including small variance in the ensemble runs, likely

as a result of the fairly simple signal.

3.5 Discussion and Future Work

Over the last couple of decades many correlations between climate teleconnections

and agriculturally relevant regional climate events have been identified. However,

the large amount of noise present in teleconnection signals pose challenges when

attempting to use them to forecast regional climate at the monthly time scale. Our

attempts to forecast temperature trends within the SRVAVA using a LSTM network

with raw SOI and PDO time series as the sole input were unsuccessful, which led us

to the EMD algorithm to decompose PDO and SOI into a collection of signals that

may better inform our model.

Efforts to combine the use of LSTM in conjunction with EMD as a mechanism to

forecast climate time-series has been previously studied (Zhang et al., 2018). How-

ever, these methods have generally been used to forecast time-series data using prior
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time steps of the same input (decomposed and reconstructed with EMD) to improve

performance compared to other long established methods such as ARIMA models.

Our model aims to accurately map large-scale climate data to regional climate data

without using previously known regional data to infer a useful relationship between

data at different scales.

Results indicate a strong pattern representation of regional climatic trends for two

test cases with lead times up to twelve months using 30 years of decomposed monthly

climate data. The EMD decomposition technique greatly improves accuracy that

may indicate multiple important processes being represented by varying frequencies

within large-scale teleconnections. Additionally, the use of sequential series of both

PDO and SOI can help to discern the importance of the relationship between PDO

and SOI from a modeling perspective. We believe this novel approach of using EMD

on large-scale phenomena to inform and forecast changes to a smaller spatial scale

can be a useful building block for future climate forecasting.

Practical applications of this climate model could help inform agricultural de-

cisions such as fungicide and pesticide spray timing, irrigation strategies, and vine

canopy management. Such actions could potentially increase yield and/or quality

of the product, reduce overall risk of fungal and physical damage by extreme tem-

peratures, and possibly reduce operating costs by more efficient spray timing and

irrigation.

There are many potential extensions of this work including: more extensive hy-

perparameter tuning, analysis of the relative impact of each IMF frequency and its

physical representation within climate dynamics, a longer time-series for training and

testing, and testing on other important metrics other than temperature. Lastly, EMD
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could be replaced with Ensemble Empirical Mode Decomposition (EEMD) - a method

of adding white noise to standard EMD IMFs to better constrain the true signal.
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CHAPTER 4:

CONCLUDING SUMMARY

Global climate change has increased stress on the agricultural sector. Changes in

the magnitude, frequency, and spatial distribution of hazardous weather and climate

events, as well as conditions that allow pests and pathogens to thrive, threaten the

yield and quality of global crop production. Although mitigation of climate change

is perhaps the most important challenge to overcome, some agricultural adaptation

at local scales can simultaneously capitalize on the warming climate.

Viticulture within Idaho’s Snake River Valley American Viticultural Area (SR-

VAVA) is an example of a relatively new, local agricultural sector that has grown

rapidly in recent years. Favorable climate conditions compliment well-drained soils,

and sloping hills found in the area provide substantial opportunities for vineyards.

To examine changes in overall agricultural suitability and risk we used a 30-year,

high resolution climate dataset generated by the Weather Research and Forecasting

(WRF) model to characterize spatiotemporal changes in seasonal agroclimate, as well

as the magnitude and frequency of anomalous, short-term weather events impactful

to viticulture.

The high-resolution of our dataset (1 km spatial and 1 hour temporal) provides

a number of novel applications, specifically with the complex valley terrain of the

SRVAVA. Such novelties include a more accurate way to calculate growing degree
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days, multiple metrics that can only be derived with hourly data, and a better spa-

tial representation of cold airflow across the valley. A statistical characterization

of changes in agroclimate metrics across 30 years found most temperature driven

metrics have changed in a way that is beneficial to viticulture. These include a sub-

stantial increase in GDD, an increase in mean diurnal temperature, a longer mean

growing season, and a reduction of total hours spent in hazardous cold temperatures.

Other neutral or disadvantageous changes include a later average spring frost, possi-

ble increase in severity of freeze events in the lower valley, and increased duration of

conditions where powdery mildew thrives.

Different grape cultivars have a wide range of climate and weather related charac-

teristics such as growing degree day demands, susceptibility to powdery mildew, and

cold-hardiness. Thus, insight from this analysis may be useful to better determine site

cultivar selection and a better evaluation of risk from powdery mildew and extreme

temperatures which are common near the base of the valley.

In addition to the analysis provided in this thesis, much of the data we used is

provided to the public and can be explored with use of an interactive web-viewer we

developed at http://bwc.boisestate.edu/climate-viewer (see Appendix A). Use

of this tool can facilitate exploring a variety of metrics at specific locations within

the Snake River Valley suited to the specific interests of the viewer. This tool also

provides the ability to download annual metrics and statistical summaries at any

SRVAVA location.

In Chapter 3 we also noted clear, low-frequency signals present in both annual

mean metrics and frequency of anomalous weather events that are weakly correlated

to large-scale climate indicators SOI and PDO. Building upon these correlations, we

http://bwc.boisestate.edu/climate-viewer
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introduce a novel forecasting method using Empirical Mode Decomposition (EMD)

to decompose raw SOI and PDO data into a larger collection of time-series signals

as input into a Long Short Term Memory (LSTM) neural network to forecast re-

gional temperature trends in the SRVAVA. Results show a significant improvement in

modeling power when decomposing large scale climate data with EMD and provide

accurate temperature trend forecasts with lead times up to one year.

In complement to Chapter 2, which aims to inform the overall agricultural suit-

ability and risk over long periods, this data-driven model may be useful to inform

agricultural management decisions associated with short-term risk due to seasonal

to sub-seasonal changes in climate. Such applications may help inform changes to

irrigation strategy, canopy management, and/or spray timing.

It is worth noting the interaction and roles of both physically-based models and

statistically-driven forecasting methods. This thesis utilized a physically-based model

(WRF) to “forecast” historical climate observations at significantly better spatiotem-

poral resolutions, which in turn provided us with a historical dataset to be used

as the dependent variable in a statistically driven forecast. Independently combin-

ing both types of forecasting methods can provide certain benefits. One benefit is

that physically-based models only need initial boundary conditions (and no historical

data) to generate the missing, incomplete, inadequate, or impossible to collect data

that statistical models depend on for training. A second key benefit to independently

combining approaches is the ability of a statistical model to mimic relationships that

we don’t have a great physical understanding of, which many exist within the food-

energy-water nexus.

Although our example of generating temperature data with a physically based
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model to be used within a data-driven model is fairly simple, it is easy to imagine

other cases of combining modeling techniques that would be useful for the agricul-

tural industry. For example, the forecasting of evapotranspiration (ET), which is

agriculturally desirable yet notoriously difficult to collect observationally. Using a re-

gional climate model to generate ET (WRF provides all the necessary energy output

to derive ET) could then be used as training data for a light-weight geostatistical

forecasting model of ET.

Many additional extensions of this work are possible. One natural extension would

be to continue to run additional WRF simulations (same domain setup) to the re-

spective present time to be used as analysis or forcing data for future agroclimate

projects. Subsequently, additional data could be continuously provided to the public

via the climate web-application we developed, along with additional analysis fea-

tures. Other opportunities include testing our modeling framework with a variety

of agroclimate metrics, robust hyperparameter tuning, and investigating statistical

relationships between large scale IMFs and physical processes.
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A.1 Introduction

Interactive data visualization has become increasingly popular, primarily due to

advances in software accessibility. Previously, such visualization projects often re-

quired a software and/or network engineering background. However, with the recent

development of many open source software packages and libraries, the programming

requirements and knowledge needed for effective interactive, web-based visualizations

has been reduced making it easier for the broader scientific community to share their

data and results.

This thesis was primarily funded through a grant provided by the Idaho State

Department of Agriculture with a primary deliverable of an interactive, web-based

tool designed for public exploration and statistical characterization of the Snake River

Valley American Viticultural Area. The remainder of this appendix presents the

methodology of development, current status, and future development of the tool.

A.2 Platform

R and Python are two of the most popular open source software programs used

in the scientific community. Both programs offer interactive, visualization packages

suitable for our purposes such as: ‘R Shiny’, ‘Bokeh’, and ‘Dash.’ We choose to use

‘R Shiny’ for three primary reasons: 1) Excellent documentation and large user base,

2) R is often considered to have a slightly smaller learning curve for newer developers,

and 3) easy and well-defined web hosting options. However, one potential downside of

using R is that it can be slightly slower when loading or computing on large datasets

(and lacks in native parallelization compared to Python).

Although R Shiny offers its own web-hosting service, we choose to host the appli-
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cation locally at Boise State University. We created our server on a virtual machine

that allows for multiple R environments, thus multiple apps can be created on the

same server with different web domain mappings. This can be useful for testing

and development, as well as the ability to host a variety of applications without

the need to set up different servers. The domain for this application is hosted at:

http://bwc.boisestate.edu/climate-viewer/

A.3 Data

Data used within the application is largely the same as outlined in the data section

of chapter two - daily aggregated data for the variables of interest from October 1987 -

September 2017. One notable difference is that we do not constrain the data to within

the Snake River American Viticultural Area, and include data for all of domain 01

and 02. Although the deliverable for this project is primarily concerned with the

Snake River Valley AVA, future projects may be concerned with areas included in the

greater Pacific Northwest. Analysis within the application has the option to subset

by either the Snake River Valley AVA, domain 02, or domain 01.

A.4 Functionality

We chose to split the application into four primary categories: 1) spatial analysis,

2) temporal analysis, 3) statistical analysis, and 4) background information. The

spatial explorer utilizes the ‘leaflet’ map package, which is an open-source javascript

library for interactive maps, similar to google maps. It is mobile device friendly,

zoomable, and has native layers such as land type and street names. Spatial data from

various projections can be plotted as an additional layer and is highly customizable.

We plot a geoJSON file of the Snake River Valley AVA and the netCDF climate data

http://bwc.boisestate.edu/climate-viewer/
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as a separate layer using the ‘raster’ package in R.

Functionality within the spatial explorer includes the ability to plot any interval of

daily data, of any metric, within a specified calendar year. Additionally, it includes

the option to plot monthly or annual anomalies for any specified month and year.

Anomalies are compared against the mean values for that month/year for the entire

30 year climate normal. A screenshot of the spatial explorer can be seen in figure

A.1.

Figure A.1: Spatial Explorer UI.

The temporal component of the explorer utilizes ‘dygraphs’, an open-source inter-

active charting library written in javascript. It can show precise values at any point

in time by mousing over the chart and can zoom to the see the appropriate amount

of detail. All data for use in dygraphs is spatially aggregated over any of the three

previously defined regions. Any variable can be charted with up to five years charted

simultaneously (figure A.2).
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Figure A.2: Time Series UI.

The statistical analysis included two tabs, ‘Statistics’ and ‘Download Data.’ The

statistics panel includes spatially aggregated statistics for the region of choice in an

interactive data table. Statistics can be grouped by calendar year or by month and

include means or cumulative sums for each variable. The ‘Download Data’ tab allows

for more precision control of point statistics in space. It provides a leaflet map with a

mouseover ability to query any point in space by latitude and longitude and bring up

statistical options for that point. The two features available are an annual summary

and a statistical summary. The annual summary provides means and cumulative sums

for each variable for all 30 years. The statistical summary provides a basic statistical

overview for each variable. It includes quantiles, minimum values, maximum values,

linear trends, and the associated p-values. Each report can then be downloaded as a

formatted PDF with a simple click (figure A.3).

The final ‘Background’ tab includes information on the purpose of the project,

generation of the data, useful links for additional information, and personal contacts
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Figure A.3: Data can be downloaded directly from any location.

for the project. Additionally, it includes an animation of a significant freezing event

in January of 2017 using VAPOR, a visualization tool created at the National Center

for Atmospheric Research (Li et al., 2019).

A.5 User Experience

As this tool is designed primarily for farmers and other interested parties that are

not necessarily scientists, careful consideration for how the users will use this tool

must be taken. In an effort to most closely align the functionality, ease of use, and

interoperability of this tool to its primary user base, we designed a user experience

(UX) survey to gain perspective from users not related to the development process.

Our survey was designed using Google Forms and included 20 questions to access

various aspects of useability. Questions were categorized into four main types: appear-

ance and connectivity, useability, interpretability, and additional thoughts. Appear-
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ance and connectivity questions were primarily designed to gather differences between

different browsers and view window sizes as well as network connection errors. Use-

ability questions were designed to access the level of intuitiveness and amount/type

of documentation needed. Interpretability questions had each participant answer a

specific climate related question that required usage of the tool. Lastly, we provided

open-ended questions that could be used to provide detailed feedback.

The UX survey was informally given to a variety of volunteering undergraduate

and graduate students in both scientific and non-scientific disciplines. As the size of

the participation was relatively small, aggregated results were used in a general qual-

itative way and not formally quantified. The large takeaways provided three main

themes. 1) Clarity and extensibility of documentation needed improvement for both

function and interpretation. Examples include the explanation of some scientific ter-

minology such as ‘anomaly’ which may not be fully comprehended by a non-scientific

population, and a wide range of answers for some simple analysis questions. 2) Many

different tools (tabs - spatial explorer, time-series, etc) were used to answer the same

quantitative questions, some proving more effective than others. 3) Additional bugs

(some known and some new ones) and design improvements were discovered such

as legend errors, inconsistent color mappings, and grammatical mistakes, and minor

problems with HTML/CSS rendering.

The UX survey provided invaluable feedback for us developers to not only get a

non-developer perspective, but one outside of a scientific background. Inline docu-

mentation was changed extensively as a direct result of this survey, as well as the

identification and resolution of the aforementioned (and others) bugs.
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A.6 Summary

The Snake River Valley Climate Viewer is an interactive web-tool designed in R-

Shiny for farmers and other non-scientists to explore local historical climate data at

a fine temporal and spatial resolution. It includes a multitude of visualization and

analysis styles and the ability to download data summaries and statistics at precise

locations that could help inform future agricultural decisions. Although it began as a

viticulture centric project, other specialty crop block grants in the future could easily

extend the usage of this application to include different spatial regions or other more

relevant statistics and is currently underway.
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