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APPROXIMATE SOLUTION OF SECOND KIND INTEGRAL
EQUATIONS ON INFINITE CYLINDRICAL SURFACES

ANDREW T. PEPLOW* AND SIMON N. CHANDLER-WILDE'

Abstract. The paper considers second kind integral equations of the form¢(x) =g(x)+
A K(X,y)g(y)ds(y) (abbreviated¢ = g + K¢) , in which S is an infinite cylindrical surface of arbitrary
smooth cross-section. The “truncated equation” (abbreviated ¢, = E,; + K,4,), obtained by

replacing S by S., a closed bounded surface of class C?, the boundary of a section of the interior
of S of length 2,, is also discussed. Conditions on K are obtained (in particular, implying that K
commutes with the operation of translation in the direction of the cylinder axis) which ensure that
I-K is invertible, that | - K, is invertible and (I — Ka)" uniformly bounded for all sufficiently
large a, and that ¢, converges to ¢ in an appropriate sense as a — co. Uniform stability and

convergence results for a piecewise constant boundary element collocation method for the
truncated equations are also obtained.

A boundary integral equation, which models three-dimensional acoustic scattering from an infi-
nite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the
integral equation and the corresponding boundary value problem) and convergence of a particular
collocation method.

Key words. second kind integral equations, Wiener-Hopf equations, boundary element method,
Helmholtz equation, collocation method

AMS subject classifications. 65R20, 45E10, 65N38, 35J05

1. Introduction. We are concerned in this paper with second kind integral
equations of the form

(1) 00 =900 + [5 k(xY)B(y) ds(y), Xe s,

and their numerical solution, in the case when S is an infinite cylindrical surface with
arbitrary cross-section in three-dimensional space. In equation (1) ge BC(S) (the
space of bounded continuous functions on S) is assumed known and ¢ € BC(S) is to
be determined. We abbreviate (1) in operator form as

() 9 =9 + K ¢

and make sufficient assumptions on the smoothness of the surface S and on the be-

haviour of the kernel k (k is continuous or weakly singular) so that K : BC(S) —

BC(S) is bounded but not compact. In particular, we suppose that
S={(X],X2,X3): (X, Xp) € I', X3 € R}

where I' = R? is a Jordan curve of class C>.

Integral equations of the form (1) frequently arise when reformulating linear el-
liptic boundary value problems in the interior or exterior of S as boundary integral
equations. We consider an example of this type in Section 4 of the paper, in which
acoustic scattering by an infinite rigid cylinder is investigated, with

0
(3) k(x,y) = 2an—(y)G(X’y)’
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2 A. T. PEPLOW AND S. N. CHANDLER-WILDE

where n(y) is the normal to S at y, directed into the exterior of S, and

A o . eix\x-y\
4) (x,y) = m

is a fundamental solution of the Helmholtz equation, Au+x?u=0.
When solving (1) numerically it is convenient, as a preliminary stage, to truncate

the infinite surface S. Let §+ and S_ denote the half cylinders denned by

S+ = {(X],X2,X3)€ S: X320}
and, fora> 2, let
§a = {(Xl,Xz,X3)€ S I‘X3‘ <aj.
Let E_ be the surface
(5) E_= {(X{,X9,X3) 1 (X, %) € Q X3 = F(X,%,)}
where Q is the interior of I', and f is any given continuous function on Q satisfying

>0, (X,%Xy) € Q,
f(xy,X

( 1> 2) =O, (Xl,Xz) € F,

and such that S = §_ v E_is a smooth surface of class C? (see Figure 1). Let
g

E+ = {(XI’XZ’X3)(X1’X2) S 5, X3: f(XI,Xz)} and S+ = §+U E+.

><1 XZ’
™\
S | "2
|

&% i) E*

|
lxz———O
|

FIG. 1. Cross-section through the surface S _.

For V < R’ andx € R’, let V + x denote the translation of the set V by the
vector X, and let e, € R® be the unit vector in the X3 direction. Then, for a > 2, define
Sa = S, U (E_+aey) U (E;—ae3) = S, U {(X,XaX3) : (X, X2) € Q, X3 =
+ (a+/(xl,x2))} (see Figure 2). Note that S, is a smooth closed surface of class C*.

Let X :=1{S, S+, S} U {S,+be,:a>2beR} and, for T = S” € X, define the
integral operator K; on BC(T) by

6) Krw(x) = Ji k(xy)w(y)ds(y) xe T.
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| X5 = 0
FIG. 2. Cross-section through the surface S,.

Let K+:Kgy and Ky =Kg , fora 2 2.

¢ € BC(S), introduce mappings between these two spaces. For a =1, let

A crucial requirement for the theory developed is a translation invariant assump-
tion on the kernel function k, that, forall (x,y) el = {(x,y) e T: T € 2},

k(x+tez,y+teg) = k(x,y), te R.

We analyse, in Section 2 of this paper, the approximation to (1) obtained by
replacing the infinite surface S by the finite closed surface S, and the convergence
to ¢, of the solution ¢, € BC(S,) of the approximate equation, as a—o. To

make precise the definition of ¢, and the sense in which ¢, € BC(S,)approximates
F, € C*(R)

be an even function satisfying 0 < F,(t) <1, t e R,, and

1, O0st=s

Fa(t)= 0, t=a +1.

For a = 2 define E; : BC(S) - BC(Sy) by

(")

~

Fa1 (%) (%), X = (X, X, %) € Sy,

E.w(X) = -
: {o, xe S,\S,,

and R, : BC(S,) -~ BC(S) by

(8) Ray(x):=

v (%), Xe S,

W (XX ~A)F, (Xa), X=(X,%,,X5)€ S\S,, X <—a

Then ¢, € BC(S,) is defined by

(9)

¢a = Eag + Ka¢a!

which we will refer to as the “truncated” version of (1).

In Section 2 we construct a partial theory of the solvability of equation (1) and
of the truncated equation (9). Theorem 2.8 suggests that the existence of a solution

(%% @)F (%), X=X, %, %) € S\S,, X5 2 a,
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to the truncated equation for all sufficiently large a depends not just on the unique
solvability of the original integral equation (1) but also on that of the “half cylinder”
equations obtained by replacing S by Sx. Specifically, it shows that | - K, is invertible
and uniformly bounded for all sufficiently large a provided | — K, I - Ky and | - K_
are injective. These conditions also ensure the invertibility of the original operator
I - K (Corollary 2.9), so that the spectrum of K is contained in the union of {0} and
the sets of eigenvalues of K, K., and K.. This result may be powerful for establishing
existence of a solution to equation (1) and, in the case when (1) is a boundary integral
equation, for establishing existence of solution for the corresponding boundary value
problem formulation. These points are illustrated by the example in Section 4.

In Section 3 we consider the numerical solution of the integral equation on S,

defining 6™ e BC(S, ) by
(10) ¢ = E, 9 + KM,
where K = Kan P, and P, is an interpolatory projection operator onto a space

of piecewise constant functions on a finite element mesh on San Note that Pn¢(”)

is a piecewise constant collocation method approximation to ¢an.and ¢(“) is the

iterated collocation method approximation of Sloan [12]. The results of Section 2
are extended to show that the operators (I-K™)™ are uniformly bounded for all

sufficiently large n and that Ran¢(“) converges to ¢ uniformly on compact subsets
of S provided that a, - + « and hn - 0 as n - o, where h, is the diameter of
the largest element of the mesh on San- Further, if ¢(x) > 0 as X > o, Ran;z}(”)

converges to ¢ uniformly on S,
The integral equation (9) may seem a perverse choice as approximation for (1): the
approximation obtained by replacing S by S, in (1) may seem more obvious: indeed,

this alternative approximation can be analysed in a similar (in fact simpler) manner.
However, the resulting theory appears to be inapplicable in practical situations in
which (1) is a boundary integral equation. In such applications it is generally the

case that (1) with S replaced by Sy is still a boundary integral equation so that the
injectivity of |-k, can be established in a similar manner to that of I - K (cf.

Section 4). Equation (1) with S replaced by §¢ is generally not a boundary integral
equation, and it is not clear, in practical cases, how the injectivity of | kgi (which

the alternative theory requires) might be established.

Integral equations on smooth closed bounded surfaces in R® and their numerical
treatment have a wide literature: see Colton and Kress [9,10] for that part relevant
to the acoustic scattering example of Section 4. The piecewise constant collocation
method discussed in Section 3 is the most commonly used boundary element method
(Brebbia et al. [6]). For integral equations of the class discussed in this paper on
smooth bounded surfaces, the stability and convergence of this boundary element
method can be analysed using standard results from the collectively compact operator
theory of Anselone [1],

To the best of our knowledge, this paper is the first attempt to develop a theory
for integral equations of the form (1) and their numerical solution. Our arguments
generalise ones in collectively compact operator theory [1]. Our assumptions, results,
and methods of proof are closest to those of Atkinson [5], Anselone and Sloan [2-4],
and Chandler-Wilde [8], who consider the approximate solution of integral equations
on the real line.

2. The Original and Truncated Equations. Let Kk (y)=k(xy),(x,y) €.
We suppose throughout that, for all a>2 and xeS,,k, €L(S,), and that k
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satisfies the following assumptions, A1-A4:

Al.Forall(x,y)e | ={(x,y)e T:Te 2}, k(x+tey,y+te;)=k(x,y), te R

A2.c= sup fs [k(xy)ds(y) < .
az2, xe$S,

A3. A(h) = sup Js, k(xy)—k(x,y)ds(y)~> 0 as h - 0.

a2, x,xe Sy, [x x'[<h

A4.For X = (X|,%3.%3) € Sy, Jg, [k(xy)ds(y) - 0 as x3- + =

Let Br :== {we L, (T): ||¢//||w <1}, for all Te 2. Note that Assumptions
A1-A3 imply that

(11) U KyBr bounded and equicontinuous,
Ted,
in that
sup ”KT‘V”w <c
Te X ye BT
and
sup [Krw(x)| 2 4 (h).

TeX peBr,xxXeT,|x x|<h

Thus, if Assumptions A1-A3 are satisfied, then Kt is a bounded operator from L oo (T)
to BC(T) for each T € X (indeed, Ky is compact if T is bounded), and
(12) sup [Kp| < ¢

Te

From A1-A3 we have also the following technical lemma:
LEMMA 2.1. Define @, (t), @_(t), fort> 0, by

o, ()= sup f [kooy)ds(y),

xe I Fte3

Where T : ={(X;,%,,0) : (X;,X,) € [}, and @ (t) by @ (t) := max (@, (t), @_(t)). Then
Dt)—>0 ast > + .

Proof. Consider ®,(t). From Assumption A2, supxeSA |k(X,y)| ds(y) <, so
that @, is well denned and

/§++te3 ‘k(x, y)‘ds(y) -0
as t > +oo with X fixed. Applying Al, it follows that
(13) /S~+ lk(x,y)| ds(y) > 0

as t—+oo with x = (X,X,,—t) and (X{,Xy) € I' fixed. But, by Assumption A3
ISN |k(X, y)|ds(y) uniformly continuous on S. It follows that the convergence (13)
+
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is uniform in (x,x;) €I, so that ®, () >0 as t—> +oo. Similarly, ®_(£) >0 as
t > + oo O

Assumption A4 gives rise to a similar result concerning the integral over £ .
LEMMA 2.2. Define ¥, (t), ¥ (t), for t 20, by

¥, ()= sup /E A ke (x, y)|ds(»),
xeFite3

and ¥ (t) by ¥ (t) =max (¥, (¢), ¥_(t)). Then ¥ (t) > 0as t - +oo.
Proof. From Assumption A2, ¥ is well defined and, from Assumptions A2 and A3,
/E . ‘k(x, y)‘ds( ¥) is uniformly continuous on S . It follows that W(t) — 0 from Assumption A4.

m
We shall employ principally the following notions of convergence. For a sequence {7,}

c X and T € X we shall write 7, > T if, forall 4> 0, {x €T}, :|x| <Ay ={xeT: |x| < A} for
all sufficiently large n. For a sequence {W,}, with wy € Ly (T);), we shall write
vn v ely(T)if T, »>T,supy, ”‘//n”oo < oo, and, for all 4 > 0,
ess SqueT,\x\SA|‘/’n(x)_V/(x)| - 0 as n > o,
REMARK 2.1. If T;, = T then, for all sufficiently large n, Ty \T < (E, —by) U
(E_ +cp), where by,c;; =2 0 and by,c;; > +00as n— oo. Thus, if T is bounded, T,=T
for all sufficiently large n, so that, if w€ L, (T), then vy, >y < |
REMARK 2.2. If 'y, € BC(T, ) for each n then w € BC(T).
REMARK 2.3. I yry > v then |||l < sup o |ly o . -
REMARK 2.4. If y,€ BC(T) and y,€ BC(T). for each n, then the convergence

W, — W is strict convergence in the sense of Buck [7].

v, -yl —o0.

REMARK 2.5. 4 useful test of convergence is: W, —> Wy <> every subsequence of { n}
has a subsequence that converges to i .

Our next two results are, respectively, a collective compactness and a convergence property of
the operator sequence iKT j, inthecase 7,, - T'.
n

LEMMA 2.3. Suppose that {T,}<X,T, Te X y,elL, (T,)for each n, and

Suan\VnHoo <w . Then, for some subsequence {l//nm},KTnm v, — ve BC(T).

Proof. Define T; ={(V, 12, 13)€ T;| y3 | 4}, for 4 > 0, and let x, = K7 v, . Note

that, forall4>0, T Z C T, for all sufficiently large n.
By (11), {xn} is bounded and equicontinuous. By the Arzela-Ascoli theorem and the

above remarks, it follows that {x,} has a subsequence, {x,sl)} which is a Cauchy sequence on

P (m 1) @ L a *
T, . Similarly, {x,” "’} has a subsequence, {x,”’} , which is a Cauchy sequence on 7,
Continuing the argument, we may construct, for each m € N, a subsequence {x,(,m)} of

{x"DY which is a Cauchy sequence on T,;:. Then {x'”} is a Cauchy sequence on T,: for

each m € N and thus converges to an element of BC(7T). O
LEMMA 2.4. Suppose that {T,}cX, TelZ, y,e L, (T,) for each n,

weL,_ (T),and v, = . Then KT,,‘//n — K7y .

Proof. If T is bounded then, by Remark 2.1, the above is no more than a statement that Kr
is continuous. Suppose that 7" is unbounded. Since, by (11), iKTn y/n} is bounded and equicon-

tinuous, to show KTn v, > Kry we need only show pointwise convergence of K T,V n to
Kry

Let C := sup, |l//n _, choose x = (x, x2, x3,) € T, and define T;; as in the previous
%k
proof. For all 4 > |x3| and provided T4 €T, (true for all sufficiently large
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n),

Ky, (x) Koy, (| S|/ ke ), o) w,0)ds0)]
FC e RCray) [ds (0)+ C f o [K(x,p) | ds(9)

<c sup |'//n(y) l//(J’)|+C Ev byyo(E+cy) | KX, ) [ds(y)
y3SA

+2C [ [ p)]ds(y)

for all sufficiently large n, where b,,c, 20 and b,c, > +o» (To obtain

this last inequality we have used Assumption A2, that, 7, \T:C(Tn \T)u (T\T;),
and that, by Remark 2,1,7,\T C (E+ - b,) U (E. + ¢,) for all sufficiently large n.)
Applying Assumption Al and recalling the definitions of ¥ and ® we obtain

Kiw, 00 Ky fse S8 lv,0) v+, +x)+# (e, %)

+2C(P(A+x3)+P(A4  xy)).
Given € > 0, by Lemma 2.1, the final term on the right hand side is < €/2 if 4 is chosen
sufficiently large enough. Then, since y, >y and by Lemma 2.2, the remaining terms

are <e/2 for all sufficiently large n. Thus ‘KT,, v, (x) K, (xx - 0 as n—> o for every

fixed x. i
We apply the above compactness and continuity properties first of all to give
a condition for the continuous dependence of ¢ on g in equation (1), in the case

ge (I K)BC(S).

THEOREM 2.5. If I - K is injective then (I — K)'! exists and is a bounded
operator on (I — K)BC(S).

Proof. Suppose that the theorem is false. Then there exists a sequence { n}c
BC(S) with |y, v, Ky, v,
we can find a sequence {a,} < R such that supxef”;(n(x)” >1, where {y,}< BC(S) is
defined by y,(x)=vw,(x a,e;),xe S. From Assumption Al it follows that
Ky,(x a,e;)=Ky, (x). Thus

(14) I, Kxl. =lw, Ky, -0

as n—> o,
Since {yn.} is bounded in BC(S), by Lemma 2.3 we can choose a subsequence

{x,,} and x € BC(S) such that Kyn — y From (14) it follows that Kyn = %

OO=1 for each n such that | s 0.. Since |

g =1’

and then, from Lemma 2.4, that Ky, - Ky. Thus =Ky Since ||X||00 2

1nfxe1~_‘xn (x)‘ = 5 and / - K is injective we have a contradiction. O

In the next two theorems we commence an examination of conditions for (7 —
K)BC(S) = BC(S) and of the convergence of ¢,, the solution of the integral equation

(9)on S,,to ¢ as a >
THEOREM 2.6. Suppose that I - K is injective and that, for some A > 0 and
all aZA,(I Ka) U exists and is a bounded operator on BC(Sa), with C :=

supaZAH(I Ka) 1H<o<>. Then (I — K)' exists as an operator on BC(S) with
H(I K) 1HSC Moreover, if g € BC(S), {a,} < R and a, » o, then (I —
Kan) lEal’lg - (I K) 1g
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Proof. Let g € BC(S) and define the sequence {¢,}, where ¢, BC(S, ) for
each n, by ¢, =(1-K, ) 1Eang. Then
(15) ¢ = Kan¢n + Eang-
Since {¢p } is a bounded sequence, by Lemma 2.3 there exists a subsequence {¢, } and
¢ € BC(S) such that

Kanm S T Eanm g — 9.

Thus, from (15), ¢nm - ¢ Hence, from Lemma 2.4, Kanm ¢, — K¢ , and thus
Kanm¢nm+Eanmg—> K¢+9g. Thus ¢=K¢g+g and so g € (I — K)BC(S) and

we have shown that | - K is surjective, so that (I - K)™' exists as an operator on
BC(S).
By the same argument, given g € BC(S), every subsequence of (I -K)™ Ea, 9 has

a subsequence converging to (I - Ky )'g Thus, by Remark 2.5,

(1-Kg,) " Eq,0 = (1-K)'g
for every g € BC(S). From this and Remark 2.3 it follows that ||(I - K)™'|| < C.

O
THEOREM 2.7. Suppose that the conditions of the previous theorem are satisfied.

Define ¢, =(1-Ky )" Eq g and ¢=(1-K)'g. If ¢x)~> 0 as x- o then

H¢ Ry #n| —~0asn— =
Proof. By definition,
(16) In Kan¢n = Eang
and ¢ K¢=g, so that
(17) Ean¢ Kan¢n = Eang-

From (16) and (17) it follows that
o 'Ean¢:(| _Kan)-lxn,
Where x, =K, E; #—E; K¢, so that

(18) [[#n - Eq #ll= SC Xp ||
For each n, let A, == (an -l)/2. By Assumptions Al and A2, and from the
definition of @ ,
sup ‘EanK(x)‘ < _sup |K (|)(x)|
xe S an\San -1 x€San\San —1

< sup L kOoy|ds(y)d], +c sup [g(y)]
yeS\SAn

xeSapSan — 1

< sup )¢, +c sup [o(y))|

t>A yeS\SAn
n

nEan(i)(x)‘ so that, for x €

The same upper bound applies to gyp < .
Xe an

- K
/‘Sanf 1‘

San\gan _1

X (0] <2 sup @O, +2¢ qup oy
t2A ye S\SAn
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~

For, x € S ,
an -1

X, (0= L, 5, kGEYNE, O () fis K )$()ds (9),

So that

‘Xn(x)‘S2c sup  [0(y)[ S 2¢ sup [o(y)

yeS\ San,l yeS\SAn

Thus

*9

[x

. =2 sup O (0)o], +2¢ sup [O(¥)
tZAn yes/§An

X,|. - 0 |and, by (18),

so that, by Lemma 2.1, ¢n_Ean¢”oo - 0as n> o

Now,

lo-®r, o | = sw focol+ s R, 6 o[+ s o) -6 (x)
xeS\San xeS\San xeS\Sa

n
<2 sup |¢(x)|+2 sup. |¢(x)_¢n(x)|
xe S\S,, X€S,,

<3 sup ax) | + 2|+ 4, E, 4],
xe S1S,
Since (I)(x)—Ean(b (x)‘s|(|)(x)|,xe §\§anJ Thus H(I)_Ran(l)nuw - 0 as n-

m

The next theorem is a criterion for the existence of a solution to equation (9)
for all sufficiently large a > 4 and the uniform stability of the approximate inverse
operators.

THEOREM 2.8. If I-K,I-K,, and I-K are injective, then (I-K,)"
exists and is a bounded operator on BC(S,) for all sufficiently large a > A and

-1
C :=sup IS A H(I - Ka)

Proof. Note that if (I—Ka)_1 exists (i.e. [ - K, is injective) then, since K, is
compact, (I - K.} is a bounded operator on BC(S,} by the Fredholm Alternative.

< o,

Suppose now that the theorem is false. Then there exist sequences {a,} = R"

=1 for each »n, and

o0

and {y,} such that a, —>o,y,BC(S, )and H\un

(19) Vo= Kagwal, = 0.
Since ||l//n||Oo =1 we can find a sequence {x(” )} such that x") = (xl("),xgn),x3(”)) €
S,, for each n and ‘W”(x(”)) 21,

There are two cases to consider: (a)a, ‘xg”) - ® as n—o; (b) {a, ‘xg")}
is bounded.

CASE (a). For each n, define 7,:=S,, — x{" and X, e BC(T,) by
(20) x,(x) =y, (x +x{Me;), xeT,.

Then, by Assumption Al, it is easy to see that
(1) K, v,(x+x{"e;)=K; X, (x), xeT,

n-
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CASE (b). We choose subsequences {q, } and {xgn’")} such that either {a, _
xgnm)} is bounded or {a, +x§"”’)} is bounded. Define T,, -= Saananm in the

case {anm"Fxgn’")} bounded, and x,, for each m, by

(22) xm(x) =y, (xta, e) xel,
Then
(23) Ka,, l//nm(Xianm):KTme(x)’xeTm.

Clearly, in both cases (a) and (b), Xme =1 for each m and, from equations (20)
and (21) in Case (a), (22) and (23) in Case (b),

(24) |x, k7, X, = > 0

-K
l//nm ap,, \Vnm .

as m— «. Note also that T, » T, where T = S (Case (a)) or T = S+ in the case.
{f’nm ixgnm)} bounded (Case (b)), and that, for some 4 > 0,

(25) sup | X, )2 &
xe Tm |x| <4
for all m.
Applying Lemma 2.3, {K; X,,} has a subsequence {K, X, ;} such that K ijX mj >

X € BC(T). From (24) it follows that ij—> X and then, from Lemma 2.4, that

Ky X, j— Kry. Thus X =Kpybut, by (25), Xl 2%. This is a contradiction

mj
since 7' =S, S+, or §-, so that / - K7 is injective. O
Combining these results, Theorems 2.6-2.8, we have immediately the following
corollaries, conditions for the solvability of equation (1) and of (9) and for the con-

vergence of ¢, to¢@.

COROLLARY 2.9. If I-K,I-K,, and I-K are injective, then (I—K)'1
exists and is a bounded operator on BC(S), so that equation (1) has a unique solution ¢
forall g € BC(S).

COROLLARY 2.10. If I — K,I-K,, and I-K _ are injective, then equation (9)
has a solution, @, for all sufficiently large a > A. Moreover, ¢, > ¢ the solution of

equation (1), as a — o . Further, if $(x) » 0as x > = ,thenHRad)a — ¢Hoo - 0.

3. Numerical Solution of the Truncated Equations. In this section we
extend the arguments of Section 2 to investigate the convergence of a simple piecewise
constant finite element collocation method applied to the truncated equation (9) in
the limit a—> « and A— 0 , where % is the diameter of the largest element of the
mesh.

For T € ) bounded we call I1 = {yM .y a mesh on T if, for each i,
y(i)CT is open in T,y(i)my(j)zﬁ,ii Jj, and Ui]il))(_i): T For a mesh II let
h(IT) denote the diameter of the largest element of IT.

Given a sequence {7, - n € N}cX (each T, bounded) and a mesh II, =
{y,gl),...., y,EN” )} on T,, for each n, one can construct a sequence of piecewise constant
interpolation operators {P, : n € N}, where P,: BC(T,) P, : BC(T,) = L, (T, ) defined by
(206) Py (x)= t//(x,(li)),xe y,(,i),i =1,...N,,

@

n

@)

where x,”,i=1,..N, n=12,...., is a given interpolation point in 7, .
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REMARK 3.1. If T;, > T € 2, w,, € BC(T},) for each n, y, - w € BC(T), and
hy, =h(I1,,) > 0,then, for each A > 0 and all sufficiently large n,

sup Ry, () v sup |y, (x) w(x)

xeT,|x| <4 xeT,|x| £ At+hp

+ sup ooy )|~ 0

x,x'eT, \xux’\ S A+h,, ‘x—x" <h

n

as n—> o, so that Py, —y.
We have the following lemma, analogous to Lemma 2.4, a continuity property of
the operator sequence {K (”’}, where K™ : BC(T;,) — BC(T,) is denned by
(27) K" =K, P,
LEMMA 3.1. Suppose that {T,} ¢ 2, T € X, w, € BC(T,) for each n,
w € BC(T), {Pn}is the sequence of piecewise interpolation operators given by (26),
w, — wand h, — 0. Then K"y, — K;,.

Proof. Apply Lemma 2.4 and Remark 3.1 to the sequence {Py, }. O

Throughout the remainder of the section we suppose that the following additional
assumption is satisfied:

A5. {P,} and {K™} are denned by (26) and (27), with 7, = S, forn e N,
and {a,} < [2,©). Also, a, >, h, =h([l,)—>0, as n— .

Suppose that Assumption A5 is satisfied and, for n € N, define 5("’, a piecewise
constant finite element collocation method approximation to ¢, , by

Pad ™ =PrEand +Prkand ™, g We PBC(Sa,)
Sloan [12] proposed using the iterated collocation solution rather than the colloca-
tion method approximation. The iterated collocation solution, ¢ e BC (S,), is

obtained by applying one Neumann iteration to ¢ : thus

¢ E, g+K, 9.
Note that ¢ =P g™, so that ¢ and ¢ agree at the collocation points, and
¢ satisfies equation (10). From the results of Sloan [12] it can be expected that ¢™
will approximate ¢, more accurately than 5(”) and we concentrate on proving the

convergence of ¢, in the remainder of this section. Note that, since " =Py,

6 >4 if 4 > 4,
by Remark 3.1.
We now present results on the stability and convergence to ¢ of the iterated

collocation solution, ¢™. Our results are discrete versions of Theorems 2.6-2.10 of

the last section.
THEOREM 3.2. Suppose that I - K is injective and that, for all sufficiently large

n>N, (I-K")'exists and is a bounded operator on BC(S, ) and sup,.y
|(I-K™)* || < = .The for all g € BC(S), ¢":= (1 ")' E g > ¢:=
(1-K)'g as n > «. Ifalso ¢(x) > «, then |p-R, ¢™ I - 0.

Proof. Let ge BC(S) and define the sequence {¢("} as above. Then
(28) ¢(n) = KM ¢(n) + Ean P, ¢(n) + Ean g.
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Since Sup,sp | Pn¢(n) | = sup, s ||¢(n) || < o, by Lemma 2.3 there exists a subse-
quence {¢"™} and ¢ € BC(S) such that
("m) 4(Nm)
kK(MMg{tm) g0 g = ¢
Thus, from (28), ¢™ - ¢. The proof that ¢ -~ ¢ now follows that of Theorem

2.6, utilising Lemma 3.1 in place of Lemma 2.4. Similarly, the proof that || ¢ —
Ran¢(”) |, = 0 as n— « follows that of Theorem 2.7. O

THEOREM 3.3. If | - K, | - Ky, and | — K_ are infective, then (1-K™)
exists and is a bounded operator on BC(T, ) for all sufficiently large n > N and
supy s fI(1-K™) | < oo

Proof. Suppose that the theorem is false. Then, arguing as in the proof of

Theorem 2.8, it follows that there exists a subsequence {K(nm)} and a sequence
WmJ with yp € BC(Sy ) and [[ypll.=1 m e N, such that
m

m K™yl = e Koy Ppwnl, = 0.
Since || W |le =1,, we can find a sequence {X(m)} such that x(™M = (x(™ x{™ x{™y
€ S, -Me N, and ‘y/(m)(x(m))‘ 21
Now, arguing as in proof of Theorem 2.8, one can construct a sequence {Tn} <
Ysuch that T, —»>T € {S5,5,,S }, a sequence {yn}, with y, € BC(Tn} and

1 . .
SUPxe Ty, X < A ltm(X)| 2 5 for some A > 0 and each m, and a sequence of piecewise

constant interpolation operators, {Pr:}, where P;] : BC(Tm) » L, (Tw) for each m,
such that

I%m Ky, PmxXmlle - 0, h(IIm) - 0O,

* . *
as m — oo, where [[,, is the mesh on Ty corresponding to the operator P, . For

example, in Case (a) of the proof of Theorem 2.8 (&, |X§m) | > © am- =),
- (m)
Tm P Sanm X3 )

Zm(x) = l//m(X+X§m)e3), X € Tm)
HTn ::Hm X?(,m)a
and, for ¥~ € BC(T,),
Py ()= Py (x+x7e), x € Ty,
where y e BC(S, ) is defined by w(x):= v (X X§m)e3). A contradiction is now
m

obtained as in the last paragraph of the proof of Theorem 2.8, utilising Lemma 3.1 in place
of Lemma 2.4. O

Combining the two theorems, we obtain the following, our main convergence result
for the iterated collocation solution.

COROLLARY 3.4. If | - K, I - K4, and | — K . are injective, then, for all

sufficiently large n > N, equation (10) has a solution, and ¢™ — ¢, the solution of
(1), as n — 0. Further, if ¢(x) > 0 as x — oo, then |[R, ¢™ 4| - 0.
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4. An Application to Acoustic Scattering. We apply the results of the pre-
vious sections to the case in which S is the surface of an acoustically rigid cylinder
embedded in a homogeneous fluid occupying D, the exterior of S.

For T e 2 let n (x) denote the normal to 7 at x, directed into the exterior of T,

and let D7 denote either the interior or the exterior of 7. Following Colton and Kress

[9], let R (D7) denote the linear space of all complex functions ¥ e C? (Dr)n BC(D_T)
such that:
(i) the normal derivative on the boundary exists in the sense that the limit
U - im Vet ho())ol), x e T,
o h-0,h>0

exists uniformly on compact subsets of 7, where v (x) = n(x) if D7 is the exterior
domain, v(x) = - n(x) if Dris the interior domain;

(i)
(30) sup |[Vu(x+ ho(x))o(x)| <

xeT, 0<h<e

(29)

for some € > 0;
(iii)
(31) sup Vu(x) < =
x€ Dy, dist(xT) 2 €
forall € >0,

8
Note that if « e R (D7) then, by (i) and (i), a—“ e BC(T).
n

Consider the scattering of an incident acoustic wave, bounded and continuous

on S, and of angular frequency (e ‘! time dependence). This gives rise to the
following boundary value problem for the space dependent part of the scattered field.
BVP1 Find u € R (D) such that

(32) Au + ’u=0 in D,
ou
(33) — =F on S
on
In equation (33), F € BC(S) is given (F=- aal where u' is the incident
n

field) as is x € C. We will assume throughout that /m « > 0, so that the medium of

propagation is lossy. The results we obtain apply only partially to the case Im « > 0.
This boundary value problem can be reformulated as a boundary integral equa-

tion. Define G(x,y) by equation (4). For R > 0 let Bz := {x e R®:|x| < R}. For
h > 0 sufficiently small, let sh = {x + hn(x) : x € S}, so that shis parallel to
and distance 4 from S and of class C’[9, p.37], and let D" be the region exterior to
S". Applying Green’s representation theorem [9, p. 68] in D" n By, letting R —» o,
noting that G(x, y) decays exponentially as |x-y| - «, and that u, are bounded

in D" by (31), we obtain
0G(x,y) Ou(y)

— h
w0 = S w30y ds(), xe D
Letting # — 0, and utilising equations (29), (30), and (33), we see that
0G(x,
(34) uw= U@+ O ), xe D

on(y)
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Where
(35) U(x)=— fs F(»)G(x y)ds(y), x e D.

Equations (34) and (35) represent u in D as the combination of a single- and a double-
layer acoustic surface potential. Prom standard properties of these potentials [9] it

follows that U e BC(F) (in fact U e R(D)) and that the double-layer in (34) is

continuous up to the boundary S, its limiting value given by [9, Thm 2.13]. Thus, letting
x in (34) approach S, we find that ¢ .=u|s € BC(S) satisfies the following boundary

integral equation:

(36) $09=000+2 f; S s, xe s,

where g := 2 Uls € BC(S). This equation is of the form (1) with k(x,y) given by
(3). Using a mixture of elementary and standard arguments (e.g. [9, p. 50]) it can be
seen that &, given by (3), satisfies Assumptions Al-A4 (for details see Peplow [11]).

In order to apply the results of the previous sections we need also to consider
the same integral equation but with S replaced by S, S. or S,, for some a > 0.
We will show uniqueness of solution of equation (36), and of the same equation with
S replaced by S; or S, by using the following uniqueness result for corresponding
boundary value problems. Note that this result, in particular, shows that BVP1 has
at most one solution.

THEOREM 4.1. Suppose that T € >, Dris either the interior or exterior of T,

and v € R (D;) satisfies

(37) M+x*0=0 in D,
and either
(38) =0
or

ov
39 — =0
(39) o

onT. Then v =0.
Proof. For h > 0, define 7" = {x+v(x)h: x € T}. Then T" is the parallel

surface distance # from 7T lying in Dy Let D]h~ be the region exterior (interior) to
T" if Dy is exterior (interior) to 7. For € > 0, define F. € C” (R3)by Fo(x) =

exp (-€ \/1+|x|2) :

Applying Green’s first theorem to v and v F. in the region Bp N D7h~ , utilising
equation (37), then letting R — o, we obtain

—2 2 2 ov
/D]’z Fe { K"+ Vol }dx+ ./Dh Fel)ads

obr

(40) :-th I)VFG.Vde
T

Letting 2~ — 0 and utilising (38) or (39) we find that the integral over 8D]h~ vanishes
and equation (40) holds with D]@ replaced by D7y .Multiplying this equation by x,
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and taking the imaginary part, we obtain

(41) Im k(B?+¢2)= Im {x fp, oV F.. Vo dx}

1 1
where po : = {[DT F |K|2 o dx}g,qE = {LT F. |Vu|2 dx}g. Noting that ’VFG‘ <e k.
and applying the Cauchy-Schwarz inequality, we obtain

(42) Im k(P2 +4%) < € p.q..

It follows that Im x p. < € gq_and Im xq_ < € p_ so that (Im x)* p_ q_. Thus,

for e < Im x, p_=0.Thus v =0 in Dy. O

Using the above result, the following theorem shows that both equation (1) and
equation (9), with £ defined by (3), have at most one solution. Note that in this next
theorem and through to the end of this section Ky is defined by equation (6) with &
defined by (3). We give a fairly brief version of the proof of Theorem 4.2 — the result
is in any case standard in the case 7 bounded [9] — for further detail see Peplow [11].

THEOREM 4.2. For all T € 2., I—K, is injective on BC(T).

Proof, Suppose that T € X, ye BC(T) and y = Ky ,. From [9, Theorem
2.30] (which applies immediately if 7 is bounded, with some additional argument, if
T =S, S+ or S.), Kr maps BC(T) onto the Holder space C”*(T), and C"*(T)
onto C"*(T). It follows that v e C**(T).

Let Drdenote the exterior of T and define

o= f YO i), xe D,

on(y)
0G(x, —
weo= f 280D (), xe REVD;.
on(y)
Clearly
(43) Av+x*v=0 in Dy,
(44) Aw+x?w=0 in R’\Dy.
From [9, Theorem 2.13 and 2.23], and noting that A 62?(2@;/) w(y)ds(y) = %W(x),
nyy
x € T (since y = K;y), it follows that v € (D7), w € (R3 \E) and
(45) v =y,
(46) w= 0,
and
47) 2. X
on on

on T. Noting (44) and (46) and applying Theorem 4.1, it follows that ® = 0 in R3 \D_T,

0
so that a_w =0 on T. Then, noting (43) and (47) and applying Theorem 4.1, it follows
n

that v=0 in E and, from (45), that ¥ = 0. We have shown that / — Ky is injective.
m

Having shown that the homogeneous version of (1), with S replaced by 7, has
no non-trivial solution, for all 7€ >, we can now obtain existence of solution to
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equation (1) and equation (9), convergence of ¢ — ¢ as a —» o, and convergence of

the numerical approximation ¢, denned by equation (10). Applying Corollary 2.9

and Theorem 4.2 we have immediately
COROLLARY 4.3. The inteﬁral equation (36) has precisely one solution.
From Theorem 2.8, Corollary 2.10 and Theorem 4.2 we have

COROLLARY 4.4. Equation (9), with k defined by (3), has a solution, ¢,, for

everya > 2. For some 4> 0, sup, > 4 | K,) 1|| < o . Further, ¢, > ¢ as a » «,

and, if $(x) > 0asx - o, then ||R,0, ¢, - 0 asa - « .
Finally, from Theorem 3.3, Corollary 3.4 and Theorem 4.2 we have
COROLLARY 4.5. Suppose that Assumption A5 is satisfied. Then equation (10),

with k defined by (3), has a solution, ¢ for all sufficiently large n > N, and
sup,sy 1 KDY Y| < o Further, " > ¢ as n— «, and, if d(x) > 0 as

X - o, then ||Ra”(1)(n) ¢l - 0 as n > o,

We remark that the proof of Theorem 4.2, which shows, inter alia, that, if ¢
satisfies equation (36) with g = 0, then o satisfies BVP1 with F = 0, can be extended
(see Peplow [11]) to show that BVP1 and the integral equation (36) (with g := 2 Uls)
are equivalent, in that, if ¢ satisfies (36), then u, defined on S by u|s = ¢, and in D by
(34), satisfies BVP1. (We have already shown conversely that if u satisfies BVP1 then
uls satisfies (36).) Thus Corollary 4.3 also establishes, by integral equation methods,
unique existence of solution of BVP1.
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